JP2012199045A - Battery pack and separator - Google Patents

Battery pack and separator Download PDF

Info

Publication number
JP2012199045A
JP2012199045A JP2011061898A JP2011061898A JP2012199045A JP 2012199045 A JP2012199045 A JP 2012199045A JP 2011061898 A JP2011061898 A JP 2011061898A JP 2011061898 A JP2011061898 A JP 2011061898A JP 2012199045 A JP2012199045 A JP 2012199045A
Authority
JP
Japan
Prior art keywords
battery
cooling air
separator
batteries
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011061898A
Other languages
Japanese (ja)
Inventor
Takeshi Kono
剛 河野
Yoshiaki Kurosawa
美暁 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011061898A priority Critical patent/JP2012199045A/en
Publication of JP2012199045A publication Critical patent/JP2012199045A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a battery pack in which temperature unevenness of a battery in a passage direction of cooling air can be improved; and a separator.SOLUTION: In a battery pack 10, a plurality of batteries 1 are arranged while sandwiching a separator 7 having insulation properties therebetween, and the batteries 1 are cooled by blowing cooling air between the batteries 1. The separator 7 includes a cooling air passage 24, through which the cooling air passes, between each of the batteries 1 and the separator, and a heat transfer suppression part 23 for suppressing heat exchange between the batteries 1 and the cooling air is provided on an upstream side of the cooling air passage 24.

Description

本発明は、複数の電池を配列した組電池、及び、その組電池を構成する電池と電池の間に介装されるセパレーターに関する。   The present invention relates to an assembled battery in which a plurality of batteries are arranged, and a separator interposed between the batteries constituting the assembled battery.

従来、複数の電池を配列した組電池を備えるバッテリー装置が知られている。この種のバッテリー装置では、組電池を構成するに際し、電池と電池の間に絶縁体からなる例えば樹脂製のセパレーターが配置される。この種のセパレーターには、冷却風を通過させるための冷却風路が形成され、この冷却風路に送風機などで冷却風を送風して、冷却風路を通過する冷却風と電池との間で熱交換させて電池を冷却している(例えば、特許文献1参照)。   Conventionally, a battery device including an assembled battery in which a plurality of batteries are arranged is known. In this type of battery device, when configuring an assembled battery, for example, a resin separator made of an insulator is disposed between the batteries. In this type of separator, a cooling air passage for allowing cooling air to pass is formed, and cooling air is blown to the cooling air passage with a blower or the like between the cooling air passing through the cooling air passage and the battery. The battery is cooled by heat exchange (see, for example, Patent Document 1).

特開2004−362879号公報JP 2004-362879 A

ところで、近年、バッテリー装置の小型化が進み、組電池の電池間の隙間が狭小になる傾向がある。これによって、電池間の狭小な隙間に介装されるセパレーターに形成される冷却風路の流路幅が狭くなっている。また、近年、冷却風を送風するための送風機が小型化され、送風機の低消費電力化、及び、低騒音化が進められているため、冷却風路を流れる冷却風の流量が少なくなると共に、流速が遅くなっている。そのため、冷却風路を通過する間に、電池との熱交換によって冷却風の温度が上昇し、冷却風に上流側と下流側で温度差が生じ、電池に温度むらができる恐れがある。   By the way, in recent years, the battery device has been miniaturized, and the gap between the batteries of the assembled battery tends to be narrowed. Thereby, the flow path width of the cooling air passage formed in the separator interposed in the narrow gap between the batteries is narrowed. In recent years, the size of a blower for blowing cooling air has been reduced, and the power consumption of the blower and noise reduction have been promoted. The flow rate is slow. Therefore, while passing through the cooling air passage, the temperature of the cooling air rises due to heat exchange with the battery, and a temperature difference may occur between the upstream side and the downstream side of the cooling air, and the battery may be uneven in temperature.

本発明は、上述した事情に鑑みてなされたものであり、冷却風の流路方向での電池の温度むらを改善することができる組電池、及び、セパレーターを提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, and aims at providing the assembled battery which can improve the temperature unevenness of the battery in the flow path direction of a cooling wind, and a separator.

上記目的を達成するために、本発明は、絶縁性を有するセパレーターを間に挟んで複数の電池を配列して構成され、これらの電池間には、冷却風を送風して当該電池を冷却する組電池において、前記セパレーターは、前記電池との間に前記冷却風が通過する冷却風路を備え、この冷却風路の上流側に前記電池と前記冷却風との熱交換を抑制する伝熱抑制部を設けたことを特徴とする。   In order to achieve the above object, the present invention is configured by arranging a plurality of batteries with an insulating separator interposed therebetween, and cooling the batteries by blowing cooling air between these batteries. In the assembled battery, the separator includes a cooling air passage through which the cooling air passes between the battery and the heat transfer suppression that suppresses heat exchange between the battery and the cooling air upstream of the cooling air passage. A feature is provided.

この構成において、前記伝熱抑制部は、前記電池表面を覆い、当該電池表面と前記冷却風との接触を防止した構成としても良い。また、前記伝熱抑制部は、前記冷却風路の上流側から前記冷却風の流通方向に向かって、前記電池表面を6分の1より小さい範囲で覆う構成としても良い。また、前記セパレーターは、前記電池の奥行方向に延在する凹、凸を有し、これらの凹、凸に対応して前記電池との間に形成される空所を前記冷却風路とするとともに、前記伝熱抑制部を、この空所を覆うように設けた構成としても良い。また、前記伝熱抑制部は、略矩形筒状に形成され、開口部を前記冷却風路に対して平行に配置した構成としても良い。   In this configuration, the heat transfer suppression unit may cover the battery surface to prevent contact between the battery surface and the cooling air. Further, the heat transfer suppression unit may cover the battery surface in a range smaller than 1/6 from the upstream side of the cooling air passage toward the flow direction of the cooling air. The separator has a recess and a protrusion extending in a depth direction of the battery, and a space formed between the battery and the battery corresponding to the recess and the protrusion is used as the cooling air passage. The heat transfer suppression unit may be provided so as to cover the void. Moreover, the said heat-transfer suppression part is good also as a structure which is formed in the substantially rectangular cylinder shape and arrange | positioned the opening part in parallel with respect to the said cooling air path.

