JP2012150977A - Battery cooling structure - Google Patents
Battery cooling structure Download PDFInfo
- Publication number
- JP2012150977A JP2012150977A JP2011008525A JP2011008525A JP2012150977A JP 2012150977 A JP2012150977 A JP 2012150977A JP 2011008525 A JP2011008525 A JP 2011008525A JP 2011008525 A JP2011008525 A JP 2011008525A JP 2012150977 A JP2012150977 A JP 2012150977A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- batteries
- gap
- cooling air
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
本発明は、複数の電池が組み合わされた組電池を冷却する電池冷却構造に関する。特に平板状の電池が所定間隔を隔てる積層状態で配置される組電池を冷却風により冷却する空冷式の電池冷却構造に関する。 The present invention relates to a battery cooling structure for cooling an assembled battery in which a plurality of batteries are combined. In particular, the present invention relates to an air-cooled battery cooling structure that cools an assembled battery in which flat batteries are arranged in a stacked state at a predetermined interval with cooling air.
電気自動車やハイブリッド自動車などには、動力源として二次電池を集合させた組電池が用いられている。充電や放電の過程において、電池が過熱したり電池間の温度差が大きくなったりすると、電池の性能が低下したり、電池が損傷することが起こるため、通常、これら組電池を電池ケースに収納して、冷却風を電池ケース内に送り込んで組電池を冷却することが行われる。 In an electric vehicle, a hybrid vehicle, and the like, an assembled battery in which secondary batteries are assembled as a power source is used. In the process of charging or discharging, if the battery overheats or the temperature difference between the batteries increases, the performance of the battery may deteriorate or the battery may be damaged. Usually, these assembled batteries are stored in the battery case. Then, cooling air is sent into the battery case to cool the assembled battery.
組電池に用いられる電池には、リチウムイオン電池のように、略平板状の電池があり、このような電池はその形状から角型電池と呼ばれることもある。
平板状の電池を組電池として構成する場合には、冷却風による冷却が効率的に行われるように、電池の広い面同士が対向するように、互いに所定の間隔を隔てるように平板状電池を積層状態に配置して、電池間の隙間に冷却風を送って電池を冷却することが一般的に行われている。
The battery used for the assembled battery includes a substantially flat battery such as a lithium ion battery, and such a battery is sometimes called a square battery because of its shape.
When a flat battery is configured as an assembled battery, the flat batteries are separated from each other by a predetermined distance so that the wide surfaces of the batteries face each other so that the cooling air can be efficiently cooled. In general, the batteries are arranged in a stacked state and cooled by sending cooling air to the gaps between the batteries.
そして、これら組電池の冷却にあたっては、組電池を構成する複数の電池の温度を極力均一化し、かつ、効率的に電池を冷却することが必要であり、そのために、さまざまな組電池構造や電池冷却構造が提案されるに至っている。
例えば、特許文献1には、所定間隔を隔てて配置された平板状電池の間に分配された冷却風を導いて、複数の電池が均一に冷却されるようにした組電池冷却構造が開示されている。また、特許文献2には、電池と電池の間に絶縁セパレータを挟みこんで、絶縁セパレータの凹凸形状によって冷却風通路(冷却隙間)を形成し、電池間の絶縁性を確保した組電池構造が開示されている。
In cooling these assembled batteries, it is necessary to equalize the temperature of a plurality of batteries constituting the assembled battery as much as possible and cool the battery efficiently. For this purpose, various assembled battery structures and batteries are required. Cooling structures have been proposed.
For example,
電気自動車などに使用される組電池は、システムの軽量化や省スペース化のために、電池外装缶が薄型化される傾向にある。ここで、リチウムイオン電池のような平板状の電池で電池外装缶が薄型化されると、電池の温度変化や内部でのガスの発生などによって、電池の広い面が内圧によってふくれる傾向が顕著となりやすい。 In battery packs used in electric vehicles and the like, battery outer cans tend to be made thinner in order to reduce the system weight and save space. Here, when the battery outer can is made thinner with a flat battery such as a lithium ion battery, the tendency of the wide surface of the battery to be swollen by internal pressure becomes prominent due to changes in the temperature of the battery and the generation of gas inside. Cheap.
特許文献1に記載の組電池構造(図12に示す)のように、平板状電池と電池の間に特に電池の膨張を拘束する部材を有しない組電池構造の場合には、電池の広い面が膨張することにより、電池間の隙間が小さくなって、その隙間に空気が流れにくくなり、その隙間に隣接する電池の冷却が悪くなって、電池の均一な冷却がうまくできなくなったり、一部の電池が異常加熱したりするおそれがある。特許文献1に開示されたような電池冷却構造では、電池間の隙間の幅が、電池間に流れる冷却風の流量を直接的に規定するために、電池の膨張による冷却性の阻害と電池温度のばらつきが顕著となりやすい。電池温度にばらつきが生ずると、温度の高い電池の膨張や劣化が進行しやすくなり、電池寿命にもばらつきが生ずることになり、組電池としての寿命が短くなるので好ましくない。
In the case of an assembled battery structure that does not have a member that restrains the expansion of the battery between the flat battery and the battery, as in the assembled battery structure described in Patent Document 1 (shown in FIG. 12), the wide surface of the battery When the battery expands, the gaps between the batteries become smaller, making it difficult for air to flow through the gaps. The cooling of the batteries adjacent to the gaps deteriorates, and the uniform cooling of the batteries cannot be performed successfully. There is a risk of abnormal heating of the battery. In the battery cooling structure disclosed in
特許文献2に記載されたような、凹凸板状の絶縁セパレータを電池の間に挟みこむタイプの組電池構造であれば、電池の膨張が積極的に抑制されると共に、電池間の隙間が適切に維持され、冷却は比較的均一に行われうるが、このような組電池構造は、多数の構成部品を精度良く製造して組み付ける必要があり、製造コストが高くなるほか、電池間の隙間の寸法変化をさせないために、システムには一定の剛性や強度が必要とされて、その軽量化にも限界があった。
If it is an assembled battery structure of the type which sandwiches an uneven | corrugated plate-shaped insulation separator between batteries as described in
即ち、本発明の目的は、組電池を構成する電池が膨張して、電池間の冷却風通路の幅が変化しようとも、電池を効果的に冷却し、組電池の電池温度の均一性を維持し、ひいては電池寿命の均一化に貢献できる電池冷却構造を提供することにある。
That is, the object of the present invention is to effectively cool the batteries and maintain the battery temperature uniformity even if the batteries constituting the assembled batteries expand and the width of the cooling air passage between the batteries changes. The object is to provide a battery cooling structure that can contribute to uniform battery life.
本発明の発明者は、鋭意検討の結果、冷却風を用いた電池冷却構造において、電池間隙間に対応したスリットや貫通穴を有する流れ制御板を冷却風通路に設けて、スリット(貫通穴)と電池間隙間で構成される個々の冷却風通路を互いに独立して並列配置し、それぞれの冷却風通路において、このスリットによって冷却風を絞って風量調整を行うようにすると共に、スリットの大きさを電池間隙間の大きさ以下の大きさにすれば、電池がふくれて電池間の隙間が変化しようとも、電池温度の変化が抑制されることを発見した。そして、これを応用すれば、風量変化や、風量配分の乱れや電池温度の不均一化を防止もしくは抑制できることを知見し、本発明を完成させた。 As a result of intensive studies, the inventors of the present invention have provided a flow control plate having slits and through holes corresponding to the gaps between the batteries in the cooling air passage in the battery cooling structure using cooling air, and the slit (through hole). The cooling air passages constituted by the gaps between the battery and the battery are arranged in parallel independently of each other, and in each cooling air passage, the cooling air is squeezed by this slit to adjust the air volume, and the size of the slit It has been found that if the battery is made smaller than the gap between the batteries, the change in battery temperature can be suppressed even if the gap between the batteries changes due to the swelling of the batteries. And if this was applied, it discovered that an air volume change, disturbance of air volume distribution, and non-uniform | heterogenous battery temperature could be prevented or suppressed, and completed this invention.
本発明は、複数の平板状の電池が所定間隔の隙間を隔てた積層状に並べられた組電池を電池ケース内に収容し、電池ケース内を通流する冷却風を、電池間の隙間を通過するように送って電池を冷却する電池冷却構造であって、組電池の上流側または下流側には、冷却風の通路を遮断するように流れ制御板が配置され、流れ制御板には、電池間の隙間に沿う方向に延在するスリットが設けられて、該スリットを通じて流れ制御板の上流側から下流側に冷却風が流れるようにされると共に、電池間隙間のそれぞれに対応してスリットが設けられ、互いに対応するスリットと電池間の隙間によって形成される通気経路が、それぞれ独立し互いに並列配置される通気経路となるようにされて、電池間の隙間における冷却風流れ方向に沿って見た際に、該スリットの幅Sが、電池間の隙間の幅dと比べ、S≦dとされた電池冷却構造である。 In the present invention, a battery pack in which a plurality of flat batteries are arranged in a stacked manner with a predetermined gap is accommodated in the battery case, and the cooling air flowing through the battery case is placed between the batteries. It is a battery cooling structure that sends the battery to pass and cools the battery, and a flow control plate is disposed on the upstream side or the downstream side of the assembled battery so as to block the passage of the cooling air. Slits extending in the direction along the gaps between the batteries are provided so that cooling air flows from the upstream side to the downstream side of the flow control plate through the slits. The ventilation paths formed by the slits corresponding to each other and the gaps between the batteries are independent ventilation paths arranged in parallel with each other, along the cooling air flow direction in the gaps between the batteries. When I saw it, Width S of the slit, as compared to the width d of the gap between the battery, a battery cooling structure that is the S ≦ d.
本発明においては、スリットの幅Sを、電池間の隙間の幅dと比べ、17%≦S/d≦70%とすることが好ましく、さらに、スリットの幅Sを、電池間の隙間の幅dと比べ、25%≦S/d≦50%とすることが特に好ましい。また本発明においては、電池間の隙間には、当該電池間隙間の幅が、隙間の初期幅の40%以下に狭まることを抑制可能なスペーサ部材が設けられることが好ましい。 In the present invention, the width S of the slit is preferably 17% ≦ S / d ≦ 70% compared to the width d of the gap between the batteries. Further, the width S of the slit is the width of the gap between the batteries. It is particularly preferable that 25% ≦ S / d ≦ 50% as compared with d. In the present invention, it is preferable that a spacer member capable of suppressing the width between the battery gaps to be 40% or less of the initial width of the gap is provided in the gap between the batteries.
