JP2012094371A - Battery pack - Google Patents
Battery pack Download PDFInfo
- Publication number
- JP2012094371A JP2012094371A JP2010240398A JP2010240398A JP2012094371A JP 2012094371 A JP2012094371 A JP 2012094371A JP 2010240398 A JP2010240398 A JP 2010240398A JP 2010240398 A JP2010240398 A JP 2010240398A JP 2012094371 A JP2012094371 A JP 2012094371A
- Authority
- JP
- Japan
- Prior art keywords
- batteries
- battery
- assembled battery
- space
- protrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02E60/12—
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、例えば車載用途等の組電池に関する。 The present invention relates to an assembled battery for in-vehicle use, for example.
例えば車載用途等の組電池であって、複数の電池を配列して構成され、これら電池間には冷却風を送風して当該電池を空冷により冷却する方式の組電池が知られている。この種のものでは、例えば一部に曲面を有する巻き電極と、巻き電極を内蔵する、熱伝導性を備える角形ケースと、を備える角形電池であって、角形ケースの内面の少なくとも一部が、巻き電極の曲面に沿う形状に形成されている組電池等が提案され(例えば、特許文献1参照。)、冷却面の表面積を拡大して、サイズを大きくすることなく角形電池を効果的に冷却する技術が提案されている。 For example, an assembled battery for on-vehicle use or the like, which is configured by arranging a plurality of batteries, and that cools the battery by air cooling by blowing cooling air between these batteries, is known. In this type of battery, for example, a rectangular battery including a winding electrode having a curved surface in part, and a rectangular case having thermal conductivity and containing the winding electrode, and at least a part of the inner surface of the rectangular case is An assembled battery formed in a shape along the curved surface of the wound electrode has been proposed (see, for example, Patent Document 1), and the surface area of the cooling surface is increased to effectively cool the square battery without increasing the size. Techniques to do this have been proposed.
しかし、従来の構成では、冷却面の表面積は拡大するが、角形電池を冷却する冷却風の流れが問題となって、効果的に冷却できない課題があった。
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、電池を空冷により効果的に冷却できる組電池を提供することにある。
However, in the conventional configuration, although the surface area of the cooling surface is increased, there is a problem that the cooling air flow for cooling the prismatic battery becomes a problem and cannot be effectively cooled.
Accordingly, an object of the present invention is to provide an assembled battery that can solve the above-described problems of the prior art and can effectively cool the battery by air cooling.
本発明は、絶縁性を有するセパレーターを間に挟んで複数の電池を配列して構成され、これら電池間には冷却風を送風して当該電池を冷却する組電池において、前記電池間への冷却風の入口部に絶縁性を有するワイヤー状の入口乱流促進体を配置したことを特徴とする。
この発明では、電池間への冷却風の入口部にワイヤー状の入口乱流促進体を配置したため、及び/又はセパレーターに突起を設けたため、入口乱流促進体を経た冷却風は乱流となって電池間を進行し、この乱流効果によって電池表面が冷却され、冷却効果が促進される。
また、本発明は、絶縁性を有するセパレーターを間に挟んで複数の電池を配列して構成され、これら電池間には冷却風を送風して当該電池を冷却する組電池において、前記セパレーターは凹、凸を有し、これら凹、凸に対応して電池との間に空所が形成され、これら空所内に突出する絶縁性を有する突起を、当該空所の奥行き方向に間隔をあけて配置したことを特徴とする。
The present invention is configured by arranging a plurality of batteries with an insulating separator interposed therebetween, and in an assembled battery in which cooling air is blown between the batteries to cool the batteries, cooling between the batteries is performed. The present invention is characterized in that a wire-like inlet turbulence promoter having insulating properties is disposed at the wind inlet.
In this invention, since the wire-like inlet turbulence promoter is disposed at the inlet portion of the cooling air between the batteries and / or the separator is provided with the protrusion, the cooling air passing through the inlet turbulence promoter becomes turbulent. The battery surface is cooled by this turbulent effect, and the cooling effect is promoted.
Further, the present invention is configured by arranging a plurality of batteries with an insulating separator interposed therebetween, and in the assembled battery for cooling the batteries by blowing cooling air between the batteries, the separator is recessed. In addition, there are projections, and voids are formed between the cells corresponding to the depressions and projections, and insulating projections that protrude into the voids are arranged at intervals in the depth direction of the voids. It is characterized by that.
この場合において、前記ワイヤー状の入口乱流促進体を前記入口部に上下に間隔をあけて複数本配置する構成としてもよい。
また、前記セパレーターは凹、凸を有し、これら凹、凸に対応して電池との間に空所が形成され、これら空所内に突出する突起を、当該空所の奥行き方向に間隔をあけて配置してもよい。前記突起が上流からの乱流が層流に変化する直前の位置に配置されていてもよい。前記セパレーターは凹、凸を有し、これら凹、凸に対応して電池との間に空所が形成され、これら空所内に凹、凸を上下に貫通するようにワイヤー状の内部乱流促進体を、当該空所の奥行き方向に間隔をあけて複数本配置してもよい。
また、前記内部乱流促進体が上流からの乱流が層流に変化する直前の位置に配置されていてもよい。
In this case, it is good also as a structure which arrange | positions the said wire-shaped inlet turbulence promoter at the said inlet part at intervals up and down.
In addition, the separator has a concave and a convex, and a space is formed between the battery and the concave and convex so as to correspond to the concave and convex, and the protrusion protruding into the void is spaced in the depth direction of the void. May be arranged. The protrusion may be disposed at a position immediately before the turbulent flow from the upstream changes to a laminar flow. The separator has a concave and a convex, and a space is formed between the battery corresponding to the concave and convex, and the wire-like internal turbulence is promoted so as to penetrate the concave and convex in the void vertically. A plurality of bodies may be arranged at intervals in the depth direction of the space.
Further, the internal turbulence promoting body may be disposed at a position immediately before the turbulent flow from the upstream changes to a laminar flow.
ここで、冷却風の入口部にワイヤー状の入口乱流促進体を配置する、或いはセパレーターに突起を設けると、冷却風は電池間に乱流となって進入するが、やがて層流となる。上記構成によれば、層流となる直前あたりの位置に、さらに層流を乱流にする突起や、内部乱流促進体が適宜の間隔で配置されるため、電池間には常時乱流が発生し、これによって、電池の奥行き方向に亘る冷却効果が均一に促進される。 Here, when a wire-like inlet turbulence promoting body is disposed at the inlet portion of the cooling air or a protrusion is provided on the separator, the cooling air enters as a turbulent flow between the batteries, but eventually becomes a laminar flow. According to the above configuration, since the protrusions that make the laminar flow turbulent and the internal turbulence promoting body are arranged at appropriate intervals just before the laminar flow, there is always turbulent flow between the batteries. Occurs, and the cooling effect in the depth direction of the battery is uniformly promoted.
本発明によれば、電池間への冷却風の入口部にワイヤー状の入口乱流促進体を配置したため、及び/又はセパレーターに突起を設けたため、入口乱流促進体を経た冷却風は乱流となって電池間を進行し、この乱流効果によって電池表面が冷却され、冷却効果が促進される。 According to the present invention, since the wire-like inlet turbulence promoting body is disposed at the inlet portion of the cooling air between the batteries and / or the separator is provided with the protrusion, the cooling air passing through the inlet turbulence promoting body is turbulent. And the battery surface is cooled by this turbulent effect, and the cooling effect is promoted.
以下、本発明の一実施の形態を図面に基づいて説明する。
図1は、本実施の形態に係る組電池10の斜視図、図2はその平面図である。
組電池10は、複数の電池(セル)1を断熱プレート2上で前後に重ねて構成されている。電池(セル)1はその幅よりも薄い薄型の角形電池であり、面取りした矩形状の角形ケース3の第1の面である天面から出力端子4である正極及び負極を離間させて突出させている。図1、図2の電池1は、上面の両端部に正負の出力端子4を突出させて固定している。出力端子4を突出させる位置は、正極と負極が左右対称となる位置としている。これにより、電池1を裏返して重ねると、正極と負極とを重ね合わせることができ、直列接続を容易に行える。角形ケース3の内部には、巻き電極(図示せず)が内蔵される。この電池1は、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池等の二次電池が利用できる。特にリチウムイオン電池は単位体積当たりの出力が高く、小型化、高出力化に適しているので好ましい。なお一次電池を利用することもできる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of an assembled battery 10 according to the present embodiment, and FIG. 2 is a plan view thereof.
The assembled battery 10 is configured by stacking a plurality of batteries (cells) 1 back and forth on a heat insulating plate 2. The battery (cell) 1 is a thin rectangular battery that is thinner than its width. The positive electrode and the negative electrode that are output terminals 4 are spaced apart from the top surface, which is the first surface of the chamfered rectangular case 3, and protruded. ing. In the battery 1 of FIGS. 1 and 2, positive and negative output terminals 4 are projected and fixed at both end portions of the upper surface. The position where the output terminal 4 protrudes is a position where the positive electrode and the negative electrode are symmetrical. Thereby, when the battery 1 is turned upside down and stacked, the positive electrode and the negative electrode can be stacked, and series connection can be easily performed. A winding electrode (not shown) is built in the rectangular case 3. As the battery 1, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a nickel cadmium battery can be used. In particular, a lithium ion battery is preferable because it has a high output per unit volume and is suitable for miniaturization and high output. A primary battery can also be used.
出力端子4は、それぞれ断面L字状に折曲され、さらに折曲部には連結穴を開口しており、この連結穴に連結ボルトを挿通することで互いに積層される折曲部を連結できる。特に、正負の出力端子4は、図2に示すように互いに逆方向に折曲されると共に、互いに隣接する電池1同士では、正負の出力端子4が交互に逆向きに折曲されている。これらの出力端子4は、隣接する電池1の間で、直接接続可能な大きさ及び形状に形成している。これにより、隣接する電池間で正極と負極を直接接続して、複数の電池を直列に接続している。ただ、出力端子4は、金属板のバスバーを接続して、隣接する電池1を直列に接続することもできる。 Each of the output terminals 4 is bent in an L-shaped cross section, and a connecting hole is opened in the bent portion, and the bent portions stacked on each other can be connected by inserting a connecting bolt into the connecting hole. . In particular, the positive and negative output terminals 4 are bent in opposite directions as shown in FIG. 2, and the positive and negative output terminals 4 are alternately bent in opposite directions between adjacent batteries 1. These output terminals 4 are formed in a size and shape that can be directly connected between adjacent batteries 1. Thereby, a positive electrode and a negative electrode are directly connected between adjacent batteries, and a plurality of batteries are connected in series. However, the output terminal 4 can also connect the bus bar of a metal plate, and can connect the adjacent battery 1 in series.
組電池10の端部は制御回路(図示せず)に接続され、制御回路によって各電池1の電圧、電流、温度等を測定し、電池容量及び必要充放電量等を決定して、充放電等の制御が行われる。電池1を直列に接続する電源装置は、出力電圧を高くして出力を大きくできる。ただし、電源装置は、電池1を並列と直列に接続することもできる。なお、組電池100の端部にエンドプレートを配置することもできる。 The end of the assembled battery 10 is connected to a control circuit (not shown), and the control circuit measures the voltage, current, temperature, etc. of each battery 1 to determine the battery capacity and the required charge / discharge amount. Etc. are controlled. The power supply device connecting the batteries 1 in series can increase the output voltage by increasing the output voltage. However, the power supply device can also connect the batteries 1 in parallel and in series. An end plate can also be disposed at the end of the assembled battery 100.
この電池1は、出力端子4の周囲を囲むように直立された端子リブが形成され、これにより外装缶内部の電解液が出力端子の周囲から漏洩しても、不用意に拡散する事態が阻止される。角形ケース3は、有底筒状の外装缶の開口部分から巻き電極(図示せず)を挿入し電解液を注入した後、封口板で開口部分を閉塞し、レーザ溶接等により封止する。この角形ケース3は、熱伝導性に優れた金属で構成される。封口板には、安全弁が設けられ、バッテリが異常な状態で充放電されると安全弁が開弁して電解液を排出する。 This battery 1 is formed with terminal ribs that stand upright so as to surround the periphery of the output terminal 4, thereby preventing an accidental diffusion even if the electrolyte inside the outer can leaks from the periphery of the output terminal. Is done. In the rectangular case 3, a wound electrode (not shown) is inserted from an opening portion of a bottomed cylindrical outer can and an electrolyte solution is injected. Then, the opening portion is closed with a sealing plate and sealed by laser welding or the like. The rectangular case 3 is made of a metal having excellent thermal conductivity. The sealing plate is provided with a safety valve. When the battery is charged / discharged in an abnormal state, the safety valve opens to discharge the electrolyte.
各電池1間には、絶縁性を有するセパレーター7が配置されている。このセパレーター7は、各電池1間に適宜の間隔をあけて、その間隔に冷却風を流して各電池1を空冷により冷却できるようになっている。図示は省略したが、組電池10の一面10A側には、例えば送風機からの供給ダクトが接続されており、供給ダクトを通じて供給される冷却風が各セパレーター7により形成される間隙を通じて組電池10の他面10B側に流れ、他面10B側に設けた排気ダクト(図示せず)を介して外部へ排気される。これにより組電池10が空冷により冷却される。 Between each battery 1, the separator 7 which has insulation is arrange | positioned. The separator 7 is configured so that each battery 1 can be cooled by air cooling with an appropriate interval between the batteries 1 and cooling air flowing through the interval. Although illustration is omitted, a supply duct from a blower, for example, is connected to the one surface 10A side of the assembled battery 10, and cooling air supplied through the supply duct passes through a gap formed by each separator 7. It flows to the other surface 10B side and is exhausted to the outside through an exhaust duct (not shown) provided on the other surface 10B side. Thereby, the assembled battery 10 is cooled by air cooling.
このセパレーター7は、例えば樹脂成形により製造される樹脂成形品であり、図3に示すように、上下に矩形波状の凹7A,凸7B,凹7A,凸7B…を順に繰り返して構成されている。これらの凹7A,凸7B,凹7A,凸7B…は互いに平行に延び、これら凹7A,凸7B,凹7A,凸7B…に対応し、上述した電池1間には互いに平行に延びる空所8,8,8…が形成され、各空所8,8,8…は、組電池10の一面10A側から他面10B側に貫通している。 The separator 7 is, for example, a resin molded product manufactured by resin molding, and is configured by repeating a rectangular wave-shaped concave 7A, convex 7B, concave 7A, convex 7B. . These recesses 7A, 7B, 7A, 7B,... Extend parallel to each other, and correspond to these recesses 7A, 7B, 7A, 7B,. 8 are formed, and each of the voids 8, 8, 8... Penetrates from the one surface 10A side to the other surface 10B side of the assembled battery 10.
本実施の形態では、各電池1間への冷却風の入口部、すなわち組電池10の一面10A側に、絶縁材料で形成されたワイヤー状の入口乱流促進体11,11,11…が、上下に間隔をあけて複数本配置されている。入口乱流促進体11,11,11…は、三角形状、四角形状等の多角形状の棒状体である。
入口乱流促進体11,11,11…は、凹7A,凸7B,凹7A,凸7B…に対応して配置され、それぞれ空所8,8,8…の上下方向に中央を横断して配置されている。このように冷却風の入口部に入口乱流促進体11,11,11…を配置すると、入口乱流促進体11,11,11…を経た冷却風は乱流となって各電池1間を進行し、この乱流効果によって電池1表面の冷却が促進される。
In the present embodiment, a wire-like inlet turbulence promoter 11, 11, 11,... Formed of an insulating material on the inlet side of the cooling air between the batteries 1, that is, on the one surface 10A side of the assembled battery 10, A plurality are arranged at intervals in the vertical direction. The inlet turbulence promoting bodies 11, 11, 11,...
The inlet turbulence promoting bodies 11, 11, 11... Are arranged corresponding to the recesses 7 A, 7 B, 7 A, 7 B..., And cross the center in the vertical direction of the cavities 8, 8, 8. Is arranged. When the inlet turbulence promoting bodies 11, 11, 11,... Are arranged at the inlet of the cooling air in this way, the cooling air that has passed through the inlet turbulence promoting bodies 11, 11, 11,. The cooling of the surface of the battery 1 is promoted by this turbulent flow effect.
この乱流は、各電池1間を他面10B側に進行するに際し、やがて層流となる。ここでは、セパレーター7の凹7A,凸7B,凹7A,凸7B…の壁面に、図4に示すように、それぞれ空所8,8,8…内に突出するように、適宜の大きさの三角形状、四角形状等の多角形状の突起形状を有した、乱流促進体としての絶縁材料で形成された突起9,9,9…が一体に形成されている。突起9,9,9…は、冷却風の流れに沿って一列配置でも、二列配置でもよい。或いは千鳥状の配列であってもよい。なお、突起ではなく、乱流を形成できれば、凹形状等でもよい。各突起9,9,9…は、対応する凹7A,凸7B,凹7A,凸7B…の壁面に、奥行き方向に適宜の間隔Lをあけて複数設けられる。 This turbulent flow eventually becomes a laminar flow as it travels between the batteries 1 toward the other surface 10B. Here, as shown in FIG. 4, on the wall surfaces of the recesses 7A, the protrusions 7B, the recesses 7A, the protrusions 7B... Of the separator 7 as shown in FIG. Projections 9, 9, 9... Made of an insulating material as a turbulence promoting body having a triangular projection shape such as a triangle shape or a quadrangular shape are integrally formed. The protrusions 9, 9, 9... May be arranged in a single line or in a double line along the flow of the cooling air. Alternatively, a staggered arrangement may be used. A concave shape or the like may be used as long as a turbulent flow can be formed instead of a protrusion. .. Are provided on the wall surfaces of the corresponding recesses 7A, protrusions 7B, recesses 7A, protrusions 7B,... At an appropriate interval L in the depth direction.
冷却風の入口部に入口乱流促進体11を配置すると、上述したように、冷却風は電池1間に乱流となって進入するが、やがて層流となる。上記各突起9,9,9…は、冷却風が層流となる直前あたりの位置、乱流が消失する位置等に、適宜の間隔Lで配置されることが望ましい。そうすれば、電池1間には常時乱流が発生し、電池1の奥行き方向に亘る冷却効果が均一に促進される。 When the inlet turbulence promoting body 11 is arranged at the inlet of the cooling air, the cooling air enters as a turbulent flow between the batteries 1 as described above, but eventually becomes a laminar flow. The protrusions 9, 9, 9... Are preferably arranged at an appropriate interval L at a position just before the cooling air becomes laminar, a position where the turbulent flow disappears, or the like. If it does so, a turbulent flow will always generate | occur | produce between the batteries 1, and the cooling effect over the depth direction of the battery 1 will be accelerated | stimulated uniformly.
図5A及び図5Bは、突起9の配置を模式的に示す。凹7Aの流路高さH、突起9の高さh、凹7Aの流路幅W、突起9の幅w、突起9の間隔Lとする。本発明者らは、図6Aに示すように、流路高さH/流路幅W=縦横比(H/W)を、H/W=0.13〜1の範囲で種々変化させて、突起9で発生した乱流が下流に続く長さ(乱流長さ)を計測し、図6Bに示す計測結果を得た。この結果から、縦横比(H/W)が0.2以下のとき、及び0.6以上のとき、乱流長さが短くなることが判明した。従って、乱流長さを長くするためには、0.2<H/W<0.6、に設定することが望ましく、これにより、乱流領域が増大し、伝熱促進効果が高められる。図7は、凹7Aの流路高さHと、突起9の高さhとの関係を示す。突起高さh/流路高さHを種々変化させて、乱流長さを計測した。この結果から、h/H=50%以下において、乱流長さが短くなることが判明した。従って、乱流長さを長くするためには、h/H=50%以上に設定することが望ましく、これにより、乱流領域が増大し、伝熱促進効果が高められる。
図8は、凹7Aの流路幅Wと、突起9の幅wとの関係を示す。突起幅w/流路幅Wを種々変化させて、凹7Aの流路内に占める渦乱流領域の占める割合を計測した。この結果によると、突起幅w/流路幅W=0.1〜0.15あたりで最大18%の領域に乱流が発生することが判明した。従って、0.1<w/W<0.15、に設定することが望ましく、領域比が増大し、伝熱促進効果が高められる。
5A and 5B schematically show the arrangement of the protrusions 9. The channel height H of the recess 7A, the height h of the projection 9, the channel width W of the recess 7A, the width w of the projection 9, and the interval L of the projection 9 are used. As shown in FIG. 6A, the present inventors varied the flow channel height H / flow channel width W = aspect ratio (H / W) in a range of H / W = 0.13 to 1, The length (turbulent flow length) in which the turbulent flow generated in the protrusion 9 continues downstream was measured, and the measurement result shown in FIG. 6B was obtained. From this result, it was found that the turbulent flow length is shortened when the aspect ratio (H / W) is 0.2 or less and 0.6 or more. Therefore, in order to lengthen the turbulent flow length, it is desirable to set 0.2 <H / W <0.6. This increases the turbulent flow region and enhances the heat transfer promoting effect. FIG. 7 shows the relationship between the flow path height H of the recess 7 </ b> A and the height h of the protrusion 9. The turbulent flow length was measured by changing the protrusion height h / flow path height H in various ways. From this result, it was found that the turbulent flow length becomes shorter at h / H = 50% or less. Therefore, in order to lengthen the turbulent flow length, it is desirable to set h / H = 50% or more, thereby increasing the turbulent flow region and enhancing the heat transfer promoting effect.
FIG. 8 shows the relationship between the flow path width W of the recess 7 </ b> A and the width w of the protrusion 9. The ratio of the vortex turbulent region in the channel of the recess 7A was measured by changing the protrusion width w / the channel width W in various ways. According to this result, it was found that turbulent flow was generated in a region of a maximum of 18% around the protrusion width w / channel width W = 0.1 to 0.15. Therefore, it is desirable to set 0.1 <w / W <0.15, the area ratio increases, and the heat transfer promoting effect is enhanced.
図9は、突起9の配置例を示している。図9Aは、1つの突起9の配置例であり、図9B〜図9Dは、間隔を異ならせて突起9を2つ配置した例である。図9B〜図9Dを見ると、1つ目の突起9で生成された乱流領域内に2つ目の突起9を配置することで、流路内に効果的に乱流が生成され、いずれの場合も、図9Aの例と比較して、乱流長さが長くなることが判明した。図10は、縦軸に乱流長さ(mm)を示し、横軸には流速(m/s)を示す。乱流長さは、流速の1.3倍〜3.7倍に比例する。流路高さHと流路幅Wとの関係を示す縦横比(H/W)を種々変化(0.13〜0.5)させて、流速と乱流長さの関係を計測した結果、流速が1〜3(m/s)あたりでは、乱流長さが10〜40(mm)であることが判明した。電池1の冷却に使用する場合、空気の流速は0.5〜4(m/s)で十分であり、1つ目の突起9で生成された乱流領域内に2つ目の突起9を配置するとなると、乱流長さが10〜40(mm)の範囲で続くことから、突起9の間隔Lも、10〜40(mm)の間隔で配置することが望ましく、これにより、乱流領域が増大し、伝熱促進効果が高められる。 FIG. 9 shows an arrangement example of the protrusions 9. FIG. 9A is an arrangement example of one protrusion 9, and FIGS. 9B to 9D are examples in which two protrusions 9 are arranged at different intervals. 9B to 9D, by arranging the second protrusion 9 in the turbulent flow region generated by the first protrusion 9, turbulent flow is effectively generated in the flow path. In this case also, it was found that the turbulent flow length becomes longer compared to the example of FIG. 9A. FIG. 10 shows the turbulent flow length (mm) on the vertical axis and the flow velocity (m / s) on the horizontal axis. The turbulence length is proportional to 1.3 times to 3.7 times the flow velocity. As a result of varying the aspect ratio (H / W) indicating the relationship between the channel height H and the channel width W (0.13 to 0.5) and measuring the relationship between the flow velocity and the turbulent flow length, It was found that the turbulent flow length was 10 to 40 (mm) when the flow rate was around 1 to 3 (m / s). When used for cooling the battery 1, an air flow rate of 0.5 to 4 (m / s) is sufficient, and the second protrusion 9 is provided in the turbulent flow region generated by the first protrusion 9. When arranged, since the turbulent flow length continues in the range of 10 to 40 (mm), it is desirable that the interval L between the protrusions 9 is also arranged at an interval of 10 to 40 (mm). Increases and the heat transfer promoting effect is enhanced.
図11は、上述した組電池10を模式的に示している。
この構成では、組電池10が固定ケース20内に固定されており、上記ワイヤー状の入口乱流促進体11,11,11…の両端が、一対の保持板21に止着されており、これら保持板21が、固定ケース20の縦枠20A,20B間に固定されている。このように構成すれば、上記ワイヤー状の入口乱流促進体11,11,11…を設けることで、固定ケース20が強度的に補強され、堅牢な組電池10を構成できる。
FIG. 11 schematically shows the assembled battery 10 described above.
In this configuration, the assembled battery 10 is fixed in the fixed case 20, and both ends of the wire-like inlet turbulence promoting bodies 11, 11, 11... Are fixed to the pair of holding plates 21. The holding plate 21 is fixed between the vertical frames 20 </ b> A and 20 </ b> B of the fixed case 20. If comprised in this way, by providing the said wire-shaped inlet turbulence promoter 11, 11, 11, ..., the fixed case 20 will be reinforced strengthly and the robust assembled battery 10 can be comprised.
つぎに、別の実施の形態を説明する。
上記実施の形態では、凹7A,凸7B,凹7A,凸7B…の壁面に、奥行き方向に適宜の間隔Lをあけて突起9,9,9…を複数設けていた。
この実施の形態では、各突起9,9,9…を省略し、図11に示すように、ワイヤー状の内部乱流促進体31,31,31…を配置している。この内部乱流促進体31,31,31…は、各基端が相互の間に適宜の間隔Lをあけて連結板33で連結されており、その先端31A,31A,31A…が、図12に示すように、上記セパレーター7と同じ構成のセパレーター7の凹7A,凸7B,凹7A,凸7B…を上から下へと順に貫通して配置されている。これらの内部乱流促進体31,31,31…は、すべてのセパレーター7に対して配置されている。
Next, another embodiment will be described.
In the above embodiment, a plurality of protrusions 9, 9, 9... Are provided on the wall surfaces of the recesses 7A, 7B, 7A, 7B,.
In this embodiment, the protrusions 9, 9, 9... Are omitted, and wire-like internal turbulence promoting bodies 31, 31, 31 are disposed as shown in FIG. In this internal turbulence promoting body 31, 31, 31..., The base ends are connected by a connecting plate 33 with an appropriate interval L between them, and the tips 31A, 31A, 31A. As shown in FIG. 4, the separator 7 having the same configuration as the separator 7 is disposed through the recesses 7A, 7B, 7A, 7B,. These internal turbulence promoting bodies 31, 31, 31... Are arranged for all the separators 7.
すべてのセパレーター7に対し配置する場合、各連結板33は、図11を参照し、角形ケース3の上面に接着等により固定され、このように構成すれば、内部乱流促進体31,31,31…を設けることで、固定ケース20が強度的に補強される。上記間隔Lは、乱流が消失する間隔であって、乱流から層流となる直前あたりを狙って定めることが望ましい。この構成によれば、上記突起9を設けた場合と比較して、図12に示すように、内部乱流促進体31,31,31…の全周囲に冷却風の通り道が形成されるため、冷却風の邪魔にならずに乱流が形成され、冷却効果を一段と期待できる。 When arranging with respect to all the separators 7, each connecting plate 33 is fixed to the upper surface of the rectangular case 3 by adhesion or the like with reference to FIG. 11. With this configuration, the internal turbulence promoting bodies 31, 31, By providing 31..., The fixed case 20 is reinforced in strength. The interval L is an interval at which the turbulent flow disappears, and it is desirable to set the interval L immediately before the turbulent flow becomes a laminar flow. According to this configuration, compared to the case where the protrusion 9 is provided, as shown in FIG. 12, the passage of the cooling air is formed all around the internal turbulence promoting bodies 31, 31, 31 ... A turbulent flow is formed without interfering with the cooling air, and a further cooling effect can be expected.
図13は、別の実施の形態を示している。
この実施の形態では、上述した入口乱流促進体11,11,11…に連続させて、それぞれの空所8,8,8…内に、波形状に進入する内部乱流促進体41,41,41…が配置されている。この内部乱流促進体41,41,41…も、その全周囲に冷却風の通り道が形成されるため、冷却風の邪魔にならずに乱流が形成され、図12に示す実施の形態と同様に、冷却効果を一段と期待できる。
FIG. 13 shows another embodiment.
In this embodiment, the internal turbulence promoters 41, 41 entering the wave shape in the respective cavities 8, 8, 8 ... in succession to the inlet turbulence promoters 11, 11, 11 ... described above. , 41... Are arranged. The internal turbulence promoting bodies 41, 41, 41... Are also formed with turbulent flow without interfering with the cooling air because the cooling air passages are formed all around the internal turbulence promoting bodies 41, 41, 41. Similarly, a further cooling effect can be expected.
10 組電池
1 電池
2 断熱プレート
3 角形ケース
4 出力端子
7 セパレーター
7A 凹
7B 凸
8,8,8… 空所
9,9,9… 突起
10 組電池
11,11,11… 入口乱流促進体
20 固定ケース
31,31,31… 内部乱流促進体
DESCRIPTION OF SYMBOLS 10 Assembly battery 1 Battery 2 Heat insulation plate 3 Rectangular case 4 Output terminal 7 Separator 7A Concave 7B Convex 8, 8, 8 ... Space 9, 9, 9 ... Protrusion 10 Assembly battery 11, 11, 11 ... Inlet turbulence promoter 20 Fixed case 31, 31, 31 ... Internal turbulence promoter
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010240398A JP2012094371A (en) | 2010-10-27 | 2010-10-27 | Battery pack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010240398A JP2012094371A (en) | 2010-10-27 | 2010-10-27 | Battery pack |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012094371A true JP2012094371A (en) | 2012-05-17 |
Family
ID=46387495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010240398A Pending JP2012094371A (en) | 2010-10-27 | 2010-10-27 | Battery pack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012094371A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206666A (en) * | 2012-03-28 | 2013-10-07 | Tigers Polymer Corp | Battery pack |
CN103825066A (en) * | 2012-11-15 | 2014-05-28 | 通用汽车环球科技运作有限责任公司 | Simple and efficient turbulator to promote the uniform heat exchange inside the battery cooling channel |
WO2014082701A1 (en) * | 2012-11-28 | 2014-06-05 | Li-Tec Battery Gmbh | Battery with temperature-control device |
JP2015056217A (en) * | 2013-09-10 | 2015-03-23 | トヨタ自動車株式会社 | Temperature adjustment structure and temperature adjusting method of power storage device |
CN104835991A (en) * | 2014-02-12 | 2015-08-12 | 马勒贝洱有限两合公司 | Cooling device, in particular for battery of motor vehicle |
JP2016162527A (en) * | 2015-02-27 | 2016-09-05 | ダイキョーニシカワ株式会社 | Cooling structure of heating element |
-
2010
- 2010-10-27 JP JP2010240398A patent/JP2012094371A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206666A (en) * | 2012-03-28 | 2013-10-07 | Tigers Polymer Corp | Battery pack |
CN103825066A (en) * | 2012-11-15 | 2014-05-28 | 通用汽车环球科技运作有限责任公司 | Simple and efficient turbulator to promote the uniform heat exchange inside the battery cooling channel |
CN103825066B (en) * | 2012-11-15 | 2016-11-23 | 通用汽车环球科技运作有限责任公司 | The simple efficient flow spoiler of the uniform heat exchange in improving accumulator cooling duct |
WO2014082701A1 (en) * | 2012-11-28 | 2014-06-05 | Li-Tec Battery Gmbh | Battery with temperature-control device |
JP2015056217A (en) * | 2013-09-10 | 2015-03-23 | トヨタ自動車株式会社 | Temperature adjustment structure and temperature adjusting method of power storage device |
CN104835991A (en) * | 2014-02-12 | 2015-08-12 | 马勒贝洱有限两合公司 | Cooling device, in particular for battery of motor vehicle |
CN104835991B (en) * | 2014-02-12 | 2019-04-19 | 马勒贝洱有限两合公司 | Particularly for the cooling equipment of the battery group of motor vehicles |
JP2016162527A (en) * | 2015-02-27 | 2016-09-05 | ダイキョーニシカワ株式会社 | Cooling structure of heating element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5440666B2 (en) | Battery pack and battery pack separator | |
JP5893133B2 (en) | Battery module | |
KR100649561B1 (en) | Can, secondary battery and secondary battery module | |
JP2012094371A (en) | Battery pack | |
JP6616869B2 (en) | Battery module | |
JP6134120B2 (en) | Battery block and battery module having the same | |
JP5756530B2 (en) | Battery module, battery block, and battery pack | |
US9159973B2 (en) | Battery module and power supply apparatus | |
JP5364791B2 (en) | Power storage module | |
KR101212369B1 (en) | Cooling structure of lithium ion secondary battery system | |
JP5654881B2 (en) | Battery cooling structure | |
CN103918102B (en) | Rechargeable battery | |
JP5535520B2 (en) | Battery system for vehicle | |
KR102045528B1 (en) | Battery module | |
JP2013084580A (en) | Power storage device | |
JP2010262870A (en) | Battery system | |
US20140038020A1 (en) | Power storage apparatus | |
JP2018536975A (en) | Battery module, battery pack including the same, and automobile | |
WO2024055442A1 (en) | Vehicle power battery and vehicle power battery pack | |
JP2012199045A (en) | Battery pack and separator | |
KR20150025225A (en) | Battery Module Comprising Cartridge Having Coolant Flow Channel | |
KR20140144781A (en) | Battery Module Having Cooling Pin with Coolant Flow Channel | |
JP2012199044A (en) | Battery pack | |
JPWO2020054227A1 (en) | Power supply | |
JP5344009B2 (en) | Battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20130628 |