また、上記目的を達成するために、本発明は、組電池を構成する複数の電池間に介装され、前記電池間を絶縁するセパレーターであって、前記電池との間に冷却風が通過する冷却風路を備え、この冷却風路の上流側に前記電池と前記冷却風との熱交換を抑制する伝熱抑制部を設けたことを特徴とする。   In order to achieve the above object, the present invention is a separator that is interposed between a plurality of batteries constituting an assembled battery and insulates between the batteries, and cooling air passes between the batteries. A cooling air passage is provided, and a heat transfer suppression unit that suppresses heat exchange between the battery and the cooling air is provided upstream of the cooling air passage.

本発明によれば、絶縁性を有するセパレーターを間に挟んで複数の電池を配列して構成され、これらの電池間には、冷却風を送風して当該電池を冷却する組電池において、前記セパレーターは、前記電池との間に前記冷却風が通過する冷却風路を備え、この冷却風路の上流側に前記電池と前記冷却風との熱交換を抑制する伝熱抑制部を設けたため、冷却風の冷却風路上流側での温度上昇を抑え、下流側に温度の低い冷却風を送風することができる。これによって、冷却風路下流側での冷却風と電池との温度差を十分に確保して、下流側での電池の冷却効率を促進することができ、冷却風の流路方向での電池の温度むらを改善することができるという効果を奏する。   According to the present invention, a plurality of batteries are arranged with an insulative separator interposed therebetween, and an assembled battery in which cooling air is blown between the batteries to cool the batteries. Is provided with a cooling air passage through which the cooling air passes between the battery and a heat transfer suppression unit that suppresses heat exchange between the battery and the cooling air upstream of the cooling air passage. The temperature rise on the upstream side of the cooling air passage of the wind can be suppressed, and the cooling air having a low temperature can be blown downstream. As a result, a sufficient temperature difference between the cooling air and the battery on the downstream side of the cooling air passage can be secured, and the cooling efficiency of the battery on the downstream side can be promoted. There is an effect that uneven temperature can be improved.

本発明の一実施の形態に係る組電池を示す外観斜視図である。It is an external appearance perspective view which shows the assembled battery which concerns on one embodiment of this invention. セパレーターを示す斜視図である。It is a perspective view which shows a separator. セパレーターの構造を示す斜視図である。It is a perspective view which shows the structure of a separator. 伝熱抑制部の長さと電池温度の関係を示す図である。It is a figure which shows the relationship between the length of a heat-transfer suppression part, and battery temperature. 別の実施形態のセパレーターを示す斜視図である。It is a perspective view which shows the separator of another embodiment. 別の実施形態のセパレーターを示す斜視図である。It is a perspective view which shows the separator of another embodiment.

以下、図面を参照して本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る組電池10は、電動機を駆動源としたハイブリッド自動車や電気自動車に搭載される車載用の組電池であり、図示は省略したが、例えば、後部座席後方の床下、或いは、後部座席とトランクルームの間に配置される。このように、車載用の組電池10は、組電池10の設置スペースが限られ、狭いスペースを利用して配置するために、小型化が進み、電池間の隙間が狭小になる傾向がある。   The assembled battery 10 according to the present embodiment is an in-vehicle assembled battery mounted on a hybrid vehicle or an electric vehicle that uses an electric motor as a drive source, and is not illustrated. Located between the seat and the trunk room. As described above, the in-vehicle assembled battery 10 has a limited installation space for the assembled battery 10 and is arranged using a narrow space, so that downsizing progresses and a gap between the batteries tends to be narrowed.

図1は、本発明を適用した実施形態に係る組電池10の斜視図である。   FIG. 1 is a perspective view of an assembled battery 10 according to an embodiment to which the present invention is applied.

組電池10は、複数の電池(セル)1を断熱プレート2上で前後に重ねて構成されている。電池1はその幅よりも薄い薄型の角型電池であり、面取りした矩形状の角型ケース3の天面から出力端子4である正極、及び、負極を離間させて突出させている。出力端子4の突出位置は、正極と負極とが左右対称となる位置としている。これにより、電池1を交互に裏返して重ねたときに、正極と負極とが重なり合い、複数の電池1を容易に直列に接続することができる。この電池1は、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池等の二次電池が利用できる。特に、リチウムイオン電池は、単位体積当たりの出力が高く、小型化、高出力化に適しているため、好適に用いることができる。なお、二次電池に限らず、一次電池を利用することもできる。   The assembled battery 10 is configured by stacking a plurality of batteries (cells) 1 back and forth on a heat insulating plate 2. The battery 1 is a thin prismatic battery that is thinner than the width thereof, and the positive electrode and the negative electrode that are output terminals 4 are projected apart from the top surface of the rectangular corner case 3 that is chamfered. The protruding position of the output terminal 4 is a position where the positive electrode and the negative electrode are symmetrical. Thereby, when the batteries 1 are alternately turned over and overlapped, the positive electrode and the negative electrode overlap each other, and the plurality of batteries 1 can be easily connected in series. As the battery 1, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a nickel cadmium battery can be used. In particular, a lithium ion battery has a high output per unit volume and is suitable for downsizing and high output, and thus can be suitably used. In addition, not only a secondary battery but a primary battery can also be utilized.