また、本発明は、複数の平板状の電池が所定間隔の隙間を隔てた積層状に並べられた組電池を電池ケース内に収容し、電池ケース内を通流する冷却風を、電池間の隙間を通過するように送って電池を冷却する電池冷却構造であって、組電池の上流側または下流側には、冷却風の通路を遮断するように流れ制御板が配置され、流れ制御板には電池間隙間のそれぞれに対応して貫通穴が設けられて、該貫通穴を通じて流れ制御板の上流側から下流側に冷却風が流れるようにされると共に、互いに対応する貫通穴と電池間の隙間によって形成される通気経路が、それぞれ独立し互いに並列配置される通気経路となるようにされて、前記貫通穴の開口面積をAhとし、電池間の隙間を冷却風流れ方向に沿って見た際の断面積をAgとして、実質的にAh≦Ag とされた電池冷却構造である。ここで、貫通穴の形態はスリットのような形態に限定されず、円形や楕円形、矩形(正方形、長方形)、ひし形など多様な形態の貫通穴とできる。
The present invention also provides a battery case in which battery packs in which a plurality of flat batteries are arranged in a stacked manner with a predetermined gap therebetween are accommodated in the battery case, and cooling air flowing through the battery case is provided between the batteries. A battery cooling structure that cools the battery by sending it through a gap, and a flow control plate is arranged on the upstream side or downstream side of the assembled battery so as to block the passage of the cooling air. There are through holes corresponding to each of the gaps between the batteries, and cooling air flows from the upstream side to the downstream side of the flow control plate through the through holes, and between the corresponding through holes and the batteries. The ventilation paths formed by the gaps are independent ventilation paths arranged in parallel with each other, the opening area of the through holes is Ah, and the gap between the batteries is seen along the cooling air flow direction. When the cross-sectional area at the time is Ag, substantially A Is a ≦ Ag was a battery cooling structure. Here, the shape of the through hole is not limited to a shape like a slit, and can be various through holes such as a circle, an ellipse, a rectangle (square, rectangle), and a rhombus.
本発明によれば、互いに対応して設けられるスリットと電池間隙間により、それぞれ独立し互いに並列配置される通気経路が構成される。スリットの幅Sは電池間隙間の幅d以下(すなわちS≦d)とされているために、これら独立した通気経路における冷却風の流量や流量配分を決定する通気抵抗を、各流路に設けられたスリットにより独立して調整することができる。従って、各流路への流量配分は、あらかじめスリット幅を調整しておくことにより行うことができる。
そして、各流路におけるスリットの幅Sが電池間隙間の幅dよりも小さく(S≦d)されているため、電池間隙間が電池の膨張等により変化しても、流路全体の通気抵抗に生ずる変化は限定的なものなり、冷却風の流量変化が抑制される。そして、電池間隙間の減少による電池温度の上昇も抑制される。この温度上昇抑制効果は、電池間隙間の幅が初期幅の40%〜70%になる程度に電池が膨張する条件下で特に顕著なものとなる。
According to the present invention, the air passages that are independently arranged in parallel are configured by the slits and the inter-battery gaps provided in correspondence with each other. Since the slit width S is less than or equal to the width d between the battery gaps (ie, S ≦ d), a ventilation resistor that determines the flow rate and flow distribution of the cooling air in these independent ventilation paths is provided in each flow path. It can be adjusted independently by the slit formed. Therefore, the flow distribution to each flow path can be performed by adjusting the slit width in advance.
Since the slit width S in each flow path is smaller than the width d between the battery gaps (S ≦ d), even if the gap between the batteries changes due to the expansion of the battery, the ventilation resistance of the entire flow path The change that occurs is limited, and the change in the flow rate of the cooling air is suppressed. And the rise in battery temperature by the reduction | decrease between battery gaps is also suppressed. This temperature rise suppression effect is particularly remarkable under conditions where the battery expands to such an extent that the width between the battery gaps is 40% to 70% of the initial width.
従って、本発明によれば、電池の膨張などにより電池間隙間が変化しても、各流路の流量やその配分および電池温度を実質的に維持して、電池の冷却性向上および電池温度の均一性および電池寿命の均一化に貢献できる。 Therefore, according to the present invention, even if the gap between the batteries changes due to the expansion of the battery or the like, the flow rate of each flow path, its distribution, and the battery temperature are substantially maintained to improve the battery cooling performance and the battery temperature. Contributes to uniformity and uniform battery life.
そして、さらに、スリットの幅Sと、電池間の隙間の幅dを、17%≦S/d≦70%となるようにすれば、特許文献2に示された絶縁セパレータを挟持するタイプの電池冷却構造と比較しても、冷却風の通気抵抗を同等以下にでき、電池冷却システムの冷却の効率性を高めることができる。さらに、この範囲においては、驚くべきことに、電池が膨張して電池間の隙間が狭くなると、冷却条件は同じであっても、むしろ電池の温度を下げることができる。従って、膨張した電池の温度が膨張していない電池の温度よりも逆に低くなるようになり、膨張した電池の更なる膨張や劣化が抑制され、電池寿命の均一化に大きく貢献できる。
Further, if the width S of the slit and the width d of the gap between the batteries are 17% ≦ S / d ≦ 70%, the battery of the type sandwiching the insulating separator shown in
そして、さらに、スリットの幅Sと、電池間の隙間の幅dを、25%≦S/d≦50%となるようにすれば、特許文献2に示された絶縁セパレータを挟持するタイプの電池冷却構造と比較しても、電池温度を同等以下にでき、電池冷却システムの冷却の効率性を高めることができる。さらに、この範囲においては、特に、電池間隙間が半減するような厳しい条件下での冷却風量変化を効果的に抑制できる。
Further, if the width S of the slit and the width d of the gap between the batteries are set to satisfy 25% ≦ S / d ≦ 50%, the battery of the type sandwiching the insulating separator shown in
そして、さらに、電池間の隙間に、当該電池間隙間の幅が初期幅の40%以下に狭まることを抑制可能なスペーサ部材を設けるようにすれば、本発明を適用した電池冷却システムにおける電池温度の上昇を特に効果的に抑制できる。 Further, if a spacer member capable of suppressing the width between the battery gaps from being narrowed to 40% or less of the initial width is provided in the gap between the batteries, the battery temperature in the battery cooling system to which the present invention is applied. Can be suppressed particularly effectively.
また、本発明においては、電池間隙間の方向に延在するスリットを、開口面積Ahの貫通穴に置き換えても、電池間の隙間を冷却風流れ方向に沿って見た際の断面積をAgとして、実質的にAh≦Agとなるように貫通穴を設定すれば、同様の作用効果を発揮できる。
In the present invention, even when the slit extending in the direction between the battery gaps is replaced with a through hole having an opening area Ah, the cross-sectional area when the gap between the batteries is viewed along the cooling air flow direction is represented by Ag. If the through hole is set so as to substantially satisfy Ah ≦ Ag, the same effect can be exhibited.
以下図面に基づいて、本発明の電池冷却構造の実施形態について、ハイブリッド自動車用の組電池を冷却する電池冷却構造を例にして説明する。図1は本発明の電池冷却構造の第1実施形態の断面図である。また、図2は本実施形態の電池冷却構造に組み込まれる流れ制御板や組電池の構造および構成を分解図で示した図である。 Hereinafter, an embodiment of a battery cooling structure of the present invention will be described with reference to the drawings, taking a battery cooling structure for cooling an assembled battery for a hybrid vehicle as an example. FIG. 1 is a cross-sectional view of a first embodiment of the battery cooling structure of the present invention. FIG. 2 is an exploded view showing the structure and configuration of the flow control plate and the assembled battery incorporated in the battery cooling structure of this embodiment.
図1に示す本発明実施形態の電池冷却構造について説明する。複数の平板状電池2,2が所定間隔の隙間を隔てて積層状に配置された組電池構造体1とされて、電池ケース6の中に配置されている。平板状電池2、2は図1の紙面奥行き方向に延在するように配置されていて、電池2,2は、電池ケース6の内面や隣接する電池との間に所定の間隔(隙間)を有し、その隙間に冷却風が流れるように、スペーサや支持部材によって、箱状の電池ケース6の内部に収容、支持されている。
The battery cooling structure of the embodiment of the present invention shown in FIG. 1 will be described. A plurality of
電池ケース6は金属や合成樹脂により成形された中空の箱状の部材であり、電池ケース6には冷却風導入口61と冷却風導出口62が設けられて、電池ケース6の内部空間が冷却風通路となる。そして電池ケース6は、冷却風導入口61や冷却風導出口62がダクトや送風ファンなどの周辺部材と接続されて一連の冷却風通路となって、組電池の冷却に使用される。
The
本実施形態では、冷却風導出口62の下流側に送風ファン(図示せず)が設けられて、図の左上の冷却風導入口61の上流側に接続される冷却風ダクト(図示せず)から、冷却風が電池ケース6の内部に流れ込み、電池2,2や電池ケース6の間の隙間を通りながら電池を冷却して、冷却風導出口62から図の右下側へと暖められた冷却風が流れ出ていく。
In this embodiment, a blower fan (not shown) is provided on the downstream side of the cooling
本実施形態の電池冷却構造に組み込まれる組電池構造体1について説明する。図2には本実施形態の電池冷却構造の分解図を、電池ケースを省略して示しており、組電池構造体1は、電池2とホルダ部材3とエンドプレート4とが一体に組み立てられて構成されている。組電池を構成する平板状の電池2,2は、互いに所定の間隔を隔てて積層状態に配置されている。電池2,2は直列あるいは並列に電気的に接続されて組電池を構成する。本実施形態においては、電池モジュールを構成する電池はリチウムイオンバッテリーであり、電池2は平板状(扁平な直方体状)の形状となっている。電池2,2は広い平坦面が互いに対向するように積層されて、それぞれの電池の側面(広い平坦面に隣接する面)に端子が設けられている。
The assembled
