JP5875920B2 - Assembled battery - Google Patents
Assembled battery Download PDFInfo
- Publication number
- JP5875920B2 JP5875920B2 JP2012073093A JP2012073093A JP5875920B2 JP 5875920 B2 JP5875920 B2 JP 5875920B2 JP 2012073093 A JP2012073093 A JP 2012073093A JP 2012073093 A JP2012073093 A JP 2012073093A JP 5875920 B2 JP5875920 B2 JP 5875920B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling air
- battery
- air passage
- assembled battery
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Description
本発明は、複数の単電池が組み合わされた組電池に関する。特に平板状の単電池が所定間隔を隔てる積層状態で配置され、冷却風により冷却される組電池に関する。 The present invention relates to an assembled battery in which a plurality of single cells are combined. In particular, the present invention relates to an assembled battery in which flat unit cells are arranged in a stacked state at a predetermined interval and are cooled by cooling air.
電気自動車やハイブリッド自動車などには、動力源として二次電池を集合させた組電池(電池モジュール)が用いられている。充電や放電の過程において、電池が過熱したり電池間の温度差が大きくなったりすると、電池の性能が低下したり、電池が損傷することが起こるため、通常、これら組電池を電池ケースに収納し、冷却風を電池ケース内に送り込むなどして、組電池を冷却することが行われる。 In an electric vehicle, a hybrid vehicle, and the like, an assembled battery (battery module) in which secondary batteries are assembled as a power source is used. In the process of charging or discharging, if the battery overheats or the temperature difference between the batteries increases, the performance of the battery may deteriorate or the battery may be damaged. Usually, these assembled batteries are stored in the battery case. Then, the assembled battery is cooled by sending cooling air into the battery case.
組電池に用いられる単電池には、リチウムイオン電池のように、略平板状の電池があり、このような電池はその形状から角型電池と呼ばれることもある。
平板状の単電池を組電池に構成する場合には、冷却風による冷却が効率的に行われるように、電池の広い面同士が対向するように、互いに所定の間隔を隔てるように平板状単電池を積層状態に配置して、電池間の隙間に冷却風を送って電池を冷却することが一般的に行われている。
The unit cell used in the assembled battery includes a substantially flat battery such as a lithium ion battery, and such a battery is sometimes called a square battery because of its shape.
When a flat unit cell is configured as an assembled battery, the flat unit cells are spaced apart from each other by a predetermined distance so that the wide surfaces of the cells face each other so that cooling by cooling air can be performed efficiently. Generally, batteries are arranged in a stacked state, and cooling air is sent to the gaps between the batteries to cool the batteries.
そして、これら組電池の冷却にあたっては、組電池を構成する複数の単電池の温度を極力均一化し、かつ、効率的に電池を冷却することが必要であり、そのために、さまざまな組電池が提案されるに至っている。
例えば、特許文献1には、電池と電池の間にセパレータを挟みこんで、セパレータの波板状の凹凸形状によって冷却風通路(冷却隙間)を形成し、冷却風によって電池を冷却すると共に、セパレータに温度センサを設けた組電池が開示されている。
In order to cool these assembled batteries, it is necessary to make the temperature of the plurality of single cells constituting the assembled battery uniform as much as possible, and to cool the battery efficiently. For this reason, various assembled batteries have been proposed. Has been done.
For example, in Patent Document 1, a separator is sandwiched between batteries, a cooling air passage (cooling gap) is formed by the corrugated uneven shape of the separator, the battery is cooled by cooling air, and the separator An assembled battery provided with a temperature sensor is disclosed.
このような電池冷却構造においては、冷却風の風量を少なくしながら、電池の温度を低く保てるように、冷却効率を高めることが求められている。さらに、組電池を構成する複数の単電池の温度を均一化することが求められている。温度の高い単電池が存在すると、その単電池の劣化が進んで、組電池全体の寿命が短くなってしまうためである。 In such a battery cooling structure, it is required to increase the cooling efficiency so that the temperature of the battery can be kept low while reducing the amount of cooling air. Furthermore, it is required to make the temperatures of a plurality of unit cells constituting the assembled battery uniform. This is because if a unit cell having a high temperature exists, the unit cell deteriorates and the life of the entire assembled battery is shortened.
発明者らは、上記特許文献に開示されたような波板状のスペーサ部材(特許文献1においてはセパレータ)を単電池間に挟持する組電池について検討を行った。そして、このような構造の組電池においては、特に冷却風流れの下流側部分で、冷却効率が低くなりやすいことを発見した。 The inventors have studied an assembled battery in which a corrugated spacer member (a separator in Patent Document 1) as disclosed in the above patent document is sandwiched between single cells. And in the assembled battery of such a structure, it discovered that cooling efficiency was easy to become low especially in the downstream part of a cooling wind flow.
即ち、本発明の目的は、電池の冷却効率を高めうるような組電池を提供することにある。
That is, an object of the present invention is to provide an assembled battery that can increase the cooling efficiency of the battery.
発明者は、下流側で冷却効率が悪くなる原因の検討を行った。その結果、特許文献1に開示されたような波板状のスペーサ部材が単電池間に挟持された構造の組電池においては、冷却風通路が狭い角柱状の空間となるため、冷却風通路内において、冷却風が整然とした層流状に流れ、冷却風流れ下流側の電池表面には、主に上流側電池表面で温められた冷却風しか供給されないことを発見した。 The inventor has examined the cause of the cooling efficiency on the downstream side. As a result, in the assembled battery having a structure in which the corrugated plate-like spacer member as disclosed in Patent Document 1 is sandwiched between the single cells, the cooling air passage becomes a narrow prismatic space, so that the inside of the cooling air passage It was discovered that the cooling air flows in an orderly laminar flow, and only the cooling air heated mainly on the upstream battery surface is supplied to the battery surface downstream of the cooling air flow.
そして、発明者らはさらに検討を進め、冷却風通路の電池積層方向中央部に、冷却風通路を横断するように棒部材を設けると、冷却風が攪拌されて、棒部材の下流側の冷却性が向上することを知見し、本発明を完成させた。 Then, the inventors further studied, and when the bar member is provided at the center of the cooling air passage in the battery stacking direction so as to cross the cooling air passage, the cooling air is stirred and the downstream side of the rod member is cooled. As a result, the present invention has been completed.
