JP2012148907A - Mold for microlens array and method for molding the microlens array - Google Patents

Mold for microlens array and method for molding the microlens array Download PDF

Info

Publication number
JP2012148907A
JP2012148907A JP2011007065A JP2011007065A JP2012148907A JP 2012148907 A JP2012148907 A JP 2012148907A JP 2011007065 A JP2011007065 A JP 2011007065A JP 2011007065 A JP2011007065 A JP 2011007065A JP 2012148907 A JP2012148907 A JP 2012148907A
Authority
JP
Japan
Prior art keywords
molding
mold
microlens
microlens array
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011007065A
Other languages
Japanese (ja)
Inventor
Kentaro Tatsukoshi
健太郎 龍腰
Shiro Funatsu
志郎 舩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011007065A priority Critical patent/JP2012148907A/en
Publication of JP2012148907A publication Critical patent/JP2012148907A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To provide a mold for a microlens array which facilitates shape control and improves shape accuracy to thereby enhance yield, and a method for molding a microlens array.SOLUTION: In the mold 1 for the microlens array, a glass material 50 for molding is pressed by an upper mold 2 having a plurality of microlens molding parts on the lower surface and a tabular lower mold 3 to mold a plurality of microlenses. The microlens molding parts have circular openings which determine the lens diameter, and the openings are through-holes or recessed holes having a depth larger than the height of the microlens.

Description

本発明は、マイクロレンズアレイ用成形型及びマイクロレンズアレイの成形方法に係り、特に、成形時のレンズ形状の制御を容易にでき、所望の形状のマイクロレンズを歩留まり良く製造するマイクロレンズアレイ用成形型及びマイクロレンズアレイの成形方法に関する。   The present invention relates to a microlens array molding die and a microlens array molding method, and in particular, the lens shape can be easily controlled during molding, and a microlens array molding for manufacturing a microlens having a desired shape with a high yield. The present invention relates to a mold and a method for forming a microlens array.

デジタルカメラのイメージセンサー、液晶プロジェクター、光通信用のレーザープロジェクターなどに用いられるマイクロレンズは、通常、マイクロレンズアレイと呼ばれるマイクロレンズが碁盤目状等に複数個整列した形状で用いられる。   A microlens used in an image sensor of a digital camera, a liquid crystal projector, a laser projector for optical communication, or the like is usually used in a shape in which a plurality of microlenses called a microlens array are arranged in a grid pattern.

このマイクロレンズアレイは、マイクロレンズに対応する部分に凹状の成形部が設けられた成形型を用い、成形用のガラス素材を上型及び下型とで挟み込んでプレスして、1度の成形操作で複数個のマイクロレンズを成形して得られる。   This microlens array uses a molding die provided with a concave molding part in the part corresponding to the microlens, and sandwiches and presses the glass material for molding between the upper die and the lower die, and performs a single molding operation. Can be obtained by molding a plurality of microlenses.

このマイクロレンズアレイの製造において、一般には、成形型の成形部をレンズ形状とし、その形状を転写してレンズ面を形成している。しかしながら、成形部の形状を転写する場合には、成形面とガラス素材面との間に気体が巻き込まれてレンズ面の成形に悪影響を及ぼす場合があった。そのため、上記方法は、必ずしもレンズの形状精度が良好ではなく、歩留まりの改善が望まれていた。   In the manufacture of the microlens array, generally, the molding part of the mold is formed into a lens shape, and the shape is transferred to form a lens surface. However, when the shape of the molding part is transferred, there is a case where gas is caught between the molding surface and the glass material surface to adversely affect the molding of the lens surface. For this reason, the above method does not necessarily have good lens shape accuracy, and improvement in yield has been desired.

これに対して、レンズ面を転写により成形するのではなく、成形型の成形部表面がレンズ面と接触しないように凹部を形成しておき、レンズ面を自由表面として成形する方法が知られている(例えば、特許文献1及び2参照)。   On the other hand, a method is known in which the lens surface is not molded by transfer, but a concave portion is formed so that the molded portion surface of the mold does not contact the lens surface, and the lens surface is molded as a free surface. (For example, see Patent Documents 1 and 2).

特開2007−182372号公報JP 2007-182372 A 特開2006−111491号公報JP 2006-111491 A

自由表面としてレンズ面を形成する方法は、成形に際して気体が巻き込まれないためレンズ面を転写する成形方法の不具合を解消しながら、レンズ面形状を滑らかな面として得られる利点がある。この成形方法では、ガラス素材をレンズ形状にし易いように、下型に凹部を形成し、ガラス素材を軟化し、成形型で押圧する際に、重力を利用してレンズ面を形成しようとしている。   The method of forming the lens surface as the free surface has an advantage that the lens surface shape can be obtained as a smooth surface while eliminating the problem of the molding method for transferring the lens surface because no gas is involved in the molding. In this molding method, a concave portion is formed in the lower mold so that the glass material can be easily formed into a lens shape, the glass material is softened, and the lens surface is formed using gravity when pressing with the molding die.

しかしながら、このように重力を利用する方法の場合、ガラス素材を下型に載置した状態で加熱するため、プレスの前段階として加熱して軟化状態とすると、プレス前にガラス素材の凹部に対応する部分が下方に垂れこんでしまう場合がある。また、自重では垂れこまない程度のガラスの粘性であっても、ガラスと下型との接触状態が凹部と平坦部で異なるため、ガラスに温度分布、粘性分布が生じる場合がある。そのため、加熱温度及び素材の粘度の管理条件が厳しく、レンズ形状の制御が難しい。このような状態になると、一つ一つのレンズごとに形状が異なったり、所望のレンズ形状とならなかったり、マイクロレンズアレイとしての特性に大きく影響を与えてしまい、歩留まりが低下するという問題があった。   However, in the case of the method using gravity in this way, since the glass material is heated in a state where it is placed on the lower mold, if it is heated and softened as the previous stage of pressing, it corresponds to the concave portion of the glass material before pressing. There is a case where the part to be sagged down. Moreover, even if the viscosity of the glass is such that it does not sag under its own weight, the glass and the lower mold have different contact states between the concave portion and the flat portion, so that temperature distribution and viscosity distribution may occur in the glass. For this reason, the management conditions for the heating temperature and the viscosity of the material are strict, and it is difficult to control the lens shape. In such a state, there is a problem that the shape is different for each lens, the desired lens shape is not obtained, the characteristics as a microlens array are greatly affected, and the yield is lowered. It was.

本発明は、この問題点を解決するためになされ、マイクロレンズアレイの製造にあたって、形状の制御を容易に、かつ、形状精度を向上させて、歩留まりを向上できるマイクロレンズアレイ用成形型及びマイクロレンズアレイの成形方法の提供を目的とする。   The present invention has been made to solve this problem, and in manufacturing a microlens array, a mold for microlens array and a microlens that can easily control the shape, improve the shape accuracy, and improve the yield. An object is to provide a method for forming an array.

本発明のマイクロレンズアレイ用成形型は、成形用のガラス素材を、下面に複数のマイクロレンズ成形部を有する上型及び平板状の下型で押圧して複数個のマイクロレンズを成形するマイクロレンズアレイ用成形型であって、前記マイクロレンズ成形部が、レンズ径を決定する円形の開口部を有し、前記開口部は、貫通孔又は前記マイクロレンズの高さよりも深さの深い凹状孔とされていることを特徴とする。   The mold for microlens array of the present invention is a microlens for molding a plurality of microlenses by pressing a molding glass material with an upper mold having a plurality of microlens molding portions on the lower surface and a flat lower mold. The mold for an array, wherein the microlens molding portion has a circular opening that determines a lens diameter, and the opening has a through hole or a concave hole deeper than the height of the microlens. It is characterized by being.

このマイクロレンズアレイ用成形型においては、上記貫通孔又は凹状孔には抜き勾配をつけて設けるのが好ましい。   In the microlens array mold, the through hole or the concave hole is preferably provided with a draft angle.

本発明のマイクロレンズアレイの成形方法は、本発明のマイクロレンズアレイ用成形型を用い、前記下型の上面に成形用のガラス素材を載置し、前記ガラス素材を加熱して軟化させ、前記上型で軟化したガラス素材を上方からプレスし、軟化したガラス素材を前記貫通孔内又は前記凹状孔内に球面状に押し出して、前記ガラス素材の表面に複数のマイクロレンズを形成することを特徴とする。   The microlens array molding method of the present invention uses the microlens array molding die of the present invention, places a molding glass material on the upper surface of the lower mold, heats and softens the glass material, A glass material softened by an upper mold is pressed from above, and the softened glass material is extruded into a spherical shape into the through hole or the concave hole, thereby forming a plurality of microlenses on the surface of the glass material. And

本発明のマイクロレンズアレイ用成形型及びマイクロレンズアレイの成形方法によれば、マイクロレンズの形状を容易、かつ、安定して制御でき、マイクロレンズアレイの形状精度を向上させ、製品歩留まりを向上できる。   According to the microlens array mold and the microlens array molding method of the present invention, the shape of the microlens can be controlled easily and stably, the shape accuracy of the microlens array can be improved, and the product yield can be improved. .

成形用のガラス素材を併せて示した本発明の一実施形態であるマイクロレンズアレイ用成形型の断面図である。It is sectional drawing of the shaping | molding die for microlens arrays which is one Embodiment of this invention which showed the glass raw material for shaping | molding together. 他の実施形態であるマイクロレンズアレイ用成形型の側断面図である。It is a sectional side view of the shaping | molding die for microlens arrays which is other embodiment. マイクロレンズアレイの成形方法を説明する図である。It is a figure explaining the shaping | molding method of a micro lens array.

以下、本発明について図面を参照しながら説明する。   The present invention will be described below with reference to the drawings.

ここで、図1は本発明の一実施形態であるマイクロレンズアレイ用成形型の側断面図である。この図では、成形型の概略構成を説明するため凹状孔の個数を簡略して示した。   Here, FIG. 1 is a side sectional view of a microlens array molding die according to an embodiment of the present invention. In this figure, the number of concave holes is shown in a simplified manner in order to explain the schematic configuration of the mold.

図1に示したマイクロレンズアレイ用成形型1は、下面に複数のレンズ成形用の凹状孔2aを有する上型2、上面にガラス素材50を載置する平板状の下型3、とから構成される。   A microlens array mold 1 shown in FIG. 1 includes an upper mold 2 having a plurality of concave holes 2a for molding a lens on the lower surface, and a flat lower mold 3 on which a glass material 50 is placed on the upper surface. Is done.

上型2は、下面に複数のレンズ成形用の凹状孔2aを有する平板状の成形型である。この凹状孔2aは碁盤目状に整列して設けられ、その一つが成形するマイクロレンズ一つの大きさに対応した円形状の開口部を有する。なお、碁盤目状の他、千鳥配置などでも同様である。   The upper mold 2 is a flat plate-shaped mold having a plurality of lens-shaped concave holes 2a on the lower surface. The concave holes 2a are arranged in a grid pattern, one of which has a circular opening corresponding to the size of one microlens to be molded. The same applies to a staggered arrangement in addition to a grid pattern.

また、凹状孔2aの深さはレンズの高さ(ガラス素材面からレンズの面頂までの高さ)よりも深くなるように設けられ、凹状孔2aの底部表面がガラスに接触しないため、本実施形態は、成形型形状を転写してレンズ面を成形するものではない。この凹状孔2aの側面は、その上方に向かって(開口部から底部方向に向かって)鉛直方向に形成されている。したがって、上記したようにレンズ面を成形型で転写しないため、プレス成形の際に形成されるレンズ面は自由表面となる。   Further, the depth of the concave hole 2a is provided so as to be deeper than the height of the lens (the height from the glass material surface to the top of the lens surface), and the bottom surface of the concave hole 2a does not contact the glass. The embodiment does not form the lens surface by transferring the mold shape. The side surface of the concave hole 2a is formed in the vertical direction upward (from the opening toward the bottom). Therefore, as described above, since the lens surface is not transferred by the mold, the lens surface formed during press molding is a free surface.

凹状孔2aの開口部の大きさは、その直径が30〜1000μmであり、その凹状孔2a間のピッチは30〜5000μmであって、凹状孔の(直径/ピッチ)で表わされる比は、0.1〜1であり、好ましくは0.2〜0.9である。凹状孔2aの深さは、プレスした時にレンズ面に接触しなければ特に限定されない。   The size of the opening of the concave hole 2a is 30 to 1000 μm in diameter, the pitch between the concave holes 2a is 30 to 5000 μm, and the ratio represented by (diameter / pitch) of the concave holes is 0. .1 to 1, preferably 0.2 to 0.9. The depth of the concave hole 2a is not particularly limited as long as it does not contact the lens surface when pressed.

このとき、プレス後に、上型2とガラス素材50とが密着するのを防止し、容易に離形できる観点から、凹状孔2aの側面は抜け勾配をつけて加工しておくのが好ましい。例えば、図2(a)に示したように、上型12に設けられている凹状孔が、開口部から凹状孔の底部に向かって狭まるように側面に傾斜をつけて設けられている凹状孔12aとすればよい。このとき、抜け勾配の傾斜角度は、鉛直方向に対して1〜10度が好ましく、4〜6度がさらに好ましい。   At this time, from the viewpoint of preventing the upper mold 2 and the glass material 50 from coming into close contact with each other after pressing and easily releasing the mold, it is preferable to process the side surface of the concave hole 2a with a draft. For example, as shown in FIG. 2A, the concave hole provided in the upper mold 12 is provided with an inclined side surface so that the concave hole is narrowed from the opening toward the bottom of the concave hole. It may be 12a. At this time, the inclination angle of the draft is preferably 1 to 10 degrees with respect to the vertical direction, and more preferably 4 to 6 degrees.

また、この凹状孔は、その凹部底面が形成時にレンズ面と接触しなければよいため、上記のように内面円柱状の凹状孔2aや内面が部分円錐状の凹状孔12aとしてもよいし、上型2の上面まで貫通させた内面円柱状の貫通孔として設けてもよい。貫通孔を設けた例としては、図2(b)に示したように、上型22に設けられている凹状孔が、開口部から鉛直方向に向かって、上型22の上面まで貫通している。このとき、貫通孔に抜け勾配を設けてもよい。   In addition, since this concave hole does not have to contact the lens surface when the concave bottom surface is formed, the concave hole 2a having an inner cylindrical shape or the concave hole 12a having a partially conical inner surface as described above may be used. It may be provided as an inner cylindrical through-hole penetrating to the upper surface of the mold 2. As an example in which the through hole is provided, as shown in FIG. 2B, the concave hole provided in the upper die 22 penetrates from the opening portion to the upper surface of the upper die 22 in the vertical direction. Yes. At this time, a through-gradient may be provided in the through hole.

ここで、凹状孔を内面円柱状や部分円錐状とした場合には、成形時に、上部に形成される空隙に封入されたガスがレンズ形状に悪影響を及ぼさないように十分な余裕を有する深さの凹状孔が好ましく、具体的には、成形するマイクロレンズの高さに対する凹状孔2aの深さは2倍以上が好ましく、4倍以上がより好ましい。また、貫通孔としておくと、成形時に気体が凹状孔2aに溜まるのを防止できるため、よりマイクロレンズの形状を所望の形状とできる。
また、凹状孔の内面円柱状は大きさの違う直径の円柱を多段としても良く、凹状孔の部分円錐状の抜け勾配の傾斜角度は傾斜途中で変化する形状としても良い。マイクロレンズ側の面の直径を大きく、反対面の直径を小さくすることによって、貫通孔の場合は開放径を小さくでき、上部からの異物などの混入を抑えることができる。
Here, when the concave hole has an inner cylindrical shape or a partial conical shape, the depth having a sufficient margin so that the gas enclosed in the gap formed at the top does not adversely affect the lens shape at the time of molding. More specifically, the depth of the concave hole 2a with respect to the height of the microlens to be molded is preferably 2 times or more, and more preferably 4 times or more. Moreover, since it can prevent that gas accumulates in the concave hole 2a at the time of shaping | molding if it is set as a through-hole, the shape of a microlens can be made into a desired shape more.
In addition, the inner cylindrical shape of the concave hole may be a multi-stage cylinder with different diameters, and the inclination angle of the partial conical drop gradient of the concave hole may be changed in the middle of the inclination. By increasing the diameter of the surface on the microlens side and decreasing the diameter of the opposite surface, in the case of a through-hole, the open diameter can be reduced and contamination from foreign matters from the top can be suppressed.