電池2,2が積層状態で位置決めされて保持されるために、電池2,2の側面に対向するように、一対のホルダ部材3,3が設けられる。ホルダ部材3は電池2,2の両端の側面部全体を覆うような板状に形成されるとともに、ホルダ部材3、3には、電池の両端部21,21をそれぞれ保持する形状の保持部31,31が設けられている。本実施形態においては、保持部31は電池の両端部21を取り囲んで嵌合するような形状に、ホルダ部材本体から突出して設けられている。ホルダ部材には、電池の端子部分や固定用突起等が貫通する貫通穴Hが設けられている。ホルダ部材の貫通穴から外部に露出させた電池端子を互いに結線して、組電池として機能させる。
In order for the
積層状に位置決めされた組電池の積層方向の両端の電池の広い面に対向するように、一対のエンドプレート4、4が設けられている。エンドプレート4、4には、一対のホルダ部材3,3が取付けられて、ボルトやバンドなどによって固定され、互いに電池の固定構造を維持する働きをする。エンドプレート4,4はホルダ部材の取付けが適切に行われる限りにおいて、省略あるいは簡素化することができる。そして、電池2,2は、電池ケース6内に、ホルダ部材やエンドプレートを備えた組電池構造体1として組み込まれる。
A pair of
本実施形態においては、ホルダ部材3,3とエンドプレート4,4とは、角筒状の通気経路を構成して、冷却風通気経路の一部を構成するようにされている。このようにすれば、ホルダ部材やエンドプレートを、冷却風通路を画成する電池ケース6として兼用することができる。なお、必ずしも、ホルダ部材3,3やエンドプレート4,4によって冷却風通気経路を構成しなければならないわけではなく、もっぱら電池ケースによって通気経路を構成することもできる。
In the present embodiment, the
本発明においては、電池ケース6の内部に、電池ケースの内部空間を冷却風導入口側と冷却風導出口側とに仕切り、冷却風の流れをさえぎるように、流れ制御板5が設けられている。そして、本実施形態においては、流れ制御板5は組電池の上流側の端縁部を覆うような大きさとされて、組電池よりも上流側となる位置に、組電池の端縁部と略平行となるように、電池ケース6に対して一体に取り付けられている。
In the present invention, a
図1にその断面を、図2および図3にその斜視図を示すように、流れ制御板5には、複数のスリット51,51が電池間の隙間に沿う方向に延在して設けられている。本実施形態においては、スリット51,51は、電池間の隙間のそれぞれに対応して、1つの隙間に対して1本のスリット51が、電池間の隙間に対向する位置(即ち電池の積層方向において互いに隣接する電池の中間位置)に設けられている。また、スリット51は、電池間の隙間の長さ方向(図1における紙面奥行き方向)において、隙間の全長にわたる長さの長穴状に設けられている。
As shown in FIG. 1 and its perspective view in FIGS. 2 and 3, the
スリット51,51は、流れ制御板5の上流側空間と下流側空間とを互いに連通するように流れ制御板5を貫通して設けられている。そして、流れ制御板5によって流れをせき止められた冷却風は、流れ制御板に設けられたスリット51を通じて、上流側から下流側に流れる。
The
さらに、本実施形態においては、流れ制御板5が電池2の上流側端縁と対向する部分に凸条52,52が形成されて、凸条52の先端部が電池の上流側端縁に当接し、シールするようにされている。このような構成をとることによって、互いに対応して設けられたスリット51と電池間の隙間とによって構成される冷却風通路が、それぞれ独立した複数の冷却風通路となる。これら独立した冷却風通路は、電池ケース6の中で互いに並列に配置されて設けられることになる。そして、それぞれのスリットの幅を調整することによって、それぞれの電池間隙間を流れる冷却風の流量を独立して調整できるようになる。
Further, in this embodiment, the
スリット51,51の幅Sは、電池間の隙間の幅d以下に(即ちS≦dとなるように)されており、各電池間の冷却風流れは、スリット51,51によって絞られて、その流量が調整される。例えば、本実施形態においては、電池間の隙間を流れる冷却風の流れ方向(図1の上下方向)に沿って見て、スリット51の幅Sが、電池間の隙間の幅dの40%(即ちS/d=0.4)にされている。
The width S of the
後述するように、電池の膨張などによる電池間の隙間の変化に対して冷却風風量の変化や電池温度の変化を少なくし、電池を効果的に冷却するためには、スリット51の幅Sを電池間の隙間の幅dに対し100%以下にすればよく、より好ましくは、70%以下、特に好ましくは50%以下にすると良い。一方スリット51の幅Sが小さすぎると、冷却風の送風抵抗が大きくなるので、スリット51の幅Sは電池間の隙間の幅dの10%以上にすればよく、より好ましくは17%以上、特に好ましくは25%以上にすると良い。
As will be described later, in order to reduce the change in the cooling air flow rate and the change in the battery temperature with respect to the change in the gap between the batteries due to the expansion of the battery, etc., and to cool the battery effectively, the width S of the
上記電池冷却構造を構成する電池ケースの製造方法は、公知の製造方法により行うことができ、例えば、電池ケース6は開口状の箱と蓋に分けたケース部材を合成樹脂(例えばポリプロピレン樹脂)の射出成形により形成することができる。流れ制御板5も合成樹脂(例えばポリプロピレン樹脂)の射出成形により形成することができ、可能であれば、電池ケース6のケース部材と一体成形してもよい。もちろん、流れ制御板5を金属板や合成樹脂の射出成形などによりケースとは別体に作成して、電池ケース組み立て時に所定位置に取り付けるようにしてもよい。
The manufacturing method of the battery case constituting the battery cooling structure can be performed by a known manufacturing method. For example, the
上記電池冷却構造に組み込まれる組電池構造体1は、公知の製造方法により構成することができる。例えば、ホルダ部材3やエンドプレート4は例えば合成樹脂の射出成形により製造することができ、互いにボルトやクリップなどの締結部材を介して結合して、上記組電池構造を構成できる。強度や熱的要件等の要件に応じて、これら部材を金属部材で構成することもできる。
The assembled
電池ケースやホルダ部材やエンドプレートにおいてシール性が必要となる部位には、ゴムやエラストマや発泡樹脂などからなるシール材を備えさせることが好ましい。また、これら部材について、少なくとも一部をゴムやエラストマにより一体成形することも好ましい実施の形態である。 It is preferable to provide a sealing material made of rubber, elastomer, foamed resin, or the like at a portion of the battery case, holder member, or end plate that requires sealing performance. Moreover, it is also a preferred embodiment that at least a part of these members is integrally formed with rubber or elastomer.
完成した電池構造体1を電池ケース6内の所定位置に配置し、流れ制御板5を組み込んだ状態で電池ケースの蓋を閉じて、上記実施形態の組電池が収容された電池ケースおよび電池冷却構造が完成される。
The completed
本発明の電池冷却構造による作用と効果を説明する。 The operation and effect of the battery cooling structure of the present invention will be described.
本発明では、上記第1実施形態のように、互いに対応して設けられたスリット51と電池間の隙間とが一連の通気経路を構成し、凸条52等によって、電池間の隙間ごとにそれぞれ独立した冷却風通路が並列配置されて構成されるようになる。従って、それぞれの通気経路に設けられたスリットの幅や大きさを調整することによって、それぞれの電池間隙間を流れる冷却風の流量を独立して調整できるようになる。電池ケース6の構成や形状の制限により、それぞれの電池間の隙間に供給される冷却風風量に差が生じやすい場合であっても、このような構成をとることにより電池間の冷却風配分のばらつきを少なくすることができて、電池温度の均一化に効果的である。
In the present invention, as in the first embodiment, the
さらに、本発明の組電池構造においては、流れ制御板に設けられたスリットの幅Sが、電池間の隙間の幅dと比べてS≦dという範囲となるようにされているので、組電池を構成する電池が膨張して冷却風通路(電池間の隙間)の幅が変化しようとも、個々の冷却風通路の通気抵抗に及ぼす影響が少なくなる。そのため、本発明によれば、冷却風の流量変化を抑制可能であり、電池膨張の影響を抑制しながら電池を効果的に冷却し、組電池の電池温度を均一化できる。 Furthermore, in the assembled battery structure of the present invention, the width S of the slit provided in the flow control plate is in a range of S ≦ d compared to the width d of the gap between the batteries. Even if the battery constituting the battery expands and the width of the cooling air passage (gap between the batteries) changes, the influence on the ventilation resistance of each cooling air passage is reduced. Therefore, according to the present invention, it is possible to suppress a change in the flow rate of the cooling air, effectively cool the battery while suppressing the influence of the battery expansion, and make the battery temperature of the assembled battery uniform.
図12に示す、特許文献1に記載されたような従来の電池冷却構造(図12として特許文献1の中の図3を引用する)においては、電池間の隙間を流れる冷却風の抵抗は、主として電池間の隙間の幅により決定し、幅が狭ければ流量が小さくなり、幅が大きければ流量が大きくなっていた。
In the conventional battery cooling structure shown in
一方、本発明の電池冷却構造によれば、組電池の上流又は下流側に設けた流れ制御板のスリットの幅が電池間隙間以下にされているために、冷却風流れに生ずる通気抵抗の発生要因におけるスリットの寄与が大きくなっている。すなわち、本発明においては、スリットにより流れを絞って冷却風風量を調整することが可能になる。一方、電池間の隙間の大きさの変化が、冷却風風量に与える影響は相対的に小さくなり、本発明によれば、電池間の隙間が多少変化しても、冷却風風量の変化が抑制されるようになる。 On the other hand, according to the battery cooling structure of the present invention, since the slit width of the flow control plate provided on the upstream or downstream side of the assembled battery is set to be equal to or less than the gap between the batteries, the airflow resistance generated in the cooling air flow is generated. The contribution of the slit in the factor is large. That is, in the present invention, it becomes possible to adjust the cooling air volume by restricting the flow by the slit. On the other hand, the effect of the change in the size of the gap between the batteries on the cooling airflow is relatively small. According to the present invention, even if the gap between the batteries changes somewhat, the change in the cooling airflow is suppressed. Will come to be.
発明者は上記効果に関し、熱流体シミュレーション検討によって、スリットと電池間隙間で構成される独立流路の部分の通気抵抗、流量および電池表面温度の計算を行った。
独立流路のモデルとして、上流側に幅Sのスリットが設けられ、その下流側が電池間隙間に相当する幅dの流路とされた流路を想定し、2次元流れを仮定して前記流路の最上流と最下流の間に所定の圧力差を与えて、その際の冷却風流量を求める数値流体解析を行うと共に、所定の冷却風温度と電池の発熱量を与える熱伝導解析を前記流体解析に組み合わせて電池表面温度を求めた。そして、電池の膨張により、電池間隙間dが小さくなっていった場合の流量変化や電池表面温度の変化を求めた。
The inventor calculated the ventilation resistance, the flow rate, and the battery surface temperature of the independent flow path portion constituted by the slit and the gap between the batteries by a thermal fluid simulation study on the above effect.
As an independent channel model, a flow channel having a width S on the upstream side and a downstream channel having a width d corresponding to the gap between the batteries is assumed, and the flow is assumed assuming a two-dimensional flow. A numerical fluid analysis is performed to determine a flow rate of cooling air at a given pressure difference between the uppermost stream and the downstream side of the path, and a heat conduction analysis is performed to give a predetermined cooling air temperature and a heat generation amount of the battery. The battery surface temperature was determined in combination with fluid analysis. Then, the change in the flow rate and the change in the battery surface temperature when the gap d between the batteries became smaller due to the expansion of the battery were obtained.