本発明は、略平板状の単電池を、積層配置して構成された組電池であって、隣接する単電池の間には、スペーサ部材が挟持され、スペーサ部材は、単電池が積層される方向に延在する仕切り部と、単電池表面と平行に延在する連結部を有しており、隣接する単電池の間には、スペーサ部材の仕切り部と連結部、及び単電池表面とによって、冷却風通路が形成されるとともに、互いに隣接する仕切り部の間には、当該冷却風通路を横断するように、棒部材が設けられており、棒部材は、冷却風通路の電池積層方向中央部に設けられていて、棒部材の電池積層方向の幅dが、冷却風通路の電池積層方向の幅Hに対し、H/10≦d≦H/3 となるように設けられたことを特徴とする組電池である(第1発明)。
The present invention is an assembled battery configured by stacking and arranging substantially flat unit cells, and a spacer member is sandwiched between adjacent unit cells, and the unit cell is stacked as the spacer member. A partition part extending in the direction and a connecting part extending in parallel with the surface of the unit cell, and between adjacent unit cells, the partition part of the spacer member, the connection unit, and the unit cell surface The cooling air passage is formed, and a bar member is provided between the adjacent partition portions so as to cross the cooling air passage, and the bar member is at the center of the cooling air passage in the battery stacking direction. The width d of the rod member in the battery stacking direction is provided such that H / 10 ≦ d ≦ H / 3 with respect to the width H of the cooling air passage in the battery stacking direction. (1st invention).
本発明においては、冷却風通路に、複数本の棒部材が冷却風流れ方向に離間するように設けられることが好ましい(第2発明)。また、さらに、本発明においては、棒部材は、冷却風通路の冷却風流れ方向に対し略直交するとともに、電池表面に対し略平行に設けられることが好ましい(第3発明)。 In the present invention, it is preferable that a plurality of rod members are provided in the cooling air passage so as to be separated in the cooling air flow direction (second invention). Furthermore, in the present invention, it is preferable that the rod member is provided substantially parallel to the cooling air flow direction of the cooling air passage and substantially parallel to the battery surface (third invention).
また、さらに、本発明においては、棒部材の断面形状が、断面中心から単電池表面側にオフセットした位置に設けられた角部と、断面中心からスペーサ部材連結部側にオフセットした位置に設けられた角部とを有する形状とされることが好ましい(第4発明)。 Further, in the present invention, the cross-sectional shape of the bar member is provided at a corner portion provided at a position offset from the cross-sectional center to the unit cell surface side, and at a position offset from the cross-sectional center to the spacer member connecting portion side. It is preferable that the shape has a corner portion (fourth invention).
本発明の組電池(第1発明)によれば、冷却風流れ下流側の電池表面の冷却性が改善されて、電池の冷却効率が高められるという効果が得られる。 According to the assembled battery of the present invention (first invention), the cooling performance of the battery surface on the downstream side of the cooling air flow is improved, and the effect that the cooling efficiency of the battery is enhanced is obtained.
さらに、第2発明ないし第4発明のようにした場合には、より効果的に電池の冷却効率が高められる。
Furthermore, in the case of the second to fourth inventions, the battery cooling efficiency can be more effectively increased.
以下図面を参照しながら、本発明の組電池の実施形態について、ハイブリッド自動車用の組電池を例にして説明する。図1は本発明の組電池の第1実施形態の斜視図である。また、図2は本実施形態の組電池の部品構成を分解図で示した図である。これら図においては、単電池に設けられる端子やガス排出弁、バスバーなどといった電池の詳細な構成については図示を省略している。図2における白抜き矢印は、構成部品が配置されるべき方向を示すものである。なお、本発明は以下に示す個別の実施形態に限定されるものではなく、その形態を変更して実施することもできる。 Hereinafter, an embodiment of an assembled battery of the present invention will be described with reference to the drawings, taking an assembled battery for a hybrid vehicle as an example. FIG. 1 is a perspective view of a first embodiment of a battery pack of the present invention. FIG. 2 is an exploded view showing the component configuration of the assembled battery of this embodiment. In these drawings, the detailed configuration of the battery such as a terminal, a gas exhaust valve, and a bus bar provided in the unit cell is not shown. The white arrow in FIG. 2 indicates the direction in which the component is to be arranged. In addition, this invention is not limited to the separate embodiment shown below, The form can also be changed and implemented.
組電池構造体(以下、組電池、電池モジュールとも記載する)1において、組電池を構成する平板状の単電池2,2は、単電池の広い面同士が対向するように、互いに所定の間隔を隔てて積層状態に配置されている。単電池2,2は直列あるいは並列に電気的に接続されて組電池を構成する。本実施形態においては、電池モジュールを構成する単電池はリチウムイオンバッテリーであり、単電池2は平板状(扁平な直方体状)の形状となっている。それぞれの電池の側面(広い平坦面に隣接する面)には端子が設けられている。 In the assembled battery structure (hereinafter also referred to as an assembled battery or a battery module) 1, the flat unit cells 2 and 2 constituting the assembled battery are spaced apart from each other by a predetermined distance so that the wide surfaces of the unit cells face each other. They are arranged in a stacked state with a gap therebetween. The unit cells 2 and 2 are electrically connected in series or in parallel to form an assembled battery. In the present embodiment, the unit cell constituting the battery module is a lithium ion battery, and the unit cell 2 has a flat plate shape (flat rectangular parallelepiped shape). Terminals are provided on the side surfaces (surfaces adjacent to a wide flat surface) of each battery.
図示は省略するが、組電池1の上流側や下流側には、送風ファンや他の通気経路部材(ダクトなど)が設けられて、全体として電池冷却システムが構成される。そして、積層状に並べられた単電池2,2はそれぞれの電池側面に供給される冷却風により冷却される。 Although illustration is omitted, on the upstream side and downstream side of the assembled battery 1, a blower fan and other ventilation path members (such as a duct) are provided to constitute a battery cooling system as a whole. Then, the single cells 2 and 2 arranged in a stacked manner are cooled by cooling air supplied to the side surfaces of the respective cells.
互いに隣接する単電池2,2の間には、スペーサ部材5,5が挟持されている。スペーサ部材により、単電池2,2の間には、所定の間隔が維持される。そして、スペーサ部材5と単電池2とによって、冷却風通路が形成されて、単電池は、冷却風通路に送られる冷却風により冷却される。 Spacer members 5 and 5 are sandwiched between the unit cells 2 and 2 adjacent to each other. A predetermined interval is maintained between the single cells 2 and 2 by the spacer member. The spacer member 5 and the single cell 2 form a cooling air passage, and the single cell is cooled by the cooling air sent to the cooling air passage.
単電池2,2とスペーサ部材5,5の積層構造が維持されるように、組電池には保持部材が設けられる。本実施形態においては、保持部材として、組電池の積層方向の両端の単電池の広い面に対向するように、一対のエンドプレート4、4が設けられている。エンドプレート4、4の間には、組電池を積層方向に締め付けるようなボルト(図示省略)が設けられ、電池の積層構造が維持される。保持部材は、エンドプレートとボルトには限定されず、他の構造部材を用いてもよいし、他の構造部材を併用するようにしても良い。 The assembled battery is provided with a holding member so that the laminated structure of the unit cells 2 and 2 and the spacer members 5 and 5 is maintained. In the present embodiment, as the holding member, a pair of end plates 4 and 4 are provided so as to face the wide surfaces of the unit cells at both ends in the stacking direction of the assembled battery. Bolts (not shown) that clamp the assembled battery in the stacking direction are provided between the end plates 4 and 4 to maintain the battery stack structure. The holding member is not limited to the end plate and the bolt, and other structural members may be used, or other structural members may be used in combination.
積層配置される単電池2,2の間に挟持されるスペーサ部材5について説明する。図3には、本実施形態において単電池2,2とスペーサ部材5、5とが積層された状態の斜視図を、図4にはスペーサ部材5の正面図及び断面図を示す。図4では、単電池間に挟持される部分のみを図示している。スペーサ部材5は、合成樹脂などにより形成された板状部材であり、単電池2,2の間の隙間を維持し、必要に応じて電池間の絶縁性を確保する部材である。スペーサ部材5は、単電池が積層される方向に延在する仕切り部51,51と、単電池表面と平行に延在する連結部52,52を有している。 The spacer member 5 sandwiched between the unit cells 2 and 2 arranged in a stacked manner will be described. FIG. 3 is a perspective view showing a state in which the unit cells 2 and 2 and the spacer members 5 and 5 are stacked in this embodiment, and FIG. 4 shows a front view and a cross-sectional view of the spacer member 5. In FIG. 4, only the part clamped between single cells is shown. The spacer member 5 is a plate-like member formed of a synthetic resin or the like, and is a member that maintains a gap between the single cells 2 and 2 and ensures insulation between the batteries as necessary. The spacer member 5 has partition parts 51 and 51 extending in the direction in which the unit cells are stacked, and connection parts 52 and 52 extending in parallel with the unit cell surface.
仕切り部51によって、互いに隣接する単電池間の隙間寸法が維持されると共に、電池間の冷却風通路が区画される。図3には、電池間の冷却風通路に流れ込む冷却風流れを白抜き矢印で示している。本実施形態においては、仕切り部51は、単電池間を流れる冷却風の流れ方向に沿って設けられる細長い板状の部分であり、互いに平行に並んで設けられている。従って、本実施形態においては冷却風通路もまた、互いに平行に並ぶ細長い通路となる。 The partition portion 51 maintains the gap size between the adjacent cells, and partitions the cooling air passage between the batteries. In FIG. 3, the flow of the cooling air flowing into the cooling air passage between the batteries is indicated by white arrows. In this embodiment, the partition part 51 is an elongate plate-shaped part provided along the flow direction of the cooling air which flows between single cells, and is provided along with mutually parallel. Therefore, in this embodiment, the cooling air passage is also an elongated passage arranged in parallel to each other.
連結部52は、隣接する仕切り部51,51を互いに連結し一体化している部分である。連結部は電池表面と平行な平面状(板状)に形成される。本実施形態においては、連結部52,52は、互いに隣接し対向する単電池表面の一方に密着するように形成されている。そして、隣接する仕切り部51,51と連結部52とによって略コの字断面の樋状の部分が形成される。また、本実施形態においては、互いに隣接する連結部52,52が、電池積層方向で反対側になるように、交互に配置されている。すなわち、仕切り部51,51と連結部52,52によって、略波板状の部分が形成されるように、スペーサ部材5は構成されている。 The connecting part 52 is a part in which adjacent partition parts 51 and 51 are connected and integrated with each other. The connecting portion is formed in a planar shape (plate shape) parallel to the battery surface. In this embodiment, the connection parts 52 and 52 are formed so that it may contact | adhere to one of the cell surface which adjoins mutually and opposes. And the adjacent partition parts 51 and 51 and the connection part 52 form the bowl-shaped part of a substantially U-shaped cross section. Moreover, in this embodiment, the connection parts 52 and 52 which mutually adjoin each other are arrange | positioned alternately so that it may become the other side in a battery lamination direction. That is, the spacer member 5 is configured such that a substantially corrugated portion is formed by the partition portions 51 and 51 and the connecting portions 52 and 52.
隣接する単電池2,2の間には、スペーサ部材5の仕切り部51,51と連結部52、及び単電池表面とによって、冷却風通路が形成される。すなわち、前述した略コの字断面の樋状の部分が電池表面で覆われて、角柱状の冷却風通路となる。 A cooling air passage is formed between the adjacent single cells 2 and 2 by the partition portions 51 and 51 of the spacer member 5, the connecting portion 52, and the single cell surface. That is, the aforementioned bowl-shaped portion of the substantially U-shaped cross section is covered with the battery surface to form a prismatic cooling air passage.
本発明におけるスペーサ部材には、さらに、棒部材53,53が設けられている。棒部材53,53は、冷却風通路を横断するように、互いに隣接し対向する仕切り部51,51の間に設けられている。また、棒部材53は、冷却風通路の電池積層方向中央部に設けられている。本実施形態においては、それぞれの冷却風通路に対し、棒部材53が5本ずつ、互いに冷却風流れ方向に離間するように設けられている。 The spacer member in the present invention is further provided with rod members 53 and 53. The rod members 53 and 53 are provided between the partition portions 51 and 51 that are adjacent to each other and face each other so as to cross the cooling air passage. Further, the bar member 53 is provided at the center of the cooling air passage in the battery stacking direction. In the present embodiment, five rod members 53 are provided in each cooling air passage so as to be separated from each other in the cooling air flow direction.
冷却風通路中に棒部材53が配置される電池積層方向の位置は、厳密に中央である必要はなく、棒部材の断面中心Cが、冷却風通路の電池積層方向の幅をHとして、幅方向にH/4〜3H/4の領域に配置されるように、より好ましくは、幅方向にH/3〜2H/3の領域に配置されるようにすればよい。 The position in the battery stacking direction in which the rod member 53 is disposed in the cooling air passage does not have to be strictly the center, and the cross-sectional center C of the rod member has a width in which the width of the cooling air passage in the battery stacking direction is H. It may be arranged in the region of H / 4 to 3H / 4 in the direction, more preferably in the region of H / 3 to 2H / 3 in the width direction.
棒部材53を構成する材料は特に限定されず、仕切り部や連結部を含むスペーサ部材本体と同じ材料であっても良い。あるいは、スペーサ部材本体とは異なる材料、例えば金属線などによって棒部材53を構成しても良い。棒部材53は仕切り部や連結部と共に一体成形されても良いし、仕切り部と連結部を備えるスペーサ部材本体を成形した後に棒部材を取付けても良い。 The material which comprises the bar member 53 is not specifically limited, The same material as the spacer member main body containing a partition part and a connection part may be sufficient. Alternatively, the bar member 53 may be made of a material different from that of the spacer member main body, such as a metal wire. The rod member 53 may be integrally formed with the partition portion and the connecting portion, or the rod member may be attached after the spacer member body including the partition portion and the connecting portion is formed.
好ましくは、本実施形態のように、棒部材53は、冷却風通路の冷却風流れ方向に対し略直交するとともに、電池表面に対し略平行になるように設けられる。
また、棒部材の太さ、即ち、棒部材の電池積層方向の幅dは、冷却風通路の電池積層方向の幅Hに対し、H/20≦d≦H/2 となるように設けることが好ましく、H/10≦d≦H/3 なるように設けることが特に好ましい。典型的には、冷却風通路の電池積層方向の幅Hは2〜8mm程度とされ、棒部材の電池積層方向の幅dは0.3〜3mm程度とされる。
Preferably, as in the present embodiment, the rod member 53 is provided so as to be substantially orthogonal to the cooling air flow direction of the cooling air passage and substantially parallel to the battery surface.
Further, the thickness of the rod member, that is, the width d of the rod member in the battery stacking direction is provided so that H / 20 ≦ d ≦ H / 2 with respect to the width H of the cooling air passage in the battery stacking direction. It is particularly preferable to provide such that H / 10 ≦ d ≦ H / 3. Typically, the width H of the cooling air passage in the battery stacking direction is about 2 to 8 mm, and the width d of the rod member in the battery stacking direction is about 0.3 to 3 mm.
本実施形態における棒部材53の断面形状を、図9(a)に示す。本実施形態においては、棒部材53は略D字状の断面を有し、冷却風上流側が丸く、冷却風下流側が直線状とされている。棒部材53の断面形状は、本実施形態のように、冷却風流れ下流側において、断面中心Cから冷却風通路の単電池2表面側にオフセットした位置に設けられた角部531と、断面中心から冷却風通路のスペーサ部材連結部52側にオフセットした位置に設けられた角部532とを有する形状とされることが好ましい。そして、これら角部531,532は、対をなすように、冷却風流れ方向を軸として対称な位置に設けられることが好ましい。 FIG. 9A shows a cross-sectional shape of the bar member 53 in the present embodiment. In the present embodiment, the bar member 53 has a substantially D-shaped cross section, and the cooling air upstream side is round and the cooling air downstream side is linear. The cross-sectional shape of the rod member 53 includes, as in the present embodiment, a corner portion 531 provided at a position offset from the cross-sectional center C to the surface side of the unit cell 2 on the downstream side of the cooling air flow, The cooling air passage preferably has a corner portion 532 provided at a position offset to the spacer member connecting portion 52 side. And it is preferable that these corner | angular parts 531 and 532 are provided in the symmetrical position about the cooling air flow direction as an axis | shaft so that it may make a pair.
以上のように、本発明におけるスペーサ部材5は、仕切り部51と連結部52と棒部材53を有する部材であるが、他の部分を適宜一体に備えるものであっても良い。他の部分としては、例えば、単電池との相対位置を位置決めするための位置決め部分や、隣接するスペーサ部材同士の間隔を規定する間隔規定部や、組電池全体にわたって挿通されるボルトなどを通せるように形成された部分、電池や冷却風の温度を測定する温度センサを取付ける部分などが例示できる。 As described above, the spacer member 5 according to the present invention is a member having the partition portion 51, the connecting portion 52, and the rod member 53, but may include other portions as appropriate. As other parts, for example, a positioning part for positioning the relative position with the unit cell, an interval defining part for defining an interval between adjacent spacer members, a bolt inserted through the entire assembled battery, and the like can be passed. Examples of the portion formed in this manner, a portion to which a temperature sensor for measuring the temperature of the battery or the cooling air, and the like are attached.
上記組電池は、公知の製造方法により構成することができる。例えば、エンドプレート4やスペーサ部材5、5は、例えば合成樹脂(特に熱可塑性樹脂)の射出成形により製造することができ、これら部材と単電池2,2を組み立てて、ボルトなどの締結部材により結合して、上記組電池構造を構成できる。強度や熱的要件等の要件に応じて、これら部材を金属部材で構成することもできる。また、これら部材においてシール性や弾力性が必要な部分がある場合には、その部位をゴムやエラストマーなどの弾性材料などにより構成することが好ましい。 The assembled battery can be configured by a known manufacturing method. For example, the end plate 4 and the spacer members 5 and 5 can be manufactured, for example, by injection molding of synthetic resin (especially thermoplastic resin), and these members and the unit cells 2 and 2 are assembled together by fastening members such as bolts. By combining these, the above assembled battery structure can be configured. These members can be made of metal members according to requirements such as strength and thermal requirements. Moreover, when there exists a part which needs sealing performance and elasticity in these members, it is preferable to comprise the site | part by elastic materials, such as rubber | gum and an elastomer.
スペーサ部材5の製造方法は特に限定されるものではない。例えば、スペーサ部材5は、スライド金型を使うなどすれば、樹脂の射出成形により棒部材53を含めて一体成形できる。 The manufacturing method of the spacer member 5 is not particularly limited. For example, the spacer member 5 can be integrally formed including the rod member 53 by resin injection molding if a slide mold is used.
本発明の組電池による作用と効果を説明する。
本発明の組電池においては、それぞれの単電池の冷却性を高めることができる。特に、それぞれの単電池において、冷却風下流側部分での冷却性を高めることができる。
The operation and effect of the assembled battery of the present invention will be described.
In the assembled battery of the present invention, the cooling performance of each unit cell can be enhanced. In particular, in each unit cell, the cooling performance in the downstream portion of the cooling air can be enhanced.
図5を参照しながら、本発明の組電池が備える作用の説明をする。図5では、単電池積層方向と冷却風流れ方向を含むような面での組電池の断面、すなわち、棒部材に沿って見た冷却風通路の断面を示している。本発明のように棒部材を設けた場合の冷却風流れを図5(a)に、従来技術のように棒部材がない場合の冷却風流れを図5(b)に示す。なお、図5では、棒部材が一本設けられた部分の冷却風流れの様子を模式的に示している。 With reference to FIG. 5, the operation of the assembled battery of the present invention will be described. FIG. 5 shows a cross section of the assembled battery in a plane including the cell stacking direction and the cooling air flow direction, that is, a cross section of the cooling air passage viewed along the rod member. FIG. 5A shows the cooling air flow when the bar member is provided as in the present invention, and FIG. 5B shows the cooling air flow when there is no bar member as in the prior art. In addition, in FIG. 5, the mode of the cooling air flow of the part in which one rod member was provided is shown typically.
図5(b)に示すように、棒部材がない場合には、それぞれの冷却風通路において、冷却風は単電池表面と平行に、層流状に流れる。この際、例えば単電池Aの図中下側の面は主に冷却風通路1を流れる冷却風で冷却され、単電池Bの図中下側の面は主に冷却風通路2を流れる冷却風で冷却される。しかしながら、冷却風流れの下流側(図中右側)の電池表面には、電池の上流側部分を冷却して暖かくなった冷却風しか供給されない。そのため、冷却風流れの下流側部分の電池表面の冷却効率が悪くなる(また、下流側の電池表面温度が若干高くなる)。 As shown in FIG. 5B, when there is no bar member, the cooling air flows in a laminar flow parallel to the surface of the unit cell in each cooling air passage. At this time, for example, the lower surface of the cell A in the figure is mainly cooled by the cooling air flowing through the cooling air passage 1, and the lower surface of the cell B in the figure is mainly cooled by the cooling air passage 2. Cooled by. However, only the cooling air warmed by cooling the upstream portion of the battery is supplied to the battery surface on the downstream side (right side in the figure) of the cooling air flow. Therefore, the cooling efficiency of the battery surface in the downstream portion of the cooling air flow is deteriorated (and the battery surface temperature on the downstream side is slightly increased).
図5(a)には、本発明のような棒部材を設けた場合の冷却風流れを示す。棒部材より上流側の部分では、基本的に棒部材がない場合と同様の冷却風流れとなる。棒部材53よりも下流側領域では、冷却風流れが、電池積層方向の速度成分を持つ流れとなり、電池積層方向に冷却風が攪拌される。この流れは、冷却風通路の中央部に通路を横断するように設けられた棒部材53の下流側に、いわゆるカルマン渦(渦列)が発生し、渦が交互に生成、成長、離脱していくことによって生ずる流れである。 FIG. 5 (a) shows the flow of cooling air when a bar member as in the present invention is provided. In the portion upstream of the bar member, the cooling air flow is basically the same as when there is no bar member. In the region downstream of the rod member 53, the cooling air flow has a velocity component in the battery stacking direction, and the cooling air is stirred in the battery stacking direction. In this flow, a so-called Karman vortex (vortex line) is generated on the downstream side of the bar member 53 provided so as to cross the passage at the center of the cooling air passage, and the vortex is alternately generated, grown, and separated. It is a flow that occurs by going.
棒部材よりも下流側(図中右側)の領域では、この流れによって、冷却風は、電池積層方向に攪拌されることになり、下流側電池表面にまだ温められていない冷却風が送られるようになる。この流れ場の変化によって、電池下流側の冷却性を高め、電池の冷却効率を向上させることができる。また、冷却風流れの下流側領域の冷却効率を高めることができるので、それぞれの単電池における電池表面温度の差異も小さくなる。 In the region on the downstream side (right side in the figure) from the rod member, this flow causes the cooling air to be agitated in the battery stacking direction, so that the cooling air that has not yet been heated is sent to the downstream battery surface. become. The change in the flow field can improve the cooling performance on the downstream side of the battery and improve the cooling efficiency of the battery. Moreover, since the cooling efficiency of the downstream area | region of a cooling wind flow can be improved, the difference of the battery surface temperature in each single cell also becomes small.
図6には、本発明における棒部材を設けた冷却風通路の流れのシミュレーション結果を示す。色の濃い部分が流速や渦度が大きい部分である。流速分布及び渦度分布の様子から、棒部材の下流側の領域にカルマン渦が発生し、冷却風が電池積層方向(図の上下方向)に攪拌される様子が確認できる。なお、流れシミュレーションにおいては、棒部材は図9(c)に示すような三角形断面の棒部材とした。 In FIG. 6, the simulation result of the flow of the cooling air path which provided the rod member in this invention is shown. The dark part is the part where the flow velocity and vorticity are large. From the state of the flow velocity distribution and the vorticity distribution, it can be confirmed that Karman vortex is generated in the downstream region of the rod member and the cooling air is stirred in the battery stacking direction (vertical direction in the figure). In the flow simulation, the bar member was a bar member having a triangular cross section as shown in FIG.
流れシミュレーションと共に、電池に所定量の発熱量を設定し、所定温度の冷却風を供給する、熱流体シミュレーションを行った。
棒部材がある実施例と棒部材がない比較例とで、電池平均温度を同じ目標温度にするための必要風量を比較したところ、棒部材のある実施例のほうが、冷却風の流量を45%少なくできることがわかった。また、その際の組電池周りの圧力損失は、棒部材を追加したにも関わらずごくわずかしか増えず、冷却系全体の圧力損失で見れば、必要な冷却風量が少なくなるために、圧力損失も小さくできることがわかった。
Along with the flow simulation, a thermal fluid simulation was performed in which a predetermined amount of heat generation was set for the battery and cooling air at a predetermined temperature was supplied.
In the example with the bar member and the comparative example without the bar member, the required air volume for making the battery average temperature the same target temperature was compared. In the example with the bar member, the flow rate of the cooling air was 45%. I found that I could do it less. In addition, the pressure loss around the assembled battery at that time increases only slightly despite the addition of rod members, and the amount of cooling air required is less when viewed from the pressure loss of the entire cooling system. It was found that it can be made smaller.
また、第1実施形態のように、冷却風通路に、複数本(例えば5本)の棒部材が冷却風流れ方向に離間するように設けられれば、冷却風の攪拌効果が大きくなり、より効果的に冷却効率を高めることができる。棒部材により生成されるカルマン渦の影響(攪拌効果)は、棒部材から離れると(例えば、電池積層方向の冷却風通路の幅をHとして、5H〜20H程度以上離れると)、影響が弱くなるので、冷却風通路が長い場合には、複数本の棒部材を冷却風通路に配置することが好ましい。そして、棒部材を複数本配置する場合には、棒部材同士が5H〜20H程度離間するように配置することが特に好ましい。このようにすると、棒部材による通気抵抗の増加を最小限に抑えつつ、効果的に冷却効率を高めることができる。 Further, as in the first embodiment, if a plurality of (for example, five) rod members are provided in the cooling air passage so as to be separated from each other in the cooling air flow direction, the stirring effect of the cooling air becomes larger and more effective. The cooling efficiency can be increased. The influence (stirring effect) of the Karman vortex generated by the bar member becomes weaker when it is separated from the bar member (for example, when the width of the cooling air passage in the battery stacking direction is H and is about 5H to 20H or more). Therefore, when the cooling air passage is long, it is preferable to arrange a plurality of rod members in the cooling air passage. And when arranging two or more bar members, it is especially preferable to arrange so that bar members may be about 5H-20H apart. If it does in this way, cooling efficiency can be raised effectively, suppressing the increase in ventilation resistance by a rod member to the minimum.
また、棒部材は、冷却風通路の冷却風流れ方向に対し略直交するとともに、電池表面に対し略平行に設けられることが好ましく、このようにすると、カルマン渦の発生を確実かつ強いものとでき、電池の冷却効率をより効果的に高めることができる。 Further, it is preferable that the rod member is substantially orthogonal to the cooling air flow direction of the cooling air passage and is provided substantially parallel to the battery surface. In this way, the generation of Karman vortices can be ensured and strong. The cooling efficiency of the battery can be increased more effectively.
また、上記第1実施形態のように、棒部材の断面形状が、冷却風流れ下流側において、断面中心Cから単電池表面側にオフセットした位置に設けられた角部531と、断面中心からスペーサ部材連結部側にオフセットした位置に設けられた角部532とを有する形状(例えばD形状)とされていれば、カルマン渦の発生を確実かつ強いものとでき、電池の冷却効率をより効果的に高めることができる。 Further, as in the first embodiment, the cross-sectional shape of the bar member is provided on the downstream side of the cooling air flow, at the corner 531 provided at a position offset from the cross-sectional center C to the unit cell surface side, and the spacer from the cross-sectional center. If it has a shape (for example, D shape) having a corner portion 532 provided at a position offset to the member connecting portion side, the generation of Karman vortex can be made surely and strong, and the battery cooling efficiency is more effective. Can be increased.
本発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に本発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分についてはその説明を簡略化または省略する。 The present invention is not limited to the above embodiment, and can be implemented with various modifications. Although other embodiments of the present invention will be described below, in the following description, portions different from the above embodiment will be mainly described, and the description of the same portions will be simplified or omitted.
まず、スペーサ部材のスペーサ部材本体部の変更例を説明する。本発明の組電池に使用されるスペーサ部材は、図7に示したスペーサ部材6や図8に示したような。スペーサ部材7であっても良い。スペーサ部材6もスペーサ部材7も、仕切り部(61,71)と連結部(62,72)と棒部材(63,73)を有する点では、第1実施形態におけるスペーサ部材5と同じであるが、仕切り部(61,71)と連結部(62,72)の接続関係が変更されている。なおスペーサ部材7を示す図8では、冷却風流れ方向に沿って見た断面図のみを図示している。 First, the example of a change of the spacer member main-body part of a spacer member is demonstrated. The spacer member used in the assembled battery of the present invention is as shown in the spacer member 6 shown in FIG. 7 or FIG. The spacer member 7 may be used. Both the spacer member 6 and the spacer member 7 are the same as the spacer member 5 in the first embodiment in that the partition member (61, 71), the connecting portion (62, 72), and the rod member (63, 73) are provided. The connection relationship between the partition parts (61, 71) and the connecting parts (62, 72) is changed. In FIG. 8 showing the spacer member 7, only a cross-sectional view seen along the cooling air flow direction is shown.
図7に示したスペーサ部材6においては、連結部62,62は、全体が1枚の平板状となるように、仕切り部61,61の一方側に接続されている。そして、仕切り部61,61は連結部62からリブ状に設けられている。このようなスペーサ部材6であっても棒部材63が冷却風通路に設けられていることにより、第1実施形態と同様に冷却効率を高める効果が得られる。 In the spacer member 6 shown in FIG. 7, the connecting portions 62 and 62 are connected to one side of the partition portions 61 and 61 so that the whole becomes a single flat plate shape. And the partition parts 61 and 61 are provided in the shape of a rib from the connection part 62. FIG. Even in such a spacer member 6, since the rod member 63 is provided in the cooling air passage, the effect of increasing the cooling efficiency can be obtained as in the first embodiment.
図8に示したスペーサ部材7においては、連結部72,72は、全体が1枚の平板状となるように、仕切り部71,71の電池積層方向中央部に接続一体化されている。そして、仕切り部71,71は連結部72の両面に突出するようにリブ状に設けられている。このようなスペーサ部材7であっても棒部材73が冷却風通路に設けられていることにより、第1実施形態と同様に冷却効率を高める効果が得られる。すなわち、本発明におけるスペーサ部材の連結部は、電池表面に密着するものに限定されない。 In the spacer member 7 shown in FIG. 8, the connecting portions 72, 72 are connected and integrated with the central portion of the partition portions 71, 71 in the battery stacking direction so that the whole becomes one flat plate shape. And the partition parts 71 and 71 are provided in the shape of a rib so that it may protrude on both surfaces of the connection part 72. As shown in FIG. Even if it is such a spacer member 7, the effect which raises cooling efficiency is acquired similarly to 1st Embodiment by providing the rod member 73 in the cooling air path. In other words, the connecting portion of the spacer member in the present invention is not limited to that closely contacting the battery surface.
図9には、棒部材の断面形状の変形例を示す。いずれの図も、冷却風通路に沿った断面を示しており、冷却風は、図中左から右へと流れていく。棒部材としては、図9(a)(第1実施形態)のように略D字断面を有する棒部材53、図9(b)のように円形断面を有する棒部材54、図9(c)、(f)のように三角形断面を有する棒部材55、58、図9(d)のように矩形断面を有する棒部材56、図9(e)のように異形断面を有する棒部材57、その他楕円断面、長円断面を有する棒部材など、種々の断面の棒部材が使用できる。 FIG. 9 shows a modification of the cross-sectional shape of the bar member. Each figure shows a cross section along the cooling air passage, and the cooling air flows from the left to the right in the figure. As the bar member, a bar member 53 having a substantially D-shaped cross section as shown in FIG. 9A (first embodiment), a bar member 54 having a circular cross section as shown in FIG. 9B, and FIG. 9C. , (F), bar members 55 and 58 having a triangular cross section, bar member 56 having a rectangular cross section as shown in FIG. 9 (d), bar member 57 having a deformed cross section as shown in FIG. 9 (e), and others Various cross-section bar members such as an oval cross-section and an oval cross-section can be used.
カルマン渦を確実かつ強く発生させ、冷却効率をより効果的に高める観点からは、図9(a)(c)(d)(e)に図示されるように、棒部材の断面形状が、冷却風流れ下流側において、断面中心Cから単電池表面側(対向する冷却風通路壁面の一方の側)にオフセットした位置に設けられた角部531,551,561,571と、断面中心からスペーサ部材連結部側(対向する冷却風通路壁面の他方の側)にオフセットした位置に設けられた角部532,552,562,572とを有するような形状とされることが好ましい。そして、図9(c)に示した棒部材55や、図9(e)に示した棒部材57のように、これら角部551,552、571、572が、鋭角となるようにされることが特に好ましい。 From the viewpoint of generating the Karman vortex reliably and strongly and increasing the cooling efficiency more effectively, the cross-sectional shape of the rod member is cooled as shown in FIGS. 9 (a), (c), (d), and (e). On the downstream side of the wind flow, corner portions 531, 551, 561, and 571 provided at positions offset from the cross-sectional center C to the cell surface side (one side of the opposing cooling wind passage wall surface), and spacer members from the cross-sectional center It is preferable to have a shape having corner portions 532, 552, 562, and 572 provided at positions offset to the connecting portion side (the other side of the opposing cooling wind passage wall surface). Then, like the bar member 55 shown in FIG. 9C and the bar member 57 shown in FIG. 9E, these corners 551, 552, 571, and 572 are made to have acute angles. Is particularly preferred.
棒部材に設けられる角部は、冷却風流れ下流側に設けられるものに限定されない。例えば、図9(f)に示すように、棒部材58の断面形状が、冷却風流れ上流側において、断面中心Cから単電池表面側(対向する冷却風通路壁面の一方の側)にオフセットした位置に設けられた角部581と、断面中心からスペーサ部材連結部側(対向する冷却風通路壁面の他方の側)にオフセットした位置に設けられた角部582とを有するような形状とされるようにしても良く、このようにしても、カルマン渦が確実かつ強く発生し、冷却効率がより効果的に高められる。 The corner provided in the rod member is not limited to that provided on the downstream side of the cooling air flow. For example, as shown in FIG. 9 (f), the cross-sectional shape of the rod member 58 is offset from the cross-sectional center C to the cell surface side (one side of the opposing cooling air passage wall surface) on the upstream side of the cooling air flow. And a corner portion 582 provided at a position offset from the center of the cross section to the spacer member connecting portion side (the other side of the opposing cooling air passage wall surface). In this case, Karman vortices are generated reliably and strongly, and the cooling efficiency is more effectively increased.
棒部材が冷却風通路中に置かれる角度は、第1実施形態において説明したように、冷却風流れに対し略直交するとともに、電池表面に対し略平行に設けられることが好ましいが、斜めに設けられていても良い。冷却風流れに対しても、電池表面に対しても斜めになるように設けられていると、冷却風流れに電池積層方向の速度成分を与えることが出来るようになるので、このような構成も、冷却効率の向上に寄与しうる。 As described in the first embodiment, the angle at which the rod member is placed in the cooling air passage is substantially orthogonal to the cooling air flow and is preferably provided substantially parallel to the battery surface. It may be done. If it is provided so as to be inclined with respect to both the cooling air flow and the battery surface, the velocity component in the battery stacking direction can be given to the cooling air flow. This can contribute to improvement of cooling efficiency.
組電池には、他の部材が一体化されていても良く、例えば、組電池の上流側や下流側に、冷却風の流れ(分配)を調整するための流れ制御板(電池間の隙間に対応するようにスリットが設けられた板など)や、ガス抜き集合配管などが一体化されていても良い。 Other members may be integrated in the assembled battery. For example, on the upstream side or downstream side of the assembled battery, a flow control plate for adjusting the flow (distribution) of cooling air (in the gap between the batteries) A plate provided with a slit so as to correspond), a gas vent collective pipe, or the like may be integrated.
組電池を構成する平板状電池の種類には、一次電池、二次電池(リチウムイオンバッテリー、ニッケル水素電池、ニッケルカドミウム電池など)、二重電気キャパシタなどが例示でき、さらには、複数個のそれら電池をモジュール化したものが例示できる。電池は、上記実施形態においては、平板状のものについて説明したが、多少の曲がりを有する平板状であっても良い。さらに、平板状電池の表面は平坦である必要はなく、冷却性向上や電池外装缶の剛性向上のための凹凸条などを有する電池であってもよい。 Examples of the type of flat battery constituting the assembled battery include primary batteries, secondary batteries (lithium ion batteries, nickel metal hydride batteries, nickel cadmium batteries, etc.), double electric capacitors, and the like. Examples of the battery are modularized. In the above-described embodiment, the battery has been described as having a flat plate shape, but the battery may have a flat plate shape with some bends. Further, the surface of the flat battery does not need to be flat, and may be a battery having uneven strips for improving the cooling performance and improving the rigidity of the battery outer can.
組電池が使用される目的・用途も、自動車用に限定されるものではなく、例えば、風力発電装置や太陽電池発電装置などにおいて発電電力を平準化する目的で二次電池が使用される用途など、広い用途に使用される組電池に本発明は活用できる。 The purpose and application for which the assembled battery is used are not limited to those for automobiles. For example, a secondary battery is used for the purpose of leveling generated power in a wind power generator or a solar battery power generator. The present invention can be utilized for assembled batteries used in a wide range of applications.
本発明は、電気自動車やハイブリッド自動車、発電装置などに使用される大容量組電池に使用することができ、それら組電池を構成する平板状単電池を効率的に冷却することができ、産業上の利用価値が高い。 INDUSTRIAL APPLICABILITY The present invention can be used for large-capacity assembled batteries used in electric vehicles, hybrid vehicles, power generators, and the like, and can efficiently cool flat battery cells constituting the assembled batteries. The utility value of is high.
1 組電池
2 単電池
4 エンドプレート
5 スペーサ部材
51 仕切り部
52 連結部
53 棒部材
531,532 角部
DESCRIPTION OF SYMBOLS 1 assembled battery 2 cell 4 end plate 5 spacer member 51 partition part 52 connection part 53 rod member 531 532 corner part
Claims (4)
隣接する単電池の間には、スペーサ部材が挟持され、
スペーサ部材は、単電池が積層される方向に延在する仕切り部と、単電池表面と平行に延在する連結部を有しており、
隣接する単電池の間には、スペーサ部材の仕切り部と連結部、及び単電池表面とによって、冷却風通路が形成されるとともに、
互いに隣接する仕切り部の間には、当該冷却風通路を横断するように、棒部材が設けられており、
棒部材は、冷却風通路の電池積層方向中央部に設けられていて、
棒部材の電池積層方向の幅dが、冷却風通路の電池積層方向の幅Hに対し、H/10≦d≦H/3 となるように設けられたことを特徴とする組電池。 An assembled battery constructed by laminating and arranging substantially flat unit cells,
A spacer member is sandwiched between adjacent unit cells,
The spacer member has a partition portion that extends in the direction in which the cells are stacked, and a connecting portion that extends in parallel with the surface of the unit cells.
Between adjacent unit cells, a cooling air passage is formed by the partition part and the connecting part of the spacer member, and the unit cell surface,
Between the partition portions adjacent to each other, a bar member is provided so as to cross the cooling air passage,
The bar member is provided at the center of the cooling air passage in the battery stacking direction ,
An assembled battery, wherein a width d of the rod member in the battery stacking direction is set to satisfy H / 10 ≦ d ≦ H / 3 with respect to a width H of the cooling air passage in the battery stacking direction .
請求項1または請求項2に記載の組電池。 3. The assembled battery according to claim 1, wherein the rod member is substantially orthogonal to the cooling air flow direction of the cooling air passage and is provided substantially parallel to the battery surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012073093A JP5875920B2 (en) | 2012-03-28 | 2012-03-28 | Assembled battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012073093A JP5875920B2 (en) | 2012-03-28 | 2012-03-28 | Assembled battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013206666A JP2013206666A (en) | 2013-10-07 |
JP5875920B2 true JP5875920B2 (en) | 2016-03-02 |
Family
ID=49525557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012073093A Expired - Fee Related JP5875920B2 (en) | 2012-03-28 | 2012-03-28 | Assembled battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5875920B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6424692B2 (en) * | 2015-03-19 | 2018-11-21 | 株式会社オートネットワーク技術研究所 | Storage pack |
JP6563680B2 (en) | 2015-05-08 | 2019-08-21 | 株式会社Gsユアサ | Power storage device |
JP6726478B2 (en) * | 2016-02-19 | 2020-07-22 | 株式会社Gsユアサ | Power storage device, method of manufacturing power storage device, and method of manufacturing adjacent member for power storage device |
CN106784503B (en) * | 2017-02-23 | 2019-06-21 | 苏州祥弘源电子科技有限公司 | It is a kind of to be easy to the new energy car battery case being convenient to clean that radiates |
CN111293253B (en) * | 2020-04-24 | 2020-10-23 | 比亚迪股份有限公司 | Battery pack and electric vehicle |
CN113782897B (en) * | 2020-05-22 | 2022-12-09 | 比亚迪股份有限公司 | Battery pack and vehicle with same |
JP7559672B2 (en) | 2021-05-17 | 2024-10-02 | トヨタ自動車株式会社 | Energy Storage Module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094371A (en) * | 2010-10-27 | 2012-05-17 | Sanyo Electric Co Ltd | Battery pack |
-
2012
- 2012-03-28 JP JP2012073093A patent/JP5875920B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013206666A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5875920B2 (en) | Assembled battery | |
JP6392323B2 (en) | Battery system | |
JP5108618B2 (en) | Battery holder | |
US8802264B2 (en) | Easy-to-assemble battery pack with prismatic battery cells | |
EP2929579B1 (en) | Electricity storage device | |
KR100942985B1 (en) | Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity in Coolant Flux | |
US20120263991A1 (en) | Battery pack | |
JP5490652B2 (en) | Battery structure | |
US10950907B2 (en) | Battery pack | |
JP5510044B2 (en) | Battery pack | |
US8790812B2 (en) | Battery pack | |
JP2007280858A (en) | Holding structure of secondary battery | |
JP2007200778A (en) | Cooling structure of secondary battery | |
JP2013218790A (en) | Gas exhaust pipe | |
US20130244078A1 (en) | Radiating apparatus for battery cell using interface plate | |
JP5288042B2 (en) | Power storage device | |
JP2017098107A (en) | Power storage device | |
JP5285489B2 (en) | Battery assembly | |
JP5742664B2 (en) | Battery pack and vehicle | |
JP6400507B2 (en) | Heating element cooling structure | |
JP2014154401A (en) | Battery module and battery unit | |
EP2737571A1 (en) | Battery pack | |
EP2737570B1 (en) | Battery pack | |
JP5768743B2 (en) | Power storage device | |
JP6743576B2 (en) | Battery pack structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5875920 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |