JP2012150937A - Method for manufacturing electron emission element, electron beam device, and image display device - Google Patents

Method for manufacturing electron emission element, electron beam device, and image display device Download PDF

Info

Publication number
JP2012150937A
JP2012150937A JP2011007554A JP2011007554A JP2012150937A JP 2012150937 A JP2012150937 A JP 2012150937A JP 2011007554 A JP2011007554 A JP 2011007554A JP 2011007554 A JP2011007554 A JP 2011007554A JP 2012150937 A JP2012150937 A JP 2012150937A
Authority
JP
Japan
Prior art keywords
gate
electron
manufacturing
insulating layer
electron emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011007554A
Other languages
Japanese (ja)
Inventor
Rieko Sakamoto
理恵子 坂本
Yasuo Ohashi
康雄 大橋
Tomoya Onishi
智也 大西
Toshiji Sumiya
利治 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011007554A priority Critical patent/JP2012150937A/en
Publication of JP2012150937A publication Critical patent/JP2012150937A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electron emission element having reduced variation in electron emission characteristic for each element, an electron beam device using the electron emission element, and an image display device using the electron beam device.SOLUTION: A method for manufacturing an electron emission element comprising a gate, an insulation member having the gate on a top face thereof and having a recess on a side face just below the gate, and a cathode having a protrusion whose tip is opposite to the gate via the recess, the method comprises: forming the insulation member having on a top face thereof the gate composed of a member containing metal and capable of forming a passive film; and then forming the passive film on a surface of the gate.

Description

本発明は電子放出素子、電子放出素子を用いた電子線装置、及び電子線装置を用いた画像表示装置の製造方法に関する。   The present invention relates to an electron-emitting device, an electron beam device using the electron-emitting device, and a method for manufacturing an image display device using the electron beam device.

ディスプレイ等に用いられる電子放出素子として電界放出型の電子放出素子が知られており、特許文献1には、電界が集中する微細な突起部分を有するカソードと、この突起部分に対向するゲートを備えた電界放出型の電子放出素子が開示されている。   2. Description of the Related Art A field emission type electron-emitting device is known as an electron-emitting device used for a display or the like. Patent Document 1 includes a cathode having a fine protruding portion where an electric field is concentrated, and a gate facing the protruding portion. A field emission type electron-emitting device is disclosed.

特開2009−272298号公報JP 2009-272298 A

特許文献1に記載の技術では、ゲート形成後の製造工程において、ゲートが自然酸化してゲートの表面に自然酸化膜が形成され、自然酸化膜の膜応力によりゲートがエミッタ方向にタレてしまうことがあった。素子毎でゲートの酸化度合いにばらつきがあると素子毎でゲートのタレがばらついてしまう。その結果、素子毎で電子放出特性にばらつきが生じるおそれがあった。   In the technique described in Patent Document 1, in the manufacturing process after gate formation, the gate is naturally oxidized to form a natural oxide film on the surface of the gate, and the gate is sagging in the emitter direction due to the film stress of the natural oxide film. was there. If the degree of oxidation of the gate varies from element to element, the sagging of the gate varies from element to element. As a result, there is a possibility that the electron emission characteristics vary from element to element.

そこで、本発明は、素子毎で電子放出特性のばらつきが少ない電子放出素子、電子放出素子を用いた電子線装置、及び電子線装置を用いた画像表示装置の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electron-emitting device with little variation in electron emission characteristics from device to device, an electron beam device using the electron-emitting device, and a method for manufacturing an image display device using the electron beam device. To do.

上記課題を解決するために、本発明は、ゲートと、
上面に前記ゲートを有し、前記ゲート直下の側面に凹部を有する絶縁部材と、
突起部分を有し、該突起部分の先端が前記凹部を介して前記ゲートに向き合っているカソードと、
を備える電子放出素子の製造方法であって、
金属を含み不動態を形成可能な部材からなるゲート、を上面に有する絶縁部材を形成した後、
前記ゲートの表面に不動態膜を形成することを特徴とする電子放出素子の製造方法を提供するものである。
In order to solve the above problems, the present invention includes a gate,
An insulating member having the gate on an upper surface and a recess on a side surface directly below the gate;
A cathode having a protruding portion, the tip of the protruding portion facing the gate through the recess;
A method of manufacturing an electron-emitting device comprising:
After forming an insulating member having a gate made of a member containing metal and capable of forming a passive state on the upper surface,
It is another object of the present invention to provide a method for manufacturing an electron-emitting device, wherein a passive film is formed on the surface of the gate.

本発明によれば、金属を含み不動態を形成可能な部材からなるゲートの表面に不動態膜を形成し、一定の酸化膜厚とすることで、酸化に起因するゲートのタレを常に一定にすることができる。これにより、素子毎で電子放出特性のばらつきを抑制することができる。   According to the present invention, a passivation film is formed on the surface of a gate made of a member containing a metal and capable of forming a passivation, and the gate sagging due to oxidation is always kept constant by making the oxide film thickness constant. can do. Thereby, the dispersion | variation in an electron emission characteristic can be suppressed for every element.

本発明に係る電子放出素子の構成を示す図である。It is a figure which shows the structure of the electron emission element which concerns on this invention. 図1の電子放出素子の凹部周辺部分の拡大図である。It is an enlarged view of the recessed part periphery part of the electron emission element of FIG. 電子放出特性を測定する時の電源の供給配置を示す図である。It is a figure which shows the supply arrangement | positioning of a power supply when measuring an electron emission characteristic. カソード先端からゲート底面までの最短距離と電子放出特性の関係である。This is the relationship between the shortest distance from the cathode tip to the gate bottom and the electron emission characteristics. ゲートのタレを説明する図である。It is a figure explaining the sagging of a gate. 時間と酸化膜厚の関係、酸化膜厚とゲートのタレの関係である。It is the relationship between time and oxide film thickness, and the relationship between oxide film thickness and gate sagging. 本発明の他の実施形態に係る電子放出素子の凹部周辺部分の拡大図である。It is an enlarged view of the recessed part periphery part of the electron emission element which concerns on other embodiment of this invention. 本発明に係る電子放出素子の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the electron emission element which concerns on this invention. 本発明の他の実施形態に係る電子放出素子の凹部周辺部分の拡大図である。It is an enlarged view of the recessed part periphery part of the electron emission element which concerns on other embodiment of this invention. 実施例1の電子放出素子の斜視図である。2 is a perspective view of an electron-emitting device of Example 1. FIG. 本発明に係る画像表示装置の表示パネルの構成を示す斜視図である。It is a perspective view which shows the structure of the display panel of the image display apparatus which concerns on this invention.

以下に図面を参照して本発明の好適な実施形態を例示的に説明する。但し、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは本発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the following embodiments are not intended to limit the scope of the present invention only to those unless otherwise specified. .

〔電子放出素子の概要〕
図1は本発明に係る電子放出素子の構成の一例を示す模式図であり、図1(A)は上面図、図1(B)は図1(A)におけるA−A’断面図、図1(C)は図1(B)において電子放出素子を矢印方向から眺めたときの側面図である。
[Outline of electron-emitting device]
1A and 1B are schematic views showing an example of the configuration of an electron-emitting device according to the present invention. FIG. 1A is a top view, FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. 1 (C) is a side view of the electron-emitting device viewed from the direction of the arrow in FIG. 1 (B).

図1(B)において、1は基板、2は電極、3は絶縁部材であって絶縁層3aと絶縁層3bの積層体からなる。5はゲートであってゲート基材5a、ゲート基材5aを覆う不動態膜5b及び導電性膜5cからなる。6はカソードであって電極2に電気的に接続されている。7は絶縁部材3の凹部であって、絶縁層3bの側面のみを絶縁層3aよりも内側に凹ませて形成している。凹部7を構成する、絶縁層3aの上面の、絶縁層3bが形成されていない部分と、絶縁層3bの側面とを、以下「凹部7の内表面」ということもある。図1(B)では積層体からなる絶縁部材3に凹部7を設けているが、1つの絶縁層からなる絶縁部材3に凹部7を設けても良い。8は電子放出に必要な電界が形成される間隙(カソード6の突起部分の先端からゲート5の底面までの最短距離d)である。   In FIG. 1B, 1 is a substrate, 2 is an electrode, 3 is an insulating member, and is formed of a laminate of an insulating layer 3a and an insulating layer 3b. Reference numeral 5 denotes a gate, which includes a gate base material 5a, a passive film 5b covering the gate base material 5a, and a conductive film 5c. Reference numeral 6 denotes a cathode which is electrically connected to the electrode 2. Reference numeral 7 denotes a recess of the insulating member 3, which is formed by recessing only the side surface of the insulating layer 3b inward of the insulating layer 3a. The portion of the upper surface of the insulating layer 3a constituting the recess 7 where the insulating layer 3b is not formed and the side surface of the insulating layer 3b may be hereinafter referred to as “the inner surface of the recess 7”. In FIG. 1B, the recess 7 is provided in the insulating member 3 made of a laminate, but the recess 7 may be provided in the insulating member 3 made of one insulating layer. Reference numeral 8 denotes a gap (shortest distance d from the tip of the protruding portion of the cathode 6 to the bottom surface of the gate 5) where an electric field necessary for electron emission is formed.

図1(B)に示すように、絶縁部材3は上面にゲート5を有し、ゲート直下の側面に凹部を有している。カソード6は突起部分を有し、該突起部分の先端が凹部7を介してゲート5に向き合っている。カソード6の突起部分の、凹部7の縁に沿った方向の長さは、ゲート5の、該突起部分に対向する部分の、該方向の長さよりも短く形成しても良い(図10参照)。また、図1(B)のように、カソード6は凹部7の縁から絶縁層3aの側面に沿って基板1上まで設けても良い。本発明では、カソード6はゲート5よりも低電位に規定される。ゲート5の電位がカソード6の電位よりも高くなるように電圧を印加することで、カソード6の突起部分から電子が電界放出される。   As shown in FIG. 1B, the insulating member 3 has a gate 5 on the top surface and a recess on the side surface immediately below the gate. The cathode 6 has a protruding portion, and the tip of the protruding portion faces the gate 5 via the recess 7. The length of the protruding portion of the cathode 6 in the direction along the edge of the concave portion 7 may be shorter than the length of the portion of the gate 5 facing the protruding portion in the direction (see FIG. 10). . As shown in FIG. 1B, the cathode 6 may be provided from the edge of the recess 7 to the substrate 1 along the side surface of the insulating layer 3a. In the present invention, the cathode 6 is defined at a lower potential than the gate 5. By applying a voltage so that the potential of the gate 5 is higher than the potential of the cathode 6, electrons are emitted from the protruding portion of the cathode 6.

図2は図1(B)における電子放出素子の凹部7周辺部分の拡大図である。図2に示すように、カソード6は距離dxをもって凹部7の内表面に入り込む形で形成されている。距離dxは10nm乃至30nm程度に設定され、20nmより長いことが望ましい。但し、距離dxをあまり長く取るとカソード6とゲート5との間に電流のリークパスが発生し、リーク電流が増大する。   FIG. 2 is an enlarged view of the periphery of the recess 7 of the electron-emitting device in FIG. As shown in FIG. 2, the cathode 6 is formed so as to enter the inner surface of the recess 7 with a distance dx. The distance dx is set to about 10 nm to 30 nm and is preferably longer than 20 nm. However, if the distance dx is too long, a current leakage path is generated between the cathode 6 and the gate 5, and the leakage current increases.

〔電源・電位〕
図3は本発明に係る電子放出素子の電子放出特性を測定する時の電源の供給配置を示す図であり、本発明に係る電子線装置の構成の一例である。図3に示すように、本発明に係る電子線装置では、ゲート5を介してカソード6(カソード6の突起部分)と対向する位置に、これらよりも高電位に規定されたアノード20が配置されている。図3では絶縁部材3が基板1上に配置されているため、アノード20は基板1の絶縁部材3が配置されている側に、基板1に対向して配置されているとも言える。カソード6の突起部分から放出された電子の一部は、アノード20により真空中に取り出される。
[Power supply / potential]
FIG. 3 is a diagram showing a power supply arrangement when measuring the electron emission characteristics of the electron-emitting device according to the present invention, and is an example of the configuration of the electron beam apparatus according to the present invention. As shown in FIG. 3, in the electron beam apparatus according to the present invention, an anode 20 defined at a higher potential than these is disposed at a position facing the cathode 6 (protrusion portion of the cathode 6) via the gate 5. ing. In FIG. 3, since the insulating member 3 is disposed on the substrate 1, it can be said that the anode 20 is disposed opposite to the substrate 1 on the side where the insulating member 3 is disposed. A part of the electrons emitted from the protruding portion of the cathode 6 is taken out into the vacuum by the anode 20.

図3において、Vfはゲート5とカソード6の間に印加される電圧、Ifはこの時流れる素子電流、Vaはカソード6とアノード20の間に印加される電圧、Ieは電子放出電流である。ここで、電子放出効率ηは、電子放出素子に電圧を印加した時に検出される電流Ifと真空中に取り出される電流Ieを用いて、一般にはη=Ie/(If+Ie)で与えられる。   In FIG. 3, Vf is a voltage applied between the gate 5 and the cathode 6, If is an element current flowing at this time, Va is a voltage applied between the cathode 6 and the anode 20, and Ie is an electron emission current. Here, the electron emission efficiency η is generally given by η = Ie / (If + Ie) using a current If detected when a voltage is applied to the electron-emitting device and a current Ie extracted in vacuum.

図4(A)はカソード6の突起部分の先端からゲート5の底面までの最短距離d(以下、「最短距離d」という。)と素子電流Ifの関係の一例である。最短距離dが小さくなると電界強度が大きくなり、電子が放出されやすくなるため、図4(A)に示すように、最短距離dと素子電流Ifは負の相関をもつ。   FIG. 4A shows an example of the relationship between the shortest distance d (hereinafter referred to as “shortest distance d”) from the tip of the protruding portion of the cathode 6 to the bottom surface of the gate 5 and the device current If. As the shortest distance d decreases, the electric field strength increases and electrons are easily emitted. Therefore, as shown in FIG. 4A, the shortest distance d and the element current If have a negative correlation.

図4(B)は最短距離dと電子放出効率ηの関係の一例である。カソード6から対向するゲート5に向かって放出された電子は、一部がゲート5の先端部で等方的に散乱し、残りは衝突することなく外部に引き出される。最短距離dが狭い程、ゲート5の先端部で等方的に散乱した電子が外部に飛び出しにくくなり、反対に最短距離dが広い程、散乱した電子が外部に飛び出しやすくなるため、図4(B)に示すように、最短距離dと電子放出効率ηは正の相関をもつ。   FIG. 4B shows an example of the relationship between the shortest distance d and the electron emission efficiency η. A part of the electrons emitted from the cathode 6 toward the opposing gate 5 is scattered isotropically at the tip of the gate 5, and the rest is extracted outside without colliding. As the shortest distance d is narrower, electrons isotropically scattered at the tip of the gate 5 are less likely to jump out. Conversely, as the shortest distance d is wider, scattered electrons are more likely to jump out. As shown in B), the shortest distance d and the electron emission efficiency η have a positive correlation.

〔ゲートのタレ〕
図5(A)を用いて、ゲート5のタレについて説明する。ゲート5のタレとは、ゲート基材5aの底面とゲート基材5aの側面の交点9が、ゲート基材5aと絶縁層3bの界面の延長線よりもエミッタ側に変形してしまう現象のことである。尚、酸化膜がゲート基材5aと絶縁層3bの界面の延長線の内側に拡散している場合は補正を行えば良い。素子毎でゲート5のタレが一定でない場合、素子毎で電子放出に必要な電界が形成される間隙8(最短距離d)が一定でなくなる。その結果、素子毎で電子放出量や電子放出効率にばらつきが生じてしまう。
[Gate sauce]
The sagging of the gate 5 will be described with reference to FIG. The sagging of the gate 5 is a phenomenon in which the intersection 9 between the bottom surface of the gate base material 5a and the side surface of the gate base material 5a is deformed to the emitter side with respect to the extension line of the interface between the gate base material 5a and the insulating layer 3b. It is. If the oxide film is diffused inside the extended line at the interface between the gate base material 5a and the insulating layer 3b, correction may be performed. When the sagging of the gate 5 is not constant for each element, the gap 8 (shortest distance d) in which an electric field necessary for electron emission is formed is not constant for each element. As a result, the electron emission amount and the electron emission efficiency vary from element to element.

図5(B)を用いてゲート5のタレが発生する原因について説明する。ゲート5のタレについて本発明者らが鋭意検討した結果、ゲート5のタレはゲート基材5aの表面に酸化膜ができることにより発生していることが分かった。図5(B)において酸化膜は膜厚方向には抗力がない。膜厚方向に抗力がないと酸化膜は膨張するが、図5(B)において酸化膜は面内方向に連続しているため、結果的に酸化膜は膨張せずに圧縮応力が発生する。酸化膜の持つ圧縮応力の大きさをゲート基材5aのアノード側と凹部7側とで比較すると、アノード側の方が酸化膜の面積が広いため、アノード側の方が面内方向にかかる圧縮応力が大きい。このため、ゲート5はアノード側の方がより面内方向に広がるため、図5(C)のように絶縁層3b側にゲート5が変形する。   The cause of sagging of the gate 5 will be described with reference to FIG. As a result of intensive studies by the present inventors on the sagging of the gate 5, it has been found that the sagging of the gate 5 occurs due to the formation of an oxide film on the surface of the gate substrate 5a. In FIG. 5B, the oxide film has no drag in the film thickness direction. If there is no drag in the film thickness direction, the oxide film expands. However, in FIG. 5B, the oxide film is continuous in the in-plane direction, and as a result, the oxide film does not expand and compressive stress is generated. When comparing the magnitude of the compressive stress of the oxide film between the anode side and the recess 7 side of the gate base material 5a, the area of the oxide film is larger on the anode side, so the compression on the anode side is in the in-plane direction. Stress is large. For this reason, since the gate 5 spreads more in the in-plane direction on the anode side, the gate 5 is deformed on the insulating layer 3b side as shown in FIG.

〔不動態膜の形成方法〕
次に、不動態膜とその形成方法について説明する。不動態膜とは、金属表面に腐食作用に抵抗する酸化皮膜が生じた状態のことである。不動態膜は緻密な膜であり、表面に形成されると金属は反応性を失い、腐蝕や酸化から保護される。不動態膜を形成しやすい金属は、例えばTi,Zr,Hf,Ta,Al,Cu,Ni,Cr等の金属又はこれらの合金材料である。不動態膜は酸素プラズマ照射、大気焼成等で形成される。形成される不動態膜は数nmから数十nm程度であり、金属種や処理条件によって異なる。
[Method of forming passive film]
Next, a passive film and a method for forming the passive film will be described. The passive film is a state in which an oxide film that resists the corrosive action is formed on the metal surface. The passive film is a dense film, and when formed on the surface, the metal loses its reactivity and is protected from corrosion and oxidation. The metal that easily forms a passive film is, for example, a metal such as Ti, Zr, Hf, Ta, Al, Cu, Ni, Cr, or an alloy material thereof. The passive film is formed by oxygen plasma irradiation, air firing, or the like. The formed passive film is about several nm to several tens of nm, and varies depending on the metal species and processing conditions.

〔時間と酸化膜厚の関係〕
図6(A)は時間と酸化膜厚の関係の一例である。図6(A)に示すように、金属を自然酸化させると酸素に触れている時間や温度等によって酸化度合いが変化し、酸化膜厚も変化する。これに対して酸素プラズマ照射や大気焼成を行うと短時間でゲート基材5aの表面が酸化され、不動態膜5bが形成される。不動態膜5b形成後は自然酸化が進まなくなり、膜厚が変化しない。
[Relationship between time and oxide film thickness]
FIG. 6A shows an example of the relationship between time and oxide film thickness. As shown in FIG. 6 (A), when a metal is naturally oxidized, the degree of oxidation changes depending on the time, temperature, etc. in contact with oxygen, and the oxide film thickness also changes. On the other hand, when oxygen plasma irradiation or atmospheric firing is performed, the surface of the gate base material 5a is oxidized in a short time, and the passive film 5b is formed. After the passivation film 5b is formed, natural oxidation does not proceed and the film thickness does not change.

〔酸化膜厚とゲートのタレの関係〕
図6(B)は酸化膜厚とゲート5のタレの関係の一例である。酸化膜の圧縮応力は酸化膜厚に比例するため、酸化膜厚が厚くなるとゲート5のタレも大きくなることがわかる。図6(A)で示したように、自然酸化の場合、酸化度合いによって酸化膜厚が変化するため、素子毎でゲート5のタレがばらついてしまう。一方、酸素プラズマ照射や大気焼成により一定の条件で金属表面に不動態膜を形成すると、酸化膜厚が処理条件に依存して一定となるためゲート5のタレが一定となる。
[Relationship between oxide film thickness and gate sagging]
FIG. 6B shows an example of the relationship between the oxide film thickness and the sagging of the gate 5. Since the compressive stress of the oxide film is proportional to the oxide film thickness, it can be seen that the sagging of the gate 5 increases as the oxide film thickness increases. As shown in FIG. 6A, in the case of natural oxidation, the thickness of the oxide film varies depending on the degree of oxidation, so that the sagging of the gate 5 varies from element to element. On the other hand, when a passive film is formed on the metal surface under certain conditions by oxygen plasma irradiation or atmospheric firing, the sagging of the gate 5 becomes constant because the oxide film thickness becomes constant depending on the processing conditions.

また、酸化膜には圧縮応力が働くため膜密度が高くなる。一般的に膜密度とヤング率は正の相関をもつため、酸化膜のヤング率は大きくなる。このため、ゲート5は圧縮応力によりタレた後には、クーロン力等の外力に対して変形しにくくなる。   Further, since compressive stress acts on the oxide film, the film density increases. In general, since the film density and Young's modulus have a positive correlation, the Young's modulus of the oxide film increases. For this reason, after sagging due to compressive stress, the gate 5 is less likely to be deformed by an external force such as a Coulomb force.

〔楔形ゲート〕
上記では、ゲート5を図2に示すような矩形断面を有する形状としたが、ゲート5を本発明の他の実施形態である図7に示すような外表面ほど細くなる楔形断面を有する形状とした場合にも、酸化膜が形成されるとゲート5のタレが発生する。この場合、ゲート5のタレを一定にするためには、矩形断面を有する形状とした場合と同様に不動態膜を形成すれば良い。
(Wedge shaped gate)
In the above, the gate 5 has a shape having a rectangular cross section as shown in FIG. 2, but the gate 5 has a shape having a wedge-shaped cross section that becomes thinner toward the outer surface as shown in FIG. 7, which is another embodiment of the present invention. Even in this case, sagging of the gate 5 occurs when the oxide film is formed. In this case, in order to make the sagging of the gate 5 constant, a passive film may be formed as in the case of a shape having a rectangular cross section.

〔製造方法の概要〕
図8は本発明の電子放出素子の製造方法の一例を示す模式断面図である。まず、CVD法、真空蒸着法、スパッタ法等の一般的な真空成膜技術により、基板1上に絶縁層22、絶縁層23、導電層24をこの順に積層して形成する(図8(A))。
[Outline of manufacturing method]
FIG. 8 is a schematic cross-sectional view showing an example of a method for manufacturing an electron-emitting device according to the present invention. First, an insulating layer 22, an insulating layer 23, and a conductive layer 24 are stacked in this order on the substrate 1 by a general vacuum film forming technique such as a CVD method, a vacuum evaporation method, or a sputtering method (FIG. 8A). )).

基板1は素子を機械的に支えるための基板であり、例えば石英ガラス、Na等の不純物含有量を減少させたガラス、青板ガラス、シリコン基板等を使用できる。基板に必要な機能としては機械的強度が高いだけでなく、ドライエッチング、ウェットエッチング、現像液等のアルカリや酸に対して耐性があるものが望ましい。ディスプレイパネルのような一体ものとして用いる場合は成膜材料や他の積層部材と熱膨張差が小さいものが望ましい。また、熱処理に伴いガラス内部からのアルカリ元素等が拡散しづらい材料が望ましい。   The substrate 1 is a substrate for mechanically supporting the element. For example, quartz glass, glass with reduced impurity content such as Na, blue plate glass, silicon substrate, or the like can be used. As a function required for the substrate, it is desirable that the substrate has not only high mechanical strength but also resistance to alkali and acid such as dry etching, wet etching, and developer. When used as an integral part such as a display panel, it is desirable that the difference in thermal expansion between the film forming material and other laminated members is small. Further, it is desirable to use a material in which alkali elements or the like from the inside of the glass are difficult to diffuse with heat treatment.

絶縁層22、絶縁層23は加工性に優れる材料からなる絶縁性の膜であり、例えばSiN(SixNy)やSiO2等を使用できる。絶縁層22の厚さは数nmから数十μmの範囲で設定し、好ましくは数十nmから数百nmの範囲で選択する。絶縁層23の厚さは数nmから数百nmの範囲で設定し、好ましくは数nmから数十nmの範囲で選択する。尚、絶縁層22と絶縁層23を積層した後に凹部7を形成する必要があるため、絶縁層22と絶縁層23はエッチングに対して異なるエッチング量を持つような関係に設定するのが望ましい。さらに、絶縁層22と絶縁層23との間のエッチング量の比は、10以上が望ましく、できれば50以上とれることが望ましい。例えば、絶縁層22としてSixNyを用い、絶縁層23としてSiO2等の絶縁性材料或いはリン濃度の高いPSG、ホウ素濃度の高いBSG膜等を用いた構成とすることができる。 The insulating layer 22 and the insulating layer 23 are insulating films made of a material excellent in workability, and for example, SiN (SixNy) or SiO 2 can be used. The thickness of the insulating layer 22 is set in the range of several nm to several tens of μm, and preferably selected in the range of several tens of nm to several hundreds of nm. The thickness of the insulating layer 23 is set in the range of several nm to several hundred nm, and preferably selected in the range of several nm to several tens of nm. In addition, since it is necessary to form the recessed part 7 after laminating | stacking the insulating layer 22 and the insulating layer 23, it is desirable to set it as the relationship where the insulating layer 22 and the insulating layer 23 have a different etching amount with respect to an etching. Further, the ratio of the etching amount between the insulating layer 22 and the insulating layer 23 is desirably 10 or more, and desirably 50 or more. For example, SixNy can be used as the insulating layer 22 and an insulating material such as SiO 2 or a PSG having a high phosphorus concentration, a BSG film having a high boron concentration, or the like can be used as the insulating layer 23.

導電層24は導電性に加えて高い熱伝導率があり、融点が高い材料かつ不動態膜を形成可能な材料が望ましい。例えば、Ti,Zr,Hf,Ta,Al,Cu,Ni,Cr等の金属又はこれらの合金材料を使用できる。また、TiC,ZrC,HfC,TaC等の炭化物、HfB2,ZrB2等の硼化物、TiN,ZrN,HfN、TaN等の窒化物等も使用できる。導電層24の厚さは数nmから数百nmの範囲で設定し、好ましくは数nmから数十nmの範囲で選択する。 The conductive layer 24 preferably has a high thermal conductivity in addition to conductivity, a material having a high melting point, and a material capable of forming a passive film. For example, metals such as Ti, Zr, Hf, Ta, Al, Cu, Ni, and Cr, or alloy materials thereof can be used. Further, carbides such as TiC, ZrC, HfC, and TaC, borides such as HfB 2 and ZrB 2 , and nitrides such as TiN, ZrN, HfN, and TaN can be used. The thickness of the conductive layer 24 is set in the range of several nm to several hundred nm, and is preferably selected in the range of several nm to several tens of nm.

次に、フォトリソグラフィー技術により導電層24上にレジストパターンを形成した後、エッチング手法を用いて導電層24、絶縁層23、絶縁層22を順に加工し、ゲート基材5a、絶縁層3b、絶縁層3aを得る(図8(B))。このようなエッチング加工では、一般的にエッチングガスをプラズマ化して材料に照射することで材料の精密なエッチング加工が可能なRIE(Reactive Ion Etching)を用いる。この際の加工ガスとしては、加工する対象部材がフッ化物を形成する場合はCF4、CHF3、SF6のフッ素系ガスが選ばれ、加工する対象部材がSiやAlのように塩化物を形成する場合はCl2、BCl3等の塩素系ガスが選ばれる。また、レジストとの選択比を取るため、エッチング面の平滑性の確保或いはエッチングスピードを上げるために水素や酸素、アルゴンガス等を随時添加する。 Next, after forming a resist pattern on the conductive layer 24 by a photolithography technique, the conductive layer 24, the insulating layer 23, and the insulating layer 22 are sequentially processed by using an etching method, and the gate base material 5a, the insulating layer 3b, and the insulating layer are processed. The layer 3a is obtained (FIG. 8B). In such an etching process, RIE (Reactive Ion Etching) is generally used, which enables precise etching of a material by turning the etching gas into plasma and irradiating the material with the plasma. As the processing gas at this time, when the target member to be processed forms fluoride, a fluorine-based gas such as CF 4 , CHF 3 , or SF 6 is selected, and the target member to be processed is made of chloride such as Si or Al. In the case of formation, a chlorine-based gas such as Cl 2 or BCl 3 is selected. Further, in order to obtain a selection ratio with the resist, hydrogen, oxygen, argon gas, or the like is added as needed to ensure the smoothness of the etching surface or increase the etching speed.

続いて、絶縁層3bをエッチングして、絶縁層3a、絶縁層3bからなる絶縁部材3に凹部7を形成する(図8(C))。エッチングは、例えば絶縁層3bがSiO2からなる材料であれば通称バッファードフッ酸(BHF)と呼ばれるフッ化アンモニウムとフッ酸との混合溶液を用い、絶縁層3bがSixNyからなる材料であれば熱リン酸系エッチング液を用いることができる。凹部7の深さ(絶縁部材3の外表面(絶縁層3aの側面)から絶縁層3bの側面までの距離)は、電子放出素子作製後のリーク電流に深く関わり、凹部7を深く形成するほどリーク電流の値が小さくなる。このため、およそ30nm乃至200nm程度で形成される。 Subsequently, the insulating layer 3b is etched to form a recess 7 in the insulating member 3 including the insulating layer 3a and the insulating layer 3b (FIG. 8C). Etching, for example, an insulating layer 3b is a mixed solution of ammonium fluoride and hydrofluoric acid, referred to as long as the material of SiO 2 called buffered hydrofluoric acid (BHF), as long as the material insulating layer 3b is made of SixNy A hot phosphoric acid etching solution can be used. The depth of the concave portion 7 (distance from the outer surface of the insulating member 3 (side surface of the insulating layer 3a) to the side surface of the insulating layer 3b) is deeply related to the leakage current after the electron-emitting device is manufactured, and the deeper the concave portion 7 is formed. The value of the leakage current is reduced. For this reason, it is formed with a thickness of about 30 nm to 200 nm.

次に、酸素プラズマ照射又は大気焼成により、ゲート基材5aの表面に不動態膜5bを形成する(図8(D))。不動態膜5bは自然酸化膜よりも十分厚く形成することが望ましい。本発明者らが検討した結果、例えばTaNの場合、自然酸化膜は数nmであり、5nm以上形成すればほとんど自然酸化が進まなくなることが分かった。不動態膜5bの形成方法は一定の条件で酸化できる方法であれば良く、酸素プラズマ照射、大気焼成に限らない。   Next, a passive film 5b is formed on the surface of the gate base material 5a by oxygen plasma irradiation or atmospheric baking (FIG. 8D). The passive film 5b is desirably formed sufficiently thicker than the natural oxide film. As a result of investigations by the present inventors, for example, in the case of TaN, it has been found that the natural oxide film is several nm, and if it is formed to be 5 nm or more, the natural oxidation hardly proceeds. The formation method of the passive film 5b may be any method that can be oxidized under certain conditions, and is not limited to oxygen plasma irradiation and atmospheric firing.

酸素プラズマ照射の場合、プラズマ発生装置によって行う。酸素プラズマ照射の条件はゲート基材5aの表面に不動態膜5bができる条件であれば良いが、一定の膜厚を作る観点から、不動態化させる条件は常に一定であることが望ましい。具体的な処理時間やパワー等の条件は装置に依存する。一例としては、照射時間は30秒、パワーはPs(ソース用高周波)=1.5kW、Pb(バイアス用高周波)=0.5kWとすれば良い。   In the case of oxygen plasma irradiation, it is performed by a plasma generator. The conditions for the oxygen plasma irradiation may be any conditions that allow the passivation film 5b to be formed on the surface of the gate substrate 5a. However, it is desirable that the conditions for passivation are always constant from the viewpoint of forming a constant film thickness. Specific conditions such as processing time and power depend on the apparatus. As an example, the irradiation time may be 30 seconds, and the power may be Ps (source high frequency) = 1.5 kW and Pb (bias high frequency) = 0.5 kW.

大気焼成の場合、焼成炉によって行う。大気焼成の条件はゲート基材5aの表面に不動態膜5bができる条件であれば良いが、一定の膜厚を作る観点から、不動態化させる条件は常に一定であることが望ましい。具体的には、焼成温度は350℃以上、焼成時間は30分以上とすれば良い。   In the case of atmospheric firing, the firing is performed in a firing furnace. The conditions for the atmospheric firing may be any conditions that allow the passivation film 5b to be formed on the surface of the gate base material 5a. However, from the viewpoint of forming a constant film thickness, it is desirable that the conditions for passivation are always constant. Specifically, the firing temperature may be 350 ° C. or higher and the firing time may be 30 minutes or longer.

以上で挙げた具体的な数値は一例であり、装置によって時間や条件は変わるが、ゲート基材5aの表面に不動態膜5bが存在していることが確認できれば良い。不動態膜の確認方法としては、例えばTEM(透過型電子顕微鏡)によって断面を観察すれば良い。   The specific numerical values given above are examples, and the time and conditions vary depending on the apparatus, but it is only necessary to confirm that the passive film 5b exists on the surface of the gate base material 5a. As a confirmation method of the passive film, for example, a cross section may be observed with a TEM (transmission electron microscope).

本実施形態では絶縁層3bをエッチングして絶縁部材3に凹部7を形成した後に不動態膜5bを形成しているが、凹部7形成前に不動態膜5bを形成しても本発明の効果が得られる。但し、凹部7形成前に不動態膜5bを形成すると、凹部7形成後のゲート基材5aの凹部7側には不動態膜5bが形成されていないため、ゲート基材5aの凹部7側が自然酸化することがある。ゲート基材5aの凹部7側が自然酸化すると、凹部7形成後に不動態膜5bを形成する場合よりも素子毎のゲート5のタレがばらつくことがある。このため、素子毎の電子放出特性のばらつき抑制の効果をより高める観点からすると、凹部7形成後に不動態膜5bを形成するのがより好ましい。   In the present embodiment, the passivation film 5b is formed after the insulating layer 3b is etched to form the recess 7 in the insulating member 3. However, even if the passivation film 5b is formed before the recess 7 is formed, the effect of the present invention is achieved. Is obtained. However, if the passivation film 5b is formed before forming the recess 7, the passivation film 5b is not formed on the recess 7 side of the gate substrate 5a after the recess 7 is formed. May oxidize. When the concave portion 7 side of the gate base material 5a is naturally oxidized, the sagging of the gate 5 for each element may vary more than in the case where the passive film 5b is formed after the concave portion 7 is formed. For this reason, from the viewpoint of further enhancing the effect of suppressing variation in electron emission characteristics for each element, it is more preferable to form the passive film 5b after the recess 7 is formed.

続いて、CVD法、真空蒸着法、スパッタ法等の一般的な真空成膜技術により、不動態膜5b上、絶縁部材3の外表面の一部及び凹部7の内表面に導電性膜を付着させる(図8(E))。不動態膜5b上に付着した導電性膜は導電性膜5cとなる。絶縁部材3の外表面の一部及び凹部7の内表面に付着した導電性膜はカソード6となる。カソード6となる導電性膜は、突起部分を有し、該突起部分の先端が絶縁部材3の凹部を介してゲート5に向き合うように付着させる。   Subsequently, a conductive film is deposited on the passive film 5b, a part of the outer surface of the insulating member 3 and the inner surface of the recess 7 by a general vacuum film forming technique such as a CVD method, a vacuum evaporation method, or a sputtering method. (FIG. 8E). The conductive film deposited on the passive film 5b becomes the conductive film 5c. The conductive film attached to a part of the outer surface of the insulating member 3 and the inner surface of the recess 7 becomes the cathode 6. The conductive film serving as the cathode 6 has a protruding portion, and is attached so that the tip of the protruding portion faces the gate 5 through the concave portion of the insulating member 3.

導電性膜は電界放出する材料であれば良く、一般的には2000℃以上の高融点、5eV以下の仕事関数材料であり、酸化物等の化学反応層の形成しづらい或いは簡易に化学反応層を除去可能な材料が好ましい。例えば、Hf,V,Nb,Ta,Mo,W,Au,Pt,Pd等の金属又はこれらの合金材料を使用できる。また、TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、HfB2,ZrB2,CeB6,YB4,GdB4等の硼化物、TiN,ZrN,HfN,TaN等の窒化物も使用できる。さらに、アモルファスカーボン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンドを分散した炭素及び炭素化合物等も使用できる。 The conductive film only needs to be a field emission material, and is generally a high melting point of 2000 ° C. or higher and a work function material of 5 eV or less, and it is difficult to form a chemical reaction layer such as an oxide or a chemical reaction layer easily. A material that can be removed is preferred. For example, metals such as Hf, V, Nb, Ta, Mo, W, Au, Pt, and Pd, or alloy materials thereof can be used. Further, carbides such as TiC, ZrC, HfC, TaC, SiC, and WC, borides such as HfB 2 , ZrB 2 , CeB 6 , YB 4 , and GdB 4 , and nitrides such as TiN, ZrN, HfN, and TaN can also be used. . Furthermore, amorphous carbon, graphite, diamond-like carbon, carbon in which diamond is dispersed, a carbon compound, and the like can also be used.

本発明の他の実施形態として、不動態膜5b上の導電性膜5cを取り除いても良い。導電性膜5cを取り除く場合は、図9(A)のように、導電性膜の成膜前に剥離層25を形成する。剥離層25は電解メッキにて剥離金属を付着させる等の方法により形成すれば良い。剥離層25形成後に導電性膜を付着させ、図9(B)のように、剥離層25と導電性膜5cを剥離した後にゲート基材5aを不動態化し、不動態膜5bを形成すれば良い。   As another embodiment of the present invention, the conductive film 5c on the passive film 5b may be removed. In the case of removing the conductive film 5c, as shown in FIG. 9A, the peeling layer 25 is formed before the formation of the conductive film. The release layer 25 may be formed by a method such as attaching a release metal by electrolytic plating. After the release layer 25 is formed, a conductive film is attached. As shown in FIG. 9B, after the release layer 25 and the conductive film 5c are peeled off, the gate substrate 5a is passivated to form the passive film 5b. good.

本発明においては効率良く電子を取り出すため、カソード6の突起部分が最適な形状になるように、蒸着の角度と成膜時間、形成時の温度及び形成時の真空度を制御して作製する必要がある。具体的には、凹部7の内表面となる絶縁層3a上面への導電性膜の入り込み量dxは10nm乃至30nm、より好ましくは20nm乃至30nmである。絶縁部材3の凹部7の内表面となる絶縁層3aの上面とカソード6の突起部分とのなす角度(図2のθ)は90°以上とするのが良い。   In the present invention, in order to efficiently extract electrons, it is necessary to control the deposition angle and film formation time, the temperature during formation, and the degree of vacuum during formation so that the protruding portion of the cathode 6 has an optimal shape. There is. Specifically, the amount dx of the conductive film entering the upper surface of the insulating layer 3a that is the inner surface of the recess 7 is 10 nm to 30 nm, more preferably 20 nm to 30 nm. The angle (θ in FIG. 2) formed by the upper surface of the insulating layer 3a, which is the inner surface of the recess 7 of the insulating member 3, and the protruding portion of the cathode 6 is preferably 90 ° or more.

次に、CVD法、真空蒸着法、スパッタ法等の一般的な真空成膜技術、フォトリソグラフィー技術により、カソード6と電気的な導通を取るための電極2を形成する(図8(F))。電極2はカソード6と同様に導電性を有しており、例えばBe,Mg,Ti,Zr,Hf,V,Nb,Ta,Mo,W,Al,Cu,Ni,Cr,Au,Pt,Pd等の金属又はこれらの合金材料を使用できる。また、TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、HfB2,ZrB2,CeB6,YB4,GdB4等の硼化物、TiN,ZrN,HfN等の窒化物も使用できる。さらに、Si,Ge等の半導体、有機高分子材料、アモルファスカーボン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンドを分散した炭素及び炭素化合物等も使用できる。電極2の厚さは数十nmから数mmの範囲で設定し、好ましくは数十nmから数μmの範囲で選択する。 Next, an electrode 2 for establishing electrical continuity with the cathode 6 is formed by a general vacuum film forming technique such as a CVD method, a vacuum deposition method, or a sputtering method, or a photolithography technique (FIG. 8F). . The electrode 2 has conductivity similar to the cathode 6, for example, Be, Mg, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Al, Cu, Ni, Cr, Au, Pt, Pd. Such metals or alloy materials thereof can be used. Further, carbides such as TiC, ZrC, HfC, TaC, SiC, and WC, borides such as HfB 2 , ZrB 2 , CeB 6 , YB 4 , and GdB 4 , and nitrides such as TiN, ZrN, and HfN can also be used. Further, semiconductors such as Si and Ge, organic polymer materials, amorphous carbon, graphite, diamond-like carbon, carbon in which diamond is dispersed, and carbon compounds can be used. The thickness of the electrode 2 is set in the range of several tens of nm to several mm, preferably selected in the range of several tens of nm to several μm.

以下に本発明に係る電子放出素子を複数配して得られる電子源とアノードとを備えた電子線装置と、発光部材と、を有する画像表示装置について、図11を用いて説明する。図11は単純マトリクス配置の電子源を用いて構成した画像表示装置の表示パネルの一例を示す模式図であり、一部を切り欠いた状態で示している。   Hereinafter, an image display apparatus having an electron beam apparatus including an electron source and an anode obtained by arranging a plurality of electron-emitting devices according to the present invention and a light emitting member will be described with reference to FIG. FIG. 11 is a schematic diagram illustrating an example of a display panel of an image display device configured using an electron source having a simple matrix arrangement, and a part of the display panel is cut away.

図11において、31は電子源基板、32はX方向配線、33はY方向配線である。電子源基板31は上述した電子放出素子の基板1に相当し、X方向配線32は上述した電極2を共通に接続する配線であり、Y方向配線33は上述したゲート5を共通に接続する配線である。34は本発明に係る電子放出素子である。m本のX方向配線32は、Dx1,Dx2,…Dxmからなる。n本のY方向配線33は、Dy1,Dy2,…Dynからなる。上記構成においては、単純なマトリクス配線を用い、個別の電子放出素子を選択して独立に駆動可能とすることができる。   In FIG. 11, 31 is an electron source substrate, 32 is an X direction wiring, and 33 is a Y direction wiring. The electron source substrate 31 corresponds to the substrate 1 of the above-described electron-emitting device, the X-direction wiring 32 is a wiring that connects the above-described electrodes 2 in common, and the Y-direction wiring 33 is a wiring that connects the above-described gates 5 in common. It is. Reference numeral 34 denotes an electron-emitting device according to the present invention. The m X-direction wirings 32 are composed of Dx1, Dx2,. The n Y-direction wirings 33 are composed of Dy1, Dy2,. In the above configuration, a simple matrix wiring can be used, and individual electron-emitting devices can be selected and driven independently.

また、図11において、41は電子源基板31を固定したリアプレート、46はガラス基板43の内面に発光部材としての蛍光体である蛍光膜44とアノード20であるメタルバック45等が形成されたフェースプレートである。42は支持枠であり、支持枠42にリアプレート41、フェースプレート46がフリットガラス等を介して取り付けられ、外囲器47を構成している。   In FIG. 11, reference numeral 41 denotes a rear plate to which the electron source substrate 31 is fixed, 46 denotes a fluorescent film 44 as a phosphor as a light emitting member and a metal back 45 as an anode 20 on the inner surface of the glass substrate 43. It is a face plate. Reference numeral 42 denotes a support frame, and a rear plate 41 and a face plate 46 are attached to the support frame 42 via frit glass or the like to constitute an envelope 47.

表示パネルは、端子Dx1乃至Dxm、端子Dy1乃至Dyn、及び高圧端子を介して外部の電気回路と接続している。端子Dx1乃至Dxmには、表示パネル内に設けられている電子源、即ちm行n列の行列状にマトリクス配線された電子放出素子群を一行(N素子)ずつ順次駆動するための走査信号が印加される。一方、端子Dy1乃至Dynには、走査信号により選択された一行の電子放出素子の各素子の出力電子ビームを制御するための変調信号が印加される。高圧端子には、直流電圧源から例えば10[kV]の直流電圧が供給されるが、これは電子放出素子から放出される電子ビームに蛍光体を励起するのに十分なエネルギーを付与するための加速電圧である。走査信号の印加、変調信号の印加、及びアノードへの高電圧印加により、放出された電子を加速して蛍光体に照射させ画像表示装置を実現する。   The display panel is connected to an external electric circuit through terminals Dx1 to Dxm, terminals Dy1 to Dyn, and a high voltage terminal. The terminals Dx1 to Dxm receive scanning signals for sequentially driving one row (N elements) of electron sources provided in the display panel, that is, electron emission element groups arranged in a matrix of m rows and n columns. Applied. On the other hand, to the terminals Dy1 to Dyn, a modulation signal for controlling the output electron beam of each element of the electron emission elements in one row selected by the scanning signal is applied. The high-voltage terminal is supplied with a DC voltage of, for example, 10 [kV] from a DC voltage source, which gives sufficient energy to excite the phosphor to the electron beam emitted from the electron-emitting device. Acceleration voltage. By applying a scanning signal, applying a modulation signal, and applying a high voltage to the anode, the emitted electrons are accelerated to irradiate the phosphor to realize an image display device.

上記画像表示装置を本発明に係る電子放出素子を用いて形成することにより、電子ビームの形状の整った画像表示装置を構成でき、その結果、良好な表示特性の画像表示装置を提供することができる。   By forming the image display device using the electron-emitting device according to the present invention, an image display device with a well-shaped electron beam can be configured, and as a result, an image display device with good display characteristics can be provided. it can.

以下に実施例を挙げて本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
図1に示した構成の電子放出素子を図8の工程に従って作製した。図10は本実施例で作製した電子放出素子の斜視図である。まず、スパッタ法により基板1上に絶縁層22、絶縁層23、導電層24をこの順に積層して形成した(図8(A))。基板1には高歪点ガラスであるPD200を用いた。絶縁層22にはSiN(SixNy)を用い、厚さは500nmとした。絶縁層23にはSiO2を用い、厚さは23nmとした。導電層24にはTaNを用い、厚さは30nmとした。
[Example 1]
The electron-emitting device having the configuration shown in FIG. 1 was fabricated according to the process of FIG. FIG. 10 is a perspective view of the electron-emitting device manufactured in this example. First, an insulating layer 22, an insulating layer 23, and a conductive layer 24 were stacked in this order on the substrate 1 by sputtering (FIG. 8A). As the substrate 1, PD200, which is a high strain point glass, was used. The insulating layer 22 is made of SiN (SixNy) and has a thickness of 500 nm. The insulating layer 23 is made of SiO 2 and has a thickness of 23 nm. TaN was used for the conductive layer 24, and the thickness was 30 nm.

次に、フォトリソグラフィー技術により導電層24上にレジストパターンを形成した後、RIEを用いて導電層24、絶縁層23、絶縁層22を順に加工し、ゲート基材5a、絶縁層3b、絶縁層3aを得た(図8(B))。この時の加工ガスとしては、絶縁層22、絶縁層23及び導電層24にはフッ化物を作る材料が選択されているためCF4系のガスを用いた。このガスを用いてRIEを行った結果、絶縁層3a、絶縁層3b及びゲート基材5aのエッチング後の角度は基板水平面に対しておよそ80°の角度で形成されていた。 Next, after forming a resist pattern on the conductive layer 24 by a photolithography technique, the conductive layer 24, the insulating layer 23, and the insulating layer 22 are sequentially processed by using RIE, and the gate base material 5a, the insulating layer 3b, and the insulating layer are processed. 3a was obtained (FIG. 8B). As the processing gas at this time, a CF 4 -based gas was used because a material for forming a fluoride was selected for the insulating layer 22, the insulating layer 23, and the conductive layer 24. As a result of performing RIE using this gas, the angle after etching of the insulating layer 3a, the insulating layer 3b, and the gate base material 5a was formed at an angle of about 80 ° with respect to the substrate horizontal plane.

続いて、レジストを剥離した後、BHFを用いて絶縁層3bをエッチングし、絶縁層3a、絶縁層3bからなる絶縁部材3に凹部7を形成した(図8(C))。凹部7の深さは約150nmとした。   Subsequently, after removing the resist, the insulating layer 3b was etched using BHF to form the recess 7 in the insulating member 3 including the insulating layer 3a and the insulating layer 3b (FIG. 8C). The depth of the recess 7 was about 150 nm.

次に、プラズマ発生装置(東京エレクトロン株式会社製 プラズマエッチングシステムSE−1310T)を用いて、ゲート基材5aの表面に酸素プラズマを照射し不動態膜5bを形成した(図8(D))。照射時間は30秒、パワーはPs(ソース用高周波)=1.5kW、Pb(バイアス用高周波)=0.5kWとした。   Next, using a plasma generator (plasma etching system SE-1310T manufactured by Tokyo Electron Ltd.), the surface of the gate substrate 5a was irradiated with oxygen plasma to form a passive film 5b (FIG. 8D). The irradiation time was 30 seconds, the power was Ps (high frequency for source) = 1.5 kW, and Pb (high frequency for bias) = 0.5 kW.