そして、上記第1実施形態に対応する実施例として、流れ制御板に設けられたスリットの幅Sを、電池間隙間の幅(初期幅)と対比して、いろいろと変更して、上記計算を行った。なお、以下のシミュレーション結果の説明部分においては、電池間の隙間の幅を、電池が膨張する前の初期幅をd0とし、電池が膨張して狭くなっていく際の幅をdとして説明する。
一連の検討において、スリット51の幅Sについては、電池間の隙間(初期幅)d0を固定して、電池間の初期隙間の基準寸法d0を基準とするスリットの幅Sの値即ちS/d0の値が17%、34%、52%、69%、86%、100%となるような幅とした場合について熱流体シミュレーション計算を実行した。
As an example corresponding to the first embodiment, the width S of the slit provided in the flow control plate is variously changed in comparison with the width between the battery gaps (initial width), and the above calculation is performed. went. In the following description of the simulation results, the width of the gap between the batteries is described as d0 as the initial width before the battery expands, and as the width when the battery expands and narrows as d.
In a series of studies, regarding the width S of the
一連のシミュレーションにおいて、計算を行った系の代表的な諸元は以下のとおりである。電池間の初期隙間は3mmとし、冷却風流れ方向に沿う電池の長さは110mmとした。そして、スリットが設けられた流れ制御板の厚さは2mmとした。流れの解析は、電池上流に設けた流れ制御板の上流側から、電池間隙間の最下流部に至る区間の圧力差を55Paとして計算し、流れ場および熱伝導の場の定常解を求めた。 In the series of simulations, typical specifications of the system that performed the calculation are as follows. The initial gap between the batteries was 3 mm, and the length of the battery along the cooling air flow direction was 110 mm. And the thickness of the flow control board provided with the slit was 2 mm. In the flow analysis, the pressure difference in the section from the upstream side of the flow control plate provided upstream of the battery to the most downstream part between the battery gaps was calculated as 55 Pa, and the steady solution of the flow field and the heat conduction field was obtained. .
また、比較例1として、電池隙間上流の流れ制御板やスリットが存在しない例(特許文献1の従来技術に相当する)を計算した。比較例1は計算結果のグラフでは「スリットなし」と表記している。 Further, as Comparative Example 1, an example in which there is no flow control plate or slit upstream of the battery gap (corresponding to the prior art of Patent Document 1) was calculated. In Comparative Example 1, the calculation result graph indicates “no slit”.
計算結果を図4ないし図9に示す。
図4には、電池間隙間が小さくなっていく際の冷却風流量変化を、スリット幅を変更して計算した結果を示す。横軸には、電池間隙間(電池間流路幅)の変化をd/d0として示し、ここで、d0とは電池間隙間の初期幅(電池が膨張する前の電池間隙間)である。縦軸には、冷却風通路を流れる流量Qの変化をQ/Q0として示し、ここで、Q0とは電池が膨張する前の初期流量である。
The calculation results are shown in FIGS.
FIG. 4 shows the result of calculating the change in the flow rate of the cooling air when the gap between the batteries is reduced by changing the slit width. On the horizontal axis, the change in the inter-battery gap (battery channel width) is shown as d / d0, where d0 is the initial width between the battery gaps (battery gap before the battery expands). On the vertical axis, the change in the flow rate Q flowing through the cooling air passage is shown as Q / Q0, where Q0 is the initial flow rate before the battery expands.
図4によれば、電池が膨張して電池間隙間が狭くなる(d/d0が小さくなる)と、冷却風流量が初期流量に比べ小さくなる(Q/Q0が小さくなる)傾向がわかる。特に、比較例1(スリットなし)においては、電池間隙間が減少するのとほぼ比例するように、流量が減少してしまうのに対し、本発明の各実施例においては、電池間隙間が減少した際の流量変化が抑制されていることがわかる。特にスリット幅をS/d0≦70%とした際には、流量変化の抑制効果が顕著なものとなり、さらに、S/d0≦50%とすれば、電池間隙間が80%に減少した際の流量変化を、比較例1と比べて1/3以下にすることができ、その効果がさらに顕著なものとなる。また、より細いスリットを設けることにより、電池間隙間がより狭くなった領域まで、流量変化抑制効果を維持できることがわかる。例えば、S/d0≦34%とすることにより、電池間隙間が40%に減少した際の流量変化を、比較例1と比べて2/3以下にすることができ、S/d0≦17%とすることにより、電池間隙間が40%に減少した際の流量変化を、比較例1と比べて1/3以下にすることができる。 According to FIG. 4, when the battery expands and the gap between the batteries becomes narrow (d / d0 becomes smaller), the cooling air flow rate tends to become smaller than the initial flow rate (Q / Q0 becomes smaller). In particular, in Comparative Example 1 (without slits), the flow rate decreases so as to be approximately proportional to the decrease in the inter-battery gap, whereas in each example of the present invention, the inter-battery gap decreases. It can be seen that the change in flow rate during the process is suppressed. In particular, when the slit width is set to S / d0 ≦ 70%, the effect of suppressing the flow rate change becomes remarkable, and when S / d0 ≦ 50%, the gap between the batteries is reduced to 80%. The change in flow rate can be reduced to 1/3 or less as compared with Comparative Example 1, and the effect becomes more remarkable. Moreover, it turns out that the flow volume change inhibitory effect can be maintained to the area | region where the gap between batteries became narrower by providing a narrower slit. For example, by setting S / d0 ≦ 34%, the flow rate change when the inter-battery gap is reduced to 40% can be reduced to 2/3 or less compared to Comparative Example 1, and S / d0 ≦ 17% Thus, the flow rate change when the inter-battery gap is reduced to 40% can be reduced to 1/3 or less as compared with Comparative Example 1.
図5には、電池間隙間が小さくなっていく際の電池表面温度変化を、スリット幅を変更して計算した結果を示す。電池表面温度の変化は、電池の全表面の温度の平均値と、流入する冷却風との温度差(T)を計算し、グラフ化している。グラフの縦軸には、電池表面温度変化(T−T0)/T0を示し、ここでT0は電池が膨張する前の初期状態における電池表面温度と流入する冷却風温度の差である。電池表面温度変化(T−T0)/T0の値が正(プラス)であることは、電池隙間の幅の減少により電池表面温度が上昇したことを示し、逆に、(T−T0)/T0の値が負(マイナス)であることは、電池隙間の幅の減少により電池表面温度が下がったことを示している。なお、図5においては、S/d0が86%と100%の計算例の線が互いにほぼ重なっており、S/d0が52%と70%の計算例の線も互いにほぼ重なっている。 FIG. 5 shows the result of calculation of the change in battery surface temperature when the gap between the batteries is reduced by changing the slit width. The change in the battery surface temperature is graphed by calculating the temperature difference (T) between the average value of the temperature of the entire surface of the battery and the incoming cooling air. The vertical axis of the graph indicates the battery surface temperature change (T−T0) / T0, where T0 is the difference between the battery surface temperature in the initial state before the battery expands and the cooling air temperature flowing in. A positive value of the battery surface temperature change (T−T0) / T0 indicates that the battery surface temperature has increased due to a decrease in the width of the battery gap, and conversely, (T−T0) / T0. A negative value indicates that the battery surface temperature has decreased due to a decrease in the width of the battery gap. In FIG. 5, the calculation example lines with S / d0 of 86% and 100% almost overlap each other, and the calculation example lines with S / d0 of 52% and 70% also almost overlap each other.
図5によれば、本発明実施例によれば、驚くべきことに、電池間隙間が60%に減少するまでの間は、むしろ、電池間隙間が減少すると電池表面温度が下がる効果がある(即ち、(T−T0)/T0がマイナスとなる)ことがわかる。一方、比較例1(スリットなし)では、そのような効果が非常に弱く、電池間隙間が60%程度まで減少すると電池表面温度が上がってしまうことがわかる。 According to FIG. 5, according to the embodiment of the present invention, surprisingly, until the inter-battery gap is reduced to 60%, rather, the battery surface temperature is lowered when the inter-battery gap is reduced ( That is, it can be seen that (T−T0) / T0 becomes negative. On the other hand, in Comparative Example 1 (without slits), such an effect is very weak, and it can be seen that the battery surface temperature increases when the inter-battery gap is reduced to about 60%.
本発明の実施例において、電池間隙間が減少すると電池表面温度が下がる効果は、以下のようなメカニズムに基づくものであると推定される。本発明実施例においては、電池間隙間dが減少しても、流量Qは維持される。ここで、電池間隙間dが減少すると、電池間の流路断面積が小さくなるため、流量Qが維持されるのであれば、冷却風の流速が増え、電池表面と冷却風の熱交換の効率が高められる。この熱交換効率の向上効果により、本発明実施例においては、電池間隙間dが減少しても、流量Qの減少が顕著となるまでの間(d/d0≧60%である間)は、電池表面温度が下がるものと推定される。 In the examples of the present invention, the effect of lowering the battery surface temperature when the inter-battery gap is reduced is presumed to be based on the following mechanism. In the embodiment of the present invention, the flow rate Q is maintained even when the inter-battery gap d decreases. Here, when the inter-battery gap d decreases, the cross-sectional area of the flow path between the batteries decreases, so if the flow rate Q is maintained, the flow rate of the cooling air increases, and the efficiency of heat exchange between the battery surface and the cooling air Is increased. Due to the effect of improving the heat exchange efficiency, in the embodiment of the present invention, even when the inter-battery gap d decreases, until the decrease in the flow rate Q becomes significant (d / d0 ≧ 60%), It is estimated that the battery surface temperature is lowered.
図5に示された、電池間隙間の減少により電池表面温度が下がる効果が、スリット幅により変化する様子を図6に示す。図6では、横軸にスリット幅を電池間隙間(初期値)で規格化したS/d0を、縦軸には、図5のグラフにおける電池表面温度変化(T−T0)/T0の最小値をプロットしている。 FIG. 6 shows how the effect of lowering the battery surface temperature due to the decrease between the battery gaps shown in FIG. 5 changes depending on the slit width. In FIG. 6, the horizontal axis indicates S / d0 in which the slit width is normalized by the gap between the batteries (initial value), and the vertical axis indicates the minimum value of the battery surface temperature change (T−T0) / T0 in the graph of FIG. Is plotted.
比較例1(スリットなし)では、電池表面温度変化の最小値は−0.5%であり、ほとんど効果が見られない一方で、本発明実施例においては、電池表面温度変化の最小値が−1%ないし−5%となっており、電池が膨張し、幅が減少した隙間に面する電池の温度がむしろ下がることがわかる。特に、スリットの幅をS/d0が10%〜70%となるように設定すれば、電池表面温度変化の最小値を−2〜−5%にすることができ、上記電池冷却効果を効果的に得ることができる。 In Comparative Example 1 (without slits), the minimum value of the battery surface temperature change was −0.5%, and almost no effect was observed. On the other hand, in the example of the present invention, the minimum value of the battery surface temperature change was − From 1% to -5%, it can be seen that the battery expands and the temperature of the battery facing the gap with reduced width is rather lowered. In particular, if the slit width is set so that S / d0 is 10% to 70%, the minimum value of battery surface temperature change can be -2 to -5%, and the battery cooling effect is effective. Can get to.
本発明の上記実施例において生じている、電池間隙間が減少すると電池表面温度がむしろ下がるという、顕著な電池冷却効果は、組電池の寿命延長を図る上で、非常に有用である。従来の電池冷却システムによれば、電池が膨張すると、膨張により狭くなった電池間隙間には冷却風の流れがうまく流れなくなって、その隙間に面する電池の温度が上昇し、電池の劣化やさらなる電池の膨張が進むという傾向があり、電池の膨張や劣化が加速的に進みやすかった。そのため、電池劣化や電池寿命の均一化を図ることが難しく、一部の電池の膨張・劣化により組電池全体の寿命が短くなってしまう傾向があった。 The remarkable battery cooling effect that occurs in the above-described embodiment of the present invention, in which the battery surface temperature decreases rather when the inter-battery gap is reduced, is very useful for extending the life of the assembled battery. According to the conventional battery cooling system, when the battery expands, the flow of the cooling air does not flow well between the battery gaps narrowed by the expansion, the temperature of the battery facing the gap rises, the deterioration of the battery, There was a tendency for further expansion of the battery, and it was easy for the battery to expand and deteriorate at an accelerated rate. Therefore, it is difficult to make the battery deterioration and the battery life uniform, and there is a tendency that the life of the entire assembled battery is shortened due to the expansion and deterioration of some batteries.
ところが、本発明によれば、電池の膨張により、電池間隙間が小さくなると、むしろその隙間に面する電池の表面温度が下がり、電池の劣化や更なる膨張が他の電池と比べて抑制されるようになる。従って、それぞれの電池の寿命が均一化され、組電池全体の寿命も長くなる。また、電池間隙間が小さくなった際の、加速度的な電池温度上昇が抑制されるので、電池冷却システムのロバスト性も向上する。 However, according to the present invention, when the gap between the batteries is reduced due to the expansion of the battery, the surface temperature of the battery facing the gap is lowered, and the deterioration and further expansion of the battery are suppressed as compared with other batteries. It becomes like this. Therefore, the lifetime of each battery is made uniform, and the lifetime of the entire assembled battery is also increased. In addition, since the battery temperature rise is accelerated when the inter-battery gap is reduced, the robustness of the battery cooling system is also improved.
本発明の実施例では、スリット幅Sが小さいと、通気抵抗が大きくなって、風量が少なくなる傾向がある。図7には、スリット幅(S/d0)を変更した際の冷却風流量の変化を示す。縦軸の冷却風流量は、後述する比較例2における冷却風流量Q_HOLDERにより規格化し、Q/Q_HOLDERとして示している。ここで、比較例2とは、特許文献2に示されたような絶縁セパレータが電池間に挟持された電池冷却構造について、同様の計算を行った例である。比較例2は、図13にその計算モデルの概要を示すように、電池2,2の間の幅d0の電池間隙間の中央部に、セパレータ8,8を模した厚みd0/3の板を置いた冷却風通路が設けられ、本発明のようなスリットや流れ制御板が存在しない電池冷却構造として計算を行っている。
In the embodiment of the present invention, when the slit width S is small, the airflow resistance tends to increase and the air volume tends to decrease. FIG. 7 shows changes in the cooling air flow rate when the slit width (S / d0) is changed. The cooling air flow rate on the vertical axis is normalized by the cooling air flow rate Q_HOLDER in Comparative Example 2 described later, and is indicated as Q / Q_HOLDER. Here, the comparative example 2 is an example in which the same calculation was performed for a battery cooling structure in which an insulating separator as shown in
図7に示すように、本発明においては、スリットの幅が大きい方が、電池冷却系の通気抵抗を低くでき、所定の圧力差(上記計算例では55Pa)に対してより多くの冷却風を流せる。また、本発明の実施例によれば、スリット幅SがS/d0≧17%となるようにされていれば、同様な諸元の比較例2と比較しても、より多くの冷却風を流すことができ(すなわち通気抵抗が低い)、電池冷却システムの負荷を低減できる。 As shown in FIG. 7, in the present invention, the larger the slit width, the lower the airflow resistance of the battery cooling system, and more cooling air for a predetermined pressure difference (55 Pa in the above calculation example). It can flow. Further, according to the embodiment of the present invention, as long as the slit width S is set to satisfy S / d0 ≧ 17%, more cooling air can be obtained as compared with Comparative Example 2 having the same specifications. The battery cooling system can be reduced by reducing the load of the battery cooling system.
図8には、電池間隙間が減少していく際の電池表面温度の変化を、比較例2の電池表面温度を基準として、スリット幅ごとに示している。縦軸には、電池表面温度を比較例2の電池表面温度T_HOLDERで規格化した、T/T_HOLDERを示している。 In FIG. 8, the change of the battery surface temperature when the gap between the batteries decreases is shown for each slit width on the basis of the battery surface temperature of Comparative Example 2. The vertical axis represents T / T_HOLDER in which the battery surface temperature is normalized by the battery surface temperature T_HOLDER of Comparative Example 2.
さらに、図9には、スリット幅によって、電池表面温度が比較例2と比べてどのように変化するかを示す。図9では、縦軸に、図8と同じく電池表面温度を比較例2の電池表面温度T_HOLDERで規格化したT/T_HOLDERを、横軸にはスリット幅をS/d0で示している。 Further, FIG. 9 shows how the battery surface temperature changes as compared with Comparative Example 2 depending on the slit width. In FIG. 9, the vertical axis indicates T / T_HOLDER in which the battery surface temperature is normalized by the battery surface temperature T_HOLDER of Comparative Example 2 as in FIG. 8, and the horizontal axis indicates the slit width by S / d0.
図9によれば、本発明の実施例においては、S/d0≧25%となる領域において、電池表面温度が比較例2と比べて低くできる(即ち、T/T_HOLDER≦100%とできる)という効果が得られ、特許文献2に示された絶縁セパレータを電池間に挟持するタイプの電池冷却構造と比較しても、電池表面温度を低くできるという利点がある。
According to FIG. 9, in the example of the present invention, the battery surface temperature can be lowered as compared with Comparative Example 2 in the region where S / d0 ≧ 25% (that is, T / T_HOLDER ≦ 100%). Even when compared with a battery cooling structure of the type in which the effect is obtained and the insulating separator shown in
以上のように、スリットの幅を対応する電池間隙間の幅以下とすれば、電池冷却システムとして実用的な冷却風風量を流しながら、電池間の隙間が変化しても冷却風風量の変化を抑制可能とすることができ、電池を効果的に冷却し、組電池の電池温度の均一性を維持し、ひいては電池寿命の均一化に貢献できる。
As described above, if the slit width is less than or equal to the width between the corresponding battery gaps, the flow of cooling air can be changed even if the gap between the batteries changes while flowing a practical cooling air volume as a battery cooling system. Therefore, the battery can be effectively cooled, the uniformity of the battery temperature of the assembled battery can be maintained, and as a result, the battery life can be made uniform.
本発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に本発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分についてはその説明を簡略化または省略する。 The present invention is not limited to the above embodiment, and can be implemented with various modifications. Although other embodiments of the present invention will be described below, in the following description, portions different from the above embodiment will be mainly described, and the description of the same portions will be simplified or omitted.
まず、流れ制御板に設けられるスリットの変更例を説明する。電池間の隙間に対応して設けられるスリットは、必ずしも上記実施形態のように1対1に対応して設けられなければならないわけではなく、1つの電池間隙間に対してそれぞれ2本もしくはそれ以上のスリットを設けて、本発明を実施することもできる。 First, an example of changing the slit provided in the flow control plate will be described. The slits provided corresponding to the gaps between the batteries do not necessarily have to be provided in a one-to-one correspondence as in the above embodiment, and two or more slits are provided for each gap between the batteries. It is also possible to implement the present invention by providing a slit.
例えば、図10には、本発明の第2実施形態の電池冷却構造について、電池2,2と流れ制御板7の断面を示す。本実施形態においては、1つの電池間隙間に対して、2本のスリット71,72が対応するように流れ制御板7が構成されている。2本のスリット71,72は、電池間隙間の中心面に対し互いにほぼ対称となる位置に設けられており、第1のスリット71は、電池間の隙間の図示左側の電池の上流側端縁部に対向する位置に、幅S1で設けられており、第2のスリット72は、電池の隙間の図示右側の電池の上流側端縁部に対向するような位置に、幅S2で設けられている。これらスリットは第1実施形態と同じく、互いに対応する2本のスリットと1つの電池間隙間とによってそれぞれ独立した流路が構成されるようにされている。そして、2本のスリットの幅と電池間隙間の幅は、スリットの幅の合計(S1+S2)と電池間隙間の幅dの比が第1実施形態におけるスリット幅と電池間隙間幅の範囲になるように(すなわちS1+S2≦dとなるように)各スリットの幅S1,S2が決定される。
For example, FIG. 10 shows a cross section of the
このように、スリットの本数や形状が変化しても、電池間隙間との対応関係により、スリットの幅や開口面積を合計して、スリットの幅が電池間隙間の幅以下となるようにすれば、本発明を実施することができ、第1実施形態と同様な効果を得ることができる。 In this way, even if the number and shape of the slits change, the slit width and the opening area are summed up according to the correspondence with the gap between the batteries so that the slit width is equal to or less than the width between the battery gaps. Thus, the present invention can be implemented, and the same effect as that of the first embodiment can be obtained.
そして、本実施形態によれば、スリット71,72と電池間隙間で構成されるそれぞれ独立した流路内部において、冷却風流れがさらに改善される。すなわち、第1のスリット71から導入される冷却風が、隙間に対し左側の電池表面に沿って流れ、第2のスリット72から導入される冷却風が、隙間に対し右側の電池表面に沿って流れるようになる。このように、それぞれの電池の表面に新規な冷却風を確実に導くことができるようになる。そのため、本実施形態によれば、電池冷却の効率性をさらに高めることができる。また、スリットの幅S1,S2を独立して調整して、隙間に対する左右の電池の冷却の程度をある程度調整することも可能となり、電池温度の均一化の面でも効果的である。
And according to this embodiment, a cooling wind flow is further improved in the inside of each independent flow path comprised by the
また、上記2つの実施形態においては、スリットが連続した1つの長穴である場合を説明したが、スリットとして他の形態のものも使用可能である。例えば、複数個の長穴81、81を長軸方向に並べて連設してスリット(図11(a)参照)としたり、複数個の角穴82、82を並べて連設してスリット(図11(b)参照)としたり、多数の小さな穴83,83を、細長い領域の中に(例えばメッシュ状に)分散させて設けてスリットとしたりすることができる(図11(c)参照)。要するに、本発明においては、電池間の隙間に沿う方向に、流れ制御板に細長い領域にわたって貫通穴や通気性がある部分を設けることにより、その部分をスリットとして使用できる。
Further, in the above two embodiments, the case where the slit is one continuous long hole has been described, but other types of slits can be used. For example, a plurality of
上記実施形態の説明では、電池間の隙間に沿う方向に延在するスリットを流れ制御板に設ける発明の形態について説明したが、流れ制御板に設けられるスリットを、スリット以外の形態の貫通穴に変更して本発明をより拡張した形態で実施することもできる。本発明が発揮する作用効果は、電池間隙間で発生する通気抵抗の大きさと、流れ制御板のスリットや貫通穴で発生する通気抵抗の大きさとで、流れ制御板のスリットや貫通孔で発生する通気抵抗の寄与が大きくなることに起因している。従って、スリットと通気抵抗が同等となるような貫通穴を流れ制御板に設けて本発明を実施することもできる。 In the description of the above-described embodiment, the embodiment of the invention in which the slit extending in the direction along the gap between the batteries is provided in the flow control plate has been described. However, the slit provided in the flow control plate is used as a through hole in a form other than the slit. It is also possible to implement the present invention in a more expanded form with modification. The effects exhibited by the present invention are generated in the slits and through holes of the flow control plate by the size of the ventilation resistance generated in the gap between the batteries and the size of the ventilation resistance generated in the slits and through holes of the flow control plate. This is due to the increased contribution of ventilation resistance. Therefore, the present invention can also be implemented by providing a through hole in the flow control plate so that the slit and the ventilation resistance are equivalent.
さらに、発明者は、流れ制御板を通過する冷却風流れの検討を行った。そして、流れ制御板に設けられた貫通穴を通過する冷却風流れの通気抵抗は、貫通穴の断面積Ahによって支配されることをつきとめた。そして、通気抵抗は、おおむね貫通穴の断面積Ahの2乗に反比例することがわかった。 Furthermore, the inventor examined the flow of cooling air passing through the flow control plate. It was found that the ventilation resistance of the cooling air flow passing through the through hole provided in the flow control plate is governed by the cross-sectional area Ah of the through hole. Then, it was found that the ventilation resistance is generally inversely proportional to the square of the cross-sectional area Ah of the through hole.
さらに、発明者は、流れ制御板の貫通穴を通過する冷却風流れの通気抵抗を、貫通穴の形状をいろいろ変更して測定した。即ち、試験装置の冷却風通路に冷却風をさえぎるように流れ制御板を設けて、流れ制御板に形状(特に貫通穴の縦横比)を変更した貫通穴を設けて、一定風量の冷却風を流して、流れ制御板の上流側と下流側の圧力差を計測して通気抵抗を測定した。試験においては、貫通穴の開口面積は200平方mm、風量は22L/分となるように行った。 Furthermore, the inventor measured the ventilation resistance of the cooling air flow passing through the through hole of the flow control plate by changing the shape of the through hole. That is, a flow control plate is provided to block the cooling air in the cooling air passage of the test apparatus, and a through hole whose shape (especially the aspect ratio of the through hole) is changed is provided in the flow control plate, so that a constant amount of cooling air is supplied. The pressure resistance was measured by measuring the pressure difference between the upstream side and the downstream side of the flow control plate. In the test, the opening area of the through hole was 200 square mm, and the air volume was 22 L / min.
試験を行った開口穴の形状と、通気抵抗の測定結果を表1に示す。通気抵抗は、貫通穴を貫通穴Aの形状(100mm×2mmの細長い貫通穴形状)とした場合の通気抵抗で基準化して示している。 Table 1 shows the shape of the aperture hole in which the test was performed and the measurement results of the ventilation resistance. The ventilation resistance is shown by being standardized by the ventilation resistance when the through hole is formed in the shape of the through hole A (100 mm × 2 mm long and narrow through hole shape).
測定結果によれば、貫通穴の縦横比が大きく変化しても、貫通穴の断面積が同じであれば、通気抵抗は大きく変化しないことがわかった。即ち、貫通穴の縦横比を大きく変化させても、通気抵抗に与える変化は2割以下に過ぎず、貫通穴の形状よりも貫通穴の断面積が通気抵抗に支配的であることがわかる。すなわち、断面積が同じであれば、細長いスリットも、一般形状の(例えば円形の)貫通穴も、ほぼ通気抵抗が等しくなる。 According to the measurement results, it was found that even if the aspect ratio of the through hole changes greatly, the ventilation resistance does not change greatly if the cross-sectional area of the through hole is the same. That is, even if the aspect ratio of the through hole is changed greatly, the change given to the ventilation resistance is only 20% or less, and it can be seen that the cross-sectional area of the through hole is more dominant in the ventilation resistance than the shape of the through hole. That is, if the cross-sectional area is the same, the ventilation resistance is substantially equal for the elongated slit and the general-shaped (for example, circular) through hole.
従って、上記第一実施形態において説明された流れ制御板のスリットを、スリットと断面積が等しくされた貫通穴に置き換えても、第一実施形態と同様の作用効果が発揮されることが理解できる。貫通穴の形態はスリットのような細長い形態に限定されず、円形や楕円形、矩形(正方形、長方形)、ひし形など多様な形態の貫通穴とすることができる。 Therefore, even if the slit of the flow control plate described in the first embodiment is replaced with a through hole having the same cross-sectional area as that of the slit, it can be understood that the same effect as that of the first embodiment is exhibited. . The shape of the through hole is not limited to an elongated shape such as a slit, and can be various shapes such as a circle, an ellipse, a rectangle (square, rectangle), and a rhombus.
従って、本発明は、複数の平板状の電池が所定間隔の隙間を隔てた積層状に並べられた組電池を電池ケース内に収容し、電池ケース内を通流する冷却風を、電池間の隙間を通過するように送って電池を冷却する電池冷却構造において、組電池の上流側または下流側には、冷却風の通路を遮断するように流れ制御板が配置され、流れ制御板には電池間隙間のそれぞれに対応して貫通穴が設けられて、該貫通穴を通じて流れ制御板の上流側から下流側に冷却風が流れるようにされると共に、互いに対応する貫通穴と電池間の隙間によって形成される通気経路が、それぞれ独立し互いに並列配置される通気経路となるようにされて、前記貫通穴の開口面積をAhとし、電池間の隙間を冷却風流れ方向に沿って見た際の断面積をAgとして、実質的にAh≦Agとなるような電池冷却構造という形態としても実施可能であり、第一実施形態と同様の作用効果が発揮される Therefore, according to the present invention, a battery pack in which a plurality of flat batteries are arranged in a stacked manner with a predetermined gap is accommodated in the battery case, and the cooling air flowing through the battery case is exchanged between the batteries. In a battery cooling structure that cools a battery by passing it through a gap, a flow control plate is disposed on the upstream side or downstream side of the assembled battery so as to block a cooling air passage, and the flow control plate includes a battery. Through holes are provided corresponding to each of the gaps, and cooling air flows from the upstream side to the downstream side of the flow control plate through the through holes, and the gaps between the corresponding through holes and the batteries The formed air passages are independent air passages arranged in parallel with each other, the opening area of the through holes is Ah, and the gap between the batteries is viewed along the cooling air flow direction. Assuming that the cross-sectional area is Ag, Be in the form of battery cooling structure such that h ≦ Ag is feasible, the same effect as the first embodiment are exhibited
ここで、電池間の隙間の断面積Agとは、当該隙間を冷却風流れ方向に沿って見た際の隙間の断面積であり、より具体的には、電池間隙間の幅をd、電池の幅(図1の紙面奥行き方向の長さ)をWとして、Ag=d*W で求められる断面積である。 Here, the cross-sectional area Ag of the gap between the batteries is a cross-sectional area of the gap when the gap is viewed along the cooling air flow direction. More specifically, the width between the battery gaps is d, Is a cross-sectional area obtained by Ag = d * W where W is the width in the paper surface depth direction (W).
そして、流れ制御板に設けられる貫通穴は任意の形状とすることができ、実質的にAh≦Agとなるように貫通穴を設定すれば、貫通穴部分の通気抵抗が全体の通気抵抗に対して支配的になって、流れ制御板にスリットを設けた第一実施形態と同様な作用効果を発揮しうることがわかる。 The through hole provided in the flow control plate can have an arbitrary shape. If the through hole is set so that Ah ≦ Ag substantially, the ventilation resistance of the through hole portion is less than the overall ventilation resistance. It can be seen that the same effects as those of the first embodiment in which the flow control plate is provided with the slit can be exhibited.
なお、電池間の隙間に対して、複数の貫通穴が対応している場合には、それぞれの貫通穴の面積を加算して、加算した開口面積が電池間隙間の断面積よりも小さくなるようにすればよい。例えば、1つの電池間の隙間に対応する貫通穴が3つであり、それぞれの貫通穴の開口面積がA1,A2,A3であれば、3つの貫通穴の開口面積Ahを、Ah=(A1+A2+A3)で計算して、これが電池間隙間の断面積Agよりも小さくなる、すなわち、(A1+A2+A3)≦Agとなるように貫通穴の具体的寸法を決定すればよい。 When a plurality of through holes correspond to the gaps between the batteries, the areas of the respective through holes are added so that the added opening area is smaller than the cross-sectional area between the battery gaps. You can do it. For example, if there are three through holes corresponding to a gap between one battery and the opening areas of the respective through holes are A1, A2, and A3, the opening area Ah of the three through holes is represented by Ah = (A1 + A2 + A3). ) And the specific dimension of the through hole may be determined so that this is smaller than the cross-sectional area Ag between the battery gaps, that is, (A1 + A2 + A3) ≦ Ag.
なお、互いに対応して設けられる貫通穴の開口面積Ahと電池間隙間の断面積Agとの大小は、それぞれの部位で発生する通気抵抗の大小の観点から見て、貫通穴で発生する通気抵抗が支配的となるように、実質的にAh≦Agとなっていればよい。表1に示したように、貫通穴の縦横比が1:1に近づくと通気抵抗が1〜2割程度大きくなる傾向が見られ、また、貫通穴の通気抵抗は貫通穴の開口面積の2乗に反比例するので、例えば円形や正方形状の貫通穴の開口面積Ahが電池間隙間Agの1.1倍程度であれば、実質的にAh≦Agである範囲に含まれる。 Note that the size of the opening area Ah of the through holes provided corresponding to each other and the cross-sectional area Ag between the battery gaps is the airflow resistance generated in the through holes from the viewpoint of the size of the airflow resistance generated in each part. So that Ah ≦ Ag. As shown in Table 1, when the aspect ratio of the through hole approaches 1: 1, the ventilation resistance tends to increase by about 10 to 20%, and the ventilation resistance of the through hole is 2 of the opening area of the through hole. Since it is inversely proportional to the power, for example, if the opening area Ah of a circular or square through hole is about 1.1 times the inter-battery gap Ag, it is included in the range of substantially Ah ≦ Ag.
また、第一実施形態において、スリットの幅をS、電池間の隙間をdとして、S/dの値が特定の数値範囲に入るとさらに特定の効果が得られることを示したが、これもまた、一般形状の貫通穴を設けた場合に拡張可能である。従って、貫通穴の開口面積をAh、電池間隙間の断面積をAgとする本実施形態においては、第一実施形態のS/dを、Ah/Agに置き換えることが可能であり、Ah/Agが特定の数値範囲に入ると、第一実施形態において示したような特定の効果が同様に得られる。 In the first embodiment, the slit width is S and the gap between the batteries is d, and it has been shown that a more specific effect can be obtained when the S / d value falls within a specific numerical range. Moreover, it can be expanded when a through hole having a general shape is provided. Therefore, in this embodiment in which the opening area of the through hole is Ah and the cross-sectional area between the battery gaps is Ag, S / d in the first embodiment can be replaced with Ah / Ag. When the value falls within a specific numerical range, the specific effect as shown in the first embodiment can be obtained similarly.
即ち、17%≦Ah/Ag≦70%となるようにすれば、特許文献2に示された絶縁セパレータを挟持するタイプの電池冷却構造と比較しても、冷却風の通気抵抗を同等以下にでき、電池冷却システムの冷却の効率性を高めることができる。また、この範囲においては、電池が膨張して電池間の隙間が狭くなると、冷却条件は同じであっても、むしろ電池の温度を下げることができる。従って、膨張した電池の温度が膨張していない電池の温度よりも逆に低くなるようになり、膨張した電池の更なる膨張や劣化が抑制され、電池寿命の均一化に大きく貢献できる。
That is, if 17% ≦ Ah / Ag ≦ 70%, the airflow resistance of the cooling air can be made equal to or less than that of the battery cooling structure of the type sandwiching the insulating separator shown in
そして、さらに、25%≦Ah/Ag≦50%となるようにすれば、特許文献2に示された絶縁セパレータを挟持するタイプの電池冷却構造と比較しても、電池温度を同等以下にでき、電池冷却システムの冷却の効率性を高めることができる。さらに、この範囲においては、特に、電池間隙間が半減するような厳しい条件下での冷却風量変化を効果的に抑制できる。
Furthermore, if 25% ≦ Ah / Ag ≦ 50%, the battery temperature can be made equal or lower than that of the battery cooling structure of the type shown in
また、スリット・貫通穴や電池間の隙間によって形成される冷却風通路を互いに独立して並列配置されたものとする際の具体的構成には、第1実施形態に示した凸条52に代えて、他の構成を採用することもできる。例えば、凸条52に代えて、流れ制御板の平板部分を電池端縁に直接接触させても良いし、流れ制御板と電池端縁の間に別部材である仕切り部材を設けてもよい。また、これら部材の接触部には、必要に応じてゴムやエラストマーや発泡樹脂などからなるシール部材を設けることが好ましい。
In addition, the specific configuration when the cooling air passages formed by the slits / through holes and the gaps between the batteries are arranged in parallel independently of each other is replaced with the
また、所定の間隔の隙間を隔てて積層配置される電池の間には、適宜スペーサを挟持させて、電池の過大な膨張を抑制することも、本発明の実施において好ましい形態である。図4や図5などにおいて見られるように、電池間の隙間が過小になると(例えば、d/d0<40%の程度になると)、本発明の実施例においても、冷却風流量の減少や電池表面温度の上昇が顕著となるので、本発明を実施する際には、電池間に挟持するスペーサなどの膨張変位の制限手段を付加的に設けて、電池間の隙間が過小になることを防止するようにするのが好ましい。電池の膨張抑制部材としてのスペーサ部材としては、棒状のものやくし状のもの、板状のものなどが例示される。スペーサ部材は、電池の周りに巻き回したリング状のもの(ゴム製バンドなど)であっても良い。これらスペーサ部材は、冷却風の流れを妨げないように冷却風流れ方向に沿って配置されるようにすることが好ましい。スペーサ部材の材料は、金属や合成樹脂等の比較的硬質な材料であっても良いが、エラストマやゴムといった比較的軟質な材料であっても良い。 Moreover, it is also a preferable embodiment in the practice of the present invention to suppress excessive expansion of the battery by appropriately interposing a spacer between the batteries arranged in a stack with a predetermined gap. As seen in FIGS. 4 and 5, etc., when the gap between the batteries becomes too small (for example, d / d0 <40%), the cooling air flow rate is reduced and the battery is reduced in the embodiment of the present invention. Since the surface temperature rises significantly, when implementing the present invention, an additional means for limiting expansion displacement such as a spacer sandwiched between the batteries is additionally provided to prevent the gap between the batteries from becoming excessively small. It is preferable to do so. Examples of the spacer member as the battery expansion suppressing member include a rod-like member, a comb-like member, and a plate-like member. The spacer member may be a ring-shaped member (such as a rubber band) wound around the battery. These spacer members are preferably arranged along the cooling air flow direction so as not to disturb the cooling air flow. The material of the spacer member may be a relatively hard material such as metal or synthetic resin, but may be a relatively soft material such as elastomer or rubber.
このようなスペーサ部材を本発明の流れ制御板やスリットの構成と併用するようにすれば、電池間の隙間が過小になることが確実に抑制・防止できるので、本発明の効果をより確実に発揮することができる。 If such a spacer member is used in combination with the structure of the flow control plate or slit of the present invention, the gap between the batteries can be reliably suppressed / prevented, so the effect of the present invention can be more reliably achieved. It can be demonstrated.
また、流れ制御板を設ける位置は、組電池の上流側や下流側のいずれであっても良いが、流れ制御板が組電池の上流側にあったほうが、スリットから勢い良く吹き出す冷却風を平板状電池の表面に当てて、電池の冷却効率を高めやすくなるので、流れ制御板は、組電池の上流側に設けられることが好ましい。 In addition, the position where the flow control plate is provided may be on either the upstream side or the downstream side of the assembled battery. However, if the flow control plate is located on the upstream side of the assembled battery, the cooling air that blows out from the slit is more flat. It is preferable that the flow control plate is provided on the upstream side of the assembled battery because it is easy to improve the cooling efficiency of the battery by being applied to the surface of the battery.
第1実施形態においては、組電池構造体1を構成するホルダ部材3やエンドプレート4を板状の部材で構成して角筒状の通気経路とする実施形態について説明したが、このように構成した場合には、これら部材を電池ケースの一部として使用することができる。ケース単独で冷却風通路を構成できる電池ケースを有する場合には、必ずしも、ホルダ部材やエンドプレートを板状とする必要はなく、組電池の構造が適切に維持可能な範囲で、棒状部材やブロック状部材、バンド部材などにより構成してもよい。また、これら部材は、適宜、分割して構成することもできる。
In 1st Embodiment, although the
また、上記実施形態の説明においては、中空箱状の電池ケース1に組電池が収容される形態について説明したが、電池ケースの実施形態は、ケース専用に成形された中空箱状のものに限定されるものではなく、電池ケースは、パネル部材やブロック部材などの複数の部材を組み合わせて構成されるものであってもよい。例えば、車体のフロアパネル上に組電池を配置して、組電池を取り囲むように、断熱パネルや電極パネルを設けて、フロアパネルや断熱パネル、電極パネルの間を冷却風通路とした電池ケースを構成するようにすることもできる。このように、本発明における電池ケースには、専用の構成部材で構成された電池ケースのほか、組電池の周辺に配置される部材を利用・兼用して構成される電池ケースを含む。
Further, in the description of the above embodiment, the form in which the assembled battery is accommodated in the hollow box-shaped
組電池を構成する電池の種類には、一次電池、二次電池(リチウムイオンバッテリー、ニッケル水素電池、ニッケルカドミウム電池など)、二重電気キャパシタなどが例示できる。電池は、上記実施形態においては、平板状のものについて説明したが、その表面は完全に平坦である必要はなく、冷却性向上や電池外装缶の剛性向上のための凹凸条などを有する電池であってもよい。 Examples of the battery constituting the assembled battery include a primary battery, a secondary battery (such as a lithium ion battery, a nickel hydride battery, and a nickel cadmium battery), a double electric capacitor, and the like. In the above embodiment, the battery has been described as having a flat plate shape, but the surface does not have to be completely flat, and is a battery having uneven strips for improving cooling performance and improving the rigidity of the battery outer can. There may be.
組電池が使用される目的・用途も、自動車用に限定されるものではなく、例えば、風力発電装置や太陽電池発電装置などにおいて発電電力を平準化する目的で二次電池が使用される用途など、広い用途に使用される組電池の冷却に本発明は活用できる。 The purpose and application for which the assembled battery is used are not limited to those for automobiles. For example, a secondary battery is used for the purpose of leveling generated power in a wind power generator or a solar battery power generator. The present invention can be used for cooling assembled batteries used in a wide range of applications.
本発明は、電気自動車やハイブリッド自動車、発電装置などに使用される大容量組電池の電池冷却構造として使用することができ、それら組電池を構成する平板状電池を効果的に冷却することができると共に、電池の膨張に対するロバスト性が高いなど、産業上の利用価値が高い。 INDUSTRIAL APPLICABILITY The present invention can be used as a battery cooling structure for large-capacity assembled batteries used in electric vehicles, hybrid vehicles, power generators, and the like, and can effectively cool flat batteries constituting the assembled batteries. In addition, the industrial utility value is high, such as high robustness against battery expansion.
1 組電池構造体
2 電池
3 ホルダ部材
31 保持部
4 エンドプレート
5 流れ制御板
51 スリット
52 凸条
6 電池ケース
7 流れ制御板
71,72 スリット
8 セパレータ
DESCRIPTION OF
Claims (5)
組電池の上流側または下流側には、冷却風の通路を遮断するように流れ制御板が配置され、流れ制御板には、電池間の隙間に沿う方向に延在するスリットが設けられて、該スリットを通じて流れ制御板の上流側から下流側に冷却風が流れるようにされると共に、
電池間隙間のそれぞれに対応してスリットが設けられ、互いに対応するスリットと電池間の隙間によって形成される通気経路が、それぞれ独立し互いに並列配置される通気経路となるようにされて、
電池間の隙間における冷却風流れ方向に沿って見た際に、該スリットの幅Sが、電池間の隙間の幅dと比べ、S≦dとされた電池冷却構造。 A battery pack in which a plurality of flat batteries are arranged in a stack with a predetermined gap is housed in the battery case, and the cooling air flowing through the battery case passes through the gap between the batteries. A battery cooling structure for sending and cooling the battery,
On the upstream side or downstream side of the assembled battery, a flow control plate is arranged so as to block the passage of the cooling air, and the flow control plate is provided with a slit extending in the direction along the gap between the batteries, The cooling air is allowed to flow from the upstream side to the downstream side of the flow control plate through the slit,
A slit is provided corresponding to each of the gaps between the batteries, and the ventilation paths formed by the slits corresponding to each other and the gaps between the batteries are independent and arranged in parallel with each other,
A battery cooling structure in which the width S of the slit is S ≦ d compared to the width d of the gap between the batteries when viewed along the cooling air flow direction in the gap between the batteries.
組電池の上流側または下流側には、冷却風の通路を遮断するように流れ制御板が配置され、流れ制御板には電池間隙間のそれぞれに対応して貫通穴が設けられて、該貫通穴を通じて流れ制御板の上流側から下流側に冷却風が流れるようにされると共に、
互いに対応する貫通穴と電池間の隙間によって形成される通気経路が、それぞれ独立し互いに並列配置される通気経路となるようにされて、
前記貫通穴の開口面積をAhとし、電池間の隙間を冷却風流れ方向に沿って見た際の断面積をAgとして、実質的にAh≦Agとされた電池冷却構造。 A battery pack in which a plurality of flat batteries are arranged in a stack with a predetermined gap is housed in the battery case, and the cooling air flowing through the battery case passes through the gap between the batteries. A battery cooling structure for sending and cooling the battery,
On the upstream side or downstream side of the assembled battery, a flow control plate is arranged so as to block the cooling air passage, and the flow control plate is provided with through holes corresponding to each of the gaps between the batteries. The cooling air is allowed to flow from the upstream side to the downstream side of the flow control plate through the hole,
The ventilation path formed by the through hole and the gap between the batteries corresponding to each other is made to be a ventilation path arranged independently and in parallel with each other,
A battery cooling structure in which Ah is an opening area of the through hole, and Ag is a cross-sectional area when the gap between the batteries is viewed along the cooling air flow direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011008525A JP5654881B2 (en) | 2011-01-19 | 2011-01-19 | Battery cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011008525A JP5654881B2 (en) | 2011-01-19 | 2011-01-19 | Battery cooling structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012150977A true JP2012150977A (en) | 2012-08-09 |
JP5654881B2 JP5654881B2 (en) | 2015-01-14 |
Family
ID=46793072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011008525A Expired - Fee Related JP5654881B2 (en) | 2011-01-19 | 2011-01-19 | Battery cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5654881B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014083599A1 (en) * | 2012-11-30 | 2014-06-05 | トヨタ自動車株式会社 | Temperature regulating structure for electrical storage element |
JP2014135237A (en) * | 2013-01-11 | 2014-07-24 | Futaba Industrial Co Ltd | Binding tool of battery pack, binding member of battery pack, and battery |
CN103972601A (en) * | 2013-01-31 | 2014-08-06 | 本田技研工业株式会社 | Cooling structure of electricity storage device |
JP2015201369A (en) * | 2014-04-09 | 2015-11-12 | 株式会社東芝 | Battery cooling device |
WO2017022186A1 (en) * | 2015-08-06 | 2017-02-09 | パナソニックIpマネジメント株式会社 | Battery cell swelling estimation system for assembled battery |
CN107634163A (en) * | 2017-09-17 | 2018-01-26 | 杭州捷能科技有限公司 | A kind of air-cooled battery system |
KR20180058088A (en) * | 2016-11-23 | 2018-05-31 | 공주대학교 산학협력단 | Battery modules for electric vehicle with improved cooling characteristics |
WO2018124368A1 (en) * | 2017-01-02 | 2018-07-05 | 한화지상방산(주) | Battery pack |
CN109326849A (en) * | 2018-09-30 | 2019-02-12 | 深圳宇拓瑞科新能源科技有限公司 | A kind of battery cell method for managing temperature and system |
CN113036262A (en) * | 2021-03-09 | 2021-06-25 | 宁波大学 | Balanced heat abstractor of battery module |
CN113540618A (en) * | 2021-07-16 | 2021-10-22 | 重庆电子工程职业学院 | Electric automobile power distribution system with stable working condition |
CN113611952A (en) * | 2021-08-25 | 2021-11-05 | 合肥召洋电子科技有限公司 | Battery package cooling system and heat dissipation channel |
CN115548504A (en) * | 2021-06-30 | 2022-12-30 | 比亚迪股份有限公司 | Battery cold plate and battery system |
US11646464B2 (en) | 2017-11-14 | 2023-05-09 | Lg Energy Solution, Ltd. | Battery module and battery pack comprising same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768767B (en) * | 2017-09-26 | 2019-11-29 | 深圳市国创动力系统有限公司 | A kind of water cooling system and its application method of battery system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57145275U (en) * | 1981-03-09 | 1982-09-11 | ||
JPH0660204U (en) * | 1993-01-21 | 1994-08-19 | 富士重工業株式会社 | Battery equipment for electric vehicles |
JPH09120809A (en) * | 1995-10-24 | 1997-05-06 | Matsushita Electric Ind Co Ltd | Storage battery |
JP2006156382A (en) * | 2004-11-29 | 2006-06-15 | Samsung Sdi Co Ltd | Secondary battery module |
JP2006286547A (en) * | 2005-04-04 | 2006-10-19 | Toyota Motor Corp | Power storage module and its support belt |
JP2007172983A (en) * | 2005-12-21 | 2007-07-05 | Toyota Motor Corp | Battery pack |
WO2009151287A2 (en) * | 2008-06-11 | 2009-12-17 | 주식회사 엘지화학 | U-type battery pack for electric bicycles |
-
2011
- 2011-01-19 JP JP2011008525A patent/JP5654881B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57145275U (en) * | 1981-03-09 | 1982-09-11 | ||
JPH0660204U (en) * | 1993-01-21 | 1994-08-19 | 富士重工業株式会社 | Battery equipment for electric vehicles |
JPH09120809A (en) * | 1995-10-24 | 1997-05-06 | Matsushita Electric Ind Co Ltd | Storage battery |
JP2006156382A (en) * | 2004-11-29 | 2006-06-15 | Samsung Sdi Co Ltd | Secondary battery module |
JP2006286547A (en) * | 2005-04-04 | 2006-10-19 | Toyota Motor Corp | Power storage module and its support belt |
JP2007172983A (en) * | 2005-12-21 | 2007-07-05 | Toyota Motor Corp | Battery pack |
WO2009151287A2 (en) * | 2008-06-11 | 2009-12-17 | 주식회사 엘지화학 | U-type battery pack for electric bicycles |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014083599A1 (en) * | 2012-11-30 | 2014-06-05 | トヨタ自動車株式会社 | Temperature regulating structure for electrical storage element |
JPWO2014083599A1 (en) * | 2012-11-30 | 2017-01-05 | トヨタ自動車株式会社 | Temperature control structure of storage element |
JP2014135237A (en) * | 2013-01-11 | 2014-07-24 | Futaba Industrial Co Ltd | Binding tool of battery pack, binding member of battery pack, and battery |
US10074880B2 (en) | 2013-01-31 | 2018-09-11 | Honda Motor Co., Ltd. | Cooling structure of electricity storage device |
CN103972601A (en) * | 2013-01-31 | 2014-08-06 | 本田技研工业株式会社 | Cooling structure of electricity storage device |
JP2015201369A (en) * | 2014-04-09 | 2015-11-12 | 株式会社東芝 | Battery cooling device |
WO2017022186A1 (en) * | 2015-08-06 | 2017-02-09 | パナソニックIpマネジメント株式会社 | Battery cell swelling estimation system for assembled battery |
KR20180058088A (en) * | 2016-11-23 | 2018-05-31 | 공주대학교 산학협력단 | Battery modules for electric vehicle with improved cooling characteristics |
WO2018124368A1 (en) * | 2017-01-02 | 2018-07-05 | 한화지상방산(주) | Battery pack |
CN107634163A (en) * | 2017-09-17 | 2018-01-26 | 杭州捷能科技有限公司 | A kind of air-cooled battery system |
CN107634163B (en) * | 2017-09-17 | 2024-02-09 | 杭州捷能科技有限公司 | Air-cooled battery system |
US11646464B2 (en) | 2017-11-14 | 2023-05-09 | Lg Energy Solution, Ltd. | Battery module and battery pack comprising same |
US12051790B2 (en) | 2017-11-14 | 2024-07-30 | Lg Energy Solution, Ltd. | Battery module and battery pack comprising same |
CN109326849A (en) * | 2018-09-30 | 2019-02-12 | 深圳宇拓瑞科新能源科技有限公司 | A kind of battery cell method for managing temperature and system |
CN113036262A (en) * | 2021-03-09 | 2021-06-25 | 宁波大学 | Balanced heat abstractor of battery module |
CN115548504A (en) * | 2021-06-30 | 2022-12-30 | 比亚迪股份有限公司 | Battery cold plate and battery system |
CN115548504B (en) * | 2021-06-30 | 2024-10-11 | 比亚迪股份有限公司 | Battery cold plate and battery system |
CN113540618B (en) * | 2021-07-16 | 2022-07-22 | 重庆电子工程职业学院 | Electric automobile power distribution system with stable working condition |
CN113540618A (en) * | 2021-07-16 | 2021-10-22 | 重庆电子工程职业学院 | Electric automobile power distribution system with stable working condition |
CN113611952A (en) * | 2021-08-25 | 2021-11-05 | 合肥召洋电子科技有限公司 | Battery package cooling system and heat dissipation channel |
CN113611952B (en) * | 2021-08-25 | 2023-12-05 | 合肥召洋电子科技有限公司 | Battery pack heat dissipation system and heat dissipation channel |
Also Published As
Publication number | Publication date |
---|---|
JP5654881B2 (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5654881B2 (en) | Battery cooling structure | |
JP5606936B2 (en) | Battery cooling structure | |
JP6256846B2 (en) | Battery module | |
JP6025030B2 (en) | Power storage device | |
KR102142669B1 (en) | Air cooling type Battery Module having Guide vane | |
JP5121395B2 (en) | Battery pack and battery pack separator | |
EP2911233B1 (en) | Battery block and battery module having same | |
KR101212369B1 (en) | Cooling structure of lithium ion secondary battery system | |
JP4415570B2 (en) | Battery | |
JP6098610B2 (en) | Power storage device | |
JP2010272251A (en) | Battery system | |
JP2012160283A (en) | Battery pack and battery module | |
JP2007066771A (en) | Battery pack | |
JP2007234367A (en) | Power supply device for vehicle | |
JP2012059581A (en) | Battery pack structure | |
JP2014149959A (en) | Cooling structure of power storage device | |
JP2007200778A (en) | Cooling structure of secondary battery | |
JP5875920B2 (en) | Assembled battery | |
JP2016122543A (en) | Battery cooling device | |
JP2011044275A (en) | Power supply device, and vehicle using the same | |
JP2012094371A (en) | Battery pack | |
JP6189537B2 (en) | Metal separator for fuel cell stack and fuel cell stack having the same | |
JP2012199045A (en) | Battery pack and separator | |
JP6111911B2 (en) | Assembled battery | |
JP5768743B2 (en) | Power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5654881 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |