JP2012149614A - Axial flow turbine - Google Patents

Axial flow turbine Download PDF

Info

Publication number
JP2012149614A
JP2012149614A JP2011010358A JP2011010358A JP2012149614A JP 2012149614 A JP2012149614 A JP 2012149614A JP 2011010358 A JP2011010358 A JP 2011010358A JP 2011010358 A JP2011010358 A JP 2011010358A JP 2012149614 A JP2012149614 A JP 2012149614A
Authority
JP
Japan
Prior art keywords
turbine
working fluid
outer peripheral
stationary blade
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011010358A
Other languages
Japanese (ja)
Other versions
JP5470285B2 (en
Inventor
Shigeki Senoo
茂樹 妹尾
Takeshi Kudo
健 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011010358A priority Critical patent/JP5470285B2/en
Publication of JP2012149614A publication Critical patent/JP2012149614A/en
Application granted granted Critical
Publication of JP5470285B2 publication Critical patent/JP5470285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an axial flow turbine that improves turbine efficiency by eliminating or reducing a shock wave loss and a loss due to peeling, etc. and enhances reliability of a moving wing by reducing the amount of erosion generated on the moving wing when increasing an annulus area of an axial flow turbine by enlarging the wing length or an average diameter.SOLUTION: The axial flow turbine is provided with a turbine station which comprises a static wing 7 fixed to an outer circumferential side static wing support 5 and a dynamic wing 8 fixed to a turbine rotor 2 on the actuation fluid flow direction downstream side. A hollow part 11 to which the working fluid having a higher temperature and a higher pressure than those of the working fluid flowing around the static wing 7 is introduced, and an injection port 12 which is communicated with the hollow part 11 and injects the working fluid introduced to the hollow part 11 to an working fluid main flow path 4 are formed on the outer circumferential side static wing support 5 of the turbine station having the static wing in which the radial direction height of a static wing outlet part is larger than the radial direction height of the static wing inlet part.

Description

本発明は、蒸気タービンなどの軸流タービンに関する。   The present invention relates to an axial flow turbine such as a steam turbine.

蒸気タービンなどの軸流タービンは、軸受装置に回転可能に支承されたロータと、このロータを内包し、作動流体主流が流れる作動流体主流路を内部に有するケーシングと、ケーシング、またはケーシングに固定された外周側ダイアフラムに固定された静翼と、ロータに固定された動翼とを備える。軸流タービンは、ケーシング内の高圧部から低圧部に向かって作動流体が膨張する時に生じる運動エネルギーを、静翼と動翼から構成される段落によりロータの回転力に変える機能を有する。   An axial turbine, such as a steam turbine, is fixed to a rotor that is rotatably supported by a bearing device, a casing that includes the rotor and has a working fluid main flow path in which a working fluid main flow flows, and a casing or a casing. A stationary blade fixed to the outer peripheral diaphragm and a moving blade fixed to the rotor. The axial turbine has a function of changing the kinetic energy generated when the working fluid expands from the high-pressure portion to the low-pressure portion in the casing into the rotational force of the rotor by the paragraph composed of the stationary blades and the moving blades.

このような軸流タービンでは、段落一段当たりの出力を増加させるために、単位時間当たりに段落を流れる流体の質量である流量を増加させたい要求がある。段落一段当たりの出力を増すことができると、例えば発電用蒸気タービンなどの多段落型の軸流タービンの場合には、段落数を変えずに発電量を増加させることが可能となる。   In such an axial turbine, there is a demand to increase the flow rate, which is the mass of the fluid flowing through the paragraph per unit time, in order to increase the output per stage. If the output per stage can be increased, for example, in the case of a multi-stage axial flow turbine such as a steam turbine for power generation, it is possible to increase the amount of power generation without changing the number of stages.

単位時間当たりに段落を流れる作動流体の流量を増加させるためには、作動流体が流れる流路の回転軸方向からみた面積である環帯面積を大きくすることが有効である。軸流タービンの場合には、環帯面積は、翼長と、翼の外周端直径と内周端直径とを足して2で割った平均直径との積に円周率をかけたものとなるため、環帯面積の増加のために、翼長と平均直径を大きくすることが行われている。   In order to increase the flow rate of the working fluid flowing through the paragraph per unit time, it is effective to increase the ring zone area, which is the area seen from the rotation axis direction of the flow path through which the working fluid flows. In the case of an axial turbine, the annulus area is the product of the blade length and the average diameter obtained by adding the outer and inner diameters of the blades and dividing by two times the circle ratio. Therefore, in order to increase the ring zone area, the blade length and the average diameter are increased.

しかしながら、蒸気タービンのような軸流タービンでは、環帯面積を大きくする、すなわち翼長や平均直径を大きくすると、動翼先端側の水滴によるエロージョン量が大きくなる。エロージョン量は、動翼先端周速の約三乗に比例して増加する。従って、翼長や平均直径を大きくすると、動翼先端周速も増すので、それに応じてエロージョン量も増加してしまう。一般的に、エロージョンを引き起こす液滴は、動翼上流側の作動流体主流路壁面を構成する側壁や、静翼翼面に形成された水膜が、作動流体主流路を流れる作動流体中に再放出されることで発生する。   However, in an axial flow turbine such as a steam turbine, when the ring zone area is increased, that is, the blade length and the average diameter are increased, the amount of erosion due to water droplets on the moving blade tip side increases. The amount of erosion increases in proportion to the third power of the blade tip peripheral speed. Therefore, when the blade length and the average diameter are increased, the peripheral speed of the rotor blade tip increases, and the amount of erosion increases accordingly. In general, droplets that cause erosion are re-released into the working fluid that flows through the working fluid main flow path from the side walls that make up the working fluid main flow path wall upstream of the rotor blades and the water film formed on the stationary blade surface. Is generated.

エロージョン対策に関する従来技術としては、特許文献1で示されているように、静翼を中空にし、そこに上流の高温高圧蒸気を導入して静翼翼面の水膜を蒸発させた後、高温高圧蒸気を静翼の後縁部から流路中に吹き出すものがある。   As a conventional technique related to erosion countermeasures, as shown in Patent Document 1, a stationary blade is made hollow, an upstream high-temperature and high-pressure steam is introduced therein to evaporate a water film on the surface of the stationary blade, and then a high-temperature and high-pressure Some blow off steam from the trailing edge of the stationary blade into the flow path.

特開昭50−112604号公報JP-A-50-112604

特許文献1に記載の従来技術は、静翼翼面に形成される水膜を再蒸発させることで、下流側動翼のエロージョンを防止することを目的とするものである。   The prior art described in Patent Document 1 aims to prevent erosion of the downstream rotor blade by re-evaporating a water film formed on the surface of the stationary blade.

しかしながら、水膜は翼面だけでなく、静翼の外周側側壁にも多く存在し、動翼先端にエロージョンを引き起こすのは、むしろ外周側側壁の水膜の影響が大きいと考えられる。従って、環帯面積を大きくする、すなわち翼長や平均直径を大きくするにあたっては、動翼先端側の水滴によるエロージョン量の増大を防ぐため、特に静翼外周側側壁の水膜について対策が必要であるが、特許文献1ではこの点については考慮さていない。   However, many water films exist not only on the blade surface but also on the outer peripheral side wall of the stationary blade, and it is considered that the influence of the water film on the outer peripheral side wall causes erosion at the tip of the moving blade. Therefore, when increasing the annulus area, that is, increasing the blade length and average diameter, measures must be taken especially for the water film on the outer peripheral side wall of the stationary blade to prevent an increase in the amount of erosion caused by water droplets on the blade tip side. However, Patent Document 1 does not consider this point.

ところで、一般的には、段落入口における、単位質量当たりのエンタルピー(比エンタルピー)と流速の二乗を2で割った単位質量当たりの運動エネルギーとの和である比全エンタルピーH0は、回転軸に近い内周側から外周側にかけて、ほぼ一定の値とされる。一方、静翼と動翼との間の比エンタルピーh1は、静動翼間の旋回流とバランスするように内周側に比べ外周側にいくほど大きくなる。したがって、比エンタルピー差H0−h1は、外周側ほど小さくなる。静翼から出る流れの速度は、この比エンタルピー差H0−h1の二乗根に比例する。すなわち、静翼流出速度は外周側ほど小さくなる。背景技術で述べたように、環帯面積を大きくする、すなわち翼長や平均直径を大きくすると、外周側の比エンタルピー差H0−h1は、ますます小さくなり、静翼流出速度もますます小さくなる。このように、環帯面積を大きくすることにより、外周側の比エンタルピー差H0−h1と静翼流出速度が小さくなる。一方、動翼周速は半径に比例して大きくなる。これらのことは、さらに以下に述べるような二つの問題を引き起こす可能性がある。   By the way, generally, the specific enthalpy H0 which is the sum of the enthalpy per unit mass (specific enthalpy) and the kinetic energy per unit mass divided by the square of the flow velocity divided by 2 at the entrance of the paragraph is close to the rotation axis. The value is almost constant from the inner circumference side to the outer circumference side. On the other hand, the specific enthalpy h1 between the stationary blade and the moving blade becomes larger toward the outer peripheral side than the inner peripheral side so as to balance with the swirling flow between the stationary blades. Therefore, the specific enthalpy difference H0-h1 becomes smaller toward the outer peripheral side. The velocity of the flow exiting the stationary blade is proportional to the square root of this specific enthalpy difference H0-h1. That is, the stationary blade outflow speed becomes smaller toward the outer peripheral side. As described in the background art, when the annulus area is increased, that is, when the blade length and the average diameter are increased, the specific enthalpy difference H0-h1 on the outer peripheral side becomes smaller and the stationary blade outflow velocity also becomes smaller. . Thus, by increasing the ring zone area, the specific enthalpy difference H0-h1 on the outer peripheral side and the stationary blade outflow speed are reduced. On the other hand, the rotor blade peripheral speed increases in proportion to the radius. These things can cause two more problems as described below.

