JP2012150143A - Vibration control compensation optical device - Google Patents

Vibration control compensation optical device Download PDF

Info

Publication number
JP2012150143A
JP2012150143A JP2011006628A JP2011006628A JP2012150143A JP 2012150143 A JP2012150143 A JP 2012150143A JP 2011006628 A JP2011006628 A JP 2011006628A JP 2011006628 A JP2011006628 A JP 2011006628A JP 2012150143 A JP2012150143 A JP 2012150143A
Authority
JP
Japan
Prior art keywords
wavefront
image
compensation
light
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011006628A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
健司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011006628A priority Critical patent/JP2012150143A/en
Publication of JP2012150143A publication Critical patent/JP2012150143A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control compensation optical device having a compensation optical function which corrects fluctuation of an image caused by fluctuation of air, in addition to a vibration control function.SOLUTION: A telescope TS as a vibration control compensation optical device has: an optical system including an objective lens OL which images the image of a subject and controls vibration by moving the image by an optical axis direction adjusting member so as to have a component in a direction perpendicular to an optical axis; a wavefront compensation member AM which is arranged in the optical system and arbitrarily changes the shape of a reflection surface reflecting the light flux from a subject; a wavefront detection member WS which receives the light flux reflected by the wavefront compensation member AM to detect wavefront aberration; and a control unit CU which changes the shape of the reflection surface of the wavefront compensation member AM corresponding to the wavefront aberration detected by the wavefront detection member WS to compensate the wavefront aberration.

Description

本発明は、防振補償光学装置に関する。   The present invention relates to an image stabilization optical apparatus.

従来、防振機能を有するカメラや、防振望遠鏡等の光学装置が知られている。これらの光学装置は、手振れや三脚固定時の振動を補正し、比較的鮮明な画像や観察像を得ることが可能であった(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, optical devices such as a camera having an anti-vibration function and an anti-vibration telescope are known. These optical devices were able to correct camera shake and vibration when the tripod was fixed, and obtain relatively clear images and observation images (see, for example, Patent Document 1).

国際公開第WO2009/093582号明細書International Publication No. WO2009 / 093582 Specification

しかしながら、上記光学装置では、装置本体の振動による像ブレは補正できるが、被写体または目標物体と光学装置との間に存在する空気の揺らぎによる、像の揺らぎは補正できず、特に、遠方の被写体や目標物体の撮影や観察では、鮮明な画像や観察像を得ることができないという課題があった。   However, in the above optical apparatus, image blur due to vibration of the apparatus main body can be corrected, but image fluctuation due to air fluctuation existing between the subject or target object and the optical apparatus cannot be corrected. In shooting and observing the target object, there is a problem that a clear image or observation image cannot be obtained.

本発明は、このような課題に鑑みてなされたものであり、防振機能の他に、空気の揺らぎによる像の揺らぎを補正する補償光学機能を有する防振補償光学装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an image stabilization optical apparatus having an compensation optical function for correcting image fluctuations due to air fluctuations in addition to the image stabilization function. And

前記課題を解決するために、本発明に係る防振補償光学装置は、被写体の像を結像するとともに、光軸方向調整部材により像を光軸に対して垂直な方向の成分を持つように移動させて防振する対物レンズを含む光学系と、この光学系中に配置され、被写体からの光束を反射する反射面の形状を任意に変化させる波面補償部材と、波面補償部材で反射された光束を受光して波面収差を検出する波面検出部材と、波面検出部材で検出された波面収差に応じて波面補償部材の反射面の形状を変化させて波面収差を補償させる制御部と、を有することを特徴とする。   In order to solve the above-mentioned problems, the image stabilization optical device according to the present invention forms an image of a subject and has an optical axis direction adjusting member so that the image has a component in a direction perpendicular to the optical axis. An optical system that includes an objective lens that is moved to prevent vibration, a wavefront compensation member that is disposed in the optical system and that arbitrarily changes the shape of a reflection surface that reflects a light beam from a subject, and the wavefront compensation member reflects the light. A wavefront detecting member that receives a light beam and detects wavefront aberration; and a control unit that compensates the wavefront aberration by changing the shape of the reflecting surface of the wavefront compensation member according to the wavefront aberration detected by the wavefront detecting member. It is characterized by that.

このような防振補償光学装置は、波面補償部材と波面検出部材との間に配置され、波面補償部材で反射された光束の一部を反射し、残りを透過することにより、光束を分岐させ、一方の光束を波面検出部材に導くとともに、他方の光束により像を結像させる選択的反射部材を有することが好ましい。   Such an anti-vibration compensation optical device is disposed between the wavefront compensation member and the wavefront detection member, reflects a part of the light beam reflected by the wavefront compensation member, and transmits the rest to split the light beam. It is preferable to have a selective reflection member that guides one light beam to the wavefront detection member and forms an image with the other light beam.

また、このような防振補償光学装置は、波面検出部材で波面収差を検出するための光を被写体に投射する光束投射部を有することが好ましい。   Moreover, it is preferable that such an image stabilization optical apparatus has a light beam projection unit that projects light for detecting wavefront aberration on the wavefront detection member onto the subject.

このとき、光束投射部は、波面収差を検出するための光として可視光以外の波長の光を前記被写体に投射し、選択的反射部材は、可視光及び波面収差を検出するための光のいずれか一方を反射し、他方を透過することが好ましい。   At this time, the light beam projection unit projects light having a wavelength other than visible light onto the subject as light for detecting wavefront aberration, and the selective reflection member is either visible light or light for detecting wavefront aberration. It is preferable to reflect one of them and transmit the other.

また、このような防振補償光学装置は、対物レンズで結像される像を正立像に変換する正立光学系を有することが好ましい。   Moreover, it is preferable that such an image stabilization optical apparatus has an erecting optical system that converts an image formed by the objective lens into an erect image.

このとき、正立光学系は、被写体からの光を反射することにより、対物レンズで結像される像を正立像に変換し、波面補償部材及び選択的反射部材は、正立光学系の反射面の一部を構成することが好ましい。   At this time, the erecting optical system converts the image formed by the objective lens into an erecting image by reflecting light from the subject, and the wavefront compensation member and the selective reflection member are reflected by the erecting optical system. It is preferable to constitute a part of the surface.

また、このような防振補償光学装置は、対物レンズの少なくとも一部のレンズを光軸に沿って移動することにより合焦することが好ましい。   In addition, it is preferable that such an image stabilization optical apparatus is focused by moving at least a part of the objective lens along the optical axis.

また、このような防振補償光学装置において、光軸方向調整部材は、対物レンズの少なくとも一部のレンズであり、当該レンズを光軸に対して垂直な方向の成分を持つように移動させて防振することが好ましい。   In such an image stabilization optical device, the optical axis direction adjusting member is at least a part of the objective lens, and the lens is moved so as to have a component in a direction perpendicular to the optical axis. Anti-vibration is preferred.

また、このような防振補償光学装置は、対物レンズの像を観察する接眼レンズを有することが好ましい。   Moreover, it is preferable that such an image stabilization optical apparatus has an eyepiece that observes the image of the objective lens.

本発明に係る防振補償光学装置においては、装置本体の振動による像ブレを補正するとともに、被写体または目標物体と光学装置との間に存在する空気の揺らぎによる、像の揺らぎをも補正し、遠方の被写体や目標物体の撮影や観察においても、鮮明な画像や観察像を得ることが可能となった。   In the image stabilization optical apparatus according to the present invention, the image blur due to the vibration of the apparatus body is corrected, and the image fluctuation due to the air fluctuation existing between the subject or the target object and the optical apparatus is also corrected, It has become possible to obtain clear images and observation images even when photographing and observing distant subjects and target objects.

第1の実施形態に係る防振補償光学装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the image stabilization optical apparatus which concerns on 1st Embodiment. 第2の実施形態に係る防振補償光学装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the vibration proof compensation optical apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る防振補償光学装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the vibration proof compensation optical apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る防振補償光学装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the vibration proof compensation optical apparatus which concerns on 4th Embodiment.

以下、本発明の好ましい実施形態について図面を参照して説明する。ここでは、防振補正光学装置の一例として、望遠鏡TSについて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Here, a telescope TS will be described as an example of the image stabilization optical device.

[第1の実施形態]
図1は、第1の実施形態に係る望遠鏡TSの光学系及び制御系を示している。望遠鏡TSの光学系は、被写体または目標物体の像(中間像I)を形成するための対物レンズOLと、この対物レンズOLにより形成される倒立像を正立像に変換する正立光学系ESと、中間像Iを観察する接眼レンズEPと、を有している。なお、本実施形態においては、対物レンズOLを3つのレンズ群OL1,OL2,OL3で構成した場合について示している。この望遠鏡TSは、対物レンズOLの一部(例えば、第2レンズ群OL2)を合焦レンズ群として光軸方向に移動することにより、合焦を行なう。また、図示しないジャイロセンサー(角速度センサー等)からの情報に基づいて装置本体のブレを検出し、このブレを打ち消すように対物レンズOLの一部(例えば、第3レンズ群OL3)を光軸方向調整部材である防振レンズ群として光軸に対して垂直な方向の成分を持つように移動することにより、防振を行なう。なお、対物レンズOLを構成する第1〜第3レンズ群OL1〜OL3は、単レンズや接合レンズで構成されていても良いし、これらのレンズが複数組み合わされて構成されていても良い。
[First Embodiment]
FIG. 1 shows an optical system and a control system of the telescope TS according to the first embodiment. The optical system of the telescope TS includes an objective lens OL for forming an image of the subject or target object (intermediate image I), and an erecting optical system ES for converting an inverted image formed by the objective lens OL into an erect image. An eyepiece lens EP for observing the intermediate image I. In the present embodiment, the objective lens OL is shown as having three lens groups OL1, OL2, OL3. The telescope TS performs focusing by moving a part of the objective lens OL (for example, the second lens group OL2) in the optical axis direction as a focusing lens group. Further, based on information from a gyro sensor (such as an angular velocity sensor) (not shown), a shake of the apparatus main body is detected, and a part of the objective lens OL (for example, the third lens group OL3) is moved in the optical axis direction so as to cancel the shake. The image stabilization lens group, which is an adjustment member, is moved so as to have a component in a direction perpendicular to the optical axis, thereby performing image stabilization. The first to third lens groups OL1 to OL3 constituting the objective lens OL may be constituted by a single lens or a cemented lens, or may be constituted by combining a plurality of these lenses.

さらに、この望遠鏡TSは、第2レンズ群OL2と第3レンズ群OL3との間の光路中に波面補償部材AM及び選択的透過部材DMが配置されており、また、選択的透過部材DMを透過した光束が入射する位置に波面検出部材WSが配置されている。ここで、波面補償部材AMは、背面に圧電素子を多数配置したミラーで構成され、反射面の表面形状を任意に変化させることが可能である。そのため、第2レンズ群OL2から出射した光は波面補償部材AMで反射し、選択的透過部材DMに入射する。この選択的透過部材DMは、例えば、ハーフミラーで構成されており、被写体または目標物体からの光束の一部が反射して第3レンズ群OL3に導かれ、残りの光束は透過して波面検出部材WSに導かれる。   Further, in the telescope TS, the wavefront compensation member AM and the selective transmission member DM are disposed in the optical path between the second lens group OL2 and the third lens group OL3, and the transmission through the selective transmission member DM. The wavefront detection member WS is disposed at a position where the incident light beam enters. Here, the wavefront compensation member AM is composed of a mirror having a large number of piezoelectric elements arranged on the back surface, and the surface shape of the reflecting surface can be arbitrarily changed. Therefore, the light emitted from the second lens group OL2 is reflected by the wavefront compensation member AM and enters the selective transmission member DM. The selective transmission member DM is formed of, for example, a half mirror, and a part of the light beam from the subject or target object is reflected and guided to the third lens group OL3, and the remaining light beam is transmitted to detect the wavefront. Guided to member WS.

この望遠鏡TSは、制御部CUを有し、空気の揺らぎによって発生した波面収差を波面検出部材WSにより検出し、波面補償部材AMの反射面の表面形状を変化させてリアルタイムに補償するように構成されている。すなわち、被写体または目標物体から出た光束の一部を光路中に配置された選択的透過部材DMにより波面検出部材WSに導き、これにより、波面収差を検出し、制御部CUによって解析を行い、波面補償部材AMを、波面収差を補償するように駆動する。ここで、波面検出部材WSとしては、シャックーハルトマン波面センサが使用される。シャック−ハルトマン波面センサとは、複数のマイクロレンズが2次元状に配置されたマイクロレンズアレイと、マイクロレンズの焦点面上に配置された撮像素子とを有し、各々のマイクロレンズで結像される点像の位置から波面収差を検出するものである。   This telescope TS has a control unit CU and is configured to detect wavefront aberration generated by air fluctuations by the wavefront detection member WS and to compensate in real time by changing the surface shape of the reflection surface of the wavefront compensation member AM. Has been. That is, a part of the light beam emitted from the subject or the target object is guided to the wavefront detection member WS by the selective transmission member DM arranged in the optical path, thereby detecting the wavefront aberration and performing analysis by the control unit CU, The wavefront compensation member AM is driven so as to compensate the wavefront aberration. Here, a Shack-Hartmann wavefront sensor is used as the wavefront detection member WS. The Shack-Hartmann wavefront sensor has a microlens array in which a plurality of microlenses are two-dimensionally arranged, and an image sensor arranged on the focal plane of the microlens, and is imaged by each microlens. The wavefront aberration is detected from the position of the point image.

本実施形態に係る望遠鏡TSを以上のように構成すると、この望遠鏡本体の振動による像ブレを防振レンズ群OL3により補正するとともに、被写体または目標物体と望遠鏡TSとの間に存在する空気の揺らぎによる、像の揺らぎを波面補償部材AMにより補正し、遠方の被写体や目標物体の撮影や観察においても、鮮明な画像や観察像を得ることができる。   When the telescope TS according to the present embodiment is configured as described above, image blur due to vibration of the telescope main body is corrected by the anti-vibration lens group OL3, and air fluctuation existing between the subject or target object and the telescope TS is corrected. Therefore, a clear image and an observed image can be obtained even in photographing and observing a distant subject or a target object by correcting the fluctuation of the image by the wavefront compensation member AM.