下型3は、平板状の成形型であり、その上面は成形用のガラス素材50を載置し、プレス時にマイクロレンズの片面を平らにする機能を有し、その成形型表面も滑らかで平らな面となっている。   The lower mold 3 is a flat mold, and the upper surface has a function of placing a glass material 50 for molding and flattening one side of the microlens during pressing, and the surface of the mold is also smooth and flat. It is a serious aspect.

ガラス素材50としては、マイクロレンズアレイを製造できれば特に限定されず、従来マイクロレンズアレイに用いられている成形用のガラス素材を使用できる。例えば、このガラス素材50としては矩形又は円形の平板状のものが挙げられ、そのときプレス前の厚さは1mm〜30mmである。また、ガラス素材は上記した平板状だけではなく、球形や球状が潰れた偏平状等の種々の形状のものを使用できる。   The glass material 50 is not particularly limited as long as a microlens array can be manufactured, and a glass material for molding conventionally used for a microlens array can be used. For example, the glass material 50 includes a rectangular or circular flat plate, and the thickness before pressing is 1 mm to 30 mm. The glass material is not limited to the above-described flat plate shape, but can be of various shapes such as a spherical shape or a flat shape in which the spherical shape is crushed.

次に、上記成形型を用いたマイクロレンズアレイの成形方法について説明する。
まず、図1のマイクロレンズアレイ用成形型1の下型3の上にガラス素材50を載置する(図3(a))。
Next, a method for forming a microlens array using the above mold will be described.
First, the glass material 50 is placed on the lower mold 3 of the microlens array mold 1 shown in FIG. 1 (FIG. 3A).

次に、上下の成形型2,3を成形温度まで加熱し、ガラス素材50も同温度にまで加熱して軟化させる。このときの加熱温度は、ガラス素材50が軟化する温度とすればよく、用いるガラス素材によって異なるが、一般に、500〜1100℃程度である。また、このとき、ガラスの粘度を1×10〜1×10とすればよく、成形操作を円滑に行うために1×10〜1×10とするのが好ましい。 Next, the upper and lower molds 2 and 3 are heated to the molding temperature, and the glass material 50 is also heated to the same temperature and softened. The heating temperature at this time may be a temperature at which the glass material 50 is softened, and is generally about 500 to 1100 ° C. although it varies depending on the glass material to be used. Moreover, what is necessary is just to make the viscosity of glass into 1 * 10 < 4 > -1 * 10 < 9 > at this time, and in order to perform shaping | molding operation smoothly, it is preferable to set it as 1 * 10 < 5 > -1 * 10 < 7 >.

十分に加熱して軟化状態となったガラス素材50の上方から上型2を下降させ、下型と上型でガラス素材を挟んでプレスする。プレス圧力により開口部のガラスは、球面状に押し上げられ、上型の円柱状の凹状孔2a内にマイクロレンズを形成する(図3(b))。このとき、プレス圧力は0.1〜100MPa、プレス時間は10〜600秒が好ましい。また、この成形は高温に加熱した状態で実施され、成形型の酸化による劣化を防止するため、例えば、1×10−2Pa以下の真空条件下や窒素やアルゴン等の不活性ガス雰囲気とするのが好ましい。 The upper die 2 is lowered from above the glass material 50 that has been sufficiently heated and softened, and is pressed with the glass material sandwiched between the lower die and the upper die. The glass in the opening is pushed up into a spherical shape by the pressing pressure, and a microlens is formed in the upper cylindrical concave hole 2a (FIG. 3B). At this time, the press pressure is preferably 0.1 to 100 MPa, and the press time is preferably 10 to 600 seconds. Moreover, this shaping | molding is implemented in the state heated at high temperature, and in order to prevent the deterioration by the oxidation of a shaping | molding die, it is set as inert gas atmosphere, such as a vacuum condition of 1 * 10 <-2 > Pa or less, nitrogen, argon, etc., for example. Is preferred.

ここでガラス素材の粘度とプレス圧力を調整すれば、得られるマイクロレンズの形状も容易に制御でき、例えば、その高さが10〜100μm、曲率半径が0.01mm〜10mmの範囲のマイクロレンズを形状精度が高く得られる。本発明によれば、従来のように垂れて形状精度が低下する等の不具合が生じない。   If the viscosity and press pressure of the glass material are adjusted here, the shape of the obtained microlens can be easily controlled. For example, a microlens having a height of 10 to 100 μm and a radius of curvature of 0.01 mm to 10 mm is used. High shape accuracy can be obtained. According to the present invention, there are no problems such as dripping and lowering of the shape accuracy as in the prior art.

プレス後は、上型2を上昇させ(図3(c))、成形したガラス素材を冷却して固化し、マイクロレンズアレイを得る。このようにして、球面状のマイクロレンズが隣接するマイクロレンズと等間隔に碁盤目状に整列したマイクロレンズアレイが得られる。   After pressing, the upper mold 2 is raised (FIG. 3C), and the molded glass material is cooled and solidified to obtain a microlens array. In this manner, a microlens array in which spherical microlenses are arranged in a grid pattern at equal intervals with adjacent microlenses is obtained.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
図2(b)のマイクロレンズ用成形型を用いて、以下の操作によりマイクロレンズアレイを成形した。ここで用いたマイクロレンズアレイ用成形型は、直径40mmの平板状の上型と下型とからなる。
Example 1
A microlens array was molded by the following operation using the microlens mold of FIG. The microlens array mold used here is composed of a flat plate upper mold and a lower mold having a diameter of 40 mm.

上型には、下型と対抗する面(下面)に、開口部がφ60μmの球面形状のレンズを成形するための貫通孔が、ピッチ120μmで碁盤目状に50×50個整列されている。貫通孔は、鉛直方向に対して4度の抜け勾配を有する孔である。下型は、上成形面と対抗する面は平滑な平面となっており、平板状である。この成形型は、ステンレス鋼(ウッデホルム株式会社製、商品名:STAVAX;熱膨張係数αは115×10−7(at 300℃))で形成され、その表面をIr−Reでコートしてなる。 The upper mold has 50 × 50 through holes arranged in a grid pattern at a pitch of 120 μm on the surface (lower surface) facing the lower mold for forming a spherical lens having an opening of φ60 μm. The through hole is a hole having a draft of 4 degrees with respect to the vertical direction. The lower mold has a flat surface facing the upper molding surface and is flat. This mold is made of stainless steel (manufactured by Woodeholm, trade name: STAVAX; thermal expansion coefficient α is 115 × 10 −7 (at 300 ° C.)), and its surface is coated with Ir-Re.

直径20mm、高さ5mmの円筒状のガラス素材(旭硝子株式会社製、商品名:A−PHB17(B175)相当品;熱膨張係数αは114×10−7(at 300℃))を、下型の上に載置し、上下の成形型を540℃まで加熱し、ガラス素材も同温度にまで加熱して軟化させた。このときのガラスの粘度は1×10程度であった。 A cylindrical glass material having a diameter of 20 mm and a height of 5 mm (manufactured by Asahi Glass Co., Ltd., trade name: A-PHB17 (B175) equivalent; thermal expansion coefficient α is 114 × 10 −7 (at 300 ° C.)), lower mold The upper and lower molds were heated to 540 ° C., and the glass material was also heated to the same temperature and softened. At this time, the viscosity of the glass was about 1 × 10 9 .

十分に加熱して軟化状態となったガラス素材の上方から上型を下降させ、下型と上型でガラス素材を挟んで、圧力0.4MPa、プレス時間60秒でプレスした。このとき、プレス雰囲気は1.0×10−3Paの真空条件とした。 The upper mold was lowered from above the glass material that was sufficiently heated and softened, and the glass material was sandwiched between the lower mold and the upper mold, and was pressed at a pressure of 0.4 MPa and a press time of 60 seconds. At this time, the press atmosphere was a vacuum condition of 1.0 × 10 −3 Pa.

上型を上昇させ、プレスされたガラス素材50を冷却、固化させ、φ60μmの球面形状のマイクロレンズ(曲率半径30μm)が120μmピッチで碁盤目状に整列したマイクロレンズアレイを得た。   The upper mold was raised, and the pressed glass material 50 was cooled and solidified to obtain a microlens array in which spherical microlenses having a diameter of 60 μm (curvature radius of 30 μm) were arranged in a grid pattern at a pitch of 120 μm.

得られたマイクロレンズアレイのマイクロレンズ形状は、自由表面で滑らかに成形され、所望の形状であった。本発明により、成形時におけるガラス素材の垂れや、成形型とガラス素材との間に気体が巻き込まれる等によるレンズ形状の不具合が解消され、形状にバラツキのないマイクロレンズアレイを、歩留まりを良好に得られる。   The microlens shape of the obtained microlens array was smoothly molded on the free surface and was a desired shape. According to the present invention, the problem of lens shape caused by dripping of the glass material during molding and gas being caught between the mold and the glass material is solved, and the microlens array with no variation in shape is obtained with good yield. can get.

本発明のマイクロレンズアレイ用成形型及びマイクロレンズアレイの成形方法は、プレス成形によるマイクロレンズアレイの製造に用いられる。   The microlens array molding die and the microlens array molding method of the present invention are used for manufacturing a microlens array by press molding.

1…マイクロレンズアレイ用成形型、2…上型、2a…凹状孔、3…下型、50…ガラス素材 DESCRIPTION OF SYMBOLS 1 ... Mold for micro lens array, 2 ... Upper mold, 2a ... Recessed hole, 3 ... Lower mold, 50 ... Glass material

Claims (6)

成形用のガラス素材を、下面に複数のマイクロレンズ成形部を有する上型及び平板状の下型で押圧して複数個のマイクロレンズを成形するマイクロレンズアレイ用成形型であって、
前記マイクロレンズ成形部が、レンズ径を決定する円形の開口部を有し、前記開口部は、貫通孔又は前記マイクロレンズの高さよりも深さの深い凹状孔とされていることを特徴とするマイクロレンズアレイ用成形型。
A molding lens for a microlens array for molding a plurality of microlenses by pressing a glass material for molding with an upper mold having a plurality of microlens molding portions on a lower surface and a flat lower mold,
The microlens molding part has a circular opening for determining a lens diameter, and the opening is a through hole or a concave hole deeper than the height of the microlens. Mold for micro lens array.
前記貫通孔又は凹状孔が、抜き勾配をつけて設けられている請求項1記載のマイクロレンズアレイ用成形型。   The mold for microlens array according to claim 1, wherein the through hole or the concave hole is provided with a draft angle. 前記抜き勾配の傾斜が、鉛直方向に対して1〜10度である請求項2記載のマイクロレンズアレイ用成形型。   The mold for microlens array according to claim 2, wherein the draft angle is 1 to 10 degrees with respect to the vertical direction. 請求項1乃至3のいずれか1項記載のマイクロレンズアレイ用成形型を用い、前記下型の上面に成形用のガラス素材を載置し、前記ガラス素材を加熱して軟化させ、前記上型で軟化したガラス素材を上方からプレスし、軟化したガラス素材を前記貫通孔又は前記凹状孔内に球面状に押し出して、前記ガラス素材の表面に複数のマイクロレンズを形成することを特徴とするマイクロレンズアレイの成形方法。   A molding material for a microlens array according to any one of claims 1 to 3, wherein a glass material for molding is placed on the upper surface of the lower die, the glass material is heated and softened, and the upper die The glass material softened by pressing is pressed from above, and the softened glass material is extruded into a spherical shape into the through hole or the concave hole to form a plurality of microlenses on the surface of the glass material. Lens array molding method. 前記ガラス素材のプレス時の粘度を1×10〜1×10dPa・s、プレス圧力を0.1〜100MPaとする請求項4記載のマイクロレンズアレイの成形方法。 The molding method of the microlens array of Claim 4 which makes the viscosity at the time of pressing of the said glass raw material 1 * 10 < 4 > -1 * 10 < 9 > dPa * s and press pressure is 0.1-100 Mpa. 前記プレスして得られるマイクロレンズの曲率半径が、0.01mm〜10mmである請求項4又は5記載のマイクロレンズアレイの成形方法。   The method for molding a microlens array according to claim 4 or 5, wherein a radius of curvature of the microlens obtained by the pressing is 0.01 mm to 10 mm.
JP2011007065A 2011-01-17 2011-01-17 Mold for microlens array and method for molding the microlens array Withdrawn JP2012148907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007065A JP2012148907A (en) 2011-01-17 2011-01-17 Mold for microlens array and method for molding the microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007065A JP2012148907A (en) 2011-01-17 2011-01-17 Mold for microlens array and method for molding the microlens array

Publications (1)

Publication Number Publication Date
JP2012148907A true JP2012148907A (en) 2012-08-09

Family

ID=46791581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007065A Withdrawn JP2012148907A (en) 2011-01-17 2011-01-17 Mold for microlens array and method for molding the microlens array

Country Status (1)

Country Link
JP (1) JP2012148907A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108689589A (en) * 2017-03-30 2018-10-23 发那科株式会社 The manufacturing method of lens mold for forming and cylindrical lens
CN111908774A (en) * 2019-05-10 2020-11-10 赵崇礼 Lens array mold apparatus
US20210230041A1 (en) * 2020-01-28 2021-07-29 Schott Ag Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method
US11148943B2 (en) * 2012-03-08 2021-10-19 Infineon Technologies Ag Glass piece and methods of manufacturing glass pieces and semiconductor devices with glass pieces

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148943B2 (en) * 2012-03-08 2021-10-19 Infineon Technologies Ag Glass piece and methods of manufacturing glass pieces and semiconductor devices with glass pieces
CN108689589A (en) * 2017-03-30 2018-10-23 发那科株式会社 The manufacturing method of lens mold for forming and cylindrical lens
US10508051B2 (en) 2017-03-30 2019-12-17 Fanuc Corporation Lens forming mold and manufacturing method for cylindrical lens
CN108689589B (en) * 2017-03-30 2020-04-03 发那科株式会社 Lens molding mold and method for manufacturing cylindrical lens
CN111908774A (en) * 2019-05-10 2020-11-10 赵崇礼 Lens array mold apparatus
CN111908774B (en) * 2019-05-10 2022-07-22 赵崇礼 Lens array mold apparatus
US20210230041A1 (en) * 2020-01-28 2021-07-29 Schott Ag Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method

Similar Documents

Publication Publication Date Title
JP2012148907A (en) Mold for microlens array and method for molding the microlens array
TW201111144A (en) High sag optical lens and method for fast molding the same
JPWO2012036277A1 (en) Optical element manufacturing method and optical element
WO2013027808A1 (en) Optical element manufacturing method and manufacturing device
JP4362500B2 (en) Method for making gob
KR101521563B1 (en) The method of manufacturing dish spring and apparatus for manufacturing it
JP2009172794A (en) Method for producing resin sheet
KR101486200B1 (en) Setter and method for manufacturing a molded glass using the same
JP6603598B2 (en) Mold and press molding method
JP2012116697A (en) Molding die for optical element and method of molding optical element
JP2007186392A (en) Method of molding thermoplastic base material
JP5121610B2 (en) Optical element molding method and optical element molding material
JP5806531B2 (en) Manufacturing method of glass optical element
JP2013129547A (en) Method for molding microlens array
JP6374809B2 (en) Optical element manufacturing apparatus and optical element manufacturing method
KR101035160B1 (en) Method for manufacturing negative micro-lens array
JP6622545B2 (en) Glass forming apparatus and glass forming method
KR101030621B1 (en) An apparatus for manufacturing lens and a method for manufacturing lens
KR20220090487A (en) Mold device and mold manufacturing method to produce the same
CN102157167B (en) Chunk glass and manufacture method thereof, the substrate of magnetic recording media and magnetic recording media
JP5608427B2 (en) Optical element manufacturing method and mold set
KR101105067B1 (en) Method for manufacturing micro compound lens array
KR101208745B1 (en) Making Method for Sea Island Micro Lens Array
JP2007246338A (en) Forming mold set for forming optical element, production device provided therewith, and method for producing optical element using the same
JP2005255442A (en) Apparatus for molding optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401