一つ目は、動翼の相対流入マッハ数が超音速となり、損失が増加する可能性が増えることである。翼長や平均直径を大きくすると、動翼の回転速度である周速が大きくなる。動翼の周速は半径位置が一番大きい外周端、すなわち動翼先端部で最も大きくなる。先端部の周速を音速で割った周速マッハ数が1を越えて超音速となると、静翼からの流れの回転方向成分が十分でないと、動翼に流入してくる流れの相対速度が超音速となる。半径位置が大きくなると周速は大きくなり、静翼流出速度は半径位置が大きくなると小さくなるために、半径位置が大きくなるほど、動翼に対する相対流入速度が超音速となる可能性は大きくなる。相対流入速度が超音速となると、動翼上流側で不連続な圧力上昇を伴う衝撃波が発生する。衝撃波そのものによるエントロピー上昇に加え、衝撃波が翼面の境界層と干渉して、その不連続な圧力上昇により境界層厚さが増加する、さらに、はく離を生じさせることなどによるエントロピー上昇が生じる。この衝撃波によるエントロピー上昇により、タービン段落の環帯面積を増加させ、作動流体の流量を増加させたにも関わらず、増加流量に相当する回転力すなわち出力が増えないことがある。そのため、限界周速を越えて環帯面積を大きくすることにより、段落当たりの出力増加を実現するためには、動翼流入部で生じる衝撃波を無くす、もしくは弱くすることが重要であり、そのためには、動翼相対流入速度を小さくする必要がある。   The first is that the relative inflow Mach number of the moving blades becomes supersonic and the possibility of increased loss increases. Increasing the blade length and average diameter increases the peripheral speed, which is the rotational speed of the moving blade. The peripheral speed of the moving blade becomes the largest at the outer peripheral end having the largest radial position, that is, at the tip of the moving blade. When the peripheral speed Mach number obtained by dividing the peripheral speed of the tip by the sonic speed exceeds 1 and becomes supersonic, if the rotational direction component of the flow from the stationary blade is not sufficient, the relative velocity of the flow flowing into the moving blade will be Supersonic speed. As the radial position increases, the peripheral speed increases, and the stationary blade outflow speed decreases as the radial position increases. Therefore, the larger the radial position, the greater the possibility that the relative inflow speed with respect to the moving blade becomes supersonic. When the relative inflow velocity becomes supersonic, a shock wave accompanied by a discontinuous pressure rise occurs on the upstream side of the rotor blade. In addition to the entropy increase due to the shock wave itself, the shock wave interferes with the boundary layer of the blade surface, the boundary layer thickness increases due to the discontinuous pressure increase, and further entropy increase occurs due to peeling. Due to the entropy increase due to the shock wave, the rotational force corresponding to the increased flow rate, that is, the output may not increase even though the annular zone area of the turbine stage is increased and the flow rate of the working fluid is increased. Therefore, it is important to eliminate or weaken the shock wave generated at the moving blade inflow part in order to realize an increase in output per paragraph by increasing the ring area beyond the limit peripheral speed, and for that reason Therefore, it is necessary to reduce the relative inflow speed of the rotor blade.

二つ目は、外周側の拡大流路部で、はく離が起きる可能性が増大することである。段落の環帯面積を大きくすると、子午面流路の拡大率、すなわち段落入口流路高さに対する、段落出口の流路高さの増加率が大きくなる。一方、段落の環帯面積を大きくしても、段落の軸方向長さはタービン全体の長さに制約があるために一般にはあまり大きくできず、子午面流路の拡大率の増大は、静翼部の外周端や内周端の子午面流路形状の拡がり角を大きくすることで実現されることが一般的である。子午面流路形状の拡がり角が大きくても、静翼部の比エンタルピー差H0−h1が大きいと、翼間で流れが加速されためはく離が起きるなどの問題は起きないが、環帯面積を大きくするために、翼長や平均直径を大きくすると、外周側の静翼部の比エンタルピー差H0−h1が小さくなり、子午面流路の外周端の拡大流路部で、流れの加速が小さくなり、流れが翼面や側壁面からはく離して、損失が増大する可能性が大きくなる。   The second is that the possibility of delamination increases in the enlarged flow path portion on the outer peripheral side. When the annular zone area of the paragraph is increased, the expansion rate of the meridian plane passage, that is, the increase rate of the passage outlet channel height with respect to the paragraph inlet passage height increases. On the other hand, even if the annular zone area of the paragraph is increased, the axial length of the paragraph cannot generally be increased because the overall length of the turbine is limited. In general, this is realized by increasing the divergence angle of the meridional flow path shape at the outer peripheral end or inner peripheral end of the wing portion. Even if the divergence angle of the meridional flow channel shape is large, if the specific enthalpy difference H0-h1 of the stationary blade part is large, the flow is accelerated between the blades and no problem such as separation occurs. To increase the blade length and average diameter, the specific enthalpy difference H0-h1 of the outer stationary vane portion is reduced, and the acceleration of the flow is reduced at the enlarged flow passage portion at the outer peripheral end of the meridional flow passage. Therefore, the flow is separated from the blade surface and the side wall surface, and the possibility that the loss increases is increased.

そこで本発明の目的は、翼長や平均直径を大きくすることで軸流タービンの環帯面積を増加させた場合においても、外周側で静翼流出速度が小さくなるにもかかわらず動翼周速が大きくなることにより動翼流入部で生じる衝撃波損失を、無くすまたは小さくすることと、静翼外周側の拡大流路部で比エンタルピー差が小さいために起きやすくなるはく離などによる損失を、無くすまたは小さくすることにより、タービンの効率を向上させること、およびエロージョン量を低減することで信頼性を高めることにある。   Therefore, the object of the present invention is to increase the blade length and average diameter even when the annular zone area of the axial flow turbine is increased. Eliminates or reduces the shock wave loss that occurs at the moving blade inflow part due to the increase in the diameter, and eliminates the loss due to separation that tends to occur because the specific enthalpy difference is small at the enlarged flow path part on the outer periphery of the stationary blade, or By reducing the size, the efficiency of the turbine is improved, and the reliability is improved by reducing the amount of erosion.

上記目的を達成するために、本発明は、外周側静翼支持体に固定された静翼と、該静翼の作動流体流れ方向下流側でロータに固定された動翼とを有するタービン段落を備える軸流タービンであって、静翼入口部の半径方向高さに対し静翼出口部の半径方向高さが大きい静翼を有するタービン段落が、外周側静翼支持体の静翼外周側側壁の外周側に、静翼まわりを流れる作動流体よりも高温高圧の作動流体が導入され、導入された作動流体を前記静翼外周側側壁から作動流体主流路の下流側に向って噴出する構造を備えることを特徴とする。   In order to achieve the above object, the present invention provides a turbine stage having a stationary blade fixed to the outer peripheral side stationary blade support and a moving blade fixed to the rotor on the downstream side in the working fluid flow direction of the stationary blade. A turbine stage having a stationary blade having a stationary blade outlet portion whose radial height is greater than a radial height of the stationary blade inlet portion; A working fluid having a temperature higher than that of the working fluid flowing around the stationary blade is introduced to the outer peripheral side of the stationary blade, and the introduced working fluid is ejected from the outer peripheral side wall of the stationary blade toward the downstream side of the working fluid main flow path. It is characterized by providing.

本発明によれば、翼長や平均直径を大きくすることで軸流タービンの環帯面積を増加させた場合においても、外周側で静翼流出速度が小さくなるにもかかわらず動翼周速が大きくなることにより動翼流入部で生じる衝撃波損失を、無くすまたは小さくすることと、静翼外周側の拡大流路部で比エンタルピー差が小さいために起きやすくなるはく離などによる損失を、無くすまたは小さくすることにより、タービンの効率を向上させること、およびエロージョン量を低減することで信頼性を高めることができる。   According to the present invention, even when the annular zone area of the axial flow turbine is increased by increasing the blade length and the average diameter, the moving blade peripheral speed is reduced even though the stationary blade outflow speed is reduced on the outer peripheral side. Eliminating or reducing the shock wave loss that occurs at the moving blade inflow part by increasing it, and eliminating or reducing the loss due to separation that tends to occur because the specific enthalpy difference is small at the enlarged flow path part on the outer periphery of the stationary blade By doing so, reliability can be improved by improving the efficiency of the turbine and reducing the amount of erosion.