以上のように、本実施形態に係る望遠鏡TSは、視野内の特定の物体からの光束によって、波面収差の検出を行なうが、波面補償のために、専用の物体を人為的に作り出すことも可能である。例えば、図1に示すように、レーザ光(赤外光)等の波面収差を測定するための光を放射するLEDやレーザダイオードからなる光源LDと、この光源LDからの光を略平行光束にするコリメータレンズCLとからなる光束投射部PRを設け、この光束投射部PRの光軸を対物レンズOLの光軸と略平行になるように配置する。そして、光源LDから光(赤外光)をコリメータレンズCLを介して略平行光束にして視野内に投射し、被写体または目標物体の表面上にスポットを作成し、このスポット光を対物レンズOLの第1及び第2レンズ群OL1,OL2で集光して波面検出部材WSで受けて、波面収差の検出を行なうように構成することも可能である。この場合、選択的透過部材DMは、例えば、ダイクロイックミラーで構成することにより、赤外光を透過し、可視光を反射させることができる。そのため、被写体または目標物体から出て選択的透過部材DMに入射した可視光のほとんどは第3レンズ群OL3に導かれ、この被写体または目標物体の観察に用いられる。また、この選択的透過部材DMに入射した赤外光のほとんどは波面検出部材WSに導かれ、波面収差の測定に用いられる。なお、選択的透過部材DMで赤外光を反射させ、可視光を透過するように構成しても良い。このように、波面収差の測定のためにレーザー光(赤外光)を用い、選択的透過部材DMで可視光と赤外光とを、反射と透過、または、透過と反射によって分離することで、赤外光のみを波面検出部材WSで受ける構造とすることができ、観察に必要な可視光の損失を最小限に抑えて、明るい視野を確保することも可能である   As described above, the telescope TS according to the present embodiment detects wavefront aberration by the light flux from a specific object in the field of view, but it is also possible to artificially create a dedicated object for wavefront compensation. It is. For example, as shown in FIG. 1, a light source LD composed of an LED or a laser diode that emits light for measuring wavefront aberration such as laser light (infrared light) and the light from the light source LD into a substantially parallel light flux. A light beam projection part PR comprising a collimator lens CL is provided, and the optical axis of the light beam projection part PR is arranged so as to be substantially parallel to the optical axis of the objective lens OL. Then, light (infrared light) from the light source LD is made into a substantially parallel light flux through the collimator lens CL and projected into the field of view, a spot is created on the surface of the subject or target object, and this spot light is emitted from the objective lens OL. It is also possible to configure so as to detect the wavefront aberration by condensing by the first and second lens groups OL1 and OL2 and receiving by the wavefront detection member WS. In this case, the selective transmission member DM can be configured to be a dichroic mirror, for example, to transmit infrared light and reflect visible light. Therefore, most of the visible light that has exited from the subject or target object and entered the selective transmission member DM is guided to the third lens group OL3, and is used for observation of the subject or target object. Further, most of the infrared light incident on the selective transmission member DM is guided to the wavefront detection member WS and used for measurement of wavefront aberration. The selective transmission member DM may reflect infrared light and transmit visible light. In this way, laser light (infrared light) is used to measure wavefront aberration, and visible light and infrared light are separated by reflection and transmission or transmission and reflection by the selective transmission member DM. The wavefront detection member WS can receive only infrared light, and it is also possible to secure a bright field of view by minimizing the loss of visible light necessary for observation.

なお、本実施形態に係る望遠鏡TSにおいて、上述の合焦レンズ群OL2や防振レンズ群OL3の作動、及び、光源LDの作動も、制御部CUにより制御される。   In the telescope TS according to this embodiment, the operations of the focusing lens group OL2 and the anti-vibration lens group OL3 and the operation of the light source LD are also controlled by the control unit CU.

また、以上の説明は、防振補償光学装置の一例として望遠鏡TSに適用した場合について説明したが、本発明がこれに限定されることはなく、双眼鏡、フィールドスコープ等にも適用することが可能である。また、光軸方向調整部材として、対物レンズOLの一部(第3レンズ群OL3)を光軸に対して垂直な方向の成分を持つように移動させて防振を行なう場合について説明したが、本発明がこれに限定されることはない。例えば、対物レンズOL内に可変頂角プリズムを配置して防振を行うこともできる。ここで、可変頂角プリズムは、2枚のガラス板がV字状に接続され、これらの間を特殊フィルム製の蛇腹状の接続部材で接続されて構成されている。また、ガラス板及び接続部材で囲まれた空間には高屈折率の液体が充填されている。そして、この可変頂角プリズムは2枚のガラス板が接続された部分をプリズムの頂角とし、この頂角を中心に2枚のガラス板を開閉する(頂角を変化させる)ことにより、対物レンズOLによる結像位置を光軸と垂直な方向の成分を持つように移動させることができる。これにより、上述の対物レンズOLの一部(第3レンズ群OL3)を移動させるのと同じ効果を得ることができる。   Further, the above description has been given of the case where the present invention is applied to the telescope TS as an example of the image stabilization optical device, but the present invention is not limited to this and can be applied to binoculars, field scopes, and the like. It is. In addition, as an optical axis direction adjusting member, a case has been described in which a part of the objective lens OL (third lens group OL3) is moved so as to have a component in a direction perpendicular to the optical axis to perform vibration isolation. The present invention is not limited to this. For example, a variable apex angle prism can be arranged in the objective lens OL to perform image stabilization. Here, the variable apex angle prism is configured by connecting two glass plates in a V shape and connecting them with a bellows-like connection member made of a special film. Further, the space surrounded by the glass plate and the connection member is filled with a liquid having a high refractive index. The variable apex angle prism uses the portion where the two glass plates are connected as the apex angle of the prism, and opens and closes the two glass plates around the apex angle (changes the apex angle), thereby changing the objective angle. The imaging position by the lens OL can be moved so as to have a component in a direction perpendicular to the optical axis. Thereby, the same effect as moving a part of the objective lens OL described above (third lens group OL3) can be obtained.

[第2の実施形態]
以上のように、防振補償光学装置を、遠方の地上の目標物体を観察する地上望遠鏡TSとして使用する場合には、対物レンズOLによって形成された像を、上下左右反転させる正立光学系ESが必要である。そこで、図2に示すように、正立光学系ESを、上述の波面補償部材AM及び選択的透過部材DMとプリズムPLから構成することにより、正立反射系とすることができる。なお、以降の説明では上述の第1の実施形態と同じ構成要素には同じ符号を付し、詳細な説明は省略する(以降の実施形態においても同様である)。
[Second Embodiment]
As described above, when the image stabilization optical device is used as the terrestrial telescope TS for observing a target object on a distant ground, the erecting optical system ES that inverts the image formed by the objective lens OL vertically and horizontally. is required. Therefore, as shown in FIG. 2, the erecting optical system ES can be formed as an erecting reflection system by including the wavefront compensation member AM, the selective transmission member DM, and the prism PL described above. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted (the same applies to the subsequent embodiments).

この図2に示す第2の実施形態に係る望遠鏡TSの場合、被写体または目標物体から出て対物レンズOLの第1及び第2レンズ群OL1,OL2で集光された光束は、波面補償部材AMで反射され、選択的透過部材DMに入射する。そして、この選択的透過部材DMに入射した光束の一部はこの選択的透過部材DMで反射してプリズムPLに入射し、このプリズムPL内で2回反射して第3レンズ群OL3に導かれ、被写体または目標物体の中間像Iが形成され、接眼レンズEPで観察される。なお、図2において、プリズムPLに入射した光束は紙面の垂直方向に反射され、さらに紙面の右方向に反射されて選択的透過部材DMの側方を通過して第3レンズ群OL3に入射するように構成されている。一方、選択的透過部材DMに入射した光束の残りはこの選択的透過部材DMを透過して波面検出部材WSに導かれ、波面収差の測定に用いられる。すなわち、この第2の実施形態に係る望遠鏡TSにおいて、正立光学系ESの反射面の一面を波面補償部材AMとし、別の一面を選択的透過部材DMとして、光束の一部を波面検出部材WSに導くともに、光束の残りをプリズムPLで構成される反射面で反射させて中間像Iを正立像とするように構成されている。このような構成にすることで、波面補償部材AM及び選択的透過部材DMが正立光学系ESとして組み込まれるため、装置全体を、小型で軽量なものとすることができる。なお、この第2の実施形態においても、光源LDとコリメータレンズCLからなる光束投射部PRを設け、光源LDからの光を略平行光束にして視野内に投射し、その反射光を用いて波面収差を補償するように構成しても良い。この場合、選択的透過部材DMには、ダイクロイックミラーが用いられる。   In the case of the telescope TS according to the second embodiment shown in FIG. 2, the light beam that has exited from the subject or the target object and has been condensed by the first and second lens groups OL1 and OL2 of the objective lens OL is a wavefront compensation member AM. And is incident on the selective transmission member DM. A part of the light beam incident on the selective transmission member DM is reflected by the selective transmission member DM and incident on the prism PL, and is reflected twice in the prism PL and guided to the third lens group OL3. An intermediate image I of the subject or target object is formed and observed with the eyepiece lens EP. In FIG. 2, the light beam incident on the prism PL is reflected in the direction perpendicular to the paper surface, further reflected in the right direction on the paper surface, passes through the side of the selective transmission member DM, and enters the third lens group OL3. It is configured as follows. On the other hand, the remainder of the light beam incident on the selective transmission member DM passes through the selective transmission member DM, is guided to the wavefront detection member WS, and is used for measurement of wavefront aberration. That is, in the telescope TS according to the second embodiment, one surface of the reflecting surface of the erecting optical system ES is a wavefront compensation member AM, another surface is a selective transmission member DM, and a part of the light beam is a wavefront detection member. In addition to being guided to the WS, the remainder of the light beam is reflected by the reflecting surface formed by the prism PL so that the intermediate image I becomes an erect image. With such a configuration, the wavefront compensation member AM and the selective transmission member DM are incorporated as the erecting optical system ES, so that the entire apparatus can be made small and light. Also in the second embodiment, a light beam projection unit PR including the light source LD and the collimator lens CL is provided, and the light from the light source LD is projected into the field of view as a substantially parallel light beam. You may comprise so that aberration may be compensated. In this case, a dichroic mirror is used as the selective transmission member DM.

[第3の実施形態]
第1及び第2の実施形態に係る望遠鏡TSにおいては、波面補償部材AMで波面収差を補償した後、対物レンズOLの第3レンズ群(防振レンズ群)OL3で本体の振動による像ブレを補正するように構成されていたが、図3に示すように、防振レンズ群OL3で本体の振動による像ブレを補正した後、波面補償部材AMで波面収差を補償するように構成することも可能である。すなわち、この第3の実施形態に係る望遠鏡TLは、第1〜第3レンズ群OL1〜OL3から構成される対物レンズOLと、第2の実施形態と同様の構成であって、波面収差を補正する機能を有する正立光学系ESと、対物レンズOLにより形成され、正立光学系ESにより正立像となった中間像Iを観察する接眼レンズEPと、から構成されている。このような構成とすることで、波面検出部材WSに入射する前に、装置本体の振動による像ブレが補正されているため、波面補償の精度を向上させることができる。
[Third Embodiment]
In the telescope TS according to the first and second embodiments, after wavefront aberration is compensated for by the wavefront compensation member AM, image blur due to vibration of the main body is caused by the third lens group (anti-vibration lens group) OL3 of the objective lens OL. As shown in FIG. 3, the image stabilization lens group OL3 corrects the image blur due to the vibration of the main body and then the wavefront compensation member AM compensates for the wavefront aberration as shown in FIG. Is possible. That is, the telescope TL according to the third embodiment has the same configuration as the objective lens OL including the first to third lens groups OL1 to OL3 and the second embodiment, and corrects the wavefront aberration. And an eyepiece EP that is formed by the objective lens OL and that observes the intermediate image I that has become an erect image by the erecting optical system ES. By adopting such a configuration, image blur due to vibration of the apparatus main body is corrected before entering the wavefront detection member WS, so that the accuracy of wavefront compensation can be improved.

なお、この第3の実施形態に係る望遠鏡TSの場合、光束投射部PRの光源LDを略平行光に変換するコリメータレンズCLを、防振レンズ群OL3と同期して、光軸に垂直な方向の成分を持つように駆動することで、波面補償用の光源も防振とすることができ、波面補償の精度をさらに向上させることができる。このコリメータレンズCLの作動の制御も制御部CUにより行われる。または、図3のように、コリメータレンズCLを、光軸に垂直な方向の成分を持つように移動させる代わりに、コリメータレンズCLを固定して、光源LDを光軸に垂直な方向の成分を持つように移動させて、防振とすることも可能である。   In the case of the telescope TS according to the third embodiment, the collimator lens CL that converts the light source LD of the light beam projection unit PR into substantially parallel light is synchronized with the anti-vibration lens group OL3 and is perpendicular to the optical axis. By driving so as to have this component, the light source for wavefront compensation can also be anti-vibrated, and the accuracy of wavefront compensation can be further improved. Control of the operation of the collimator lens CL is also performed by the control unit CU. Alternatively, as shown in FIG. 3, instead of moving the collimator lens CL so as to have a component in the direction perpendicular to the optical axis, the collimator lens CL is fixed, and the light source LD has a component in the direction perpendicular to the optical axis. It is also possible to make it vibration-proof by moving it as if it had it.

[第4の実施形態]
あるいは、図4に示すように、図3の構成の望遠鏡TSの対物レンズOLと正立光学系ESとの間にハーフミラー(またはハーフプリズム)HMを配置し、光源LDから放射されコリメータレンズCLで略平行にされた赤外光(レーザー光)をこのハーフミラーHMで反射させて対物レンズOLに導き、この対物レンズOLを介して被写体または目標物体に投射するように構成することも可能である。この場合、被写体または目標物体で反射した赤外光は、対物レンズOLで集光され、その一部がハーフミラーHMを透過する。そして、第3の実施形態と同様に、波面補償部材AMで反射されて選択的透過部材DMに入射し、この選択的透過部材DMを透過して波面検出部材WSに導かれ波面収差が測定される。一方、被写体または目標物体から出た可視光は、対物レンズOLで集光され、その一部がハーフミラーHMを透過し、正立光学系ESの波面補償部材AM、選択的透過部材DM及びプリズムPLで反射されて正立像に変換された中間像Iが形成され、接眼レンズEPで観察される。
[Fourth Embodiment]
Alternatively, as shown in FIG. 4, a half mirror (or half prism) HM is disposed between the objective lens OL and the erecting optical system ES of the telescope TS configured as shown in FIG. 3, and the collimator lens CL is emitted from the light source LD. Infrared light (laser light) that has been made substantially parallel at 1 can be reflected by the half mirror HM, guided to the objective lens OL, and projected onto the subject or target object via the objective lens OL. is there. In this case, the infrared light reflected by the subject or the target object is collected by the objective lens OL, and a part of the infrared light passes through the half mirror HM. Then, as in the third embodiment, the light is reflected by the wavefront compensation member AM, enters the selective transmission member DM, passes through the selective transmission member DM, is guided to the wavefront detection member WS, and the wavefront aberration is measured. The On the other hand, the visible light emitted from the subject or the target object is collected by the objective lens OL, a part of which is transmitted through the half mirror HM, and the wavefront compensation member AM, the selective transmission member DM, and the prism of the erecting optical system ES. An intermediate image I that is reflected by the PL and converted into an erect image is formed and observed by the eyepiece lens EP.

この第4の実施形態のように構成しても、波面検出部材WSに入射する前に、装置本体の振動による像ブレが補正されているため、波面補償の精度を向上させることができる。また、波面収差を測定するための赤外光(波面補償用の光源LD)も対物レンズOLの防振レンズ群OL3で像ブレが補正されるため、波面補償の精度をさらに向上させることができる。   Even in the configuration of the fourth embodiment, since the image blur due to the vibration of the apparatus main body is corrected before entering the wavefront detection member WS, the accuracy of the wavefront compensation can be improved. In addition, since the image blur is corrected by the anti-vibration lens group OL3 of the objective lens OL in the infrared light (wavefront compensation light source LD) for measuring the wavefront aberration, the accuracy of the wavefront compensation can be further improved. .

TS 望遠鏡(防振補償光学装置) OL 対物レンズ
OL3 第3レンズ群(光軸方向調整部材) AM 波面補償部材
WS 波面検出部材 DM 選択的反射部材 ES 正立光学系
EP 接眼レンズ CU 制御部 PR 光束投射部
TS telescope (anti-vibration compensation optical device) OL objective lens OL3 third lens group (optical axis direction adjustment member) AM wavefront compensation member WS wavefront detection member DM selective reflection member ES erecting optical system EP eyepiece CU control unit PR luminous flux Projection unit

Claims (9)

被写体の像を結像するとともに、光軸方向調整部材により前記像を光軸に対して垂直な方向の成分を持つように移動させて防振する対物レンズを含む光学系と、
前記光学系中に配置され、前記被写体からの光束を反射する反射面の形状を任意に変化させる波面補償部材と、
前記波面補償部材で反射された前記光束を受光して波面収差を検出する波面検出部材と、
前記波面検出部材で検出された前記波面収差に応じて前記波面補償部材の前記反射面の形状を変化させて前記波面収差を補償させる制御部と、を有することを特徴とする防振補償光学装置。
An optical system including an objective lens that forms an image of a subject and moves the image so as to have a component in a direction perpendicular to the optical axis by an optical axis direction adjustment member, thereby stabilizing the image;
A wavefront compensation member that is arranged in the optical system and arbitrarily changes the shape of a reflecting surface that reflects a light beam from the subject;
A wavefront detection member that receives the light flux reflected by the wavefront compensation member and detects wavefront aberration;
An anti-vibration compensation optical apparatus, comprising: a control unit configured to compensate the wavefront aberration by changing a shape of the reflection surface of the wavefront compensation member according to the wavefront aberration detected by the wavefront detection member. .
前記波面補償部材と前記波面検出部材との間に配置され、前記波面補償部材で反射された前記光束の一部を反射し、残りを透過することにより、前記光束を分岐させ、一方の前記光束を前記波面検出部材に導くとともに、他方の前記光束により前記像を結像させる選択的反射部材を有することを特徴とする請求項1に記載の防振補償光学装置。   One of the light fluxes is arranged between the wavefront compensation member and the wavefront detection member, reflects a part of the light flux reflected by the wavefront compensation member and transmits the rest, thereby branching the light flux. 2. The vibration-proof compensation optical apparatus according to claim 1, further comprising a selective reflection member that guides the image to the wavefront detection member and forms the image by the other light flux. 前記波面検出部材で前記波面収差を検出するための光を前記被写体に投射する光束投射部を有することを特徴とする請求項2に記載の防振補償光学装置。   The image stabilizing compensation optical apparatus according to claim 2, further comprising a light beam projecting unit that projects light for detecting the wavefront aberration by the wavefront detecting member onto the subject. 前記光束投射部は、前記波面収差を検出するための光として可視光以外の波長の光を前記被写体に投射し、
前記選択的反射部材は、前記可視光及び前記波面収差を検出するための光のいずれか一方を反射し、他方を透過することを特徴とする請求項3に記載の防振補償光学系。
The luminous flux projection unit projects light of a wavelength other than visible light onto the subject as light for detecting the wavefront aberration,
The image stabilizing compensation optical system according to claim 3, wherein the selective reflection member reflects one of the visible light and the light for detecting the wavefront aberration and transmits the other.
前記対物レンズで結像される像を正立像に変換する正立光学系を有することを特徴とする請求項2〜4のいずれか一項に記載の防振補償光学装置。   5. The vibration-proof compensation optical apparatus according to claim 2, further comprising an erecting optical system that converts an image formed by the objective lens into an erect image. 6. 前記正立光学系は、前記被写体からの光を反射することにより、前記対物レンズで結像される像を正立像に変換し、
前記波面補償部材及び前記選択的反射部材は、前記正立光学系の反射面の一部を構成することを特徴とする請求項5に記載の防振補償光学装置。
The erecting optical system converts an image formed by the objective lens into an erecting image by reflecting light from the subject,
The anti-vibration compensation optical apparatus according to claim 5, wherein the wavefront compensation member and the selective reflection member constitute a part of a reflection surface of the erecting optical system.
前記対物レンズの少なくとも一部のレンズを光軸に沿って移動することにより合焦することを特徴とする請求項1〜6のいずれか一項に記載の防振補償光学装置。   The image stabilization optical apparatus according to claim 1, wherein at least a part of the objective lens is focused by moving along the optical axis. 前記光軸方向調整部材は、前記対物レンズの少なくとも一部のレンズであり、当該レンズを光軸に対して垂直な方向の成分を持つように移動させて防振することを特徴とする請求項1〜7のいずれか一項に記載の防振補償光学装置。   The optical axis direction adjusting member is at least a part of the objective lens, and the lens is moved so as to have a component in a direction perpendicular to the optical axis, thereby performing vibration isolation. The anti-vibration compensation optical apparatus according to any one of 1 to 7. 前記対物レンズの像を観察する接眼レンズを有することを特徴とする請求項1〜8のいずれか一項に記載の防振補償光学装置。   The vibration-proof compensation optical apparatus according to claim 1, further comprising an eyepiece that observes an image of the objective lens.
JP2011006628A 2011-01-17 2011-01-17 Vibration control compensation optical device Pending JP2012150143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011006628A JP2012150143A (en) 2011-01-17 2011-01-17 Vibration control compensation optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006628A JP2012150143A (en) 2011-01-17 2011-01-17 Vibration control compensation optical device

Publications (1)

Publication Number Publication Date
JP2012150143A true JP2012150143A (en) 2012-08-09

Family

ID=46792475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006628A Pending JP2012150143A (en) 2011-01-17 2011-01-17 Vibration control compensation optical device

Country Status (1)

Country Link
JP (1) JP2012150143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514249B1 (en) * 2013-11-13 2015-04-22 한국원자력연구원 Image acquisition apparatus with improved visibility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514249B1 (en) * 2013-11-13 2015-04-22 한국원자력연구원 Image acquisition apparatus with improved visibility

Similar Documents

Publication Publication Date Title
JP3752126B2 (en) AF ranging optical system
US7999924B2 (en) Range binoculars
JP4927182B2 (en) Laser distance meter
US7439477B2 (en) Laser condensing optical system
US8839526B2 (en) Sighting device, in particular telescopic sight, for a geodetic measuring apparatus and optical objective unit assembly for such a sighting device
JP5433976B2 (en) Ranging device
US10119815B2 (en) Binocular with integrated laser rangefinder
US11525677B2 (en) Surveying apparatus for surveying an object
KR20200038678A (en) Complex optical sighting device
JP2000066113A (en) Binoculars
US20180314050A1 (en) System and method for introducing display image into afocal optics device
TWI546567B (en) Range finder using binoculars
RU2593524C1 (en) Scanning multi-wave lidar for atmospheric objects probing
JP2012150143A (en) Vibration control compensation optical device
JP3634719B2 (en) Lightwave ranging finder with AF function
JP2014066724A (en) Distance measuring device
US6618126B2 (en) Surveying instrument having a sighting telescope and a phase-difference detection type focus detection device therefor
AU2013249513A1 (en) Stereoscopic beam splitter
JP2007264029A (en) Finder optical system and optical equipment mounted with same
RU2005125389A (en) LASER RANGEFINDER
EP2244060B1 (en) Range binoculars
RU2699125C1 (en) Surveillance device-sights with built-in laser range finder
US20230251090A1 (en) Method for operating a geodetic instrument, and related geodetic instrument
RU152491U1 (en) THERMAL VISION DEVICE
JP3782702B2 (en) Ghosting and flare prevention device for surveying instruments