出力端子4は、正負の出力端子4が、互いに逆方向に断面L字状に折曲される。電池1を交互に裏返して重ねたときには、隣接する電池1同士で、正負の出力端子4が交互に逆向きになり、正極と負極とが積層される。また、これらの出力端子4は、隣接する電池1の間で接続可能な大きさ、及び、形状に形成される。さらに出力端子4の折曲部には、連結孔が開口しており、この連結孔に連結ボルトを挿通することで、互いに積層される折曲部を連結することができる。これにより、隣接する電池1間で、出力端子4の正極と負極とを直接接続して、複数の電池を直列に接続している。なお、出力端子4は、金属板のバスバーを用いて、隣接する電池1を互いに直列に接続する構成であっても良い。   The output terminal 4 has positive and negative output terminals 4 bent in a cross-sectional L shape in opposite directions. When the batteries 1 are alternately turned over and stacked, the positive and negative output terminals 4 are alternately reversed in the adjacent batteries 1 and the positive electrode and the negative electrode are stacked. Moreover, these output terminals 4 are formed in a size and shape that can be connected between adjacent batteries 1. Further, a connecting hole is opened in the bent portion of the output terminal 4, and the bent portions stacked on each other can be connected by inserting a connecting bolt into the connecting hole. Thereby, between the adjacent batteries 1, the positive electrode and negative electrode of the output terminal 4 are directly connected, and a plurality of batteries are connected in series. The output terminal 4 may be configured to connect adjacent batteries 1 in series with each other using a metal plate bus bar.

図示は省略したが、組電池10の端部は制御回路に接続され、制御回路によって各電池1の電圧、電流、温度などが測定され、電池容量、及び、必要充放電量等が決定され、充放電等の制御が行われる。複数の電池1を直列に接続することで、出力電圧を高くすることなく出力を大きくできるが、組電池10は、電池1を並列に接続して構成される構成とすることもできる。また、組電池10は、その端部にエンドプレートを備える構成であっても良い。   Although illustration is omitted, the end of the assembled battery 10 is connected to a control circuit, and the control circuit measures the voltage, current, temperature, etc. of each battery 1, and determines the battery capacity, the required charge / discharge amount, etc. Control such as charging and discharging is performed. By connecting a plurality of batteries 1 in series, the output can be increased without increasing the output voltage, but the assembled battery 10 can also be configured by connecting the batteries 1 in parallel. Moreover, the assembled battery 10 may be configured to include an end plate at an end thereof.

また、電池1は、図示は省略したが、有底筒状に形成された外装缶である角型ケース3の開口部分から巻き電極を挿入し、電解液を注入した後、封口板で開口部分を閉塞して、レーザー溶接等により封止して形成されている。角型ケース3は、熱伝導性に優れた金属で構成される。封口板には、安全弁が設けられ、電池が異常な状態で充放電されると安全弁が開弁して、電解液が排出されるように構成されている。また、電池1は、出力端子4の周囲を囲むように直立された端子リブを備える。これにより、角型ケース3内部に注入された電解液が出力端子4の周囲から漏洩しても、不用意に拡散する事態が阻止される。   In addition, although not shown in the figure, the battery 1 is inserted into a rectangular case 3 that is an outer can formed in a bottomed cylindrical shape, and a wound electrode is inserted from the opening and injected with an electrolytic solution. Is sealed and formed by laser welding or the like. The square case 3 is made of a metal having excellent thermal conductivity. The sealing plate is provided with a safety valve, and is configured such that when the battery is charged / discharged in an abnormal state, the safety valve is opened and the electrolyte is discharged. The battery 1 also includes terminal ribs that stand upright so as to surround the output terminal 4. Thereby, even if the electrolyte injected into the rectangular case 3 leaks from the periphery of the output terminal 4, a situation where the electrolyte is inadvertently diffused is prevented.

各電池1間には、図2に示すように、絶縁性を有するセパレーター7が配置されている。このセパレーター7は、各電池1間に適宜の間隔をあけて、その間隔に冷却風を流して各電池1を空冷により冷却できるように構成されている。図示は省略したが、組電池10の一側面10A側には、送風機からの風を各セパレーター7により形成される間隔に供給するための供給ダクトが接続されると共に、組電池10の他側面10B側には、各セパレーター7により形成される間隔を通って流れた冷却風を外部に排気する排気ダクトが接続される。これにより、組電池10を空冷によって冷却することができる。   Between each battery 1, as shown in FIG. 2, the separator 7 which has insulation is arrange | positioned. The separator 7 is configured such that each battery 1 can be cooled by air cooling with an appropriate space between the batteries 1 and cooling air flowing in the space. Although not shown, a supply duct for supplying the air from the blower to the interval formed by each separator 7 is connected to one side surface 10A side of the assembled battery 10, and the other side surface 10B of the assembled battery 10. Connected to the side is an exhaust duct for exhausting the cooling air flowing through the interval formed by each separator 7 to the outside. Thereby, the assembled battery 10 can be cooled by air cooling.

セパレーター7は、例えば樹脂成形により製造される樹脂成形品であり、電池1とセパレーター7とを組み合わせて組電池10を構成した場合に、電池1の全ての隅部を囲うように電池1を保持する保持部21と、互いに隣接する電池1の間に介在する絶縁部22と、を備える。この構成によれば、薄型の角型電池である電池1の全ての隅部をセパレーター7で覆うことができ、電池1が外部から衝撃を受けた際にも、電池1の絶縁性を保つことができる。   The separator 7 is a resin molded product manufactured by, for example, resin molding. When the assembled battery 10 is configured by combining the battery 1 and the separator 7, the battery 1 is held so as to surround all corners of the battery 1. Holding part 21 and insulating part 22 interposed between batteries 1 adjacent to each other. According to this configuration, all the corners of the battery 1 which is a thin prismatic battery can be covered with the separator 7, and the insulation of the battery 1 can be maintained even when the battery 1 receives an impact from the outside. Can do.

絶縁部22は、伝熱抑制部23と、冷却風路部(冷却風路)24とを備える。伝熱抑制部23は、冷却風路部24の上流側に設けられる。伝熱抑制部23は、電池1とセパレーター7とを組み合わせて組電池10を構成した場合に、隣接する電池1の互いに対向する表面に当接する当接部23Aを備える。当接部23Aの内部には、冷却風を冷却風路部24に供給する冷却風供給部23Bが形成される。   The insulating portion 22 includes a heat transfer suppressing portion 23 and a cooling air passage portion (cooling air passage) 24. The heat transfer suppression unit 23 is provided on the upstream side of the cooling air passage unit 24. When the assembled battery 10 is configured by combining the battery 1 and the separator 7, the heat transfer suppression unit 23 includes an abutting portion 23 </ b> A that abuts against the mutually opposing surfaces of the adjacent batteries 1. A cooling air supply unit 23B that supplies cooling air to the cooling air passage unit 24 is formed inside the contact portion 23A.

冷却風路部24は、冷却風供給部23Bの下流側に設けられ、上下に矩形波状の凹24A、凸24B、凹24A、凸24B・・・を順に繰り返して構成されている。これらの凹24A、凸24B、凹24A、凸24B・・・は、電池1の奥行方向に互いに平行に延び、これら凹24A、凸24B、凹24A、凸24B・・・に対応し、冷却風路部24と電池1間に、互いに平行に延びる空所25,25・・・が形成される。各空所25,25・・・は、冷却風供給部23Bを介して、図1に示した組電池の一側面10A側から他側面10B側に貫通している。   The cooling air passage section 24 is provided on the downstream side of the cooling air supply section 23B, and is configured by repeating a rectangular wave-shaped concave 24A, convex 24B, concave 24A, convex 24B. These concave portions 24A, convex portions 24B, concave portions 24A, convex portions 24B,... Extend in parallel to the depth direction of the battery 1, and correspond to these concave portions 24A, convex portions 24B, concave portions 24A, convex portions 24B,. .. Are formed between the path portion 24 and the battery 1 in parallel with each other. Each of the voids 25, 25... Penetrates from the one side surface 10A side to the other side surface 10B side of the assembled battery shown in FIG.

電池1と、セパレーター7と、を組み合わせて組電池10を構成したときに、電池1の表面の一部が伝熱抑制部23の当接部23Aによって覆われる。これによって、冷却風供給部23Bを流れる冷却風は、電池1の表面に直接触れることなく、冷却風路部24に供給される。これによって、伝熱抑制部23の内部に形成された冷却風供給部23Bを流れる冷却風と、電池1との間の熱交換を抑制して、冷却風路部24に供給する冷却風の温度上昇を抑えることができる。   When the assembled battery 10 is configured by combining the battery 1 and the separator 7, a part of the surface of the battery 1 is covered with the contact portion 23 </ b> A of the heat transfer suppression unit 23. Thus, the cooling air flowing through the cooling air supply unit 23B is supplied to the cooling air passage unit 24 without directly touching the surface of the battery 1. Thus, the temperature of the cooling air supplied to the cooling air passage unit 24 while suppressing the heat exchange between the cooling air flowing through the cooling air supply unit 23B formed inside the heat transfer suppression unit 23 and the battery 1. The rise can be suppressed.

この構成によれば、組電池の一側面10A側から他側面10B側に流れる冷却風の一側面10A側での温度上昇を抑制し、他側面10B側での冷却風の温度を低下させることができる。これによって、他側面10B側での電池1の冷却を促進し、電池1の一側面10A側と他側面10B側での表面温度の差を小さくすることができる。そのため、電池1の冷却風の流路方向での温度むらを改善することができる。   According to this configuration, it is possible to suppress the temperature increase on the one side surface 10A side of the cooling air flowing from the one side surface 10A side to the other side surface 10B side and to reduce the temperature of the cooling air on the other side surface 10B side. it can. Thereby, cooling of the battery 1 on the other side surface 10B side can be promoted, and the difference in surface temperature between the one side surface 10A side and the other side surface 10B side of the battery 1 can be reduced. Therefore, temperature unevenness in the flow direction of the cooling air of the battery 1 can be improved.

伝熱抑制部23の当接部23Aは、図3(A)に示すように、一方の面23Cと、他方の面23Dとを備える。一方の面23Cは、絶縁部22に一体に設けられ、他方の面23Dは、絶縁部22とは別体に形成された板状部材23Eによって構成される。一方の面23Cには、複数のリブ26が絶縁部22の内側に立設するように設けられる。他方の面23Dを構成する板状部材23Eは、このリブ26を挟んで、絶縁部22に接着される。これによって、図3(B)に示すように、一方の面23Cと、他方の面23Dと、の間には、リブ26によって区切られた複数の部屋からなる冷却風供給部23Bが形成される。   As shown in FIG. 3A, the contact portion 23A of the heat transfer suppression portion 23 includes one surface 23C and the other surface 23D. One surface 23 </ b> C is provided integrally with the insulating portion 22, and the other surface 23 </ b> D is configured by a plate-like member 23 </ b> E formed separately from the insulating portion 22. A plurality of ribs 26 are provided on one surface 23 </ b> C so as to stand inside the insulating portion 22. The plate-like member 23E constituting the other surface 23D is bonded to the insulating portion 22 with the rib 26 interposed therebetween. As a result, as shown in FIG. 3B, a cooling air supply unit 23B composed of a plurality of rooms separated by ribs 26 is formed between one surface 23C and the other surface 23D. .

リブ26は、冷却風路部24を構成する凹24A、凸24B、凹24A、凸24B・・・に対応する位置に設けられている。これによって、冷却風供給部23Bの隣接するリブ26の間を流れる冷却風が、各空所25,25・・・に送風されるように構成されている。つまり、伝熱抑制部23は、セパレーター7と電池1間に形成された空所25を被覆するように設けられ、空所25を流れる冷却風と電池1との接触を妨げ、冷却風と電池1の間の熱交換を抑制するように構成されている。   The ribs 26 are provided at positions corresponding to the recesses 24A, protrusions 24B, recesses 24A, protrusions 24B,. Thereby, the cooling air flowing between the adjacent ribs 26 of the cooling air supply unit 23B is configured to be blown to the spaces 25, 25. That is, the heat transfer suppression unit 23 is provided so as to cover the void 25 formed between the separator 7 and the battery 1, and prevents contact between the cooling air flowing in the void 25 and the battery 1, and the cooling air and the battery It is comprised so that the heat exchange between 1 may be suppressed.

図4は、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合と、電池温度の関係を示す図である。本発明者らは、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合を種々変化させて、電池1の表面の複数点の温度を計測した。冷却風の流路幅、つまり、冷却風路部24と電池1間形成される空所25の相等直径は3mmであり、冷却風の平均流速は、1.5〜4.1m/sである。また、冷却風の流れは、レイノルズ数が1500以下となる層流域の流れである。 FIG. 4 is a diagram illustrating the relationship between the ratio of the length of the heat transfer suppression unit 23 to the depth of the separator 7 and the battery temperature. The inventors measured the temperature at a plurality of points on the surface of the battery 1 by variously changing the ratio of the length of the heat transfer suppressing portion 23 to the depth of the separator 7. The flow path width of the cooling air, that is, the equivalent diameter of the space 25 formed between the cooling air passage portion 24 and the battery 1 is 3 mm , and the average flow velocity of the cooling air is 1.5 to 4.1 m / s. . The cooling air flow is a laminar flow where the Reynolds number is 1500 or less.

図4(A)は、横軸が伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合、縦軸が電池1の温度差異を示す図である。線aは、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合が50%のときの電池1の平均温度の上昇分を基準とした時の、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合に対する電池1の温度むらを示す。線bは、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合が50%のときの電池1の平均温度の上昇分を基準とした時の、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合に対する電池1の平均温度を示す。図4(A)に示すように、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合が大きくなると、電池1の温度むらは改善するが、電池1の平均温度は上昇する。 FIG. 4A is a diagram in which the horizontal axis represents the ratio of the length of the heat transfer suppression unit 23 to the depth of the separator 7, and the vertical axis represents the temperature difference of the battery 1. Line a is the length of the heat transfer suppression unit 23 when the ratio of the average temperature of the battery 1 when the ratio of the length of the heat transfer suppression unit 23 to the depth of the separator 7 is 50% is used as a reference. Shows the temperature unevenness of the battery 1 with respect to the ratio of the length to the depth of the separator 7 . Line b indicates the length of the heat transfer suppression unit 23 when the length of the heat transfer suppression unit 23 is 50% of the depth of the separator 7 and the increase in the average temperature of the battery 1 is used as a reference. Shows the average temperature of the battery 1 with respect to the ratio of the length to the depth of the separator 7 . As shown in FIG. 4A, when the ratio of the length of the heat transfer suppression unit 23 to the depth length of the separator 7 increases, the temperature unevenness of the battery 1 is improved, but the average temperature of the battery 1 increases. .

図4(B)は、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合と、電池1の温度効率と、の関係を示す図である。図4(B)に示すように、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合が大きくなると、電池1の温度効率は、低下する。電池1の温度効率の大幅な低下(30%以上の低下)を避けるために、伝熱抑制部23の長さがセパレーター7の奥行長さに占める割合は、セパレーター7の奥行長さ全体の1/6程度(17%)以下にするのが好ましいことが実験結果から得られた。 FIG. 4B is a diagram illustrating the relationship between the ratio of the length of the heat transfer suppression unit 23 to the depth of the separator 7 and the temperature efficiency of the battery 1. As shown in FIG. 4B, when the ratio of the length of the heat transfer suppressing portion 23 to the depth of the separator 7 increases, the temperature efficiency of the battery 1 decreases. In order to avoid a significant decrease in the temperature efficiency of the battery 1 (a decrease of 30% or more), the ratio of the length of the heat transfer suppression portion 23 to the depth length of the separator 7 is 1 of the entire depth length of the separator 7. It was obtained from the experimental results that it is preferable to set it to about / 6 (17%) or less.

つまり、流路が狭小で、冷却風の流速が遅い場合でも、セパレーター7に、セパレーター7の奥行長さ全体の1/6程度(17%)以下の長さに形成された伝熱抑制部23を設けることで、冷却風の上流側での電池温度の低下と、冷却風の温度上昇を抑制することができ、電池1の冷却風の流路方向での温度むらを改善することがで
きることが実験により明らかとなった。
That is, even when the flow path is narrow and the flow velocity of the cooling air is slow, the heat transfer suppressing portion 23 formed in the separator 7 to have a length of about 1/6 (17%) or less of the entire depth of the separator 7. By providing, it is possible to suppress a decrease in battery temperature and an increase in temperature of the cooling air on the upstream side of the cooling air, and to improve temperature unevenness in the flow direction of the cooling air of the battery 1. It became clear by experiment.

次に、別の実施の形態を説明する。   Next, another embodiment will be described.

上記実施の形態では、伝熱抑制部23の当接部23Aは、絶縁部22と一体に形成され、冷却風路部24を構成する凹24A、凸24B、凹24A、凸24B・・・に対応する位置に設けられたリブ26を有する一方の面23Cと、このリブ26を挟んで、絶縁部22に接着された板状部材23Eによって構成された他方の面23Cとを備える。この構成によれば、一方の面23Cと他方の面23Cとの間には、複数のリブ26が形成されているため、伝熱抑制部23の強度を上げることができるが、セパレーター7を樹脂成型するためのコストが嵩むことが考えられる。   In the above-described embodiment, the contact portion 23A of the heat transfer suppressing portion 23 is formed integrally with the insulating portion 22, and is formed into the concave 24A, convex 24B, concave 24A, convex 24B,. One surface 23 </ b> C having a rib 26 provided at a corresponding position and the other surface 23 </ b> C configured by a plate-like member 23 </ b> E bonded to the insulating portion 22 with the rib 26 interposed therebetween. According to this configuration, since the plurality of ribs 26 are formed between the one surface 23C and the other surface 23C, the strength of the heat transfer suppressing portion 23 can be increased. It is considered that the cost for molding increases.

この実施の形態では、セパレーター70は、保持部21と冷却風路部24とが一体に形成されているとともに、伝熱抑制部73が保持部21とは別体に形成されているため、セパレーター70の成型コストを抑えることができるものである。なお、この実施の形態において、上記の実施の形態と同様の構成においては、図中に同一の符号を付し、その説明を省略する。   In this embodiment, since the separator 70 is formed integrally with the holding portion 21 and the cooling air passage portion 24, and the heat transfer suppressing portion 73 is formed separately from the holding portion 21, the separator 70 The molding cost of 70 can be suppressed. In this embodiment, the same reference numerals are given in the drawings for the same configurations as those in the above embodiment, and the description thereof is omitted.

セパレーター70は、図5、図6に示すように、伝熱抑制部73と、保持部21と、冷却風路部24と、を備える。冷却風路部24は、図6に示すように、保持部21と一体に形成される。冷却風路部24は、電池1と、セパレーター70と、を組み合わせて組電池10を構成したときに、組電池の他側面10B側に寄せて設けられる。組電池の一側面10A側には、図5に示すように、保持部21とは別体に形成された伝熱抑制部73が嵌合される。伝熱抑制部73は、略矩形筒状に形成され、開口部74が、冷却風路部24と電池1間に設けられ、互いに平行に延びる空所25,25・・・に対して平行に配置されている。   As shown in FIGS. 5 and 6, the separator 70 includes a heat transfer suppression unit 73, a holding unit 21, and a cooling air passage unit 24. As shown in FIG. 6, the cooling air passage portion 24 is formed integrally with the holding portion 21. When the assembled battery 10 is configured by combining the battery 1 and the separator 70, the cooling air passage portion 24 is provided close to the other side surface 10 </ b> B side of the assembled battery. As shown in FIG. 5, a heat transfer suppressing portion 73 formed separately from the holding portion 21 is fitted to one side surface 10 </ b> A side of the assembled battery. The heat transfer suppression part 73 is formed in a substantially rectangular cylindrical shape, and the opening 74 is provided between the cooling air passage part 24 and the battery 1 and is parallel to the cavities 25, 25. Has been placed.

伝熱抑制部73は、厚さT1が、冷却風路部24の厚さT2と略同じに形成される。また、伝熱抑制部73の開口部74の開口の幅W1は、冷却風路部24と電池1間に設けられる空所25の幅W2と略同じに形成される。これによって、伝熱抑制部73の表面は、電池1と、セパレーター70と、を組み合わせて組電池10を構成したときに、電池1の表面の一部が伝熱抑制部73によって覆われる。そのため、開口部74から伝熱抑制部73の内部に導かれた冷却風は、電池1の表面に直接触れることなく、冷却風路部24に供給される。伝熱抑制部73の長さがセパレーター70の奥行長さに占める割合は、電池1の温度むらと、冷却効率とから、セパレーター70の奥行長さ全体の1/6程度(17%)以下にするのが好ましい。   The heat transfer suppression unit 73 has a thickness T1 that is substantially the same as the thickness T2 of the cooling air passage unit 24. In addition, the width W1 of the opening 74 of the heat transfer suppressing portion 73 is formed to be substantially the same as the width W2 of the space 25 provided between the cooling air passage portion 24 and the battery 1. Thereby, when the assembled battery 10 is configured by combining the battery 1 and the separator 70, a part of the surface of the battery 1 is covered with the heat transfer suppressing unit 73. Therefore, the cooling air guided from the opening 74 to the inside of the heat transfer suppressing unit 73 is supplied to the cooling air path unit 24 without directly touching the surface of the battery 1. The ratio of the length of the heat transfer suppression unit 73 to the depth of the separator 70 is about 1/6 (17%) or less of the entire depth of the separator 70 from the temperature unevenness of the battery 1 and the cooling efficiency. It is preferable to do this.

以上説明したように、本発明を適用した実施形態によれば、絶縁性を有するセパレーター7,70を間に挟んで複数の電池1を配列して構成され、これらの電池1間には、冷却風を送風して当該電池1を冷却する組電池10において、セパレーター7,70は、電池1との間に冷却風が通過する冷却風路24を備え、この冷却風路24の上流側に電池1と冷却風との熱交換を抑制する伝熱抑制部23,73を設けた。これによって、電池1間の冷却風の流路が狭小で、冷却風の流速が遅い場合でも、冷却風の上流側での電池1の温度の低下と、冷却風の温度の上昇を抑制することができる。そのため、冷却風の上流側と、下流側とでの温度差が付きにくくなり、冷却風の流路方向での電池1の温度むらを改善することができる。   As described above, according to the embodiment to which the present invention is applied, a plurality of batteries 1 are arranged with the separators 7 and 70 having insulation therebetween, and between these batteries 1 is cooled. In the assembled battery 10 that blows wind to cool the battery 1, the separators 7 and 70 include a cooling air passage 24 through which the cooling air passes between the battery 1 and the battery upstream of the cooling air passage 24. 1 and the heat transfer suppression part 23 and 73 which suppress heat exchange with cooling air were provided. As a result, even when the flow path of the cooling air between the batteries 1 is narrow and the flow velocity of the cooling air is slow, the decrease in the temperature of the battery 1 on the upstream side of the cooling air and the increase in the temperature of the cooling air are suppressed. Can do. Therefore, a temperature difference between the upstream side and the downstream side of the cooling air is less likely to occur, and the temperature unevenness of the battery 1 in the cooling air flow direction can be improved.

また、本発明を適用した実施形態によれば、伝熱抑制部23,73は、電池1の表面を覆い、電池1の表面と冷却風との接触を防止したため、伝熱抑制部23,73によって覆われた部分の電池1の表面と、冷却風との熱交換が抑制され、伝熱抑制部23,73によって覆われた冷却風の上流側での電池1の温度の低下、及び、冷却風の温度上昇を抑制することができる。そのため、冷却風の上流側と、下流側とでの温度差が付きにくくなり、冷却風の流路方向での電池1の温度むらを改善することができる。 Further, according to this embodiment of the present invention, the heat transfer suppressing portion 23, 73 covers the surface of the battery 1, since that prevents contact with the surface of the battery 1 and the cooling air, the heat transfer suppressing portion 23, 73 The heat exchange between the surface of the battery 1 covered with the cooling air and the cooling air is suppressed, and the temperature decrease and cooling of the battery 1 on the upstream side of the cooling air covered by the heat transfer suppressing portions 23 and 73 are reduced. Wind temperature rise can be suppressed. Therefore, a temperature difference between the upstream side and the downstream side of the cooling air is less likely to occur, and the temperature unevenness of the battery 1 in the cooling air flow direction can be improved.

また、本発明を適用した実施形態によれば、伝熱抑制部23,73は、冷却風路24の上流側から冷却風の流通方向に向かって、電池1の表面を6分の1より小さい範囲で覆うため、電池1の平均温度の大幅な上昇、及び、電池1の温度効率の大幅な低下を防ぎ、且つ、電池1の冷却風の流路方向での温度むらを改善することができる。 Further, according to the embodiment to which the present invention is applied, the heat transfer suppression units 23 and 73 make the surface of the battery 1 smaller than 1/6 from the upstream side of the cooling air passage 24 toward the flow direction of the cooling air. Since it covers the range, it is possible to prevent a significant increase in the average temperature of the battery 1 and a significant decrease in the temperature efficiency of the battery 1, and to improve the temperature unevenness in the flow direction of the cooling air of the battery 1. .

また、本発明を適用した実施形態によれば、セパレーター7は、電池1の奥行方向に延在する凹24A、凸24B、凹24A、凸24B・・・を有し、これらの凹24A、凸24B、凹24A、凸24B・・・に対応して電池1との間に形成される空所25を冷却風路24とするとともに、伝熱抑制部23を、この空所を覆うように設けた。これによって、伝熱抑制部23で、空所25を流れる冷却風と電池1との熱交換を抑制することができる。そのため、簡単な構造で、冷却風の上流側での電池温度の低下と、冷却風の温度上昇を抑制することができ、電池1の冷却風の流路方向での温度むらを改善することができる。 Further, according to the embodiment to which the present invention is applied, the separator 7 has the recesses 24A, the protrusions 24B, the recesses 24A, the protrusions 24B... Extending in the depth direction of the battery 1, and these recesses 24A, protrusions The space 25 formed between the battery 1 corresponding to the 24B, the concave 24A, the convex 24B,... Is used as the cooling air passage 24, and the heat transfer suppressing portion 23 is provided so as to cover the space. It was. Accordingly, heat exchange between the cooling air flowing through the void 25 and the battery 1 can be suppressed by the heat transfer suppression unit 23. Therefore, with a simple structure, a decrease in battery temperature on the upstream side of the cooling air and an increase in temperature of the cooling air can be suppressed, and temperature unevenness in the flow direction of the cooling air of the battery 1 can be improved. it can.

また、本発明を適用した実施形態によれば、伝熱抑制部73は、略矩形筒状に形成され、開口部74を冷却風路24に対して平行に配置したため、略矩形筒状に形成された伝熱抑制部73の内部を流れる冷却風を冷却風路24に供給することで、伝熱抑制部73の内部を流れる冷却風と電池1との熱交換を抑制することができる。これによって、簡単な構造で、冷却風の上流側での電池温度の低下と、冷却風の温度上昇を抑制することができ、電池1の冷却風の流路方向での温度むらを改善することができるFurther, according to the embodiment to which the present invention is applied, the heat transfer suppressing portion 73 is formed in a substantially rectangular tube shape, and the opening portion 74 is arranged in parallel to the cooling air passage 24, and thus is formed in a substantially rectangular tube shape. By supplying the cooling air flowing inside the heat transfer suppressing unit 73 to the cooling air passage 24, heat exchange between the cooling air flowing inside the heat transfer suppressing unit 73 and the battery 1 can be suppressed. Thereby, with a simple structure, it is possible to suppress a decrease in battery temperature on the upstream side of the cooling air and an increase in temperature of the cooling air, and improve temperature unevenness in the flow direction of the cooling air of the battery 1. Can do .

1 電池
7、70 セパレーター
10 組電池
21 保持部
23、73 伝熱抑制部
24 冷却風路(冷却風路部)
24A 凹
24B 凸
25 空所
DESCRIPTION OF SYMBOLS 1 Battery 7, 70 Separator 10 Assembly battery 21 Holding part 23, 73 Heat-transfer suppression part 24 Cooling air path (cooling air path part)
24A concave 24B convex 25 void

Claims (6)

絶縁性を有するセパレーターを間に挟んで複数の電池を配列して構成され、これらの電池間には、冷却風を送風して当該電池を冷却する組電池において、
前記セパレーターは、前記電池との間に前記冷却風が通過する冷却風路を備え、この冷却風路の上流側に前記電池と前記冷却風との熱交換を抑制する伝熱抑制部を設けたことを特徴とする組電池。
In the assembled battery in which a plurality of batteries are arranged with an insulating separator in between, and the batteries are cooled by blowing cooling air between these batteries.
The separator includes a cooling air passage through which the cooling air passes between the battery and a heat transfer suppression unit that suppresses heat exchange between the battery and the cooling air on an upstream side of the cooling air passage. A battery pack characterized by that.
前記伝熱抑制部は、前記電池表面を覆い、当該電池表面と前記冷却風との接触を防止したことを特徴とする請求項1に記載の組電池。   The assembled battery according to claim 1, wherein the heat transfer suppression unit covers the battery surface and prevents contact between the battery surface and the cooling air. 前記伝熱抑制部は、前記冷却風路の上流側から前記冷却風の流通方向に向かって、前記電池表面を6分の1より小さい範囲で覆うことを特徴とする請求項1又は2に記載の組電池。   The said heat-transfer suppression part covers the said battery surface in the range smaller than 1/6 toward the distribution direction of the said cooling wind from the upstream of the said cooling wind path, The Claim 1 or 2 characterized by the above-mentioned. Battery pack. 前記セパレーターは、前記電池の奥行方向に延在する凹、凸を有し、これらの凹、凸に対応して前記電池との間に形成される空所を前記冷却風路とするとともに、前記伝熱抑制部を、この空所を覆うように設けたことを特徴とする請求項2乃至3のいずれかに記載の組電池。   The separator has a recess and a protrusion extending in the depth direction of the battery, and a space formed between the battery and the recess corresponding to the protrusion and the protrusion serves as the cooling air passage. The assembled battery according to any one of claims 2 to 3, wherein a heat transfer suppressing portion is provided so as to cover the void. 前記伝熱抑制部は、略矩形筒状に形成され、開口部を前記冷却風路に対して平行に配置したことを特徴とする請求項2乃至3のいずれかに記載の組電池。   The assembled battery according to any one of claims 2 to 3, wherein the heat transfer suppression portion is formed in a substantially rectangular cylindrical shape, and an opening portion is arranged in parallel to the cooling air passage. 組電池を構成する複数の電池間に介装され、前記電池間を絶縁するセパレーターであって、
前記電池との間に冷却風が通過する冷却風路を備え、この冷却風路の上流側に前記電池と前記冷却風との熱交換を抑制する伝熱抑制部を設けたことを特徴とするセパレーター。
A separator that is interposed between a plurality of batteries constituting an assembled battery and insulates between the batteries,
A cooling air passage through which cooling air passes is provided between the battery, and a heat transfer suppression unit that suppresses heat exchange between the battery and the cooling air is provided upstream of the cooling air passage. separator.
JP2011061898A 2011-03-22 2011-03-22 Battery pack and separator Withdrawn JP2012199045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061898A JP2012199045A (en) 2011-03-22 2011-03-22 Battery pack and separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061898A JP2012199045A (en) 2011-03-22 2011-03-22 Battery pack and separator

Publications (1)

Publication Number Publication Date
JP2012199045A true JP2012199045A (en) 2012-10-18

Family

ID=47181088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061898A Withdrawn JP2012199045A (en) 2011-03-22 2011-03-22 Battery pack and separator

Country Status (1)

Country Link
JP (1) JP2012199045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114513A1 (en) * 2012-01-30 2013-08-08 株式会社デンソー Cell-temperature-adjustment device
CN103249283A (en) * 2013-05-06 2013-08-14 大连美恒电气有限公司 Heat dissipating device with independent air channels
JP2019185927A (en) * 2018-04-04 2019-10-24 株式会社豊田自動織機 Power storage device
CN112687983A (en) * 2020-12-29 2021-04-20 叶作乾 Two heat dissipation formula new forms of energy battery fixed cases
CN113228383A (en) * 2018-12-27 2021-08-06 三洋电机株式会社 Separator for insulating adjacent battery cells and power supply device provided with same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114513A1 (en) * 2012-01-30 2013-08-08 株式会社デンソー Cell-temperature-adjustment device
JP2013157182A (en) * 2012-01-30 2013-08-15 Denso Corp Battery temperature controller
CN103249283A (en) * 2013-05-06 2013-08-14 大连美恒电气有限公司 Heat dissipating device with independent air channels
JP2019185927A (en) * 2018-04-04 2019-10-24 株式会社豊田自動織機 Power storage device
JP7014669B2 (en) 2018-04-04 2022-02-01 株式会社豊田自動織機 Power storage device
CN113228383A (en) * 2018-12-27 2021-08-06 三洋电机株式会社 Separator for insulating adjacent battery cells and power supply device provided with same
CN112687983A (en) * 2020-12-29 2021-04-20 叶作乾 Two heat dissipation formula new forms of energy battery fixed cases

Similar Documents

Publication Publication Date Title
JP5288971B2 (en) Battery system
KR101833526B1 (en) Battery Module Having Water-Cooled Type Cooling Structure
EP2849275B1 (en) Battery module including high-efficiency cooling structure
JP5440666B2 (en) Battery pack and battery pack separator
US8329330B2 (en) Power supply device with battery cell cooling mechanism and vehicle including the same
US9159973B2 (en) Battery module and power supply apparatus
KR101560217B1 (en) Battery Module of Improved Cooling Efficiency
JP6510633B2 (en) Battery pack case with efficient cooling structure
JP5364791B2 (en) Power storage module
KR20160016550A (en) Battery module
WO2013171885A1 (en) Battery module
CN209860115U (en) Battery module
US20140234677A1 (en) Battery module
JP5535520B2 (en) Battery system for vehicle
US20150064535A1 (en) Battery module having indirect air-cooling structure
US20120177965A1 (en) Battery module with excellent cooling efficiency and compact structure and middle or large-sized battery pack
KR101252936B1 (en) Battery pack
JP2010205509A (en) Battery system
KR20150025308A (en) Battery Module Having Structure for Prevention of Coolant and Venting Gas Mixing
JP2011023301A (en) Battery system
KR102026386B1 (en) Battery module
JP2012199045A (en) Battery pack and separator
KR101609232B1 (en) Battery Module Comprising Cartridge Having Coolant Flow Channel
JP2012094371A (en) Battery pack
WO2014010437A1 (en) Power source device and vehicle provided with said power source device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603