本発明の第1の実施形態に係る軸流タービンのタービン段落部の要部構造を表す子午面断面図である。It is meridional sectional drawing showing the principal part structure of the turbine stage part of the axial flow turbine which concerns on the 1st Embodiment of this invention. 一般的な蒸気タービンのタービン段落部の基本構造を表す子午面断面図である。It is a meridian plane sectional view showing the basic structure of the turbine paragraph part of a general steam turbine. 本発明の第1の実施形態に係る軸流タービンの静翼外周側側壁面上での、静翼と噴出口開口部との関係を示した図である。It is the figure which showed the relationship between a stationary blade and a jet nozzle opening part on the stationary blade outer peripheral side wall surface of the axial flow turbine which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る軸流タービンの静翼外周側側壁面上での、静翼と噴出口開口部との図3とは別の関係を示した図である。It is the figure which showed the relationship different from FIG. 3 of the stationary blade and jet nozzle opening part on the stationary blade outer peripheral side wall surface of the axial flow turbine which concerns on the 1st Embodiment of this invention. 図4に示した開口部位置を決めるための、静翼翼面圧力分布の図である。FIG. 5 is a diagram of a stationary blade blade surface pressure distribution for determining the opening position shown in FIG. 4. 本発明の第1の実施形態に係る軸流タービンの静翼外周側側壁面上での、静翼と噴出口開口部との図3および図4とは別の関係を示した図である。It is the figure which showed the relationship different from FIG. 3 and FIG. 4 of a stationary blade and a jet nozzle opening part on the stationary blade outer peripheral side wall surface of the axial flow turbine which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る軸流タービンの噴出口開口部の形状を説明する子午面断面図である。It is meridional sectional drawing explaining the shape of the jet nozzle opening part of the axial flow turbine which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る軸流タービンの噴出口開口部の別の形状を説明する子午面断面図である。It is meridional sectional drawing explaining another shape of the jet nozzle opening part of the axial flow turbine which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る軸流タービンの噴出口開口部のさらに別の形状を説明する子午面断面図である。It is meridional sectional drawing explaining another shape of the jet-outlet opening part of the axial flow turbine which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る軸流タービンの静翼外周側側壁面上での、静翼と噴出口開口部との図3,図4,図6とは別の関係を示した、外周側側壁上で見た図である。On the stationary blade outer peripheral side wall surface of the axial flow turbine according to the first embodiment of the present invention, the relationship between the stationary blade and the jet opening is shown in FIG. 3, FIG. 4 and FIG. It is the figure seen on the outer peripheral side wall. 図10に示した噴出口の形状を、子午面で見た図である。It is the figure which looked at the shape of the jet nozzle shown in FIG. 10 in the meridian plane. 図10に示した噴出口の形状を、外周側から見た図である。It is the figure which looked at the shape of the jet nozzle shown in FIG. 10 from the outer peripheral side. 一般的な軸流タービンのタービン段落部の、動翼相対流入マッハ数の翼高さ方向分布である。It is a blade height direction distribution of a moving blade relative inflow Mach number of a turbine stage part of a general axial flow turbine. 動翼の周速が大きい場合の、静翼を出た流れ、動翼周速と、動翼の相対流入速度との関係を模式的に表す図である。It is a figure which represents typically the relationship between the flow which came out of the stationary blade, the moving blade peripheral speed, and the relative inflow speed of a moving blade when the peripheral speed of a moving blade is large. 本発明による、動翼の周速が大きい場合の動翼の相対流入速度の増加を低減する効果を模式的に表す図である。It is a figure which represents typically the effect which reduces the increase in the relative inflow speed of a moving blade when the peripheral speed of a moving blade is large by this invention. 本発明の第2の実施形態に係る軸流タービンの要部構造を表す子午面断面図である。It is meridional plane sectional drawing showing the principal part structure of the axial flow turbine which concerns on the 2nd Embodiment of this invention.

本発明の実施例として、蒸気タービンの最終段を例にとって、以下に説明する。ただし、本発明の効果は、排気室を下流段の入口部と読み替えれば、最終段落に限定されない。また、動翼相対流入速度を低減し、衝撃波損失を低減する効果は、蒸気、空気などの作動流体によらず有効である。   An embodiment of the present invention will be described below by taking the final stage of a steam turbine as an example. However, the effect of the present invention is not limited to the final paragraph as long as the exhaust chamber is replaced with the downstream inlet. Moreover, the effect of reducing the relative inflow speed of the moving blade and reducing the shock wave loss is effective regardless of the working fluid such as steam and air.

まず始めに、図2を用いて、一般的な蒸気タービンのタービン段落部の基本構造を説明する。図2は、一般的な蒸気タービンのタービン段落部の基本構造を表す子午面断面図である。   First, the basic structure of a turbine stage section of a general steam turbine will be described with reference to FIG. FIG. 2 is a meridional cross-sectional view showing a basic structure of a turbine stage portion of a general steam turbine.

蒸気タービン1は、図示しない軸受装置に回転可能に支承されたタービンロータ2と、タービンロータ2を内包し、作動流体である蒸気が流れる作動流体主流路4を内部に有するタービンケーシング3と、円環状に形成された作動流体主流路4の外周側壁面を構成する外周側ダイアフラム5と、作動流体主流路4の内周側壁面を構成する内周側ダイアフラム6とを備える。23は中空部で、外周側ダイアフラムと静翼とを組み立てた際に形成される空間である。   The steam turbine 1 includes a turbine rotor 2 rotatably supported by a bearing device (not shown), a turbine casing 3 that includes the turbine rotor 2 and that has a working fluid main flow path 4 in which steam as a working fluid flows, The outer peripheral side diaphragm 5 which comprises the outer peripheral side wall surface of the working fluid main channel 4 formed in cyclic | annular form, and the inner peripheral side diaphragm 6 which comprises the inner peripheral side wall surface of the working fluid main channel 4 are provided. A hollow portion 23 is a space formed when the outer peripheral diaphragm and the stationary blade are assembled.

図2に記した矢印10は作動流体主流路4を流れる蒸気の流れ方向を表す。図2に示すように、蒸気タービンのタービン段落は、タービンケーシング3内部の作動流体流れ方向上流側(以下単に上流側と記載する)の高圧部P0と作動流体流れ方向下流側(以下単に下流側と記載する)の低圧部P1との間に設けられている。   An arrow 10 shown in FIG. 2 represents the flow direction of the steam flowing through the working fluid main channel 4. As shown in FIG. 2, the turbine stage of the steam turbine includes a high-pressure portion P0 on the upstream side (hereinafter simply referred to as upstream) in the working fluid flow direction inside the turbine casing 3 and a downstream side in the working fluid flow direction (hereinafter simply downstream). And the low-pressure part P1).

タービン段落は、タービンケーシング3の内周側に固設された外周側ダイアフラム5と内周側ダイアフラム6との間に固設された静翼7と、タービン中心軸20周りに回転するタービンロータ2に設けられた動翼8とからなる。タービン段落が複数の段落から構成される蒸気タービンの場合、この段落構造が作動流体流れ方向に複数回繰り返されて設けられている。各段落において、静翼の下流側に動翼が対向する。   The turbine stage includes a stationary blade 7 fixed between an outer peripheral diaphragm 5 and an inner peripheral diaphragm 6 fixed on the inner peripheral side of the turbine casing 3, and a turbine rotor 2 that rotates around the turbine central axis 20. And a moving blade 8 provided on the surface. In the case of a steam turbine in which the turbine stage is composed of a plurality of stages, this stage structure is provided by being repeated a plurality of times in the working fluid flow direction. In each paragraph, the moving blade faces the downstream side of the stationary blade.

蒸気タービンは、タービンケーシング3内の高圧部P0と低圧部P1との差圧によって誘起された蒸気の流れを静翼7で加速し、動翼8で回転運動に変換する。タービンロータ2には図示しない発電機が接続されており、タービンロータ2の回転運動が電力に変換される。   The steam turbine accelerates the steam flow induced by the differential pressure between the high pressure part P0 and the low pressure part P1 in the turbine casing 3 with the stationary blade 7 and converts it into rotational motion with the moving blade 8. A generator (not shown) is connected to the turbine rotor 2, and the rotational motion of the turbine rotor 2 is converted into electric power.

ここで、蒸気タービンでは、タービンケーシング3の内周側に外周側ダイアフラム5が設けられる場合と設けられない場合がある。外周側ダイアフラム5が設けられる場合には、静翼7は外周側ダイアフラム5に支持され、外周側ダイアフラム5が設けられない場合には、静翼7はタービンケーシング3の内周側壁部に支持される。そこで、静翼7を外周側から支持する静止体を「外周側静翼支持体」と定義し、外周側ダイアフラム5が設けられる場合には、外周側ダイアフラム5が「外周側静翼支持体」に該当し、外周側ダイアフラム5が設けられない場合には、タービンケーシング3の内周側壁部が「外周側静翼支持体」に該当する。   Here, in the steam turbine, the outer peripheral diaphragm 5 may or may not be provided on the inner peripheral side of the turbine casing 3. When the outer peripheral diaphragm 5 is provided, the stationary blade 7 is supported by the outer peripheral diaphragm 5, and when the outer peripheral diaphragm 5 is not provided, the stationary blade 7 is supported by the inner peripheral side wall portion of the turbine casing 3. The Accordingly, a stationary body that supports the stationary blade 7 from the outer circumferential side is defined as an “outer circumferential stationary blade support”, and when the outer circumferential diaphragm 5 is provided, the outer circumferential diaphragm 5 is the “outer circumferential stationary blade support”. When the outer peripheral diaphragm 5 is not provided, the inner peripheral side wall portion of the turbine casing 3 corresponds to the “outer peripheral stationary blade support”.

外周側静翼支持体の内周側壁面は、作動流体主流路4の外周側流路壁面を構成する。そこで、外周側静翼支持体の内周側壁面のうち、静翼7が接続された部分を「静翼外周側側壁面9」と定義する。外周側ダイアフラム5が設けられる場合には、外周側ダイアフラム5の内周側壁面の静翼7が接続された部分が「静翼外周側側壁面9」に該当し、外周側ダイアフラム5が設けられない場合には、タービンケーシング3の内周側壁部のうち、静翼7が接続された部分が「静翼外周側側壁面9」に該当する。   The inner peripheral side wall surface of the outer peripheral side stationary blade support body constitutes the outer peripheral side flow channel wall surface of the working fluid main flow channel 4. Therefore, the portion of the inner peripheral side wall surface of the outer peripheral side stationary blade support to which the stationary blade 7 is connected is defined as “the stationary blade outer peripheral side wall surface 9”. When the outer peripheral diaphragm 5 is provided, the portion of the inner peripheral side wall surface of the outer peripheral diaphragm 5 to which the stationary blade 7 is connected corresponds to the “static blade outer peripheral side wall surface 9”, and the outer peripheral diaphragm 5 is provided. If not, the portion of the inner peripheral side wall portion of the turbine casing 3 to which the stationary blade 7 is connected corresponds to the “static blade outer peripheral side wall surface 9”.

図2に示すように、タービン段落の段落入口部は、段落出口部に比べて作動流体の比容積が小さいため、段落入口流路高さは段落出口流路高さよりも小さくなる。つまり、静翼7の外周部は、タービン中心軸20を含む面(子午面)とこの静翼7の外周部との交線である外径線が前段落の動翼出口部から同じ段落を構成する動翼入口部にかけて径方向外側に傾斜しており、静翼7の部分では直線的に(あるいは単調に)作動流体主流路4の半径が増している。即ち、静翼の入口部の半径方向高さ(段落入口流路高さ)に対して該静翼の出口部の半径方向高さが高くなっている。   As shown in FIG. 2, the paragraph inlet portion of the turbine stage has a smaller specific volume of the working fluid than the paragraph outlet portion, so the paragraph inlet channel height is smaller than the paragraph outlet channel height. That is, the outer peripheral portion of the stationary blade 7 has the same paragraph from the moving blade outlet portion of the previous paragraph in the outer diameter line that is the intersection line between the surface including the turbine central axis 20 (the meridian surface) and the outer peripheral portion of the stationary blade 7. It is inclined radially outward from the moving blade inlet portion to be configured, and the radius of the working fluid main flow path 4 increases linearly (or monotonically) in the portion of the stationary blade 7. In other words, the radial height of the outlet portion of the stationary blade is higher than the radial height of the inlet portion of the stationary blade (stage inlet channel height).

以上を踏まえ、本発明の実施形態を以下に説明する。   Based on the above, embodiments of the present invention will be described below.

図1は、本発明の一実施の形態に係る蒸気タービンのタービン段落部の要部構造を表す子午面断面図である。この図において、先の図と同様の部分に相当する箇所には同符号を付して説明を省略する。   FIG. 1 is a meridional cross-sectional view showing a main structure of a turbine stage part of a steam turbine according to an embodiment of the present invention. In this figure, parts corresponding to the same parts as in the previous figures are given the same reference numerals and description thereof is omitted.

図1に示すように、本実施の形態では、静翼7の外周側ダイアフラム5を周方向に連結された中空部11を持つ構造とし、中空部11と作動流体主流路4とを連通する構造を有する。   As shown in FIG. 1, in the present embodiment, the outer diaphragm 5 of the stationary blade 7 has a structure having a hollow part 11 connected in the circumferential direction, and the structure in which the hollow part 11 and the working fluid main channel 4 are communicated with each other. Have

中空部11は、外周側静翼支持体である外周側ダイアフラム5の内部に形成されており、後述する抽気部14,作動流体導入流路13を介して高温高圧の作動流体(蒸気)が導入される空間である。中空部11は、外周側ダイアフラム5の静翼外周側側壁面9の外周側に位置するように設けられており、静翼外周側側壁面9に沿うように周方向に延伸した円環状の空間である。また、中空部11は、外周側ダイアフラム5を貫通して静翼外周側側壁面9に開口する噴出口12と繋がっており、この噴出口12を介して作動流体主流路4と連通している。よって、抽気部14,作動流体導入流路13を介して中空部11に導入された高温高圧の作動流体は、噴出口12から作動流体主流路4に向って噴出する。なお、中空部11は、外周側ダイアフラム5に静翼7を組み立てた際に形成される空間を利用して形成しても良い。   The hollow portion 11 is formed inside the outer peripheral diaphragm 5 that is the outer peripheral stationary blade support, and a high-temperature and high-pressure working fluid (steam) is introduced through a bleed portion 14 and a working fluid introduction passage 13 described later. Space. The hollow portion 11 is provided on the outer peripheral side of the stationary blade outer peripheral side wall surface 9 of the outer peripheral diaphragm 5, and is an annular space extending in the circumferential direction along the stationary blade outer peripheral side wall surface 9. It is. The hollow portion 11 is connected to a jet port 12 that passes through the outer peripheral diaphragm 5 and opens to the stationary blade outer peripheral side wall surface 9, and communicates with the working fluid main flow path 4 through the jet port 12. . Therefore, the high-temperature and high-pressure working fluid introduced into the hollow portion 11 through the extraction portion 14 and the working fluid introduction flow path 13 is ejected from the ejection port 12 toward the working fluid main flow path 4. The hollow portion 11 may be formed using a space formed when the stationary blade 7 is assembled to the outer peripheral diaphragm 5.

また、外周側ダイアフラム5には、中空部11に高温高圧の作動流体(蒸気)を導入するための流路として作動流体導入流路13が連結されている。作動流体導入流路13は、例えば上流側のタービン段落の抽気部14、またはさらに上流側のタービン段落の抽気部15と連結されており、該抽気部で抽気した、上流の高温高圧の作動流体を中空部11に導入する。抽気部14または15から中空部11に導入された蒸気は、中空部11を有する外周側ダイアフラム5が支持する静翼7まわりの蒸気よりも高温高圧である。従って、中空部11に導入された蒸気は外周側ダイアフラム5を加熱して、中空部11を有する外周側ダイアフラム5が支持する静翼7まわりの作動流体主流の温度よりも高くする。そのため作動流体主流温度と同じ温度で、静翼外周側側壁面9を流下してくる水膜は、中空部11を有する外周側ダイアフラム5の静翼外周側側壁面9で加熱され、一部は蒸発し、残りは周囲の蒸気より高温となることで蒸発しやすい状態になる。   In addition, a working fluid introduction flow path 13 is connected to the outer peripheral diaphragm 5 as a flow path for introducing high temperature and high pressure working fluid (steam) into the hollow portion 11. The working fluid introduction flow path 13 is connected to, for example, the bleed portion 14 of the upstream turbine stage, or the bleed portion 15 of the further upstream turbine stage, and the upstream high-temperature and high-pressure working fluid bleed at the bleed portion. Is introduced into the hollow portion 11. The steam introduced into the hollow part 11 from the extraction part 14 or 15 has higher temperature and pressure than the steam around the stationary blade 7 supported by the outer peripheral diaphragm 5 having the hollow part 11. Therefore, the steam introduced into the hollow portion 11 heats the outer peripheral side diaphragm 5 to be higher than the temperature of the main working fluid around the stationary blade 7 supported by the outer peripheral side diaphragm 5 having the hollow portion 11. Therefore, the water film flowing down the stationary blade outer peripheral side wall surface 9 at the same temperature as the working fluid mainstream temperature is heated by the stationary blade outer peripheral side wall surface 9 of the outer peripheral diaphragm 5 having the hollow portion 11, and a part thereof It evaporates, and the rest becomes a state where it tends to evaporate when it becomes hotter than the surrounding steam.

一般的に静翼外周側側壁面9を流下する水膜は、側壁面上の二次流れ渦などで巻き上げられることなどにより、主流中に再放出され、動翼先端部に衝突して、動翼のエロージョンを引き起こす。また、エロージョン量は、動翼先端周速の約三乗に比例して増加する。従って、翼長や平均直径を大きくすると、動翼先端周速も増すので、それに応じてエロージョン量も増加する。しかし、本実施の形態によれば、静翼外周側側壁面9の水膜量が低減されているため、動翼、特に動翼先端部に衝突する水滴の量を減らし、エロージョン量を減らすことができる。従って、本実施の形態は、翼長や平均直径を大きくすることで軸流タービンの環帯面積を増加させた場合に特に好適である。   In general, the water film flowing down the outer peripheral side wall surface 9 of the stationary blade is re-released into the main flow, for example, by being rolled up by a secondary flow vortex on the side wall surface, and collides with the tip of the moving blade to move. Causes wing erosion. Further, the amount of erosion increases in proportion to approximately the third power of the moving blade tip circumferential speed. Accordingly, when the blade length and the average diameter are increased, the moving blade tip peripheral speed is also increased, and the amount of erosion is accordingly increased. However, according to the present embodiment, since the amount of water film on the outer peripheral side wall surface 9 of the stationary blade is reduced, the amount of water droplets that collide with the moving blade, particularly the tip of the moving blade, is reduced, and the amount of erosion is reduced. Can do. Therefore, this embodiment is particularly suitable when the annular zone area of the axial flow turbine is increased by increasing the blade length and the average diameter.

中空部11に導入された作動流体は噴出口12を通して作動流体主流中に放出される。本実施の形態によれば、中空部11に導入された作動流体は、静翼外周側側壁面9から放出されるため、静翼後縁部から放出するのに比べて作動流体主流の流れへの影響を小さくできる。そのため作動流体主流の流れの乱れによる損失を小さくでき、タービン効率の低下を抑制することができる。   The working fluid introduced into the hollow portion 11 is discharged into the working fluid main flow through the ejection port 12. According to the present embodiment, the working fluid introduced into the hollow portion 11 is discharged from the stationary blade outer peripheral side wall surface 9, so that the working fluid flows into the main flow compared to discharging from the trailing edge of the stationary blade. The influence of can be reduced. Therefore, the loss due to the turbulence of the main flow of the working fluid can be reduced, and the decrease in turbine efficiency can be suppressed.

なお、中空部11に導入する作動流体は、中空部11を有するタービン段落自身とその下流側直近のタービン段落との間ではなく、中空部11を有するタービン段落の上流側に設けられたタービン段落間の抽気部14,15から抽気する必要がある。なぜならば、タービン段落自身とその下流側直近のタービン段落との間を流れる作動流体の温度は、中空部11を有する外周側ダイアフラム5が支持する静翼7まわりの作動流体主流の温度と略同じであるため、この作動流体を中空部11に導入しても、外周側ダイアフラム5の温度を、中空部11を有する外周側ダイアフラム5が支持する静翼7まわりの作動流体主流の温度よりも高くすることが困難だからである。また、圧力も略同じであるので、中空部11から作動流体主流路に向って噴出口から作動流体を放出することが困難だからである。   The working fluid introduced into the hollow part 11 is not between the turbine stage itself having the hollow part 11 and the turbine stage immediately downstream thereof, but is provided on the upstream side of the turbine stage having the hollow part 11. It is necessary to bleed from the bleed parts 14 and 15 in between. This is because the temperature of the working fluid flowing between the turbine stage itself and the turbine stage immediately downstream thereof is substantially the same as the temperature of the main working fluid around the stationary blade 7 supported by the outer peripheral diaphragm 5 having the hollow portion 11. Therefore, even if this working fluid is introduced into the hollow portion 11, the temperature of the outer peripheral diaphragm 5 is higher than the temperature of the main working fluid around the stationary blade 7 supported by the outer peripheral diaphragm 5 having the hollow portion 11. Because it is difficult to do. In addition, since the pressure is substantially the same, it is difficult to discharge the working fluid from the ejection port from the hollow portion 11 toward the working fluid main flow path.

作動流体導入流路13は、流路の一部をタービンケーシング3内に形成し、流路のその他の部分は配管部材を別途設けるなどして構成すれば良い。   The working fluid introduction channel 13 may be configured by forming a part of the channel in the turbine casing 3 and separately providing a piping member for the other part of the channel.

また、外周側ダイアフラム5を設けない蒸気タービンでは、中空部11,噴出口12,作動流体導入流路13は、直接タービンケーシング3内に設ければ良い。   Further, in the steam turbine not provided with the outer peripheral side diaphragm 5, the hollow portion 11, the jet port 12, and the working fluid introduction flow path 13 may be provided directly in the turbine casing 3.

また、中空部11に導入する作動流体は、中空部11を有するタービン段落を流下する作動流体より高温高圧であれば、作動流体主流中ではなく、外部から導入しても良い。   Further, the working fluid introduced into the hollow portion 11 may be introduced from the outside rather than in the working fluid main stream as long as it is at a higher temperature and pressure than the working fluid flowing down the turbine stage having the hollow portion 11.

次に、本実施の形態のさらなる効果を説明するために、ここで、動翼への作動流体の超音速流入の課題について説明する。   Next, in order to explain further effects of the present embodiment, the problem of supersonic inflow of the working fluid into the moving blade will be described here.

図14は、翼長や平均半径が大きくなることにより外周端の半径位置が大きくなるために、動翼周速が大きくなるときの、静・動翼間の一般的な速度三角形の模式図である。高圧P0の蒸気30は、静翼7によって加速,転向され速度Vの流れとなる。この流れVを動翼8と一緒に回転する相対座標系で見ると、動翼8は方向31、周速Uで回転しているため、図14に示すようにベクトルVとベクトルUの合成により、動翼相対流入速度は速度Wの流れとなる。このベクトルV,ベクトルUとベクトルWから構成される三角形を速度三角形と呼ぶ。速度三角形から明らかなように、動翼周速Uが大きくなると動翼に流入する相対流速Wは大きくなる。動翼相対流入速度Wを小さくするためには、静翼流出速度Vを大きくする必要がある。段落入口の蒸気の状態量が固定されているとき、静翼流出速度Vを大きくするには、静・動翼間での比エンタルピーh1を小さくして、静翼の比エンタルピー差Δhを大きくする必要があるが、静・動翼間での比エンタルピーh1は静翼出口の旋回速度場によって外周側ほど大きくなり、翼長が長くなるほど、旋回速度場の影響が強くなり、h1を小さくすることは難しくなる。すなわちVを大きくすることは難しくなる。   FIG. 14 is a schematic diagram of a general speed triangle between the stationary and moving blades when the peripheral speed of the moving blade increases because the radial position of the outer peripheral end increases as the blade length and average radius increase. is there. The high-pressure P0 steam 30 is accelerated and turned by the stationary blade 7 to become a flow of velocity V. When this flow V is viewed in a relative coordinate system that rotates together with the moving blade 8, the moving blade 8 rotates in the direction 31 and the circumferential speed U. Therefore, as shown in FIG. The moving blade relative inflow velocity is a flow of velocity W. A triangle composed of the vector V, the vector U, and the vector W is called a velocity triangle. As is apparent from the velocity triangle, the relative flow velocity W flowing into the moving blade increases as the moving blade peripheral speed U increases. In order to reduce the moving blade relative inflow velocity W, it is necessary to increase the stationary blade outflow velocity V. In order to increase the stationary blade outflow velocity V when the state quantity of steam at the paragraph inlet is fixed, the specific enthalpy h1 between the stationary and moving blades is decreased and the specific enthalpy difference Δh between the stationary blades is increased. Although it is necessary, the specific enthalpy h1 between the stationary blades and the moving blades increases with the swirl velocity field at the stationary blade outlet toward the outer periphery, and the longer the blade length, the stronger the influence of the swirl velocity field and the smaller h1. Becomes difficult. That is, it becomes difficult to increase V.

翼長や平均半径が大きくなることにより動翼外周端の半径位置が大きくなるために、動翼周速が大きくなり、動翼8に流入する作動流体の音速で動翼8の入口外周部の回転周速を割った動翼外周端周速マッハ数が1.0を超えると、動翼8に流入する作動流体の動翼8に対する相対速度が超音速となる可能性がある。動翼外周端周速マッハ数が1.7を超えると、動翼8に対する作動流体の相対速度は完全に超音速となる。動翼に対する作動流体の相対速度が超音速となると、動翼前縁,後縁部に衝撃波が発生し、衝撃波損失が生じてしまう。そのため、タービン効率の低下が生じてしまう。   Since the radial position of the outer peripheral edge of the moving blade is increased by increasing the blade length and the average radius, the peripheral speed of the moving blade is increased, and the speed of the inlet outer periphery of the moving blade 8 is increased by the sound speed of the working fluid flowing into the moving blade 8. When the outer peripheral edge peripheral speed Mach number obtained by dividing the rotational peripheral speed exceeds 1.0, the relative speed of the working fluid flowing into the moving blade 8 with respect to the moving blade 8 may become supersonic. When the outer peripheral edge peripheral speed Mach number of the moving blade exceeds 1.7, the relative velocity of the working fluid with respect to the moving blade 8 is completely supersonic. When the relative velocity of the working fluid with respect to the moving blades becomes supersonic, shock waves are generated at the leading and trailing edges of the moving blades, resulting in shock wave loss. Therefore, the turbine efficiency is reduced.

図13は、翼長や平均半径が大きくなることにより外周端の半径位置が大きくなるために、動翼周速が大きくなるときの、動翼相対流入マッハ数Mr1の翼高さ方向分布である。図14で説明したように、外周側では、マッハ数が1.0を越え、超音速流入となっていることがわかる。   FIG. 13 shows the blade height direction distribution of the blade relative inflow Mach number Mr1 when the blade peripheral speed increases because the radial position of the outer peripheral end increases as the blade length and average radius increase. . As described with reference to FIG. 14, it can be seen that on the outer peripheral side, the Mach number exceeds 1.0 and supersonic inflow occurs.

ここで、外周側の静翼の比エンタルピー差Δhを大きくするために、段落のエンタルピー差H0−h2自体を大きくすると、内周端の動翼相対流入マッハ数が1.0を越え超音速流入となるために、段落全体のエンタルピー差を大きくすることでは、超音速流入の問題を解決することは難しい。   Here, in order to increase the specific enthalpy difference Δh of the stationary vane on the outer peripheral side, if the enthalpy difference H0-h2 itself in the paragraph is increased, the relative inflow Mach number of the inner peripheral blade exceeds 1.0 and the supersonic inflow occurs. Therefore, it is difficult to solve the supersonic inflow problem by increasing the enthalpy difference of the entire paragraph.

本実施の形態の説明に戻る。図3に、静翼外周側側壁面9上での、静翼7と高温高圧作動流体を放出するための噴出口12の開口部16との関係を示す。噴出口12の開口部16は、静翼翼間流路の最も狭くなったスロートと呼ばれる部分近傍に設ける。また、開口部16の形状は、スロートに沿ったスリットとする。さらに、図1に示すように、静翼7の外周部は、タービン中心軸20を含む面(子午面)とこの静翼7の外周部との交線である外径線が前段落の動翼出口部から同じ段落を構成する動翼入口部にかけて径方向外側に傾斜しており、静翼7の部分では直線的に(あるいは単調に)作動流体主流路4の半径が増している。即ち、静翼の入口部の半径方向高さ(段落入口流路高さ)に対して該静翼の出口部の半径方向高さが高くなっている。そこで、スリット状の開口部16自体は、タービン中心軸方向に向って開口させる。なお、必ずしもタービン軸方向とする必要はなく、若干外周側に向って開口させても良い。開口部16をタービン中心軸方向もしくは若干外周側に向って開口させることで、中空部11の作動流体を、作動流体主流の流れ方向下流側に向かって噴出し、開口部から噴出される作動流体の流れを静翼外周側側壁面に沿った流れにでき、作動流体の流れへの影響を小さくすることができる。   Returning to the description of the present embodiment. FIG. 3 shows the relationship between the stationary blade 7 and the opening 16 of the jet outlet 12 for discharging the high-temperature and high-pressure working fluid on the stationary blade outer peripheral side wall surface 9. The opening 16 of the jet port 12 is provided in the vicinity of a portion called a throat having the narrowest flow path between the stationary blades. The shape of the opening 16 is a slit along the throat. Further, as shown in FIG. 1, the outer peripheral portion of the stationary blade 7 has an outer diameter line that is an intersection line between the surface including the turbine central axis 20 (the meridian surface) and the outer peripheral portion of the stationary blade 7. Inclined radially outward from the blade outlet portion to the moving blade inlet portion constituting the same paragraph, and the radius of the working fluid main flow path 4 increases linearly (or monotonously) in the portion of the stationary blade 7. In other words, the radial height of the outlet portion of the stationary blade is higher than the radial height of the inlet portion of the stationary blade (stage inlet channel height). Therefore, the slit-shaped opening 16 itself is opened toward the turbine central axis. The turbine shaft direction is not necessarily required, and the turbine shaft may be opened slightly toward the outer periphery. By opening the opening 16 toward the turbine central axis direction or slightly toward the outer peripheral side, the working fluid in the hollow portion 11 is ejected toward the downstream side in the flow direction of the working fluid main flow, and the working fluid is ejected from the opening. Can be made to flow along the outer peripheral side wall surface, and the influence on the flow of the working fluid can be reduced.

噴出口12の開口部16を、静翼翼間流路の最も狭くなったスロートと呼ばれる部分近傍に設けた理由について説明する。静翼の翼間流路において、静翼入口部からスロート部までは、流路面積が減少するため圧力は減少し、スロートでは圧力はほぼ一定となる。一方、その下流では、子午面の拡がりによりむしろ圧力は増加する。そのため、作動流体主流路4の半径が増し、外周側側壁面の外周側への拡がり角が大きい場合には、圧力上昇も大きくなり、外周側側壁面の側壁境界層が巻き上がり、強い二次流れ渦が生じる。長翼化により外周側側壁面の外周側への拡がり角がさらに大きくなった場合には、はく離が起きる可能性もある。本実施の形態では、開口部16をスロート部分に設けることで、スロート部からの作動流体の吹き出しにより、側壁近傍の流れに運動エネルギーが与えられ、加速されるため、境界層厚さの増加やはく離を抑制することができる。また、高温の作動流体が噴き出され、側壁上の水膜と混合されることで、水膜は蒸発し、蒸発しきれなかった水膜も開口部16からの噴流との激しい混合により微細化されて主流中に放出される。微細化された液滴は作動流体主流とほぼ同じ速度で流れ、その大部分は動翼と衝突することなく、動翼翼間を流れるため、エロージョン量は低減できる。従って、本実施の形態によれば、噴出口12の開口部16を、静翼翼間流路の最も狭くなったスロートと呼ばれる部分近傍に設けることにより、長翼化によって外周側側壁面の外周側への拡がり角が大きくなった場合においても、境界層厚さの増加やはく離を抑制でき、タービン効率を向上させることができる。   The reason why the opening 16 of the jet nozzle 12 is provided in the vicinity of the narrowest part called the throat of the flow path between the stationary blades will be described. In the inter-blade flow path of the stationary blade, the pressure is reduced from the stationary blade inlet portion to the throat portion because the flow passage area is reduced, and the pressure is almost constant at the throat. On the other hand, the pressure increases rather than the meridian spread. Therefore, when the radius of the working fluid main flow path 4 is increased and the angle of expansion of the outer peripheral side wall surface to the outer peripheral side is large, the pressure rise is increased, the side wall boundary layer of the outer peripheral side wall surface is rolled up, and the strong secondary A flow vortex is generated. If the spread angle of the outer peripheral side wall surface to the outer peripheral side is further increased due to the increase in the length of the blade, the separation may occur. In the present embodiment, since the opening 16 is provided in the throat portion, the kinetic energy is given to the flow near the side wall by the blowing of the working fluid from the throat portion, and the flow is accelerated. Peeling can be suppressed. Further, when the high-temperature working fluid is ejected and mixed with the water film on the side wall, the water film evaporates, and the water film that cannot be completely evaporated is refined by vigorous mixing with the jet from the opening 16. And released into the mainstream. The refined droplets flow at almost the same speed as the main working fluid flow, and most of them flow between the blades without colliding with the blades, so that the amount of erosion can be reduced. Therefore, according to the present embodiment, by providing the opening 16 of the spout 12 in the vicinity of the portion called the throat where the flow path between the stationary blades is the narrowest, the outer peripheral side of the outer peripheral side wall surface due to the longer blades. Even when the divergence angle increases, the increase in the boundary layer thickness and the separation can be suppressed, and the turbine efficiency can be improved.

次に、図15に、本実施の形態により動翼の相対流入速度の増加が低減される効果を模式的に表す。本実施の形態によれば、噴出口12の開口部16を、静翼翼間流路の最も狭くなったスロートと呼ばれる部分近傍に設け、開口部16の形状を、タービン軸方向もしくは外周側に向って開口する、スロートに沿ったスリット状にしたことで、噴出口12からの吹き出し流れにより、外周側静翼流出速度の流速をV1からV2に大きくすることが可能となる。外周側静翼流出速度の流速をV1からV2に加速することで、その旋回速度成分もVT1からVT2に大きくすることができ、周速Uが同じにもかかわらず、動翼に流入する相対速度W1をW2に減速させることができる。本実施形態によれば、動翼に流入する相対速度W1をW2に減速でき、これにより超音速流入を回避できる。従って、動翼入口の衝撃波の発生を抑制し、それに伴う損失の増加を回避することが可能となる。
本効果は、特に低圧タービン最終段落に好適である。
Next, FIG. 15 schematically shows the effect of reducing the increase in the relative inflow speed of the moving blade according to the present embodiment. According to the present embodiment, the opening 16 of the jet nozzle 12 is provided in the vicinity of a portion called the throat where the flow path between the stationary blades is the narrowest, and the shape of the opening 16 is directed to the turbine axial direction or the outer peripheral side. By opening the slit along the throat, the flow velocity of the outer stationary vane outflow speed can be increased from V1 to V2 by the blowout flow from the jet outlet 12. By accelerating the flow velocity of the outer peripheral stationary blade outflow velocity from V1 to V2, the swirl velocity component can be increased from VT1 to VT2, and the relative velocity flowing into the moving blades even though the circumferential velocity U is the same. W1 can be decelerated to W2. According to this embodiment, the relative speed W1 flowing into the moving blade can be reduced to W2, thereby avoiding supersonic inflow. Therefore, it is possible to suppress the generation of shock waves at the moving blade inlet and to avoid an increase in loss associated therewith.
This effect is particularly suitable for the final stage of the low-pressure turbine.

次に、図4に、静翼外周側側壁面9上での、静翼7と高温高圧の作動流体を放出するための噴出口12との図3とは別の関係を示す。   Next, FIG. 4 shows a different relationship from FIG. 3 between the stationary blade 7 and the jet port 12 for discharging the high-temperature and high-pressure working fluid on the stationary blade outer peripheral side wall surface 9.

子午面上での外周側側壁の拡がり角が大きい場合、静翼間では絞り流路となっていても、翼高さ方向の流路の拡がりが大きいために、三次元的には拡大流路となることがある。その場合、側壁での二次流れの巻き上がりやはく離は、静翼翼間のスロートより上流で起きる可能性がある。その場合、外周側ダイアフラム5の中空部11から高温高圧の作動流体を噴き出すスリットをより上流に設置することで、先に説明した本実施形態の効果をより確実に得ることができる。その場合、噴出口12の開口部16は、スロート部より作動流体流れ方向上流側に設け、図5に示す静翼の翼面静圧分布において、翼正圧面24の圧力P6と翼負圧面25の圧力P5が等しくなる、隣り合う静翼の互いに対向する翼正圧面24と翼負圧面25とを結ぶ線に沿った位置に設けると、吹き出し流れが、より翼間の主流に沿って流れやすくなる。この場合、開口部16の形状は、タービン軸方向、もしくは外周側に向って開口し、翼正圧面24の圧力P6と翼負圧面25の圧力P5が等しくなる点を結んだスリット状にするのが望ましい。   When the expansion angle of the outer peripheral side wall on the meridian plane is large, the expansion channel in the blade height direction is large, even though it is a throttle channel between the stationary blades. It may become. In that case, the secondary flow may be rolled up or separated from the side wall upstream of the throat between the stationary blades. In that case, the effect of this embodiment demonstrated previously can be acquired more reliably by installing the slit which ejects a high temperature / high pressure working fluid from the hollow part 11 of the outer peripheral side diaphragm 5 more upstream. In that case, the opening 16 of the ejection port 12 is provided upstream of the throat portion in the working fluid flow direction, and in the blade surface static pressure distribution of the stationary blade shown in FIG. 5, the pressure P6 of the blade positive pressure surface 24 and the blade negative pressure surface 25. If the pressure P5 of the two adjacent stationary blades is equal to each other and provided at a position along a line connecting the blade pressure surface 24 and the blade suction surface 25 facing each other, the blowing flow is more likely to flow along the main flow between the blades. Become. In this case, the shape of the opening 16 is a slit shape that opens toward the turbine axial direction or the outer peripheral side and connects the points where the pressure P6 of the blade positive pressure surface 24 and the pressure P5 of the blade negative pressure surface 25 become equal. Is desirable.

次に、図6に、噴出口12の変形例として、静翼外周側側壁面9上での、高温高圧蒸気を放出するための噴出口12を複数設けた図を示す。最下流側に設置する噴出口12の開口部16aとしては、前述した図3または図4に示した噴出口12の開口部構造を採用すれば良い。また最下流側に設置した噴出口12の上流側に設ける噴出口12の開口部16bとしては、図4に示した噴出口12の開口部構造を採用すれば良い。本変形例のような複数の噴出口12を設けることは、製作工程の増加につながるが、本実施形態の、超音速流入の回避,二次流れ巻き上がりやはく離を抑制,エロージョン量低減の効果をより大きく得ることが可能となる。   Next, FIG. 6 shows a modification of the jet nozzle 12 in which a plurality of jet nozzles 12 for discharging high-temperature and high-pressure steam on the stationary blade outer peripheral side wall surface 9 are provided. As the opening 16a of the jet 12 installed on the most downstream side, the opening structure of the jet 12 shown in FIG. 3 or FIG. 4 described above may be employed. Moreover, what is necessary is just to employ | adopt the opening part structure of the jet nozzle 12 shown in FIG. 4 as the opening part 16b of the jet nozzle 12 provided in the upstream of the jet nozzle 12 installed in the most downstream side. Providing a plurality of jet outlets 12 as in this modification leads to an increase in the manufacturing process, but the effect of avoiding supersonic inflow, suppressing secondary flow roll-up and separation, and reducing the amount of erosion of this embodiment. Can be obtained larger.

図10に、静翼外周側側壁面9上での、静翼7と高温高圧の作動流体を放出するための噴出口12とのさらに別の関係を示す。静翼の翼間にスリット状の開口部16を設けるためには、静翼翼間分のスリットを製作する必要がある。図10の構造では、開口部16は静翼出口の下流部に円周状に、周方向に延伸するスリット状に設ける。そして、その開口部16の内部に、開口部16から吹き出す流れ方向を静翼流出方向に合わせる案内板17を設ける。図11は、図10の構造を子午面で見た図であり、図12は、図10の構造を図11の矢印50で示す外周側から、面51で切り取って見た図である。また図12には、実際には面51より内周側にある静翼7の翼型を点線で示した。   FIG. 10 shows still another relationship between the stationary blade 7 and the ejection port 12 for discharging the high-temperature and high-pressure working fluid on the stationary blade outer peripheral side wall surface 9. In order to provide the slit-shaped opening 16 between the vanes of the stationary blades, it is necessary to manufacture slits between the stationary blades. In the structure of FIG. 10, the opening 16 is provided in the shape of a slit extending in the circumferential direction in the downstream portion of the stationary blade outlet. And the guide plate 17 which matches the flow direction which blows off from the opening part 16 with the stationary blade outflow direction inside the opening part 16 is provided. FIG. 11 is a diagram of the structure of FIG. 10 viewed from the meridian plane, and FIG. 12 is a diagram of the structure of FIG. 10 cut by a plane 51 from the outer peripheral side indicated by the arrow 50 in FIG. In FIG. 12, the airfoil of the stationary blade 7 that is actually on the inner peripheral side of the surface 51 is indicated by a dotted line.

図11に示すように、噴出口12はタービン軸方向に外周側ダイアフラム5を貫通し、中空部11と作動流体主流路4に連通している。そのため、開口部16は、タービン軸方向に開口している。また、図12に示すように、噴出口12の内部に、案内板17を静翼流出方向に傾けて、周方向に間隔を置いて複数個設けることで、噴出し流れ18の流れ方向を、静翼7からの作動流体主流の流出方向と合わせることが可能となる。   As shown in FIG. 11, the jet nozzle 12 passes through the outer peripheral diaphragm 5 in the turbine axial direction and communicates with the hollow portion 11 and the working fluid main flow path 4. Therefore, the opening 16 opens in the turbine axial direction. In addition, as shown in FIG. 12, the flow direction of the jet flow 18 can be changed by providing a plurality of guide plates 17 at an interval in the circumferential direction by tilting the guide plate 17 in the jet direction of the stationary blade inside the jet port 12. It becomes possible to match the outflow direction of the main working fluid from the stationary blade 7.

次に、図7に、作動流体吹き出しのための噴出口12の開口部16の形状(噴出口出口形状)を詳細に示す。噴出し流れ18が静翼外周側側壁面9に沿って流れるように、開口部16の下流側壁面を、タービン軸方向下流側に向って開口部外径が拡径するように曲面形状に形成する。子午面上では、開口部16の下流側壁面は、曲線部19となっている。   Next, FIG. 7 shows in detail the shape of the opening 16 of the ejection port 12 for ejecting the working fluid (shape of the ejection port). The downstream side wall surface of the opening 16 is formed in a curved shape so that the outer diameter of the opening increases toward the downstream side in the turbine axial direction so that the jet flow 18 flows along the side wall surface 9 on the outer peripheral side of the stationary blade. To do. On the meridian plane, the downstream side wall surface of the opening 16 is a curved portion 19.

さらに、図8に示すように、開口部16の下流側壁面に形成された曲面部は、子午面上で見ると、下流側のタービン軸方向の幅を、上流側より小さくすることで、噴出し流れ8は、より確実に外周側側壁面9に沿って流れる。   Further, as shown in FIG. 8, the curved surface portion formed on the downstream side wall surface of the opening portion 16 is ejected by making the width in the downstream turbine axial direction smaller than the upstream side when viewed on the meridian surface. The flow 8 flows more reliably along the outer peripheral side wall surface 9.

さらに、図9に示すように、開口部16の上流側壁部に、開口部16から流出する噴出し流れ8の方向を、開口部下流側の静翼外周側側壁面に向って転向させる突起部21をフローガイドとして設けることで、噴出し流れ18を、より確実に外周側側壁面9に沿って流すことができる。   Further, as shown in FIG. 9, a protrusion that turns the direction of the jet flow 8 flowing out from the opening 16 toward the stationary blade outer peripheral side wall on the downstream side of the opening, on the upstream side wall of the opening 16. By providing 21 as a flow guide, it is possible to flow the jet flow 18 along the outer peripheral side wall surface 9 more reliably.

次に本発明の第2の実施形態について説明する。     Next, a second embodiment of the present invention will be described.

図16は、本発明の一実施の形態に係る軸流タービンのタービン段落部の要部構造を表す子午面断面図である。この図において、先の第1の実施形態と同様の部分に相当する箇所には同符号を付して説明を省略する。   FIG. 16 is a meridional cross-sectional view illustrating a main structure of a turbine stage portion of the axial turbine according to the embodiment of the present invention. In this figure, parts corresponding to the same parts as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、先に説明した第1の実施形態の構造に加えて、外周側ダイアフラム5の静翼外周側側壁面9上に多孔質のシート状構造体22をコーティング等により設ける。シート状構造体22は、多孔質であるため、静翼外周側側壁面9上を流れる水膜はシート状構造体22内に入り込む。そのため、中空部11に導入された高温の作動媒体で温度が高くなった外周側ダイアフラム5から、液滴が熱をもらうための面積が増加し、より多くの水膜を蒸発させることができる。   In this embodiment, in addition to the structure of the first embodiment described above, a porous sheet-like structure 22 is provided on the stationary blade outer peripheral side wall surface 9 of the outer peripheral diaphragm 5 by coating or the like. Since the sheet-like structure 22 is porous, the water film flowing on the stationary blade outer peripheral side wall surface 9 enters the sheet-like structure 22. Therefore, the area for the droplets to receive heat increases from the outer peripheral diaphragm 5 whose temperature has been increased by the high-temperature working medium introduced into the hollow portion 11, and more water film can be evaporated.

以上、本発明の実施形態を、軸流タービンの一例として作動媒体に蒸気を用いる蒸気タービンを例に説明したが、本発明は、これに限定されるものではなく、作動媒体に湿分が付加される軸流タービン、例えば高湿分利用ガスタービンにも適用可能である。   As described above, the embodiment of the present invention has been described by taking a steam turbine using steam as a working medium as an example of an axial flow turbine. However, the present invention is not limited to this, and moisture is added to the working medium. The present invention can also be applied to an axial flow turbine, such as a high humidity gas turbine.

1 蒸気タービン
2 タービンロータ
3 タービンケーシング
4 作動流体主流路
5 外周側ダイアフラム
6 内周側ダイアフラム
7 静翼
8 動翼
9 静翼外周側側壁面
11,23 中空部
12 噴出口
13 作動流体導入流路
14,15 抽気部
16 開口部
17 案内板
18 噴出し流れ
19 曲線部
21 突起部
22 シート状構造体
24 翼正圧面
25 翼負圧面
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Turbine rotor 3 Turbine casing 4 Working fluid main flow path 5 Outer peripheral side diaphragm 6 Inner peripheral side diaphragm 7 Stator blade 8 Moving blade 9 Stator blade outer peripheral side wall surface 11, 23 Hollow part 12 Jet port 13 Working fluid introduction flow path 14, 15 Extraction part 16 Opening part 17 Guide plate 18 Ejection flow 19 Curve part 21 Projection part 22 Sheet-like structure 24 Blade pressure surface 25 Blade suction surface

Claims (15)

外周側静翼支持体に固定された静翼と、該静翼の作動流体流れ方向下流側でロータに固定された動翼とを有するタービン段落を備える軸流タービンであって、
静翼入口部の半径方向高さに対し静翼出口部の半径方向高さが大きい静翼を有する前記タービン段落は、外周側静翼支持体の静翼外周側側壁の外周側に、該タービン段落の静翼まわりを流れる作動流体よりも高温高圧の作動流体が導入され、導入された作動流体を前記静翼外周側側壁から作動流体主流路の下流側に向って噴出する構造を備えることを特徴とする軸流タービン。
An axial flow turbine comprising a turbine stage having a stationary blade fixed to an outer peripheral stationary blade support and a moving blade fixed to a rotor on the downstream side in the working fluid flow direction of the stationary blade,
The turbine stage having a stationary blade having a stationary blade outlet portion whose radial height is larger than a radial height of the stationary blade inlet portion is arranged on the outer peripheral side of the stationary blade outer peripheral side wall of the outer peripheral side stationary blade support. A working fluid having a temperature higher than that of the working fluid flowing around the stationary blades of the paragraph is introduced, and the introduced working fluid is ejected from the outer peripheral side wall of the stationary blade toward the downstream side of the working fluid main flow path. A featured axial turbine.
請求項1記載の軸流タービンにおいて、
外周側静翼支持体の静翼外周側側壁の外周側に導入される前記作動流体は、前記タービン段落の作動流体流れ方向上流側に設けられた上流側タービン段落の抽気部から導入することを特徴とする軸流タービン。
The axial turbine according to claim 1,
The working fluid introduced into the outer peripheral side of the stationary blade outer peripheral side wall of the outer peripheral side stationary blade support is introduced from the bleed portion of the upstream turbine stage provided upstream in the working fluid flow direction of the turbine stage. A featured axial turbine.
請求項2記載の軸流タービンにおいて、
外周側静翼支持体の静翼外周側側壁の外周側に導入された前記作動流体を、前記静翼間の最も流路幅が狭くなるスロート部に沿って噴出することを特徴とする軸流タービン。
The axial turbine according to claim 2, wherein
An axial flow characterized in that the working fluid introduced to the outer peripheral side of the outer peripheral side wall of the outer peripheral side stationary blade support is ejected along the throat portion where the flow path width between the stationary blades is the narrowest. Turbine.
請求項2記載の軸流タービンにおいて、
外周側静翼支持体の静翼外周側側壁の外周側に導入された前記作動流体を、隣り合う前記静翼の互いに対向する正圧面と負圧面の圧力が等しい点を結ぶ線に沿って噴出することを特徴とする軸流タービン。
The axial turbine according to claim 2, wherein
The working fluid introduced to the outer peripheral side of the stationary blade outer peripheral side wall of the outer peripheral stationary blade support is ejected along a line connecting the pressure points of the adjacent stationary blades facing the pressure surface and the suction surface equal to each other. An axial flow turbine characterized by:
請求項2記載の軸流タービンにおいて、
外周側静翼支持体の静翼外周側側壁の外周側に導入された前記作動流体を、前記静翼の作動流体流れ方向下流側から作動流体主流の静翼流出方向に沿って噴出することを特徴とする軸流タービン。
The axial turbine according to claim 2, wherein
Ejecting the working fluid introduced to the outer peripheral side of the stationary blade outer peripheral side wall of the outer peripheral stationary blade support along the stationary blade outflow direction of the main working fluid from the downstream side in the working fluid flow direction of the stationary blade. A featured axial turbine.
請求項1乃至5のいずれか1項記載の軸流タービンにおいて、
前記タービン段落は、前記動翼の先端部の回転周速をこの動翼先端部に流入する作動流体の音速で割った動翼先端周速マッハ数が1.0を超えることを特徴とする軸流タービン。
The axial flow turbine according to any one of claims 1 to 5,
In the turbine stage, the rotor blade tip peripheral speed Mach number obtained by dividing the rotational peripheral speed of the tip of the blade by the sound speed of the working fluid flowing into the blade tip exceeds 1.0. Flow turbine.
外周側静翼支持体に固定された静翼と、該静翼の作動流体流れ方向下流側でロータに固定された動翼とを有するタービン段落を備える軸流タービンであって、
静翼入口部の半径方向高さに対し静翼出口部の半径方向高さが大きい静翼を有する前記タービン段落の外周側静翼支持体に、該タービン段落の静翼まわりを流れる作動流体よりも高温高圧の作動流体が導入される中空部と、該中空部と連通し、前記中空部に導入された作動流体を作動流体主流路に噴出する噴出口とを形成したことを特徴とする軸流タービン。
An axial flow turbine comprising a turbine stage having a stationary blade fixed to an outer peripheral stationary blade support and a moving blade fixed to a rotor on the downstream side in the working fluid flow direction of the stationary blade,
From the working fluid flowing around the stationary blades of the turbine stage, the outer stationary blade support of the turbine stage having the stationary blades having the radial height of the stationary blade outlet part larger than the radial height of the stationary blade inlet part. A shaft formed with a hollow portion into which a high-temperature and high-pressure working fluid is introduced, and a jet port that communicates with the hollow portion and ejects the working fluid introduced into the hollow portion into the working fluid main flow path. Flow turbine.
請求項7記載の軸流タービンにおいて、
前記中空部を有するタービン段落の作動流体流れ方向上流側に設けられたタービン段落の抽気部で抽気した作動流体を前記中空部に導入することを特徴とする軸流タービン。
The axial turbine according to claim 7, wherein
An axial flow turbine characterized by introducing a working fluid extracted by a bleed portion of a turbine stage provided upstream in a flow direction of a working fluid of a turbine stage having the hollow part into the hollow part.
請求項8記載の軸流タービンにおいて、
前記噴出口は、前記静翼間の最も流路幅が狭くなるスロート部に沿って開口するスリット状の開口部を有することを特徴とする軸流タービン。
The axial turbine according to claim 8, wherein
The axial flow turbine is characterized in that the jet outlet has a slit-like opening that opens along a throat portion where the flow path width between the stationary blades is the narrowest.
請求項8記載の軸流タービンにおいて、
前記噴出口は、隣り合う前記静翼の互いに対向する正圧面と負圧面の圧力が等しい点を結ぶスリット状の開口部を有することを特徴とする軸流タービン。
The axial turbine according to claim 8, wherein
2. The axial flow turbine according to claim 1, wherein the jet nozzle has a slit-like opening that connects the pressure surfaces of the adjacent stationary blades facing each other at the same pressure and suction surfaces.
請求項8記載の軸流タービンにおいて、
前記噴出口は、前記静翼の作動流体流れ方向下流側に設けられ、タービン周方向に延伸して開口するスリット状の開口部を有し、
前記噴出口内部に、該開口部から流出する作動流体の流れ方向を、作動流体主流の静翼流出方向に転向させる案内板を設けたことを特徴とする軸流タービン。
The axial turbine according to claim 8, wherein
The jet port is provided on the downstream side of the stationary blade in the working fluid flow direction, and has a slit-like opening that extends and opens in the turbine circumferential direction.
An axial flow turbine characterized in that a guide plate for turning the flow direction of the working fluid flowing out from the opening to the stationary blade outflow direction of the working fluid main flow is provided in the jet outlet.
請求項9乃至11のいずれか1項記載の軸流タービンにおいて、
前記噴出口の開口部外径がタービン軸方向下流側に向って拡径するように、前記噴出口の開口部の下流側壁面を曲面形状に形成したことを特徴とする軸流タービン。
The axial turbine according to any one of claims 9 to 11,
An axial flow turbine characterized in that the downstream side wall surface of the opening of the jet outlet is formed in a curved shape so that the outer diameter of the opening of the jet outlet increases toward the downstream side in the turbine axial direction.
請求項12記載の軸流タービンにおいて、
前記噴出口の開口部の上流側壁部に、前記開口部から流出する作動流体の流れ方向を、該開口部下流側の前記静翼外周側側壁面に向って転向させるフローガイド部を設けたことを特徴とする軸流タービン。
The axial turbine according to claim 12, wherein
Provided on the upstream side wall of the opening of the jet outlet is a flow guide that turns the flow direction of the working fluid flowing out from the opening toward the stationary blade outer peripheral side wall on the downstream side of the opening. An axial flow turbine characterized by
請求項7乃至13のいずれか1項記載の軸流タービンにおいて、
前記中空部を有するタービン段落は、前記動翼の先端部の回転周速をこの動翼先端部に流入する作動流体の音速で割った動翼先端周速マッハ数が1.0を超えることを特徴とする軸流タービン。
The axial turbine according to any one of claims 7 to 13,
In the turbine stage having the hollow portion, the rotor blade tip peripheral speed Mach number obtained by dividing the rotational peripheral speed of the tip of the blade by the sound speed of the working fluid flowing into the blade tip exceeds 1.0. A featured axial turbine.
請求項7乃至14のいずれか1項記載の軸流タービンにおいて、
前記外周側静翼支持体の静翼外周側側壁面上に多孔質状のシートを設けたことを特徴とする軸流タービン。
The axial turbine according to any one of claims 7 to 14,
An axial flow turbine comprising a porous sheet provided on a stationary blade outer peripheral side wall surface of the outer peripheral side stationary blade support.
JP2011010358A 2011-01-21 2011-01-21 Axial flow turbine Expired - Fee Related JP5470285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010358A JP5470285B2 (en) 2011-01-21 2011-01-21 Axial flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010358A JP5470285B2 (en) 2011-01-21 2011-01-21 Axial flow turbine

Publications (2)

Publication Number Publication Date
JP2012149614A true JP2012149614A (en) 2012-08-09
JP5470285B2 JP5470285B2 (en) 2014-04-16

Family

ID=46792079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010358A Expired - Fee Related JP5470285B2 (en) 2011-01-21 2011-01-21 Axial flow turbine

Country Status (1)

Country Link
JP (1) JP5470285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368260B2 (en) 2020-01-31 2023-10-24 三菱重工業株式会社 turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018222141A1 (en) * 2017-06-01 2018-12-06 Nanyang Technological University Turbine housing and method of improving efficiency of a radial/mixed flow turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356405A (en) * 1976-11-01 1978-05-22 Hitachi Ltd Steeped lowering structure of steam turbine
JPS56163601U (en) * 1980-05-06 1981-12-04
JPH05248203A (en) * 1992-03-06 1993-09-24 Toshiba Corp Cooling device for turbine final step blade
JPH10331604A (en) * 1997-05-30 1998-12-15 Toshiba Corp Steam turbine plant
JP2006307843A (en) * 2005-03-31 2006-11-09 Hitachi Ltd Axial turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356405A (en) * 1976-11-01 1978-05-22 Hitachi Ltd Steeped lowering structure of steam turbine
JPS56163601U (en) * 1980-05-06 1981-12-04
JPH05248203A (en) * 1992-03-06 1993-09-24 Toshiba Corp Cooling device for turbine final step blade
JPH10331604A (en) * 1997-05-30 1998-12-15 Toshiba Corp Steam turbine plant
JP2006307843A (en) * 2005-03-31 2006-11-09 Hitachi Ltd Axial turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368260B2 (en) 2020-01-31 2023-10-24 三菱重工業株式会社 turbine
US11852032B2 (en) 2020-01-31 2023-12-26 Mitsubishi Heavy Industries, Ltd. Turbine

Also Published As

Publication number Publication date
JP5470285B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US7497666B2 (en) Pressure exchange ejector
US7665964B2 (en) Turbine
US9033668B2 (en) Impeller
US11187243B2 (en) Diffusor for a radial compressor, radial compressor and turbo engine with radial compressor
EP3176442B1 (en) Axial flow device with casing treatment and jet engine
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
JP2011052689A (en) High-turning diffuser strut equipped with flow crossover slot
JP2014502700A (en) Bypass turbojet
JP5023125B2 (en) Axial flow turbine
JP5470285B2 (en) Axial flow turbine
JP2012163097A (en) Wet gas compressor system
JP2017008756A (en) Axial flow turbine
US20140356128A1 (en) Method and device for stabilizing a compressor current
JP3578692B2 (en) Turbo compressor
US9683455B2 (en) Component for use in releasing a flow of material into an environment subject to periodic fluctuations in pressure
CN101105187B (en) Pre-cyclone vane type engine case processing method
JPH04334798A (en) Diffuser for centrifugal fluid machine
JP5917275B2 (en) Steam turbine blade and steam turbine
US11268536B1 (en) Impeller exducer cavity with flow recirculation
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
US6986639B2 (en) Stator blade for an axial flow compressor
WO2021199802A1 (en) Static blade and aircraft gas turbine engine
WO2023276385A1 (en) Turbine stator vane and steam turbine
US11434773B2 (en) Secondary flow rectifier with integrated pipe
JP6994976B2 (en) Turbine exhaust chamber and turbine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5470285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees