JP2012151286A - Method of producing r-t-b-based sintered magnet - Google Patents

Method of producing r-t-b-based sintered magnet Download PDF

Info

Publication number
JP2012151286A
JP2012151286A JP2011008963A JP2011008963A JP2012151286A JP 2012151286 A JP2012151286 A JP 2012151286A JP 2011008963 A JP2011008963 A JP 2011008963A JP 2011008963 A JP2011008963 A JP 2011008963A JP 2012151286 A JP2012151286 A JP 2012151286A
Authority
JP
Japan
Prior art keywords
sintered magnet
diffusion
rtb
based sintered
magnet body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008963A
Other languages
Japanese (ja)
Other versions
JP5854304B2 (en
Inventor
Futoshi Kuniyoshi
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011008963A priority Critical patent/JP5854304B2/en
Publication of JP2012151286A publication Critical patent/JP2012151286A/en
Application granted granted Critical
Publication of JP5854304B2 publication Critical patent/JP5854304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffusion treatment of a heavy rare-earth element RH exhibiting excellent mass productivity.SOLUTION: A method of producing an R-T-B-based sintered magnet includes a step for preparing an R-T-B-based sintered magnet body, a step for preparing an RH diffusion source consisting of an R-T-B-based alloy where the content of a heavy rare-earth element RH (at least any one kind of Dy, Tb) is higher by at least 0.5 mass% than the content of the R-T-B-based sintered magnet body, a step for charging the R-T-B-based sintered magnet body and the RH diffusion source into a processing container so that they can move relatively and can approach or come into contact with each other, and an RH diffusion step for performing heat treatment at 800-1000°C while moving the R-T-B-based sintered magnet body and the RH diffusion source continuously or intermittently in a processing chamber.

Description

本発明は、R14B型化合物を主相として有するR−T−B系焼結磁石(Rは希土類元素、TはFeを含む遷移金属元素)の製造方法に関する。 The present invention relates to a method for producing an R-T-B system sintered magnet (R is a rare earth element, T is a transition metal element containing Fe) having an R 2 T 14 B type compound as a main phase.

14B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。 R-T-B based sintered magnets having R 2 T 14 B-type compound as the main phase are known as the most powerful magnets among permanent magnets, and include voice coil motors (VCMs) for hard disk drives, It is used for various motors such as motors for hybrid vehicles and home appliances.

R−T−B系焼結磁石は、高温で保磁力が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高い保磁力を維持することが要求されている。   The RTB-based sintered magnet has irreversible thermal demagnetization because the coercive force decreases at high temperatures. In order to avoid irreversible thermal demagnetization, when used for a motor or the like, it is required to maintain a high coercive force even at a high temperature.

R−T−B系焼結磁石は、R14B型化合物相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、保磁力が向上することが知られている。高温で高い保磁力を得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。 The R-T-B based sintered magnet is known to improve the coercive force when a part of R in the R 2 T 14 B type compound phase is replaced with a heavy rare earth element RH (Dy, Tb). . In order to obtain a high coercive force at a high temperature, it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet.

しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、保磁力が向上する一方、残留磁束密度が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。   However, in the R-T-B based sintered magnet, if the light rare earth element RL (Nd, Pr) is replaced with R with the heavy rare earth element RH, the coercive force is improved while the residual magnetic flux density is lowered. There is. Further, since the heavy rare earth element RH is a rare resource, it is required to reduce the amount of use thereof.

そこで、近年、残留磁束密度を低下させないように、より少ない重希土類元素RHによって焼結磁石の保磁力を向上させることが検討されている。本願出願人は、既に特許文献1において、R−T−B系希土類焼結磁石体と重希土類元素RHを含有するバルク体をともに処理室内に配置し、処理室内を700℃以上1000℃以下に加熱することによりR−T−B系焼結磁石体表面にDy等の重希土類元素RHを供給しつつ、該表面から重希土類元素RHを焼結磁石体の内部に拡散させる(「蒸着拡散」)方法を開示している。特許文献1では、高融点金属材料からなる処理室の内部において、R−T−B系焼結磁石体とRHバルク体とが所定間隔をあけて対向配置される。処理室は、複数の焼結磁石体を保持する部材と、RHバルク体を保持する部材とを備えている。これら保持部材として、焼結磁石体とRHバルク体との間隔を設定するスペーサ部と、焼結磁石体又はRHバルク体を載置する網部とからなる構成が開示されている。このような装置を用いる方法では、処理室内にRHバルク体を配置する工程、RHバルク体の上方に保持部材を介して焼結磁石体を配置する工程、更にその上方に保持部材を介してRHバルク体を配置する工程という一連の多段配置工程を完了した後に、上記温度条件にて蒸着拡散を行う。   Therefore, in recent years, it has been studied to improve the coercive force of the sintered magnet with less heavy rare earth element RH so as not to reduce the residual magnetic flux density. The applicant of the present application has already arranged an RTB-based rare earth sintered magnet body and a bulk body containing heavy rare earth element RH in the processing chamber in Patent Document 1, and set the processing chamber to 700 ° C. or more and 1000 ° C. or less. While heating, the rare earth element RH such as Dy is supplied to the surface of the RTB-based sintered magnet body, and the heavy rare earth element RH is diffused from the surface into the sintered magnet body ("deposition diffusion"). ) Discloses the method. In Patent Document 1, an RTB-based sintered magnet body and an RH bulk body are arranged to face each other with a predetermined interval inside a processing chamber made of a refractory metal material. The processing chamber includes a member that holds a plurality of sintered magnet bodies and a member that holds an RH bulk body. As these holding members, a configuration is disclosed that includes a spacer portion that sets a distance between the sintered magnet body and the RH bulk body, and a net portion on which the sintered magnet body or the RH bulk body is placed. In the method using such an apparatus, the step of disposing the RH bulk body in the processing chamber, the step of disposing the sintered magnet body via the holding member above the RH bulk body, and the RH via the holding member above the RH bulk body. After completing a series of multi-stage arrangement steps, which are the steps of arranging the bulk body, vapor deposition diffusion is performed under the above temperature conditions.

特許文献2は、R−T−B系焼結磁石体表面に重希土類元素RHの酸化物、フッ化物、酸フッ化物の粉末を存在させ、当該焼結磁石体の焼結温度以下の温度で真空または不活性ガス中において熱処理を施すことで、焼結磁石体表面から重希土類元素RHを拡散させ、焼結磁石の保磁力を向上させる方法を開示している。   Patent Document 2 discloses that an oxide, fluoride, and oxyfluoride powder of heavy rare earth element RH is present on the surface of an RTB-based sintered magnet body, and the temperature is equal to or lower than the sintering temperature of the sintered magnet body. It discloses a method for improving the coercive force of a sintered magnet by diffusing heavy rare earth elements RH from the surface of the sintered magnet body by applying a heat treatment in a vacuum or an inert gas.

国際公開WO 2007/102391号International Publication WO 2007/102391 国際公開WO 2006/043348号International Publication WO 2006/043348

特許文献1の方法では、700℃以上1000℃以下という比較的低い温度で重希土類元素RHを焼結磁石体に供給・拡散することができるためR−T−B系焼結磁石体への重希土類元素RHの供給量が過多にならず、残留磁束密度の低下がほとんどなく保磁力の向上したR−T−B系焼結磁石を作製することができた。   In the method of Patent Document 1, since the heavy rare earth element RH can be supplied and diffused to the sintered magnet body at a relatively low temperature of 700 ° C. or higher and 1000 ° C. or lower, the weight on the RTB-based sintered magnet body is increased. The supply amount of rare earth element RH was not excessive, and an RTB-based sintered magnet with improved coercive force with almost no decrease in residual magnetic flux density could be produced.

しかし、重希土類元素RHを適正量供給・拡散するためには、R−T−B系焼結磁石体とRH拡散源とを所定間隔あけて対抗配置する必要があり、この配置工程に手間がかかり量産性に劣るという問題がある。   However, in order to supply and diffuse an appropriate amount of the heavy rare earth element RH, it is necessary to arrange the RTB-based sintered magnet body and the RH diffusion source at a predetermined interval so as to be troublesome. There is a problem that it is inferior in mass production.

また、重希土類元素RHのR−T−B系焼結磁石体への供給が気化・昇華によってなされるためR−T−B系焼結磁石体内部まで重希土類元素RHを効率よく拡散させるには、比較的高い温度で加熱することが好ましいが、温度を高くすると重希土類元素RHの供給が過多になり、R−T−B系焼結磁石体の表層部と内部との重希土類元素RHの濃度勾配が大きくなりすぎて表層付近の主相結晶粒では重希土類元素RHが深く拡散してしまい、残留磁束密度の低下を招く恐れがある。さらに、RH拡散源とR−T−B系焼結磁石体との間、保持部材とR−T-B系焼結磁石体の間とで拡散処理中に溶着が生じる可能性もある。   In addition, since the heavy rare earth element RH is supplied to the RTB-based sintered magnet body by vaporization and sublimation, the heavy rare earth element RH can be efficiently diffused into the RTB-based sintered magnet body. Is preferably heated at a relatively high temperature, but if the temperature is increased, the supply of heavy rare earth element RH becomes excessive, and the heavy rare earth element RH between the surface layer portion and the inside of the RTB-based sintered magnet body In the main phase crystal grains in the vicinity of the surface layer, the heavy rare earth element RH diffuses deeply, and there is a possibility that the residual magnetic flux density is lowered. Further, welding may occur between the RH diffusion source and the RTB-based sintered magnet body and between the holding member and the RTB-based sintered magnet body during the diffusion process.

また、RH拡散源から気化・昇華した重希土類元素RHの一部は、僅かとはいえ、保持部材や処理室内壁、真空排気装置へも飛散するため、これらの重希土類元素RHは有効活用されず、無駄となる。   In addition, a part of the heavy rare earth element RH vaporized and sublimated from the RH diffusion source is scattered to the holding member, the inner wall of the processing chamber, and the vacuum evacuation device, but these heavy rare earth elements RH are effectively utilized. It becomes useless.

特許文献2の方法では、重希土類元素RHはR−T−B系焼結磁石体の表面に塗布した分のみがR−T−B系焼結磁石体内部に拡散するので、安定した保磁力向上効果を得るためには塗布量、塗布層の厚さを厳密にコントロールする必要があり、このような塗布作業は非常に煩雑となる。また、重希土類元素RHは、拡散処理の初期からR−T−B系焼結磁石体表面に付着しているので、重希土類元素RHの濃度勾配が大きく、R−T−B系焼結磁石体の最表層部分では主相結晶粒内の奥深くまでRH拡散が拡散し、残留磁束密度の低下を招きやすい。さらに、RH拡散源として、重希土類元素RHの酸化物、フッ化物、酸フッ化物を用いるため、拡散処理後に酸素やフッ素が磁石内部に残存することとなり、磁石特性の向上には限界があった。   In the method of Patent Document 2, since only the amount of heavy rare earth element RH applied to the surface of the RTB-based sintered magnet body diffuses into the RTB-based sintered magnet body, a stable coercive force is achieved. In order to obtain the improvement effect, it is necessary to strictly control the coating amount and the thickness of the coating layer, and such a coating operation becomes very complicated. Moreover, since the heavy rare earth element RH has been attached to the surface of the RTB-based sintered magnet body from the beginning of the diffusion treatment, the concentration gradient of the heavy rare earth element RH is large, and the RTB-based sintered magnet In the outermost layer portion of the body, RH diffusion is diffused deep into the main phase crystal grains, and the residual magnetic flux density is likely to decrease. Furthermore, since oxides, fluorides, and oxyfluorides of heavy rare earth elements RH are used as the RH diffusion source, oxygen and fluorine remain inside the magnet after the diffusion treatment, and there is a limit to improving the magnet characteristics. .

本発明は、上記事情に鑑みてなされたものであり、その目的は、残留磁束密度を低下させることなくDyやTbの重希土類元素RHをR−T−B系焼結磁石体の表面から内部に拡散させるR−T−B系焼結磁石の製造方法において、比較的簡便な方法にて、高保磁力を有するR−T−B系焼結磁石を量産可能な製造方法を提供することである。   The present invention has been made in view of the above circumstances, and the object thereof is to reduce the heavy rare earth elements RH such as Dy and Tb from the surface of the R-T-B system sintered magnet body without reducing the residual magnetic flux density. In the manufacturing method of the R-T-B system sintered magnet to be diffused into the surface, it is to provide a manufacturing method capable of mass-producing the R-T-B system sintered magnet having a high coercive force by a relatively simple method. .

本発明のR−T−B系焼結磁石の製造方法は、R−T−B系焼結磁石体を準備する工程と、
重希土類元素RH(Dy、Tbの少なくともいずれか一種)の含有量が前記R−T−B系焼結磁石体の含有量より少なくとも0.5質量%多いR−T−B系合金からなるRH拡散源を準備する工程と、
前記R−T−B系焼結磁石体と前記RH拡散源とを相対的に移動可能かつ近接または接触可能に処理容器内に装入する工程と、
前記R−T−B系焼結磁石体と前記RH拡散源とを前記処理室内にて連続的または断続的に移動させながら、800℃以上1000℃以下の熱処理を行うRH拡散工程と、を包含している。
The method for producing an RTB-based sintered magnet of the present invention includes a step of preparing an RTB-based sintered magnet body,
RH made of an RTB-based alloy in which the content of heavy rare earth element RH (at least one of Dy and Tb) is at least 0.5 mass% higher than the content of the RTB-based sintered magnet body Preparing a diffusion source;
Charging the RTB-based sintered magnet body and the RH diffusion source into a processing container so as to be relatively movable and close to or in contact with each other;
An RH diffusion step of performing heat treatment at 800 ° C. or more and 1000 ° C. or less while continuously or intermittently moving the RTB-based sintered magnet body and the RH diffusion source in the processing chamber. is doing.

ある好ましい実施形態において、前記RH拡散源を準備する工程で、前記RH拡散源は、研摩、切断又は破砕されている。   In a preferred embodiment, in the step of preparing the RH diffusion source, the RH diffusion source is polished, cut or crushed.

ある好ましい実施形態において、前記RH拡散の前または途中で、攪拌補助部材を前記処理室内にさらに装入する。   In a preferred embodiment, a stirring auxiliary member is further charged into the processing chamber before or during the RH diffusion.

本発明によれば、R−T−B系焼結磁石体とRH拡散源の処理室内への装入作業が簡単であるばかりでなく、これらを処理室内にて連続的また断続的に移動させながら所定温度でRH拡散するため、拡散工程時での焼結磁石体とRH拡散源との溶着が防止でき、高保磁力を有するR−T-B系焼結磁石を量産性良く得ることができる。特にRH拡散源として、R−T−B系焼結磁石体と組成比が類似したR−T−B系合金を用いることによって、RH拡散処理中に、R−T−B系焼結磁石体の液相量を過剰に増やさずに重希土類元素RHをR−T−B系焼結磁石体に拡散することができ、焼結磁石の残留磁束密度の低下を抑制することができる。   According to the present invention, not only is the work of charging the RTB-based sintered magnet body and the RH diffusion source into the processing chamber easy, but they are moved continuously and intermittently in the processing chamber. However, since RH diffusion is performed at a predetermined temperature, welding between the sintered magnet body and the RH diffusion source during the diffusion process can be prevented, and an RTB-based sintered magnet having a high coercive force can be obtained with high productivity. . In particular, by using an RTB-based alloy having a composition ratio similar to that of the RTB-based sintered magnet body as the RH diffusion source, the RTB-based sintered magnet body is used during the RH diffusion treatment. The heavy rare earth element RH can be diffused into the R-T-B system sintered magnet body without excessively increasing the liquid phase amount, and a decrease in the residual magnetic flux density of the sintered magnet can be suppressed.

本発明の好ましい実施形態で使用される拡散装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the diffusion apparatus used by preferable embodiment of this invention. 拡散処理工程時におけるヒートパターンの一例を示すグラフである。It is a graph which shows an example of the heat pattern at the time of a diffusion process process.

本発明のR−T−B系焼結磁石の製造方法の一実施形態を以下に説明する。
ここで、RH拡散工程完了前の焼結磁石(素材)を「R−T−B系焼結磁石体」、RH拡散工程完了後の焼結磁石(拡散磁石)を「R−T−B系焼結磁石」と区別して表記する。
One embodiment of the method for producing the RTB-based sintered magnet of the present invention will be described below.
Here, the sintered magnet (material) before completion of the RH diffusion process is referred to as “R-T-B system sintered magnet body”, and the sintered magnet (diffusion magnet) after completion of the RH diffusion process is referred to as “R-T-B system”. This is distinguished from “sintered magnet”.

RH拡散工程において、例えば、処理容器を回転または揺動させたり、処理容器に振動を加えたりすることにより、R−T−B系焼結磁石体とRH拡散源とを前記処理容器内にて連続的にまたは断続的に移動して、R−T−B系焼結磁石体とRH拡散源との接触部の位置を変化させたり、R−T−B系焼結磁石体とRH拡散源とを近接・離間させながら、重希土類元素RHの直接接触での供給及び/または気化・昇華による供給とR−T−B系焼結磁石体への拡散とを同時に実行する(RH拡散工程)。   In the RH diffusion step, for example, by rotating or swinging the processing container or applying vibration to the processing container, the RTB-based sintered magnet body and the RH diffusion source are placed in the processing container. It moves continuously or intermittently to change the position of the contact portion between the RTB-based sintered magnet body and the RH diffusion source, or the RTB-based sintered magnet body and the RH diffusion source. Are supplied in direct contact with heavy rare earth element RH and / or supply by vaporization / sublimation and diffusion to an RTB-based sintered magnet body (RH diffusion step). .

上記のRH拡散処理工程において、R−T−B系焼結磁石体の粒界相(Rリッチ相)及び主相結晶の最表面が溶解して液相になり、この液相に重希土類元素RHが供給されることで液相に含まれる希土類成分が重希土類元素RHリッチに変化し、再凝固過程において重希土類元素RHが主相側により多く分配されることによって重希土類元素RHが濃縮した主相外殻部が形成される。   In the above RH diffusion treatment process, the grain boundary phase (R-rich phase) and the outermost surface of the main phase crystal of the R-T-B system sintered magnet body are dissolved to form a liquid phase. By supplying RH, the rare earth component contained in the liquid phase is changed to rich in the heavy rare earth element RH, and in the resolidification process, the heavy rare earth element RH is concentrated by being distributed more on the main phase side. A main phase outer shell is formed.

ただし、重希土類元素RHのみが多量に供給されると、RH拡散処理中の液相成分が大きく変化することによって主相表層部の溶け出し(液相量増加にともなう主相溶出量の増加)がより多くなってしまい、再凝固時に主相外殻部の重希土類元素RHの濃化領域が厚くなって主相結晶の磁化が低下する(磁石としては残留磁束密度が低下する)ことが推測される。   However, when only a large amount of heavy rare earth element RH is supplied, the liquid phase component during RH diffusion treatment changes greatly, so that the surface of the main phase melts out (increase in the main phase elution amount as the liquid phase amount increases). It is estimated that the concentration of heavy rare earth element RH in the outer shell of the main phase becomes thicker during re-solidification and the magnetization of the main phase crystal decreases (the residual magnetic flux density decreases as a magnet) Is done.

また、主相表層部の溶け出しが多いと、RH拡散源とR−T−B系焼結磁石体との間、保持部材とR−T−B系焼結磁石体の間とでRH拡散工程中に溶着を発生させることが懸念される。   Further, if the main phase surface layer portion is melted out a lot, RH diffusion occurs between the RH diffusion source and the RTB-based sintered magnet body, and between the holding member and the RTB-based sintered magnet body. There is concern about the occurrence of welding during the process.

本発明では、RH拡散源として、R−T−B系焼結磁石体と組成比が類似したR−T−B系合金を用いることによって、RH拡散工程中に、R−T−B系焼結磁石体の拡散工程開始前の液相成分と、RH拡散源とから生成される液相成分のR、T、B組成を近似なものにする(ただし、R中の重希土類元素RHの量は異なる)ことができ、その結果R−T−B系焼結磁石体の液相量を過剰に増やさずに重希土類元素RHをR−T−B系焼結磁石に拡散することができる。   In the present invention, by using an RTB-based alloy having a composition ratio similar to that of the RTB-based sintered magnet body as the RH diffusion source, the RTB-based sintering is performed during the RH diffusion process. R, T, B composition of the liquid phase component generated from the liquid phase component before starting the diffusion process of the magnet body and the RH diffusion source is approximated (however, the amount of heavy rare earth element RH in R As a result, the heavy rare earth element RH can be diffused into the RTB-based sintered magnet without excessively increasing the liquid phase amount of the RTB-based sintered magnet body.

また、RH拡散工程中に過剰に液相が生成しないので、重希土類元素RHの気化・昇華のみによらず、溶着を発生することなく直接接触によっても所定量の重希土類元素RHをR−T−B系焼結体へ供給することができるため、本発明の製造方法の特徴を一層効果的に発現できる。   Further, since an excessive liquid phase is not generated during the RH diffusion step, a predetermined amount of the heavy rare earth element RH can be converted to R-T not only by vaporization / sublimation of the heavy rare earth element RH but also by direct contact without causing welding. Since it can supply to -B type sintered compact, the feature of the manufacturing method of the present invention can be expressed more effectively.

さらに、特許文献1、特許文献2の方法と異なり、液相中の希土類元素Rの濃度が大きく変わることがないので、液相がRH拡散源やR−T−B系焼結体から外部へ染み出すことが抑制され、処理部材との溶着が防止できる。   Further, unlike the methods of Patent Document 1 and Patent Document 2, the concentration of the rare earth element R in the liquid phase does not change greatly, so that the liquid phase is transferred from the RH diffusion source or the R-T-B system sintered body to the outside. Exudation is suppressed and welding with the processing member can be prevented.

また、RH拡散源とR−T−B系焼結磁石体とを相対的に移動可能かつ近接または接触可能に処理容器内に装入し、連続的または断続的に移動させることでRH拡散源とR−T−B系焼結体とを特定の接触状態に保持せず、随時接触状態を変化(接触点の移動)させることが可能となり、前記RH拡散源の組成による効果と合わせて、これらの溶着防止効果を一層高めることができる。   In addition, the RH diffusion source and the R-T-B system sintered magnet body are loaded into the processing vessel so as to be relatively movable and close to or in contact with each other, and are moved continuously or intermittently to thereby move the RH diffusion source. And the RTB-based sintered body are not maintained in a specific contact state, and the contact state can be changed at any time (movement of the contact point), in combination with the effect of the composition of the RH diffusion source, These welding prevention effects can be further enhanced.

また、RH拡散源とR−T−B系焼結磁石体とを相対的に移動可能かつ近接または接触可能に処理容器内に装入し、連続的または断続的に移動させることで目的とするRH拡散が達成できるので、特許文献1の方法に比べR−T−B系焼結磁石体とRH拡散源とを所定位置に対向配置する工程が不要となり、また、特許文献2の方法に比べ、RH拡散源の塗布等の煩雑な作業が不要となる。   In addition, the RH diffusion source and the R-T-B system sintered magnet body are loaded into the processing container so as to be relatively movable and close to or in contact with each other, and are moved continuously or intermittently. Since RH diffusion can be achieved, a process of disposing the R-T-B system sintered magnet body and the RH diffusion source at a predetermined position is unnecessary compared with the method of Patent Document 1, and compared with the method of Patent Document 2. , Complicated operations such as application of an RH diffusion source become unnecessary.

本発明において、RH拡散する拡散工程は800℃以上1000℃以下の温度範囲で実施する。800℃以上1000℃以下という温度範囲が、R−T−B系焼結磁石体においてRH拡散が促進される温度範囲であり、重希土類元素RHをR−T−B系焼結磁石体内部に拡散させやすい状況でRH拡散ができる。   In the present invention, the diffusion step for RH diffusion is performed in a temperature range of 800 ° C. or higher and 1000 ° C. or lower. The temperature range of 800 ° C. or more and 1000 ° C. or less is a temperature range in which RH diffusion is promoted in the RTB-based sintered magnet body, and the heavy rare earth element RH is placed inside the RTB-based sintered magnet body. RH diffusion can be performed in a situation where diffusion is easy.

すなわち、800℃未満では目的とするRHの供給・拡散が実現できず、1000℃超ではR−T−B系焼結磁石体への重希土類元素RHの供給が過多となり、残留磁束密度の低下が懸念される。   That is, if the temperature is lower than 800 ° C., the desired supply / diffusion of RH cannot be realized, and if it exceeds 1000 ° C., the supply of heavy rare earth element RH to the RTB-based sintered magnet body becomes excessive, and the residual magnetic flux density decreases. Is concerned.

ここで、RH拡散工程においてR−T−B系焼結磁石体とRH拡散源とを処理容器内において連続的または断続的に移動させる方法としては、R−T−B系焼結磁石体に欠けや割れを発生させることなく、RH拡散源とR−T−B系焼結磁石体との相互配置関係を変動させることが可能であれば、任意の方法を採用し得る。例えば、処理容器を回転、揺動したり、外部から処理容器に振動を加えたりする方法を採用できる。また、処理容器内に攪拌手段を設けてもよい。   Here, in the RH diffusion step, as a method of moving the RTB-based sintered magnet body and the RH diffusion source continuously or intermittently in the processing vessel, the RTB-based sintered magnet body is used. Any method can be adopted as long as the mutual arrangement relationship between the RH diffusion source and the RTB-based sintered magnet body can be changed without causing chipping or cracking. For example, a method of rotating or swinging the processing container or applying vibration to the processing container from the outside can be adopted. Moreover, you may provide a stirring means in a processing container.

[R−T−B系焼結磁石体]
まず、本発明では、重希土類元素RHの拡散の対象とするR−T−B系焼結磁石体を準備する。このR−T−B系焼結磁石体は、例えば以下の組成からなる。
R(希土類元素):28質量%以上33質量%以下
B(Bの一部はCで置換されていてもよい):0.80質量%以上1.2質量%以下
T(Feを主とする遷移金属であって、Coを含んでもよい)および不可避不純物:残部、
また、Tの一部は以下の範囲で添加元素Mと置換してもよい。
添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0以上0.5質量%以下
[RTB-based sintered magnet body]
First, in the present invention, an RTB-based sintered magnet body to be diffused of heavy rare earth element RH is prepared. The RTB-based sintered magnet body has the following composition, for example.
R (rare earth element): 28 mass% or more and 33 mass% or less B (part of B may be substituted with C): 0.80 mass% or more and 1.2 mass% or less T (mainly Fe Transition metal, which may contain Co) and inevitable impurities: the balance,
Further, a part of T may be replaced with the additive element M within the following range.
Additive element M (selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one): 0 to 0.5% by mass

ここで、希土類元素Rは、主としてNd、Pr等の軽希土類元素から選択される少なくとも1種の元素であるが、重希土類元素を含有していてもよい。重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。   Here, the rare earth element R is at least one element selected from light rare earth elements such as Nd and Pr, but may contain a heavy rare earth element. When a heavy rare earth element is contained, it is preferable to include at least one of Dy and Tb.

上記組成のR−T−B系焼結磁石体は、公知の製造方法によって製造される。   The RTB-based sintered magnet body having the above composition is manufactured by a known manufacturing method.

[RH拡散源]
RH拡散源は重希土類元素RH(Dy、Tbの少なくとも1種)の含有量がR−T−B系焼結磁石体の含有量より少なくとも0.5質量%以上多いR−T−B系合金からなる。
このR−T−B系合金は、上記希土類元素RHの含有量の条件を満足し、例えば以下の組成からなる。
R(重希土類元素RHを含む希土類元素):28.0質量%以上40質量%以下
B(Bの一部はCで置換されていてもよい):0.1質量%以上1.5質量%以下
T(Feを主とする遷移金属であって、Coを含んでもよい)および不可避不純物:残部
Tの一部は以下の範囲で添加元素Mと置換してもよい。
添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0以上0.5質量%以下
[RH diffusion source]
The RH diffusion source is an RTB-based alloy in which the content of heavy rare earth elements RH (at least one of Dy and Tb) is at least 0.5 mass% higher than the content of the RTB-based sintered magnet body Consists of.
This RTB-based alloy satisfies the conditions for the content of the rare earth element RH and has, for example, the following composition.
R (rare earth element including heavy rare earth element RH): 28.0 mass% or more and 40 mass% or less B (part of B may be substituted with C): 0.1 mass% or more and 1.5 mass% Hereinafter, T (which is a transition metal mainly containing Fe and may contain Co) and inevitable impurities: the remainder T may be partially replaced with the additional element M in the following range.
Additive element M (selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one): 0 to 0.5% by mass

RH拡散源に含まれる重希土類元素RHの量がRH拡散工程前のR−T−B系焼結磁石体に含まれる重希土類元素RHより0.5質量%以上多く存在していれば本発明の効果が得られる。RH拡散源が0.5質量%多い場合、RH拡散源からR−T−B系焼結磁石体への重希土類元素RHの拡散がスムーズにできる。   If the amount of the heavy rare earth element RH contained in the RH diffusion source is 0.5 mass% or more than the heavy rare earth element RH contained in the RTB-based sintered magnet body before the RH diffusion step, the present invention. The effect is obtained. When the amount of the RH diffusion source is 0.5 mass%, the diffusion of the heavy rare earth element RH from the RH diffusion source to the RTB-based sintered magnet body can be performed smoothly.

R−T−B系焼結磁石体とRH拡散源との重希土類元素RHの差が0.5質量%未満である場合、RH元素の拡散が充分に進行せず、目的となる保磁力向上効果が得られない。   When the difference in the heavy rare earth element RH between the RTB-based sintered magnet body and the RH diffusion source is less than 0.5% by mass, the diffusion of the RH element does not proceed sufficiently and the target coercive force is improved. The effect is not obtained.

拡散工程中の液相の組成を母材であるR−T−B系焼結磁石体と近似させるため、RH拡散源に含まれるBの量は0.1質量%以上1.5質量%以下にする。Bの量は0.5質量%以上1.2質量%以下にするのが好ましい。   In order to approximate the composition of the liquid phase during the diffusion process to the RTB-based sintered magnet body that is the base material, the amount of B contained in the RH diffusion source is 0.1 mass% or more and 1.5 mass% or less. To. The amount of B is preferably 0.5% by mass or more and 1.2% by mass or less.

RH拡散源に用いるR−T−B系合金は、少なくとも上記重希土類元素RHの含有量の条件を満たしておればよく、例えばR14B化合物からなる主相を有するR−T−B系焼結磁石の製造工程中で割れ・欠けが発生したり、寸法規格外となったもの、所定形状に加工した後に残る焼結磁石端材等からなる焼結磁石スクラップを用いることができる。 The R-T-B type alloy used for the RH diffusion source only needs to satisfy at least the content condition of the heavy rare earth element RH. For example, R-T-B having a main phase composed of an R 2 T 14 B compound. It is possible to use sintered magnet scraps that are cracked or chipped during the manufacturing process of the sintered magnet, that are out of dimensional standards, or sintered magnet scraps that remain after processing into a predetermined shape.

また、同様条件を満足するR−T−B系焼結磁石体の製造工程中で発生したR−T−B系合金鋳片(以下、原料合金スクラップ)を用いてもよく、新たに組成を調整し作製したR−T−B系合金を用いてもよい。   In addition, an RTB-based alloy cast (hereinafter referred to as raw material scrap) generated during the manufacturing process of an RTB-based sintered magnet body that satisfies the same conditions may be used. A prepared R-T-B alloy may be used.

さらに、上記焼結磁石スクラップ、原料合金スクラップ、合金との混合物や、これらに新たに所定量の重希土類元素RH、RH化合物を混合して用いてもよい。   Furthermore, a mixture of the sintered magnet scrap, the raw alloy scrap, and the alloy, or a predetermined amount of heavy rare earth elements RH and RH compounds may be mixed and used.

特に、焼結磁石スクラップがRH拡散源であると、R−T−B系焼結磁石体と焼結磁石スクラップとを連続的または断続的に移動させながらRH拡散工程を行う際にRH拡散源がR−T−B系焼結磁石体と処理中に分離することなく均一に混合・攪拌することから一層良好なRH拡散を実現する効果がある。   In particular, when the sintered magnet scrap is an RH diffusion source, the RH diffusion source is used when performing the RH diffusion process while continuously or intermittently moving the RTB-based sintered magnet body and the sintered magnet scrap. However, since it is uniformly mixed and stirred without being separated from the RTB-based sintered magnet body during processing, there is an effect of realizing better RH diffusion.

処理容器に装入する際のRH拡散源の形態は、例えば、球状、線状、板状、ブロック状など任意である。RH拡散源の形状は、特に限定されない。   The form of the RH diffusion source when charging the processing container is arbitrary, for example, spherical, linear, plate-like, block-like. The shape of the RH diffusion source is not particularly limited.

また、処理容器に装入する際のRH拡散源の大きさは、目開き2mmの篩を通過したものを用いることが好ましい。RH拡散源の大きさを2mm以下にすることで、RH拡散源からR−T−B系焼結磁石体へのRH拡散を促進させる。   Moreover, it is preferable to use the thing of the RH diffusion source at the time of charging in a processing container which passed the sieve with 2 mm of openings. By setting the size of the RH diffusion source to 2 mm or less, RH diffusion from the RH diffusion source to the RTB-based sintered magnet body is promoted.

RH拡散源の準備工程において、RH拡散源表面にある酸化膜を除去するのが好ましい。酸化膜を除去することにより、RH拡散源からR−T−B系焼結磁石体への重希土類元素RHの供給・拡散をより効果的に実現できる。酸化膜の除去にはRH拡散源を破砕するのがよい。   In the step of preparing the RH diffusion source, it is preferable to remove the oxide film on the surface of the RH diffusion source. By removing the oxide film, the supply and diffusion of the heavy rare earth element RH from the RH diffusion source to the RTB-based sintered magnet body can be more effectively realized. The RH diffusion source is preferably crushed to remove the oxide film.

RH拡散源は研摩、切断又は破砕して用いてもよい。
ここで、研磨とは、例えばショットブラストにてRH拡散源表面を研摩することやバレルに投入しRH拡散源表面を研摩し、RH拡散源の清浄面を露出することである。切断とは、例えば、ダイヤモンドカッターにてRH拡散源を切断し、RH拡散源の清浄面を露出させることである。破砕とは、例えば、RH拡散源をハンマーにて砕き、RH拡散源の清浄面を露出させることである。
The RH diffusion source may be used after being polished, cut or crushed.
Here, the polishing means, for example, polishing the surface of the RH diffusion source by shot blasting, or putting it in a barrel to polish the surface of the RH diffusion source and exposing the clean surface of the RH diffusion source. Cutting is, for example, cutting the RH diffusion source with a diamond cutter to expose the clean surface of the RH diffusion source. Crushing is, for example, crushing the RH diffusion source with a hammer to expose the clean surface of the RH diffusion source.

[攪拌補助部材]
本発明の実施形態では、R−T−B系焼結磁石体とRH拡散源に加えて、攪拌補助部材を処理容器内に導入することが好ましい。攪拌補助部材はR−T−B系焼結磁石体とRH拡散源との接触を促進し、また攪拌補助部材に一旦付着した重希土類元素RHをR−T−B系焼結磁石体へ間接的に供給する役割をする。さらに、攪拌補助部材は、処理容器内において、R−T−B系焼結磁石体とRH拡散源との接触による欠けを防ぐ役割もある。
[Agitation auxiliary member]
In the embodiment of the present invention, it is preferable to introduce a stirring auxiliary member into the processing vessel in addition to the RTB-based sintered magnet body and the RH diffusion source. The stirring auxiliary member promotes contact between the RTB-based sintered magnet body and the RH diffusion source, and the heavy rare earth element RH once adhered to the stirring auxiliary member is indirectly transferred to the RTB-based sintered magnet body. The role to supply. Furthermore, the stirring assisting member also has a role of preventing chipping due to contact between the RTB-based sintered magnet body and the RH diffusion source in the processing container.

攪拌補助部材は処理容器内で運動しやすい形状にし、その攪拌補助部材をR−T−B系焼結磁石体とRH拡散源と混合して処理容器の回転、揺動又は振動の少なくともいずれかを行うことが効果的である。ここで運動しやすい形状の例として、直径数百μmから数十mmの球状、楕円状、円柱状等が挙げられる。   The agitation auxiliary member is shaped so as to easily move in the processing vessel, and the agitation auxiliary member is mixed with the R-T-B system sintered magnet body and the RH diffusion source to at least one of rotation, oscillation or vibration of the processing vessel. It is effective to do. Examples of shapes that are easy to move here include spherical shapes, elliptical shapes, and cylindrical shapes having a diameter of several hundred μm to several tens of mm.

攪拌補助部材は、RH拡散処理中にR−T−B系焼結磁石体と反応しにくい材料から形成されることが好ましい。攪拌補助部材としてはジルコニア、窒化ケイ素、炭化ケイ素並びに窒化硼素、または、これらの混合物のセラミックスから好適に形成され得る。ジルコニア、窒化ケイ素、炭化ケイ素並びに窒化硼素、または、これらの混合物のセラミックスは比重がR−T−B系焼結磁石体とほぼ等しいので、攪拌がしやすい。   The stirring assisting member is preferably formed from a material that does not easily react with the RTB-based sintered magnet body during the RH diffusion treatment. The stirring auxiliary member can be suitably formed from ceramics of zirconia, silicon nitride, silicon carbide and boron nitride, or a mixture thereof. The ceramics of zirconia, silicon nitride, silicon carbide and boron nitride, or a mixture thereof have a specific gravity almost equal to that of the R-T-B type sintered magnet body, so that stirring is easy.

また、R−T−B系焼結磁石体と反応しにくい金属材料としては、Mo、W、Nb、Ta、Hf、Zr、または、これらの少なくともいずれかを含む金属、合金またはこれらの混合物からも形成され得る。   Moreover, as a metal material which does not easily react with the RTB-based sintered magnet body, Mo, W, Nb, Ta, Hf, Zr, or a metal, an alloy containing at least one of these, or a mixture thereof is used. Can also be formed.

[RH拡散工程]
図1を参照しながら、本発明による拡散処理工程の好ましい例を説明する。
図1に示す例では、R−T−B系焼結磁石体1およびRH拡散源2がステンレス製の筒3の内部に導入されている。ここで、RH拡散源2となるR−T−B系合金は、処理容器に装入する前に破砕、切断又は研摩されているのが好ましい。
[RH diffusion process]
A preferred example of the diffusion treatment process according to the present invention will be described with reference to FIG.
In the example shown in FIG. 1, an RTB-based sintered magnet body 1 and an RH diffusion source 2 are introduced into a stainless steel cylinder 3. Here, it is preferable that the R—T—B-based alloy serving as the RH diffusion source 2 is crushed, cut, or polished before being charged into the processing vessel.

また、図示していないが、ジルコニア球などを攪拌補助部材として筒3の内部に導入されていることが好ましい。この例では、筒3が「処理容器(処理室)」として機能する。筒3の材料は、ステンレスに限定されず、1000℃を超える温度に耐える耐熱性を有し、R−T−B系焼結磁石体1およびRH拡散源2と反応しにくい材料であれば任意である。例えば、Nb、Mo、Wまたはそれらの少なくとも1種を含む合金を用いるのがよい。オーステナイト系ステンレスにAlまたはCoを添加したFe―Cr−Al系合金、Fe―Cr−Co系合金を用いてもよい。筒3には開閉または取り外し可能な蓋5が設けられている。また筒3の内壁には、RH拡散源2とR−T−B系焼結磁石体1とが連続的または断続的に移動しながら近接または接触を行い得るように、突起物を設置することができる。筒3の長軸方向に垂直な断面形状も、円に限定されず、楕円または多角形、あるいはその他の形状であってもよい。図1に示す状態の筒3は排気装置6と連結されている。排気装置6の働きにより、筒3の内部は減圧され得る。筒3の内部には、不図示のガスボンベなどからArなどの不活性ガスが導入され得る。   Although not shown, it is preferable that a zirconia sphere or the like is introduced into the cylinder 3 as a stirring auxiliary member. In this example, the cylinder 3 functions as a “processing container (processing chamber)”. The material of the cylinder 3 is not limited to stainless steel, and may be any material as long as it has heat resistance that can withstand temperatures exceeding 1000 ° C. and is difficult to react with the RTB-based sintered magnet body 1 and the RH diffusion source 2. It is. For example, Nb, Mo, W, or an alloy containing at least one of them may be used. An Fe—Cr—Al alloy or an Fe—Cr—Co alloy obtained by adding Al or Co to austenitic stainless steel may be used. The tube 3 is provided with a lid 5 that can be opened and closed or removed. Further, on the inner wall of the tube 3, a protrusion is installed so that the RH diffusion source 2 and the RTB-based sintered magnet body 1 can move in proximity or contact with each other while moving continuously or intermittently. Can do. The cross-sectional shape perpendicular to the major axis direction of the cylinder 3 is not limited to a circle, and may be an ellipse, a polygon, or other shapes. The cylinder 3 in the state shown in FIG. 1 is connected to an exhaust device 6. The inside of the cylinder 3 can be depressurized by the action of the exhaust device 6. An inert gas such as Ar can be introduced into the cylinder 3 from a gas cylinder (not shown).

筒3は、その外周部に配置されたヒータ4によって加熱される。筒3の加熱により、その中心軸の回りに回転可能に支持されており、ヒータ4による加熱中も可変モータ7によって回動することができる。筒3の回転速度は、例えば筒3の内壁面の周速度を毎秒0.005m以上に設定され得る。回転により筒内のR−T−B系焼結磁石体とRH拡散源が衝突して欠けないよう、毎秒0.5m以下に設定するのが好ましい。   The cylinder 3 is heated by a heater 4 disposed on the outer periphery thereof. The cylinder 3 is supported so as to be rotatable about its central axis by heating, and can be rotated by the variable motor 7 during heating by the heater 4. The rotational speed of the cylinder 3 can be set, for example, to a peripheral speed of the inner wall surface of the cylinder 3 of 0.005 m or more per second. It is preferably set to 0.5 m or less per second so that the RTB-based sintered magnet body in the cylinder and the RH diffusion source collide with each other due to rotation.

図1の例では、筒3は回転するが、本発明は、このような場合に限定されない。RH拡散工程中に筒3内でR−T−B系焼結磁石体1とRH拡散源2とが相対的に移動可能かつ接触可能であればよい。例えば、筒3は、回転することなく揺動または振動していてもよいし、回転、揺動および振動の少なくとも2つが同時に生じていてもよい。   In the example of FIG. 1, the cylinder 3 rotates, but the present invention is not limited to such a case. It suffices that the RTB-based sintered magnet body 1 and the RH diffusion source 2 are relatively movable and contactable in the cylinder 3 during the RH diffusion process. For example, the cylinder 3 may swing or vibrate without rotating, or at least two of rotation, swing and vibration may occur simultaneously.

次に、例えば、図1の処理装置を用いて行うRH拡散処理の手順を説明する。
まず、蓋5を筒3から取り外し、筒3の内部を開放する。複数のR−T−B系焼結磁石体1およびRH拡散源2を筒3の内部に装入した後、再び、蓋5を筒3に取り付ける。排気装置6を接続して筒3の内部を真空排気する。筒3の内部圧力が充分に低下した後、排気装置6を取り外す。必要圧力まで不活性ガスを導入し、モータ7によって筒3を回転させながら、ヒータ4による加熱を実行する。
Next, for example, a procedure of RH diffusion processing performed using the processing apparatus of FIG. 1 will be described.
First, the lid 5 is removed from the cylinder 3 and the inside of the cylinder 3 is opened. After the plurality of RTB-based sintered magnet bodies 1 and the RH diffusion source 2 are inserted into the cylinder 3, the lid 5 is attached to the cylinder 3 again. The exhaust device 6 is connected and the inside of the cylinder 3 is evacuated. After the internal pressure of the cylinder 3 is sufficiently reduced, the exhaust device 6 is removed. Inert gas is introduced to the required pressure, and heating by the heater 4 is performed while rotating the cylinder 3 by the motor 7.

RH拡散処理時における筒3の内部は不活性雰囲気であることが好ましい。本明細書における「不活性雰囲気」とは、真空、または不活性ガスを含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、R−T−B系焼結磁石体1およびRH拡散源2との間で化学的に反応しないガスであれば、「不活性ガス」に含まれ得る。不活性ガスの圧力は、大気圧以下であることが好ましい。本実施形態においては、R−T−B系焼結磁石体1およびRH拡散源2とが近接または接触しているため、真空度を高めなくともRH拡散ができる。また、真空度とRHの供給量との相関は比較的小さく、真空度を更に高めても、重希土類元素RHの供給量(保磁力の向上度)に大きく影響しない。雰囲気圧力は10−3Paから大気圧である。供給量は、雰囲気圧力よりもR−T−B系焼結磁石体1の温度に敏感である。 The inside of the tube 3 during the RH diffusion treatment is preferably an inert atmosphere. The “inert atmosphere” in this specification includes a vacuum or an inert gas. In addition, the “inert gas” is a rare gas such as argon (Ar), for example, but may be a gas that does not chemically react between the RTB-based sintered magnet body 1 and the RH diffusion source 2. For example, it can be included in an “inert gas”. It is preferable that the pressure of an inert gas is below atmospheric pressure. In the present embodiment, since the RTB-based sintered magnet body 1 and the RH diffusion source 2 are close to or in contact with each other, RH diffusion can be performed without increasing the degree of vacuum. In addition, the correlation between the degree of vacuum and the supply amount of RH is relatively small, and even if the degree of vacuum is further increased, the supply amount of heavy rare earth element RH (degree of improvement in coercive force) is not greatly affected. The atmospheric pressure is 10 −3 Pa to atmospheric pressure. The supply amount is more sensitive to the temperature of the RTB-based sintered magnet body 1 than the atmospheric pressure.

本実施形態では、R−T−B系焼結磁石体1と重希土類元素RHをより多く含むRH拡散源2をいっしょに回転させつつ、加熱することにより、RH拡散源2から重希土類元素RHをR−T−B系焼結磁石体1の表面に供給しつつ、内部に拡散させることができる。   In the present embodiment, the R—T—B-based sintered magnet body 1 and the RH diffusion source 2 containing more heavy heavy rare earth element RH are rotated and heated together, thereby heating the heavy rare earth element RH from the RH diffusion source 2. While being supplied to the surface of the RTB-based sintered magnet body 1, it can be diffused inside.

拡散処理時における処理室の内壁面の周速度は、例えば0.005m/s以上に設定され得る。回転速度が低くなると、R−T−B系焼結磁石体1およびRH拡散源2との接触部の移動が遅くなり、溶着が発生しやすくなる。好ましい回転速度は、拡散温度やRH拡散源の形状やサイズ、R−T−B系焼結磁石体1およびRH拡散源2の装入量等に応じて適宜選定することが好ましい。   The peripheral speed of the inner wall surface of the processing chamber during the diffusion process can be set to 0.005 m / s or more, for example. When the rotation speed is lowered, the movement of the contact portion between the RTB-based sintered magnet body 1 and the RH diffusion source 2 becomes slow, and welding is likely to occur. It is preferable to select a preferable rotation speed as appropriate depending on the diffusion temperature, the shape and size of the RH diffusion source, the amounts of the RTB-based sintered magnet body 1 and the RH diffusion source 2, and the like.

本実施形態では、R−T−B系焼結磁石体1およびRH拡散源2の温度を800℃以上1000℃以下の範囲内に保持する。この温度範囲は、重希土類元素RHがR−T−B系焼結磁石体1の粒界相を伝って内部へ拡散するのに好ましい温度領域である。より好ましくは拡散する温度が850℃を超える温度領域である。850℃を超えるとより効率的に重希土類元素RHを内部に拡散することができる。熱処理の時間は、例えば10分以上72時間以下である。好ましくは1時間以上12時間以下である。   In the present embodiment, the temperature of the RTB-based sintered magnet body 1 and the RH diffusion source 2 is maintained within a range of 800 ° C. or higher and 1000 ° C. or lower. This temperature range is a preferable temperature range in which the heavy rare earth element RH diffuses inward through the grain boundary phase of the RTB-based sintered magnet body 1. More preferably, it is a temperature region in which the diffusion temperature exceeds 850 ° C. If it exceeds 850 ° C., the heavy rare earth element RH can be diffused more efficiently inside. The time of heat processing is 10 minutes or more and 72 hours or less, for example. Preferably it is 1 hour or more and 12 hours or less.

処理温度が1000℃を超えると、R−T−B系焼結磁石体への重希土類元素RHの供給が過多となり、残留磁束密度の低下が懸念されるばかりでなく、R−T−B系焼結磁石体1とRH拡散源2とが溶着してしまう問題が生じ易く、またR−T−B系焼結磁石体そのものが溶融したり、組織が変化してしまう可能性があり好ましくない。一方、処理温度が800℃未満では、目的とするRHの供給・拡散が実現できない。   When the processing temperature exceeds 1000 ° C., the supply of heavy rare earth element RH to the R-T-B system sintered magnet body becomes excessive, and there is a concern that the residual magnetic flux density may be lowered. The problem that the sintered magnet body 1 and the RH diffusion source 2 are welded easily occurs, and the RTB-based sintered magnet body itself may be melted or the structure may be changed. . On the other hand, if the processing temperature is less than 800 ° C., the desired supply / diffusion of RH cannot be realized.

保持時間は、RH拡散処理工程をする際のR−T−B系焼結磁石体1およびRH拡散源2の装入量の比率、R−T−B系焼結磁石体1およびRH拡散源2の形状、RH拡散処理によってR−T−B系焼結磁石体1に拡散されるべき重希土類元素RHの量(拡散量)などを考慮して決めることが好ましい。   The holding time is the ratio of the charged amounts of the RTB-based sintered magnet body 1 and the RH diffusion source 2 when performing the RH diffusion treatment step, the RTB-based sintered magnet body 1 and the RH diffusion source. 2 and the amount of heavy rare earth element RH (diffusion amount) to be diffused into the RTB-based sintered magnet body 1 by the RH diffusion treatment are preferably determined.

RH拡散工程時における雰囲気ガスの圧力(処理室内の雰囲気圧力)は、10−3Paから大気圧の範囲内に設定され得る。 The pressure of the atmospheric gas during the RH diffusion step (atmospheric pressure in the processing chamber) can be set in the range of 10 −3 Pa to atmospheric pressure.

RH拡散工程後に、拡散された重希土類元素RHを均質化する目的でR−T−B系磁石体1に対する第1熱処理を行っても良い。熱処理は、RH拡散源2を取り除いた後、重希土類元素RHが実質的に拡散し得る700℃以上1000℃以下の範囲で行い、より好ましくは800℃以上950℃以下の温度で実行される。この第1熱処理では、RH拡散源2を取り除いた後に行われるため、R−T−B系焼結磁石体1内部に対して重希土類元素RHの更なる供給は生じないが、R−T−B系焼結磁石体1において重希土類元素RHの拡散が生じるため、R−T−B系焼結磁石の表面側から奥深くに重希土類元素RHを拡散し、R−T−B系焼結磁石全体として保磁力を高めることが可能になる。第1熱処理の時間は、例えば10分以上72時間以下である。好ましくは1時間以上12時間以下である。ここで、第1熱処理を行う熱処理炉の雰囲気圧力は、大気圧以下である。好ましいのは10kPa以下である。   After the RH diffusion step, a first heat treatment may be performed on the RTB-based magnet body 1 for the purpose of homogenizing the diffused heavy rare earth element RH. After removing the RH diffusion source 2, the heat treatment is performed in the range of 700 ° C. or higher and 1000 ° C. or lower where the heavy rare earth element RH can substantially diffuse, more preferably 800 ° C. or higher and 950 ° C. or lower. Since this first heat treatment is performed after removing the RH diffusion source 2, no further supply of the heavy rare earth element RH to the inside of the RTB-based sintered magnet body 1 occurs, but RT- Since diffusion of the heavy rare earth element RH occurs in the B-based sintered magnet body 1, the heavy rare earth element RH is diffused deeply from the surface side of the RTB-based sintered magnet, and the RTB-based sintered magnet is obtained. As a whole, the coercive force can be increased. The time for the first heat treatment is, for example, not less than 10 minutes and not more than 72 hours. Preferably it is 1 hour or more and 12 hours or less. Here, the atmospheric pressure of the heat treatment furnace for performing the first heat treatment is equal to or lower than the atmospheric pressure. Preferred is 10 kPa or less.

RH拡散工程と第1熱処理は別々の熱処理装置で行ってもよいし、一つの熱処理装置にて連続して処理を行ってもよい。   The RH diffusion step and the first heat treatment may be performed with separate heat treatment apparatuses, or may be performed continuously with one heat treatment apparatus.

[第2熱処理]
また、必要に応じて保磁力を高める目的で第2熱処理(400℃以上700℃以下)を行ってもよい。第1熱処理(700℃以上1000℃以下)と第2熱処理の両方を行う場合、第2熱処理は第1熱処理の後に行うことが好ましい。第1熱処理(700℃以上1000℃以下)と第2熱処理(400℃以上700℃以下)とは、同じ処理室内で行っても良い。第2熱処理の時間は、例えば10分以上72時間以下である。好ましくは1時間以上12時間以下である。ここで、第2熱処理を行う熱処理炉の雰囲気圧力は、大気圧以下である。好ましいのは10kPa以下である。なお、第1熱処理を行わずに第2熱処理のみを行ってもよい。
[Second heat treatment]
Moreover, you may perform 2nd heat processing (400 degreeC or more and 700 degrees C or less) for the purpose of raising a coercive force as needed. When both the first heat treatment (700 ° C. and 1000 ° C.) and the second heat treatment are performed, the second heat treatment is preferably performed after the first heat treatment. The first heat treatment (700 to 1000 ° C.) and the second heat treatment (400 to 700 ° C.) may be performed in the same processing chamber. The time for the second heat treatment is, for example, not less than 10 minutes and not more than 72 hours. Preferably it is 1 hour or more and 12 hours or less. Here, the atmospheric pressure of the heat treatment furnace for performing the second heat treatment is equal to or lower than the atmospheric pressure. Preferred is 10 kPa or less. Note that only the second heat treatment may be performed without performing the first heat treatment.

[実験例1]
まず、組成比Nd=28.5、Dy=2.0、B=1.0、Co=0.9、Al=0.1、Cu=0.1、残部=Fe(質量%)のR−T−B系焼結磁石体を作製した。これを機械加工することにより、7.4mm×7.4mm×7.4mmの立方体のR−T−B系焼結磁石体を得た。比較のため作製したR−T−B系焼結磁石体の磁気特性をB−Hトレーサによって測定したところ、熱処理(500℃)後の特性で保磁力HcJは1250kA/m、残留磁束密度Bは1.38Tであった。
[Experimental Example 1]
First, R- with a composition ratio Nd = 28.5, Dy = 2.0, B = 1.0, Co = 0.9, Al = 0.1, Cu = 0.1, and the balance = Fe (mass%). A TB sintered magnet body was produced. By machining this, a 7.4 mm × 7.4 mm × 7.4 mm cubic RTB-based sintered magnet body was obtained. When the magnetic properties of the RTB -based sintered magnet body produced for comparison were measured with a BH tracer, the coercive force HcJ was 1250 kA / m and the residual magnetic flux density B was the property after heat treatment (500 ° C.). r was 1.38T.

次に、図1の装置を用いてRH拡散処理を実行した。筒の容積:128000mm、R−T−B系焼結磁石体の投入重量(又は投入個数):50g(5個)、RH拡散源の投入重量:50gであった。RH拡散源は、表1に記載にしたNd、Pr、Dy、Tb量が異なる種々のR−T−B系合金を破砕して用いた。大きさは篩いの目開きで2mm以下であった。 Next, RH diffusion processing was performed using the apparatus of FIG. The volume of the cylinder was 128000 mm 3 , the weight of the R-T-B system sintered magnet body (or the number of charged elements): 50 g (5), and the weight of the RH diffusion source: 50 g. As the RH diffusion source, various RTB-based alloys having different amounts of Nd, Pr, Dy, and Tb shown in Table 1 were crushed and used. The size was 2 mm or less with a sieve opening.

拡散処理時における処理容器内の温度は、図2に示すように変化した。図2は、加熱開始後における処理容器内の温度の変化(ヒートパターン)を示すグラフである。図2の例では、ヒータによる昇温を行いながら、真空排気を実行した。昇温レートは、約10℃/分である。処理容器内の圧力が10Paに達するまで、約600℃に温度を保持した。その後、処理容器の回転を開始し、拡散処理温度に達するまで昇温を行った。昇温レートは約10℃/分であった。表1のRH拡散温度に達した後、表1のRH拡散時間だけ、その温度に保持した。その後、ヒータによる加熱を停止し、室温程度まで降温させた。その後、図1の装置から取り出したRH拡散工程完了後のR−T−B系焼結磁石を別の熱処理炉に投入し、拡散処理時と同じ雰囲気圧力で第1熱処理(900℃、4時間)を行い、さらに第2熱処理(500℃、4時間)を行った。   The temperature in the processing container during the diffusion treatment changed as shown in FIG. FIG. 2 is a graph showing the temperature change (heat pattern) in the processing container after the start of heating. In the example of FIG. 2, evacuation was performed while the temperature was raised by the heater. The temperature rising rate is about 10 ° C./min. The temperature was maintained at about 600 ° C. until the pressure in the processing vessel reached 10 Pa. Thereafter, rotation of the processing container was started, and the temperature was increased until the diffusion processing temperature was reached. The temperature rising rate was about 10 ° C./min. After reaching the RH diffusion temperature in Table 1, the temperature was maintained at that temperature for the RH diffusion time in Table 1. Thereafter, heating by the heater was stopped and the temperature was lowered to about room temperature. Thereafter, the R-T-B sintered magnet after completion of the RH diffusion process taken out from the apparatus of FIG. 1 is put into another heat treatment furnace, and the first heat treatment (900 ° C., 4 hours) at the same atmospheric pressure as that during the diffusion treatment. And second heat treatment (500 ° C., 4 hours).

Dy量、Tb量を変えたRH拡散源(サンプル1から12)を用いてRH拡散処理を行ったところ、表1の結果となった。ここで、磁気特性は拡散処理後におけるR−T−B系磁石の各面を0.2mmずつ研削し、7.0mm×7.0mm×7.0mmの立方体に加工した後、B−Hトレーサにてその磁石特性を評価している。表では、「RH拡散源」の欄には、拡散処理工程で使用したRH拡散源の組成が示されている。「周速度」の欄には、図1に示す筒3の内壁面の周速度が示されている。「RH拡散温度」の欄には、拡散処理中において保持される筒3内の温度が示されている。「RH拡散時間」の欄は、RH拡散温度を保持した時間が示されている。「雰囲気圧力」は拡散処理開始時の圧力を示している。RH拡散工程完了後の保磁力HcJ増加量を「ΔHcJ」、RH拡散工程完了後の残留磁束密度B増加量を「ΔB」で示している。 When RH diffusion processing was performed using RH diffusion sources (samples 1 to 12) with different Dy amounts and Tb amounts, the results shown in Table 1 were obtained. Here, the magnetic characteristics are as follows. Each surface of the RTB system magnet after the diffusion treatment is ground by 0.2 mm and processed into a 7.0 mm × 7.0 mm × 7.0 mm cube, and then the BH tracer. The magnet characteristics are evaluated. In the table, the “RH diffusion source” column shows the composition of the RH diffusion source used in the diffusion treatment process. In the “peripheral speed” column, the peripheral speed of the inner wall surface of the cylinder 3 shown in FIG. 1 is shown. In the “RH diffusion temperature” column, the temperature in the cylinder 3 held during the diffusion process is shown. The column “RH diffusion time” indicates the time during which the RH diffusion temperature is maintained. “Atmospheric pressure” indicates the pressure at the start of the diffusion treatment. The amount of increase in coercive force H cJ after completion of the RH diffusion step is indicated by “ΔH cJ ”, and the amount of increase in residual magnetic flux density B r after completion of the RH diffusion step is indicated by “ΔB r ”.

Figure 2012151286
Figure 2012151286

表1からわかるように、本発明の範囲では、残留磁束密度の低下を抑え、かつ保磁力が向上していた。また、溶着は発生しなかった。   As can be seen from Table 1, within the scope of the present invention, the decrease in residual magnetic flux density was suppressed and the coercive force was improved. Further, no welding occurred.

本発明の範囲では、RH拡散源の組成を除いて同じ条件にてRH拡散処理を行ったサンプル1から4について、表1よりサンプル1で保磁力向上効果(ΔHcJ)が最も高く、かつ残留磁束密度の低下もなかったのがわかった。RH拡散源のDy含有量に対応して保磁力向上効果(ΔHcJ)が高まることがわかった。また、サンプル5はR−T−B系焼結磁石体2がR−T−B系焼結磁石体よりもDy含有量が低いため、Dy拡散が進まず保磁力向上効果(ΔHcJ)がなかった。 Within the scope of the present invention, samples 1 to 4 subjected to the RH diffusion treatment under the same conditions except for the composition of the RH diffusion source have the highest coercive force improving effect (ΔH cJ ) in sample 1 from Table 1 and the residual. It was found that there was no decrease in magnetic flux density. It was found that the coercive force improving effect (ΔH cJ ) is increased corresponding to the Dy content of the RH diffusion source. Further, in Sample 5, since the RTB-based sintered magnet body 2 has a lower Dy content than the RTB-based sintered magnet body, the Dy diffusion does not proceed and the coercive force improving effect (ΔH cJ ) is obtained. There wasn't.

また、RH拡散源の組成以外を同じ条件にてRH拡散処理を行ったサンプル6は表1より保磁力向上効果(ΔHcJ)が200kA/mあり、かつ残留磁束密度の低下もなかったのがわかった。 Sample 6 that was subjected to RH diffusion treatment under the same conditions except for the composition of the RH diffusion source had a coercive force improving effect (ΔH cJ ) of 200 kA / m from Table 1 and there was no decrease in residual magnetic flux density. all right.

サンプル7、8より、RH拡散源の組成中のB量が異なるRH拡散源でも保磁力向上効果(ΔHcJ)があり、かつ残留磁束密度の低下もなかった。 From Samples 7 and 8, RH diffusion sources with different amounts of B in the composition of the RH diffusion source also had a coercive force improving effect (ΔH cJ ) and no decrease in residual magnetic flux density.

サンプル9より、Prをさらに含んだ組成でも、保磁力向上効果(ΔHcJ)があり、かつ残留磁束密度の低下もなかった。 From Sample 9, even a composition further containing Pr had a coercive force improving effect (ΔH cJ ) and no decrease in residual magnetic flux density.

また、サンプル10、11より、本発明では雰囲気圧力が高くても保磁力向上効果(ΔHcJ)があり、かつ残留磁束密度の低下もなかった。 Further, from Samples 10 and 11, in the present invention, even if the atmospheric pressure was high, there was an effect of improving the coercive force (ΔH cJ ), and there was no decrease in the residual magnetic flux density.

サンプル12より、700℃でRH拡散した場合、目的とする保磁力向上効果が得られないことがわかった。   From Sample 12, it was found that when RH diffusion was performed at 700 ° C., the desired effect of improving the coercive force could not be obtained.

[実験例2]
ここで、直径5mmのジルコニア球を重量50g、攪拌補助部材として追加してRH拡散処理、第1熱処理を行った以外は、実験例1と同じ条件でRH拡散処理を行い、磁気特性を評価したところ、表2の結果となった。
表2の通り、サンプル13から21はサンプル1から4、6から8、10、11と比べてRH拡散処理時間が半分になったにも関わらず、短時間でHcJの向上効果があり、かつBがほとんど低下していない。サンプル15、20、21の結果から雰囲気圧力が高くとも残留磁束密度を低下させることなく保磁力を高める効果があることがわかった。
欠けの発生は、サンプル1から12と比べ撹拌補助部材を用いたサンプル13から21で抑制されていることが確認できた。
[Experiment 2]
Here, RH diffusion treatment was performed under the same conditions as in Experimental Example 1 except that a zirconia sphere having a diameter of 5 mm was added as a stirring auxiliary member with a weight of 50 g, and RH diffusion treatment and first heat treatment were performed, and magnetic characteristics were evaluated. However, the results shown in Table 2 were obtained.
As shown in Table 2, Samples 13 to 21 have an effect of improving HcJ in a short time despite the fact that the RH diffusion treatment time was halved compared to Samples 1 to 4, 6 to 8, 10, and 11. And Br is hardly lowered. From the results of Samples 15, 20, and 21, it was found that even if the atmospheric pressure is high, there is an effect of increasing the coercive force without reducing the residual magnetic flux density.
It was confirmed that the occurrence of chipping was suppressed in samples 13 to 21 using the stirring auxiliary member as compared with samples 1 to 12.

Figure 2012151286
Figure 2012151286

[実験例3]
RH拡散源が表3に記載の組成の焼結体スクラップであることを除き、サンプル8と同じ条件にてRH拡散処理を行ったところ表3の結果となった。サンプル22から25いずれもサンプル1からサンプル4と同様に保磁力向上効果(ΔHcJ)があり、かつ残留磁束密度の低下もなかった。RH拡散源のDy含有量に対応して保磁力向上効果(ΔHcJ)が高まることがわかった。
[Experiment 3]
When the RH diffusion source was subjected to the RH diffusion treatment under the same conditions as Sample 8 except that the RH diffusion source was sintered scrap having the composition shown in Table 3, the results shown in Table 3 were obtained. All of Samples 22 to 25 had a coercive force improving effect (ΔH cJ ) as in Samples 1 to 4, and there was no decrease in residual magnetic flux density. It was found that the coercive force improving effect (ΔH cJ ) is increased corresponding to the Dy content of the RH diffusion source.

Figure 2012151286
Figure 2012151286

以上のことから分かるように、R−T−B系合金からなるRH拡散源とR−T−B系焼結磁石体とを所定温度に加熱した処理容器内で連続的または断続的に移動させながら、互いに近接または接触させることで、量産性良くRH拡散源の重希土類元素RHを効果的にR−T−B系焼結磁石体の粒界内に導入し、磁石特性を向上させることが可能となった。
なお、本発明の拡散処理で実行可能なヒートパターンは、図2に示す例に限定されない。
As can be seen from the above, the RH diffusion source made of the RTB-based alloy and the RTB-based sintered magnet body are moved continuously or intermittently in a processing vessel heated to a predetermined temperature. However, by bringing them close to or in contact with each other, it is possible to effectively introduce the heavy rare earth element RH of the RH diffusion source into the grain boundary of the RTB-based sintered magnet body with good mass productivity and improve the magnet characteristics. It has become possible.
The heat pattern that can be executed by the diffusion processing of the present invention is not limited to the example shown in FIG.

本発明によれば、RH拡散源としてR−T−B系合金を用い、R−T−B系焼結磁石体にRH拡散処理をすることができる。   According to the present invention, an RTB-based alloy can be used as an RH diffusion source, and the RTB-based sintered magnet body can be subjected to RH diffusion treatment.

1 R−T−B系焼結磁石体
2 RH拡散源
3 筒
4 ヒータ
5 蓋
6 排気装置
1 R-T-B system sintered magnet body 2 RH diffusion source 3 cylinder 4 heater 5 lid 6 exhaust device

Claims (3)

R−T−B系焼結磁石体を準備する工程と、
重希土類元素RH(Dy、Tbの少なくともいずれか1種)の含有量が前記R−T−B系焼結磁石体の含有量より少なくとも0.5質量%多いR−T−B系合金からなるRH拡散源を準備する工程と、
前記R−T−B系焼結磁石体と前記RH拡散源とを相対的に移動可能かつ近接または接触可能に処理容器内に装入する工程と、
前記R−T−B系焼結磁石体と前記RH拡散源とを前記処理室内にて連続的または断続的に移動させながら、800℃以上1000℃以下の熱処理を行うRH拡散工程と、
を包含するR−T−B系焼結磁石の製造方法。
Preparing an RTB-based sintered magnet body;
It is made of an RTB-based alloy in which the content of heavy rare earth element RH (at least one of Dy and Tb) is at least 0.5 mass% higher than the content of the RTB-based sintered magnet body. Preparing an RH diffusion source;
Charging the RTB-based sintered magnet body and the RH diffusion source into a processing container so as to be relatively movable and close to or in contact with each other;
An RH diffusion step of performing a heat treatment at 800 ° C. or higher and 1000 ° C. or lower while continuously or intermittently moving the RTB-based sintered magnet body and the RH diffusion source in the processing chamber;
For producing an RTB-based sintered magnet.
前記RH拡散源を準備する工程において、前記RH拡散源は、研摩、切断又は破砕されている請求項1に記載のR−T−B系焼結磁石の製造方法。   The method for producing an R-T-B system sintered magnet according to claim 1, wherein in the step of preparing the RH diffusion source, the RH diffusion source is polished, cut or crushed. 前記RH拡散工程の前または途中において、攪拌補助部材を前記処理室内に装入する請求項1又は2に記載のR−T−B系焼結磁石の製造方法。
The method for producing an RTB-based sintered magnet according to claim 1 or 2, wherein a stirring auxiliary member is inserted into the processing chamber before or during the RH diffusion step.
JP2011008963A 2011-01-19 2011-01-19 Method for producing RTB-based sintered magnet Active JP5854304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008963A JP5854304B2 (en) 2011-01-19 2011-01-19 Method for producing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008963A JP5854304B2 (en) 2011-01-19 2011-01-19 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2012151286A true JP2012151286A (en) 2012-08-09
JP5854304B2 JP5854304B2 (en) 2016-02-09

Family

ID=46793274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008963A Active JP5854304B2 (en) 2011-01-19 2011-01-19 Method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP5854304B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108830A1 (en) * 2012-01-19 2015-05-11 日立金属株式会社 Method for producing RTB-based sintered magnet
CN106716573A (en) * 2015-02-27 2017-05-24 日立金属株式会社 Method for manufacturing R-T-B based sintered magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093610A (en) * 2000-09-20 2002-03-29 Aichi Steel Works Ltd Method of manufacturing anisotropic magnet powder, material powder of anisotropic magnet powder, and bonded magnet
JP2004296973A (en) * 2003-03-28 2004-10-21 Kenichi Machida Manufacture of rare-earth magnet of high performance by metal vapor deposition
JP2007027381A (en) * 2005-07-15 2007-02-01 Shinko Electric Ind Co Ltd Semiconductor device and electronic device
JP2007273815A (en) * 2006-03-31 2007-10-18 Hitachi Metals Ltd Method for manufacturing r-fe-b rare earth elements sintered magnet
WO2008139690A1 (en) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. Process for production of ndfeb sintered magnets
JP2009043776A (en) * 2007-08-06 2009-02-26 Hitachi Metals Ltd R-fe-b-based rare-earth sintered magnet and its manufacturing method
JP2009170541A (en) * 2008-01-11 2009-07-30 Inter Metallics Kk PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNET AND NdFeB SINTERED MAGNET
JP2009289994A (en) * 2008-05-29 2009-12-10 Tdk Corp Process for producing magnet
WO2010113465A1 (en) * 2009-03-31 2010-10-07 日立金属株式会社 Alloy for sintered r-t-b-m magnet and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093610A (en) * 2000-09-20 2002-03-29 Aichi Steel Works Ltd Method of manufacturing anisotropic magnet powder, material powder of anisotropic magnet powder, and bonded magnet
JP2004296973A (en) * 2003-03-28 2004-10-21 Kenichi Machida Manufacture of rare-earth magnet of high performance by metal vapor deposition
JP2007027381A (en) * 2005-07-15 2007-02-01 Shinko Electric Ind Co Ltd Semiconductor device and electronic device
JP2007273815A (en) * 2006-03-31 2007-10-18 Hitachi Metals Ltd Method for manufacturing r-fe-b rare earth elements sintered magnet
WO2008139690A1 (en) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. Process for production of ndfeb sintered magnets
JP2009043776A (en) * 2007-08-06 2009-02-26 Hitachi Metals Ltd R-fe-b-based rare-earth sintered magnet and its manufacturing method
JP2009170541A (en) * 2008-01-11 2009-07-30 Inter Metallics Kk PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNET AND NdFeB SINTERED MAGNET
JP2009289994A (en) * 2008-05-29 2009-12-10 Tdk Corp Process for producing magnet
WO2010113465A1 (en) * 2009-03-31 2010-10-07 日立金属株式会社 Alloy for sintered r-t-b-m magnet and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108830A1 (en) * 2012-01-19 2015-05-11 日立金属株式会社 Method for producing RTB-based sintered magnet
CN106716573A (en) * 2015-02-27 2017-05-24 日立金属株式会社 Method for manufacturing R-T-B based sintered magnet
CN106716573B (en) * 2015-02-27 2018-05-25 日立金属株式会社 The manufacturing method of R-T-B systems sintered magnet

Also Published As

Publication number Publication date
JP5854304B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5510457B2 (en) Method for producing RTB-based sintered magnet
JP5929766B2 (en) R-T-B sintered magnet
JP5831451B2 (en) Method for producing RTB-based sintered magnet
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP5849956B2 (en) Method for producing RTB-based sintered magnet
JP5747543B2 (en) RH diffusion source and method for producing RTB-based sintered magnet using the same
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP6443179B2 (en) Method for producing RTB-based sintered magnet
JP5850052B2 (en) RH diffusion source and method for producing RTB-based sintered magnet using the same
JP6503960B2 (en) Method of manufacturing RTB based sintered magnet
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5668491B2 (en) Method for producing RTB-based sintered magnet
JP6086293B2 (en) Method for producing RTB-based sintered magnet
JP5854304B2 (en) Method for producing RTB-based sintered magnet
JP6249275B2 (en) Method for producing RTB-based sintered magnet
JP6432418B2 (en) Diffusion treatment apparatus and method for producing RTB-based sintered magnet using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5854304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350