続いて、EB蒸着法により絶縁部材3の外表面及び凹部7の内表面(絶縁層3aの上面)に導電性膜であるモリブデン(Mo)を付着させてカソード6を形成した(図8(E))。この際、不動態膜5b上にも導電性膜を付着させた。本実施例では凹部7内に40nm程度、導電性膜が入り込むように、基板の角度を基板水平面に対し60°にセットした。これによりゲート5上部にはMoが60°で入射し、絶縁部材3の一部である絶縁層3aのRIE加工後の外表面上には入射角度が40°で入射するようにセットした。蒸着は約12nm/minになるように蒸着速度を定めた。そして蒸着時間を精密に制御し(本実施例では2.5分)、絶縁部材3の外表面上のMoの厚さが30nm、凹部7内への導電性膜の入り込み量(dx)が40nmとなるように形成した。また、凹部7の内表面(絶縁層3aの上面)と電子放出部となるカソード6の突起部分とのなす角度(図2のθ)が120°となるようにした。   Subsequently, molybdenum (Mo), which is a conductive film, was adhered to the outer surface of the insulating member 3 and the inner surface of the recess 7 (the upper surface of the insulating layer 3a) by EB vapor deposition to form the cathode 6 (FIG. 8E )). At this time, a conductive film was also deposited on the passive film 5b. In the present embodiment, the angle of the substrate was set to 60 ° with respect to the horizontal plane of the substrate so that the conductive film entered the recess 7 by about 40 nm. As a result, Mo was incident on the upper portion of the gate 5 at 60 °, and the incident angle was set to 40 ° on the outer surface of the insulating layer 3a which is a part of the insulating member 3 after the RIE processing. The deposition rate was determined so that the deposition was about 12 nm / min. The deposition time is precisely controlled (2.5 minutes in this embodiment), the thickness of Mo on the outer surface of the insulating member 3 is 30 nm, and the amount of the conductive film entering the recess 7 (dx) is 40 nm. It formed so that it might become. Further, the angle (θ in FIG. 2) formed by the inner surface of the recess 7 (the upper surface of the insulating layer 3a) and the protruding portion of the cathode 6 serving as the electron emission portion was set to 120 °.

次に、カソード6の幅T4(図10)が200μmになるようにフォトリソグラフィー技術によりレジストパターンを形成した。その後、RIEを用いてモリブデンからなるカソード6を加工した。この時の加工ガスとしては、導電層材料として用いたモリブデンがフッ化物を作るためCF4系のガスを用いた(図8(E))。これによって、絶縁部材3の凹部7の縁に沿って位置する突起部分を有する短冊状のカソード6を形成した。本実施例ではカソード6の幅は突起部分の幅と一致しており、T4(図10)は突起部分の幅とも言える。尚、突起部分の幅とは、突起部分の、絶縁部材3の凹部7の縁に沿った方向の長さを意味する。 Next, a resist pattern was formed by a photolithography technique so that the width T4 (FIG. 10) of the cathode 6 was 200 μm. Thereafter, the cathode 6 made of molybdenum was processed using RIE. As the processing gas at this time, CF 4 -based gas was used because molybdenum used as the conductive layer material produces fluoride (FIG. 8E). As a result, a strip-like cathode 6 having a protruding portion located along the edge of the recess 7 of the insulating member 3 was formed. In this embodiment, the width of the cathode 6 coincides with the width of the protruding portion, and T4 (FIG. 10) can also be said to be the width of the protruding portion. In addition, the width of the protruding portion means the length of the protruding portion in the direction along the edge of the recess 7 of the insulating member 3.

続いて、スパッタ法により基板1上及びカソード6上に電極2を形成した(図8(F))。電極2には銅(Cu)を用い、厚さは500nmとし、配線パターンに加工した。   Subsequently, an electrode 2 was formed on the substrate 1 and the cathode 6 by sputtering (FIG. 8F). The electrode 2 was made of copper (Cu) and had a thickness of 500 nm and was processed into a wiring pattern.

上記方法で作製した電子放出素子に対して、図3の構成で電子放出特性を測定し、断面TEMにより、ゲートの酸化膜厚、ゲートのタレ量、最短距離dを測定した。表1に本実施例における電子放出電流が平均的な素子、最大の素子及び最小の素子測定結果を示す。表1中の1は電子放出電流が最小の素子、2は電子放出電流が平均的な素子、3は電子放出電流が最大の素子である。駆動電圧Vf=23V、アノード印加電圧Va=11.8kVで、電子放出電流Ieは13.0〜13.6μAであった。ゲートの酸化膜厚は5.2〜5.3nm、ゲートのタレは11.0〜12.0nm、最短距離dは9.4〜9.8nmであった。本実施例では電子放出特性が揃った均一な素子が得られた。これは素子毎でゲートの酸化膜厚が揃ったためと考えられる。   With respect to the electron-emitting device manufactured by the above method, the electron emission characteristics were measured with the configuration shown in FIG. 3, and the gate oxide film thickness, the gate sagging amount, and the shortest distance d were measured by a cross-sectional TEM. Table 1 shows the measurement results of the average, maximum and minimum element emission currents in this example. In Table 1, 1 is an element having the smallest electron emission current, 2 is an element having an average electron emission current, and 3 is an element having the largest electron emission current. The drive voltage Vf = 23 V, the anode applied voltage Va = 11.8 kV, and the electron emission current Ie was 13.0 to 13.6 μA. The gate oxide film thickness was 5.2 to 5.3 nm, the gate sagging was 11.0 to 12.0 nm, and the shortest distance d was 9.4 to 9.8 nm. In this example, a uniform device with uniform electron emission characteristics was obtained. This is presumably because the gate oxide film thickness is uniform for each element.

また、酸素プラズマの照射時間を60秒、90秒として同様の評価を実施したところ、照射時間30秒との差は小さく、ほぼ同等の電子放出特性が得られ、ゲートの酸化膜厚も同等であった。これは酸素プラズマの照射により十分厚い不動態膜が形成され、素子毎でゲートの酸化膜厚が揃ったためと考えられる。   Further, when the same evaluation was carried out with the oxygen plasma irradiation time of 60 seconds and 90 seconds, the difference from the irradiation time of 30 seconds was small, almost the same electron emission characteristics were obtained, and the gate oxide film thickness was also the same. there were. This is presumably because a sufficiently thick passivation film was formed by the oxygen plasma irradiation, and the gate oxide film thickness was uniform for each element.

[比較例]
比較例として、不動態膜を形成しない電子放出素子を作製した。本比較例では酸素プラズマを照射せず大気中に静置したこと以外は、実施例1と同様の方法で電子放出素子を作製した。電子放出素子作製後、実施例1と同様の方法で電子放出特性と断面形状を測定した。表1に本比較例における電子放出電流が平均的な素子、最大の素子及び最小の素子の測定結果を示す。表1中の1は電子放出電流が最小の素子、2は電子放出電流が平均的な素子、3は電子放出電流が最大の素子である。駆動電圧Vf=23V、アノード印加電圧Va=11.8kVで、電子放出電流Ieは3.0〜13.3μAであった。ゲートの酸化膜厚は3.6〜5.1nm、ゲートのタレは6.0〜12.0nm、最短距離dは9.6〜13.8nmであった。本比較例では素子毎でゲートの酸化膜厚がばらついたため、素子毎でゲートのタレにもばらつきが生じた。その結果、素子毎で電子放出特性がばらついたと考えられる。
[Comparative example]
As a comparative example, an electron-emitting device that does not form a passive film was manufactured. In this comparative example, an electron-emitting device was produced in the same manner as in Example 1 except that it was left in the atmosphere without being irradiated with oxygen plasma. After producing the electron-emitting device, the electron emission characteristics and the cross-sectional shape were measured in the same manner as in Example 1. Table 1 shows the measurement results of the average, maximum and minimum electron emission currents in this comparative example. In Table 1, 1 is an element having the smallest electron emission current, 2 is an element having an average electron emission current, and 3 is an element having the largest electron emission current. The drive voltage Vf = 23 V, the anode applied voltage Va = 11.8 kV, and the electron emission current Ie was 3.0 to 13.3 μA. The gate oxide film thickness was 3.6 to 5.1 nm, the gate sagging was 6.0 to 12.0 nm, and the shortest distance d was 9.6 to 13.8 nm. In this comparative example, since the gate oxide film thickness varies from element to element, the gate sagging varies from element to element. As a result, it is considered that the electron emission characteristics vary from device to device.

[実施例2]
本実施例では大気焼成により不動態膜を形成したこと以外は、実施例1と同様の方法で電子放出素子を作製した。不動態膜を形成する際には、焼成炉により350℃で30分焼成した。電子放出素子作製後、実施例1と同様の方法で電子放出特性と断面形状を測定したところ、本実施例でも電子放出特性が揃った均一な素子が得られた。ばらつき範囲が実施例1と同等であったため、表1には本実施例における電子放出電流が平均的な素子の測定結果のみ示す。駆動電圧Vf=23V、アノード印加電圧Va=11.8kVで、電子放出電流Ieは13.9μAであった。ゲートの酸化膜厚は6.0nm、ゲートのタレは12.0nm、最短距離dは9.2nmであった。本実施例でも実施例1と同様に素子毎でゲートの酸化膜厚が揃ったため、素子毎で電子放出特性が均一になったと考えられる。
[Example 2]
In this example, an electron-emitting device was produced in the same manner as in Example 1 except that a passive film was formed by atmospheric firing. When forming the passive film, it was baked at 350 ° C. for 30 minutes in a baking furnace. After the electron-emitting device was fabricated, the electron emission characteristics and the cross-sectional shape were measured in the same manner as in Example 1. As a result, a uniform device with uniform electron emission characteristics was obtained in this example. Since the variation range was the same as that in Example 1, Table 1 shows only the measurement result of the element having an average electron emission current in this example. The drive voltage Vf = 23 V, the anode applied voltage Va = 11.8 kV, and the electron emission current Ie was 13.9 μA. The gate oxide film thickness was 6.0 nm, the gate sagging was 12.0 nm, and the shortest distance d was 9.2 nm. In this example, as in Example 1, the gate oxide film thickness was uniform for each element, and it is considered that the electron emission characteristics were uniform for each element.

Figure 2012150937
Figure 2012150937

1:基板、2:電極、3:絶縁部材、5:ゲート、5a:ゲート基材、5b:不動態膜、5c:導電性膜、6:カソード、7:凹部、8:間隙、20:アノード   1: substrate, 2: electrode, 3: insulating member, 5: gate, 5a: gate substrate, 5b: passive film, 5c: conductive film, 6: cathode, 7: recess, 8: gap, 20: anode

Claims (6)

ゲートと、
上面に前記ゲートを有し、前記ゲート直下の側面に凹部を有する絶縁部材と、
突起部分を有し、該突起部分の先端が前記凹部を介して前記ゲートに向き合っているカソードと、
を備える電子放出素子の製造方法であって、
金属を含み不動態を形成可能な部材からなるゲート、を上面に有する絶縁部材を形成した後、
前記ゲートの表面に不動態膜を形成することを特徴とする電子放出素子の製造方法。
The gate,
An insulating member having the gate on an upper surface and a recess on a side surface directly below the gate;
A cathode having a protruding portion, the tip of the protruding portion facing the gate through the recess;
A method of manufacturing an electron-emitting device comprising:
After forming an insulating member having a gate made of a member containing metal and capable of forming a passive state on the upper surface,
A method of manufacturing an electron-emitting device, comprising forming a passive film on the surface of the gate.
酸素プラズマ照射により前記不動態膜を形成することを特徴とする請求項1に記載の電子放出素子の製造方法。   The method of manufacturing an electron-emitting device according to claim 1, wherein the passive film is formed by oxygen plasma irradiation. 大気焼成により前記不動態膜を形成することを特徴とする請求項1に記載の電子放出素子の製造方法。   The method for manufacturing an electron-emitting device according to claim 1, wherein the passive film is formed by air firing. 前記不動態膜の厚さが5nm以上であることを特徴とする請求項1乃至3のいずれか1項に記載の電子放出素子の製造方法。   4. The method of manufacturing an electron-emitting device according to claim 1, wherein a thickness of the passive film is 5 nm or more. 5. 電子放出素子と、アノードと、を有する電子線装置の製造方法であって、
請求項1乃至4のいずれか1項に記載の製造方法で製造した電子放出素子のカソードとアノードとを、前記ゲートを介して対向させて配置することを特徴とする電子線装置の製造方法。
A method of manufacturing an electron beam apparatus having an electron-emitting device and an anode,
5. A method of manufacturing an electron beam apparatus, wherein a cathode and an anode of an electron-emitting device manufactured by the manufacturing method according to claim 1 are arranged to face each other with the gate interposed therebetween.
電子線装置と、蛍光体と、を有する画像表示装置の製造方法であって、
請求項5に記載の製造方法で製造した電子線装置のアノードと蛍光体とを積層して配置することを特徴とする画像表示装置の製造方法。
A method for manufacturing an image display device having an electron beam device and a phosphor,
6. A method for manufacturing an image display device, wherein the anode and the phosphor of the electron beam device manufactured by the manufacturing method according to claim 5 are laminated and disposed.
JP2011007554A 2011-01-18 2011-01-18 Method for manufacturing electron emission element, electron beam device, and image display device Withdrawn JP2012150937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007554A JP2012150937A (en) 2011-01-18 2011-01-18 Method for manufacturing electron emission element, electron beam device, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007554A JP2012150937A (en) 2011-01-18 2011-01-18 Method for manufacturing electron emission element, electron beam device, and image display device

Publications (1)

Publication Number Publication Date
JP2012150937A true JP2012150937A (en) 2012-08-09

Family

ID=46793038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007554A Withdrawn JP2012150937A (en) 2011-01-18 2011-01-18 Method for manufacturing electron emission element, electron beam device, and image display device

Country Status (1)

Country Link
JP (1) JP2012150937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031739A1 (en) * 2014-08-29 2016-03-03 京セラ株式会社 Sensor substrate, sensor substrate with lead, and sensor device
JP2016085141A (en) * 2014-10-27 2016-05-19 京セラ株式会社 Sensor substrate, sensor device, and method for manufacturing the sensor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031739A1 (en) * 2014-08-29 2016-03-03 京セラ株式会社 Sensor substrate, sensor substrate with lead, and sensor device
JPWO2016031739A1 (en) * 2014-08-29 2017-06-01 京セラ株式会社 Sensor substrate, sensor substrate with leads, and sensor device
US10408776B2 (en) 2014-08-29 2019-09-10 Kyocera Corporation Sensor board, lead-bearing sensor board, and sensor device
JP2016085141A (en) * 2014-10-27 2016-05-19 京セラ株式会社 Sensor substrate, sensor device, and method for manufacturing the sensor substrate

Similar Documents

Publication Publication Date Title
JP4380792B2 (en) Electron beam apparatus, image display apparatus using the same, and electron-emitting device
JP4378431B2 (en) Electron emitting device, electron beam apparatus, and image display apparatus using the same
US20090273270A1 (en) Electron source and image display apparatus
JP2012150937A (en) Method for manufacturing electron emission element, electron beam device, and image display device
JP4637233B2 (en) Manufacturing method of electron-emitting device and manufacturing method of image display device using the same
US7969082B2 (en) Electron beam apparatus
US7786658B1 (en) Electron-emitting device and image display apparatus using the same
JP2011018491A (en) Electron emitting device, electron beam apparatus using this, and image display apparatus
US7850502B2 (en) Method of manufacturing electron-emitting device and method of manufacturing image display apparatus
US20090309479A1 (en) Electron emitting-device and image display apparatus
US8035294B2 (en) Electron beam apparatus and image display apparatus therewith
JP2010146916A (en) Electron-emitting element, and manufacturing method for image display apparatus using the same
JP4590474B2 (en) Electron emitting device and image display device using the electron emitting device
JP2010267474A (en) Electron beam device and image display device using the same
KR101010987B1 (en) Electron beam apparatus and image display apparatus using the same
US20100264808A1 (en) Electron beam device
JP2010186655A (en) Electron beam device and image display device using the same
JP2010146917A (en) Electron-emitting element and manufacturing method for image display using the same
JP2012156034A (en) Electron emission element, electron beam apparatus and method of manufacturing image display device
JP2010186615A (en) Electron beam device and image display using this
JP2011187278A (en) Electron emission element, and electron source substrate and image display device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401