JP2012146907A - Electronic component mounting method - Google Patents

Electronic component mounting method Download PDF

Info

Publication number
JP2012146907A
JP2012146907A JP2011005813A JP2011005813A JP2012146907A JP 2012146907 A JP2012146907 A JP 2012146907A JP 2011005813 A JP2011005813 A JP 2011005813A JP 2011005813 A JP2011005813 A JP 2011005813A JP 2012146907 A JP2012146907 A JP 2012146907A
Authority
JP
Japan
Prior art keywords
substrate
temperature
displacement
mounting
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011005813A
Other languages
Japanese (ja)
Other versions
JP5510342B2 (en
Inventor
Masaru Kawazoe
賢 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011005813A priority Critical patent/JP5510342B2/en
Publication of JP2012146907A publication Critical patent/JP2012146907A/en
Application granted granted Critical
Publication of JP5510342B2 publication Critical patent/JP5510342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component mounting method capable of providing a position correction effect by using a proper surface correction data at always, even in the case where a temperature fluctuation occurs because of temporary change in device operation state.SOLUTION: A surface correction data is generated by recognizing a position reference point and each of a plurality of measurement points of a surface correction substrate using a camera. Here, a shaft temperature of a drive shaft which is measured for each drive shaft of a head moving mechanism that moves the camera and a mounting head, and individual displacement data representing a displacement amount from a measurement reference time point at a plurality of measurement points and a position reference point acquired by recognition at the time point, are related each other, and stored as a displacement/temperature correlation data. During the process in which the mounting head is positioned relative to the substrate at the time of a component mounting operation, a position correction amount of the mounting head is calculated based on the displacement amount acquired by recognizing the position reference point and the displacement/temperature correlation data.

Description

本発明は、電子部品を基板に実装する電子部品実装方法に関するものである。   The present invention relates to an electronic component mounting method for mounting an electronic component on a substrate.

部品供給部から電子部品を実装ヘッドによってピックアップして基板に実装する電子部品実装装置は一般に基板認識用のカメラを備えており、このカメラによって基板を撮像することにより基板の位置を検出し、位置検出結果に基づいて部品搭載時の位置合わせが行われる。この基板認識用のカメラの光学系座標の位置は必ずしも制御データ上で示される位置にあるとは限らず、種々の要因により位置ずれを生じる。そしてこの位置ずれはカメラを移動させる移動機構の機構誤差によって必ずしも一様ではなく、電子部品実装の対象となる実装エリア内の各位置で固有の位置ずれ量を示す。このため、電子部品実装装置としてこれらの固有の位置ずれ量を実装エリアの各位置毎に求めるいわゆる面補正を行う機能を備えたものが知られている(例えば特許文献1参照)。   An electronic component mounting apparatus that picks up an electronic component from a component supply unit with a mounting head and mounts the electronic component on a substrate generally includes a camera for substrate recognition, and detects the position of the substrate by imaging the substrate with this camera. Based on the detection result, alignment at the time of component mounting is performed. The position of the optical system coordinates of the substrate recognition camera is not necessarily at the position indicated on the control data, and a positional shift occurs due to various factors. This positional deviation is not necessarily uniform due to the mechanism error of the moving mechanism for moving the camera, and indicates a specific positional deviation amount at each position in the mounting area to be mounted with the electronic component. For this reason, there is known an electronic component mounting apparatus having a function of performing so-called surface correction for obtaining these specific positional deviation amounts for each position in the mounting area (see, for example, Patent Document 1).

この特許文献に示す先行技術では、面補正のためのキャリブレーションの方法として、計測点が格子状に設けられたキャリブレーション用基板を用いるようにしており、予め各計測点毎に位置ずれ量を固有の位置誤差として求めておき、実装動作時に各実装点について固有の位置誤差分だけ位置補正を行うようにしている。   In the prior art disclosed in this patent document, as a calibration method for surface correction, a calibration substrate in which measurement points are provided in a lattice shape is used, and a positional deviation amount is previously measured for each measurement point. The position error is obtained as a unique position error, and the position correction is performed by the position error unique to each mounting point during the mounting operation.

特開2002−9495号公報JP 2002-9495 A

しかしながら、上述の特許文献例を含め、先行技術においては面補正のためのキャリブレーションの実行タイミングに起因して、以下に説明するような不都合が生じていた。すなわち電子部品実装装置において実装ヘッドやカメラを移動させる移動機構にはリニアモータやボールねじ駆動などの精密駆動機構が用いられており、これらの精密駆動機構には、モータなどの発熱による機構部の温度変化によって複雑な駆動誤差が生じる。このため特定時点においてキャリブレーションを実行して面補正データを取得しても、装置稼働状態の経時的な変化によって温度変動が生じた場合にはもはや面補正データは適正ではなく、有効な位置補正効果を得ることが困難であった。   However, in the prior art including the above-mentioned patent document examples, the following problems have occurred due to the calibration execution timing for surface correction. That is, a precision driving mechanism such as a linear motor or a ball screw drive is used as a moving mechanism for moving a mounting head or a camera in an electronic component mounting apparatus. A complicated driving error is caused by the temperature change. For this reason, even if calibration is performed at a specific point in time and surface correction data is acquired, if temperature fluctuations occur due to changes in the operating state of the device over time, the surface correction data is no longer appropriate and effective position correction is performed. It was difficult to obtain an effect.

そこで本発明は、装置稼働状態の経時的な変化によって温度変動が生じた場合にあっても、常に適正な面補正データを用いて有効な位置補正効果を得ることができる電子部品実装方法を提供することを目的とする。   Therefore, the present invention provides an electronic component mounting method that can always obtain an effective position correction effect using appropriate surface correction data even when temperature fluctuations occur due to changes in the operating state of the apparatus over time. The purpose is to do.

本発明の電子部品実装方法は、基板保持部に位置決め保持された基板を基板認識用のカメラで撮像して位置認識し、ヘッド移動機構により実装ヘッドを移動させて部品供給部から電子部品を取り出し、前記位置認識の結果に基づいて前記実装ヘッドを前記基板に対して位置決めして電子部品を基板に実装する電子部品実装方法であって、複数の計測点が格子状に形成された面補正用基板を前記基板保持部に保持させ、前記ヘッド移動機構により前記カメラを移動させて前記複数の計測点および前記基板保持部との位置関係が固定された位置基準点を順次撮像して位置を計測し、計測基準時点における位置からの変位量を示す個別変位データを、前記ヘッド移動機構を構成する駆動軸毎に取得する位置計測工程と、前記位置計測工程を予め設定されたタイミングにおいて複数回反復実行する過程において、前記駆動軸毎に当該駆動軸の当該時点における温度状態を代表的に示す代表温度として計測される軸温度と当該時点において取得された前記個別変位データとを関連づけ、変位・温度相関データとして前記位置基準点および複数の計測点毎に記憶部に記憶させる変位・温度相関データ記憶工程と、前記実装ヘッドを前記基板に対して位置決めする過程において、前記変位・温度相関データに基づいて実装ヘッドの位置補正量を演算する位置補正演算工程と、前記位置認識の結果に前記位置補正量を加味して前記ヘッド移動機構を制御することにより、前記実装ヘッドを前記基板に対して位置決めして電子部品を実装する実装実行工程とを含む。   In the electronic component mounting method of the present invention, the substrate positioned and held by the substrate holding unit is imaged with a substrate recognition camera to recognize the position, and the mounting head is moved by the head moving mechanism to take out the electronic component from the component supply unit. An electronic component mounting method for mounting the electronic component on the substrate by positioning the mounting head with respect to the substrate based on the result of the position recognition, for surface correction in which a plurality of measurement points are formed in a lattice shape The substrate is held by the substrate holding unit, and the camera is moved by the head moving mechanism, and the position is measured by sequentially imaging the plurality of measurement points and the position reference points where the positional relationship with the substrate holding unit is fixed. In addition, a position measurement step for acquiring individual displacement data indicating a displacement amount from a position at the measurement reference time for each drive shaft constituting the head moving mechanism, and the position measurement step are set in advance. In the process of repeatedly executing a plurality of times at a given timing, the shaft temperature measured as a representative temperature representatively indicating the temperature state of the drive shaft at the time point for each drive shaft and the individual displacement data acquired at the time point In the process of positioning the mounting head with respect to the substrate, the displacement / temperature correlation data storage step for storing the position reference point and the plurality of measurement points in the storage unit as displacement / temperature correlation data A position correction calculation step of calculating a position correction amount of the mounting head based on the displacement / temperature correlation data, and controlling the head moving mechanism by adding the position correction amount to the result of the position recognition, thereby controlling the mounting head. And a mounting execution step of mounting an electronic component by positioning with respect to the substrate.

本発明によれば、面補正用基板の複数の計測点毎および位置基準点をカメラで認識して面補正用データを作成するに際し、基板を認識するカメラおよび実装ヘッドを移動させるヘッド移動機構の駆動軸毎に当該駆動軸の当該時点における代表温度として計測される軸温度と当該時点において取得された位置基準点および複数の計測点の個別変位データとを関連づけ、変位・温度相関データとして位置基準点および複数の計測点毎に記憶部に記憶させておき、部品実装作業時に実装ヘッドを基板に対して位置決めする過程において、変位・温度相関データに基づいて実装ヘッドの位置補正量を演算することにより、装置稼働状態の経時的な変化によって温度変動が生じた場合にあっても、常に適正な面補正データを用いて有効な位置補正効果を得ることができる。   According to the present invention, a camera for recognizing a substrate and a head moving mechanism for moving a mounting head when generating surface correction data by recognizing a plurality of measurement points and position reference points of the surface correction substrate with a camera. For each drive shaft, the shaft temperature measured as the representative temperature at that time of the drive shaft is associated with the position reference point acquired at that time and the individual displacement data of a plurality of measurement points, and the position reference as displacement / temperature correlation data By storing the point and multiple measurement points in the storage unit and calculating the position correction amount of the mounting head based on the displacement / temperature correlation data in the process of positioning the mounting head with respect to the substrate during component mounting work Therefore, even when temperature fluctuations occur due to changes in the operating status of the equipment over time, an effective position correction effect is always obtained using appropriate surface correction data. Rukoto can.

本発明の一実施の形態の電子部品実装装置の平面図The top view of the electronic component mounting apparatus of one embodiment of this invention 本発明の一実施の形態の電子部品実装装置における実装ヘッドの構成および機能の説明図Explanatory drawing of a structure and function of the mounting head in the electronic component mounting apparatus of one embodiment of this invention 本発明の一実施の形態の電子部品実装装置におけるヘッド移動機構および面補正用基板の説明図Explanatory drawing of the head movement mechanism and the surface correction board | substrate in the electronic component mounting apparatus of one embodiment of this invention 本発明の一実施の形態の電子部品実装装置の制御系の構成を示すブロック図The block diagram which shows the structure of the control system of the electronic component mounting apparatus of one embodiment of this invention 本発明の一実施の形態の電子部品実装方法において面補正に用いられる変位・温度相関データの説明図Explanatory drawing of the displacement and temperature correlation data used for surface correction in the electronic component mounting method of one embodiment of the present invention 本発明の一実施の形態の電子部品実装処理を示すフロー図The flowchart which shows the electronic component mounting process of one embodiment of this invention 本発明の一実施の形態の部品実装方法における位置計測工程の説明図Explanatory drawing of the position measurement process in the component mounting method of one embodiment of this invention 本発明の一実施の形態の電子部品実装方法における位置基準点および面補正用基板の計測点の変位・温度相関データの説明図Explanatory drawing of the displacement and temperature correlation data of the position reference point in the electronic component mounting method of one embodiment of this invention, and the measurement point of the surface correction board | substrate 本発明の一実施の形態の電子部品実装処理における位置補正量演算処理を示すフロー図The flowchart which shows the position correction amount calculation process in the electronic component mounting process of one embodiment of this invention 本発明の一実施の形態の電子部品実装処理における位置補正量演算処理の工程説明図Process explanatory drawing of the position correction amount calculation process in the electronic component mounting process of one embodiment of this invention

まず図1、図2を参照して電子部品実装装置1の構造を説明する。図1において基台1aの中央には、X方向(基板搬送方向)に基板搬送機構2が配設されている。基板搬送機構2は上流側装置から受け渡された基板4を搬送し、搬送経路に設けられた基板保持部3にて基板4を実装位置に位置決めして保持する。基板搬送機構2の両側方には部品供給部5が配置されており、部品供給部5には複数のテープフィーダ6が並設されている。テープフィーダ6は実装対象の電子部品を保持したキャリアテープをピッチ送りすることにより、以下に説明する実装ヘッドによる取り出し位置に電子部品を供給する。   First, the structure of the electronic component mounting apparatus 1 will be described with reference to FIGS. In FIG. 1, a substrate transport mechanism 2 is disposed in the center of the base 1a in the X direction (substrate transport direction). The substrate transport mechanism 2 transports the substrate 4 delivered from the upstream device, and positions and holds the substrate 4 at the mounting position by the substrate holder 3 provided in the transport path. A component supply unit 5 is disposed on both sides of the substrate transport mechanism 2, and a plurality of tape feeders 6 are arranged in parallel on the component supply unit 5. The tape feeder 6 feeds the electronic component to a take-out position by a mounting head described below by pitch-feeding a carrier tape holding the electronic component to be mounted.

基台1a上面の両端部上にはそれぞれY軸移動テーブル7が配設されており、Y軸移動テーブル7にはそれぞれの部品供給部5に対応して2基のX軸移動テーブル8が架設されている。それぞれのX軸移動テーブル8には、実装ヘッド10および実装ヘッド10と一体的に移動する基板認識カメラ12が装着されている。Y軸移動テーブル7およびX軸移動テーブル8はヘッド移動機構9を構成し、ヘッド移動機構9を駆動することにより実装ヘッド10および基板認識カメラ12はX方向、Y方向に水平移動する。   A Y-axis movement table 7 is provided on each of both ends of the upper surface of the base 1a, and two X-axis movement tables 8 are installed on the Y-axis movement table 7 so as to correspond to the respective component supply units 5. Has been. Each X-axis moving table 8 is equipped with a mounting head 10 and a substrate recognition camera 12 that moves integrally with the mounting head 10. The Y-axis moving table 7 and the X-axis moving table 8 constitute a head moving mechanism 9. By driving the head moving mechanism 9, the mounting head 10 and the substrate recognition camera 12 move horizontally in the X direction and the Y direction.

図2に示すように、実装ヘッド10は1つの電子部品Pを保持する単位移載ヘッド11を複数備えた多連型ヘッドであり、それぞれの単位移載ヘッド11には電子部品Pを真空吸着により保持する吸着ノズル11aが設けられている。各単位移載ヘッド11に内蔵されたノズル昇降機構(図示省略)を駆動することにより吸着ノズル11aは個別に昇降する。また実装ヘッド10に共通に設けられたノズルθ軸モータ10aを駆動することにより、各単位移載ヘッド11の回転機構を駆動して、各吸着ノズル11aをノズル軸廻りに回転させることができる。   As shown in FIG. 2, the mounting head 10 is a multiple head including a plurality of unit transfer heads 11 that hold one electronic component P, and each unit transfer head 11 is vacuum-sucked with the electronic component P. The suction nozzle 11a that is held by the above is provided. By driving a nozzle lifting mechanism (not shown) built in each unit transfer head 11, the suction nozzle 11a is lifted and lowered individually. Further, by driving the nozzle θ-axis motor 10a provided in common to the mounting head 10, the rotation mechanism of each unit transfer head 11 can be driven to rotate each suction nozzle 11a around the nozzle axis.

ヘッド移動機構9を駆動することにより、実装ヘッド10は各単位移載ヘッド11の吸着ノズル11aによって、部品供給部5のテープフィーダ6から電子部品Pを吸着して取り出し、図2(b)(ロ)に示すように、電子部品Pを基板4の上面の実装点に実装する。また実装ヘッド10を基板搬送機構2の上方に移動させることにより基板認識カメラ12も実装ヘッド10とともに移動し、基板認識カメラ12によって基板4の上面および基板4の近傍に設定されたマークポスト15を撮像して位置検出することができる。これにより、図2(b)(イ)に示すように、撮像視野12aの光学原点OPと位置検出対象のマークM(図3に示す計測点41や位置基準点15a参照)との位置ずれ量ΔX、ΔYを検出することが可能となっている。   By driving the head moving mechanism 9, the mounting head 10 sucks and takes out the electronic component P from the tape feeder 6 of the component supply unit 5 by the suction nozzle 11 a of each unit transfer head 11, and FIG. As shown in (b), the electronic component P is mounted on the mounting point on the upper surface of the substrate 4. Further, by moving the mounting head 10 above the substrate transport mechanism 2, the substrate recognition camera 12 also moves with the mounting head 10, and the mark posts 15 set on the upper surface of the substrate 4 and in the vicinity of the substrate 4 by the substrate recognition camera 12 are moved. The position can be detected by imaging. As a result, as shown in FIGS. 2B and 2A, the positional deviation amount between the optical origin OP of the imaging visual field 12a and the position detection target mark M (see the measurement point 41 and the position reference point 15a shown in FIG. 3). ΔX and ΔY can be detected.

基板搬送機構2と部品供給部5との間には、部品認識カメラ13およびノズルストッカ14が配設されている。部品供給部5から単位移載ヘッド11によって電子部品を取り出した実装ヘッド10が部品認識カメラ13の上方を移動することにより、部品認識カメラ13は単位移載ヘッド11に保持された状態の電子部品Pを下方から撮像する。基板認識カメラ12および部品認識カメラ13の撮像結果は、認識処理部25(図4参照)によって認識処理され、これにより基板4における部品実装点の位置認識や実装ヘッド10に保持された状態における電子部品Pの位置認識が行われ、電子部品Pの基板4への部品搭載動作においては、これらの位置認識結果に基づいて部品搭載時の位置補正が行われる。ノズルストッカ14には、単位移載ヘッド11に装着される吸着ノズル11aが複数の部品種類に対応して収納保持されている。部品実装作業において、実装ヘッド10をノズルストッカ14に対してアクセスさせてノズル交換動作を実行させることにより、単位移載ヘッド11に装着される吸着ノズル11aを、実装対象の部品種類に応じて交換することができる。   A component recognition camera 13 and a nozzle stocker 14 are disposed between the substrate transport mechanism 2 and the component supply unit 5. The mounting head 10 that has picked up the electronic component from the component supply unit 5 by the unit transfer head 11 moves above the component recognition camera 13, so that the component recognition camera 13 is held by the unit transfer head 11. Image P from below. The imaging results of the substrate recognition camera 12 and the component recognition camera 13 are subjected to recognition processing by a recognition processing unit 25 (see FIG. 4), thereby recognizing the position of the component mounting point on the substrate 4 and the electronic state held by the mounting head 10. The position recognition of the component P is performed, and in the component mounting operation of the electronic component P on the board 4, position correction at the time of component mounting is performed based on these position recognition results. In the nozzle stocker 14, suction nozzles 11 a mounted on the unit transfer head 11 are stored and held corresponding to a plurality of component types. In the component mounting operation, the mounting head 10 is accessed to the nozzle stocker 14 to execute the nozzle replacement operation, whereby the suction nozzle 11a mounted on the unit transfer head 11 is replaced according to the component type to be mounted. can do.

次に図3を参照して、電子部品実装装置1が備えた面補正データ取得機能について説明する。基板認識カメラ12による基板認識においては、ヘッド移動機構9を構成する駆動軸であるY軸移動テーブル7、X軸移動テーブル8の温度変化による駆動誤差に起因して撮像時の基板認識カメラ12の位置ずれが生じ、位置認識結果に誤差が生じる。そしてこの誤差はヘッド移動機構9による基板認識カメラ12の移動領域内で必ずしも一様ではなく、領域内の各位置で固有の位置誤差を示す。そしてこのような位置誤差は、駆動軸の温度変化による各駆動機構部の熱伸縮に起因することから時系列的にも一様ではなく、経時的な温度変化によっても異なった挙動を示す。   Next, a surface correction data acquisition function provided in the electronic component mounting apparatus 1 will be described with reference to FIG. In the substrate recognition by the substrate recognition camera 12, the substrate recognition camera 12 at the time of imaging is caused by the drive error due to the temperature change of the Y-axis movement table 7 and the X-axis movement table 8 which are the drive axes constituting the head moving mechanism 9. A position shift occurs, and an error occurs in the position recognition result. This error is not necessarily uniform within the movement region of the substrate recognition camera 12 by the head moving mechanism 9, and indicates a unique position error at each position within the region. Such a position error is due to thermal expansion and contraction of each drive mechanism due to a change in temperature of the drive shaft, and thus is not uniform in time series, and also shows a different behavior depending on a change in temperature over time.

このため本実施の形態に示す電子部品実装装置1では、このようなヘッド移動機構9による移動領域内の各位置における基板認識カメラ12の撮像時の固有の位置誤差を補正するいわゆる面補正のためのデータを、ヘッド移動機構9を構成する各駆動軸の経時的な温度変化に対応した形で取得するようにしている。以下、このような経時的な温度変化に対応した面補正データを取得するために電子部品実装装置1が備える構成について説明する。   For this reason, in the electronic component mounting apparatus 1 shown in the present embodiment, for so-called surface correction for correcting a specific position error at the time of imaging by the board recognition camera 12 at each position in the moving region by the head moving mechanism 9. Is obtained in a form corresponding to the temperature change with time of each drive shaft constituting the head moving mechanism 9. Hereinafter, a configuration provided in the electronic component mounting apparatus 1 in order to acquire surface correction data corresponding to such a temperature change with time will be described.

図3に示すように、ヘッド移動機構9を構成する駆動軸であるY軸移動テーブル7、X軸移動テーブル8はそれぞれ駆動用のモータ7M、8Mを備えている。Y軸移動テーブル7、X軸移動テーブル8を継続的に駆動する作業動作時には、モータ7M、8M自体の発熱や軸駆動機構の摩擦熱など各種の熱上昇要因により、Y軸移動テーブル7、X軸移動テーブル8は稼働時間の経過とともに昇温する。そしてこの温度変化による軸駆動機構の熱変形によって、基板認識カメラ12の水平移動における位置精度に誤差が生じる。さらに、熱変形は基板認識カメラ12の装着姿勢の精度にも影響を及ぼし、本来垂直状態にあるべき基板認識カメラ12の撮像光軸が、垂直軸から幾分傾いた状態に変化する傾向にある。このため、撮像対象の基板4の上面における基板認識カメラ12の撮像光軸の位置が、本来あるべき位置から傾斜分だけ位置ずれした状態となり、撮像による位置認識に誤差を生じる。   As shown in FIG. 3, the Y-axis moving table 7 and the X-axis moving table 8 which are drive shafts constituting the head moving mechanism 9 include driving motors 7M and 8M, respectively. During the work operation of continuously driving the Y-axis moving table 7 and the X-axis moving table 8, the Y-axis moving table 7 and X are caused by various heat rise factors such as heat generation of the motors 7M and 8M themselves and frictional heat of the shaft driving mechanism. The axis movement table 8 increases in temperature as the operating time elapses. Due to the thermal deformation of the shaft drive mechanism due to this temperature change, an error occurs in the positional accuracy in the horizontal movement of the substrate recognition camera 12. Furthermore, the thermal deformation also affects the accuracy of the mounting posture of the board recognition camera 12, and the imaging optical axis of the board recognition camera 12 that should be in the vertical state tends to be slightly inclined from the vertical axis. . For this reason, the position of the imaging optical axis of the substrate recognition camera 12 on the upper surface of the substrate 4 to be imaged is shifted from the original position by an amount corresponding to an inclination, and an error occurs in position recognition by imaging.

これらの基板認識カメラ12の水平移動における位置精度や撮像光軸の傾斜による位置認識結果の誤差は、本来Y軸移動テーブル7、X軸移動テーブル8の経時的な温度変化に起因することから、本実施の形態においては、従来技術においては固定的に取得されていた面補正データを、Y軸移動テーブル7、X軸移動テーブル8の経時的な温度変化と関連づけた形で取得可能なように、電子部品実装装置1を構成している。   The error in the position recognition result due to the positional accuracy in the horizontal movement of the substrate recognition camera 12 and the inclination of the imaging optical axis is due to the temperature change of the Y-axis movement table 7 and the X-axis movement table 8 over time. In the present embodiment, the surface correction data that has been acquired in a fixed manner in the prior art can be acquired in a form associated with the temperature change of the Y-axis movement table 7 and the X-axis movement table 8 over time. The electronic component mounting apparatus 1 is configured.

すなわち電子部品実装装置1においては、ヘッド移動機構9を構成するY軸移動テーブル7、X軸移動テーブル8のモータ7M、8Mの近傍に温度計測点7a、8aを設定して、それぞれにX軸テーブル温度センサS1,Y軸テーブル温度センサS2を配設し、任意のタイミングにおいて温度計測点7a、8aの温度データをY軸移動テーブル7、X軸移動テーブル8の軸温度として取得可能なようにしている。X軸テーブル温度センサS1,Y軸テーブル温度センサS2による温度計測結果は、ヘッド移動機構9を構成する駆動軸であるY軸移動テーブル7、X軸移動テーブル8の温度状態を代表的に示す代表温度(軸温度)としての性格を有するものである。   That is, in the electronic component mounting apparatus 1, temperature measurement points 7a and 8a are set in the vicinity of the motors 7M and 8M of the Y-axis moving table 7 and the X-axis moving table 8 constituting the head moving mechanism 9, and the X-axis is respectively set. The table temperature sensor S1 and the Y axis table temperature sensor S2 are arranged so that the temperature data of the temperature measurement points 7a and 8a can be acquired as the axis temperature of the Y axis movement table 7 and the X axis movement table 8 at an arbitrary timing. ing. The temperature measurement results obtained by the X-axis table temperature sensor S1 and the Y-axis table temperature sensor S2 are representative of the temperature states of the Y-axis movement table 7 and the X-axis movement table 8 that are drive axes constituting the head movement mechanism 9. It has the character as temperature (shaft temperature).

なおX軸テーブル温度センサS1,Y軸テーブル温度センサS2を配設する温度計測点7a、8aは、ここではモータ7M、8Mの近傍に設定されているが、駆動軸の温度状態を代表的に示す代表温度の計測点として適切と判断される位置であれば、他の位置に温度計測点7a、8aを適宜選定するようにしてもよい。もちろん、複数箇所にて計測した温度に基づき、平均温度を求めるなどの演算処理によって代表温度を定義するようにしてもよい。そしてこのようにして計測された軸温度と、以下に説明する個別変位データとを関連づけた形で、面補正データが取得される。   The temperature measurement points 7a and 8a at which the X-axis table temperature sensor S1 and the Y-axis table temperature sensor S2 are disposed are set in the vicinity of the motors 7M and 8M here, but the temperature state of the drive shaft is representative. The temperature measurement points 7a and 8a may be appropriately selected as other positions as long as the positions are determined to be appropriate as the representative temperature measurement points shown. Of course, the representative temperature may be defined by a calculation process such as obtaining an average temperature based on temperatures measured at a plurality of locations. Then, the surface correction data is acquired in the form in which the shaft temperature measured in this way is associated with the individual displacement data described below.

ここで、面補正データ取得に用いられる面補正用基板40について説明する。図3(b)に示すように、面補正用基板40は部品実装の対象となる基板4のダミーとして用いられるダミー基板であり、基板4と同様の外径形状を有している。面補正用基板40の上面には、位置ずれ量を計測する対象となる計測点41が、X方向、Y方向にそれぞれピッチpx、pyの格子配列で形成されている。面補正データ取得時には、図3(a)に示すように、面補正用基板40は基板搬送機構2の基板保持部3に保持され、この状態で基板認識カメラ12を面補正用基板40上に移動させて、各計測点41を順次基板認識カメラ12によって撮像する。   Here, the surface correction substrate 40 used for surface correction data acquisition will be described. As shown in FIG. 3B, the surface correction board 40 is a dummy board used as a dummy of the board 4 to be mounted with components, and has the same outer diameter as that of the board 4. On the upper surface of the surface correction substrate 40, measurement points 41 to be used for measuring the amount of positional deviation are formed in a grid arrangement with pitches px and py in the X direction and Y direction, respectively. At the time of surface correction data acquisition, as shown in FIG. 3A, the surface correction substrate 40 is held by the substrate holder 3 of the substrate transport mechanism 2, and in this state, the substrate recognition camera 12 is placed on the surface correction substrate 40. It moves, and each measurement point 41 is imaged with the board | substrate recognition camera 12 sequentially.

このとき、基板搬送機構2の一方の外側近傍に、基板保持部3に対する位置関係が固定されて基台1aに設けられたマークポスト15の位置基準点15aも、計測点41とともに基板認識カメラ12によって撮像される。マークポスト15は、電子部品実装装置1において水平方向の絶対位置が固定されており、位置基準点15aは部品実装作業の過程において水平位置に変化のない位置基準点として用いられる。   At this time, the position reference point 15 a of the mark post 15 provided on the base 1 a with the positional relationship with the substrate holding unit 3 fixed in the vicinity of one outside of the substrate transport mechanism 2 is also measured together with the measurement point 41 and the substrate recognition camera 12. Is imaged. The absolute position of the mark post 15 in the horizontal direction is fixed in the electronic component mounting apparatus 1, and the position reference point 15a is used as a position reference point that does not change in the horizontal position in the process of component mounting work.

次に図4を参照して、制御系の構成を説明する。制御部20は演算装置であり、記憶部21に記憶された各種のプログラムやデータを実行することにより、以下に説明する各部を制御して、部品実装作業や各種の演算処理を実行させる。記憶部21は、各部に部品実装作業を実行させるために必要な実装座標データなどの実装データ22や、変位・温度相関データ23を記憶する。変位・温度相関データ23は、Y軸移動テーブル7、X軸移動テーブル8の経時的な温度変化に起因して生じる基板認識カメラ12の位置検出誤差を補正するための面補正データであり、面補正用基板40を対象として所定タイミングで実行される位置計測結果を、Y軸移動テーブル7、X軸移動テーブル8の軸温度と関連づけることによって作成される。部品実装作業においては、制御部20が変位・温度相関データ23を参照することにより、実装ヘッド10を基板4に対して位置合わせする際の位置補正量を算出する演算が行われる。   Next, the configuration of the control system will be described with reference to FIG. The control unit 20 is an arithmetic device, and controls various units described below by executing various programs and data stored in the storage unit 21 to execute component mounting work and various arithmetic processes. The storage unit 21 stores mounting data 22 such as mounting coordinate data necessary for causing each unit to perform component mounting work, and displacement / temperature correlation data 23. The displacement / temperature correlation data 23 is surface correction data for correcting a position detection error of the substrate recognition camera 12 caused by a temperature change with time of the Y-axis movement table 7 and the X-axis movement table 8. The position measurement result executed at a predetermined timing for the correction substrate 40 is created by associating it with the axis temperatures of the Y-axis movement table 7 and the X-axis movement table 8. In the component mounting operation, the control unit 20 refers to the displacement / temperature correlation data 23 to calculate a position correction amount when the mounting head 10 is aligned with the substrate 4.

機構駆動部24は、制御部20に制御されることにより、基板搬送機構2、X軸移動テーブル8、Y軸移動テーブル7、実装ヘッド10を駆動する。これにより、基板4を搬送位置決めする基板搬送動作や、部品供給部5から取り出した電子部品Pを基板4に実装する部品実装動作が実行される。認識処理部25は、部品認識カメラ13、基板認識カメラ12による撮像結果を認識処理する。これにより、基板4の部品実装点の位置認識や、実装ヘッド10に保持された状態における電子部品Pの位置認識が行われる。変位検出部26は、基板認識カメラ12によって面補正用基板40の計測点41やマークポスト15の位置基準点15aを撮像した撮像結果より計測点41や位置基準点15aの位置を検出し、計測開始に際して設定される計測基準時点からの位置の変位量を示す個別変位データを求める処理を行う。   The mechanism driving unit 24 drives the substrate transport mechanism 2, the X-axis movement table 8, the Y-axis movement table 7, and the mounting head 10 under the control of the control unit 20. Thereby, the board | substrate conveyance operation | movement which conveys and positions the board | substrate 4, and the component mounting operation | movement which mounts the electronic component P picked out from the component supply part 5 on the board | substrate 4 are performed. The recognition processing unit 25 performs recognition processing on the imaging results obtained by the component recognition camera 13 and the board recognition camera 12. Thereby, the position recognition of the component mounting point of the board | substrate 4 and the position recognition of the electronic component P in the state hold | maintained at the mounting head 10 are performed. The displacement detection unit 26 detects the position of the measurement point 41 and the position reference point 15a from the imaging result obtained by imaging the measurement point 41 of the surface correction substrate 40 and the position reference point 15a of the mark post 15 by the substrate recognition camera 12, and performs measurement. Processing for obtaining individual displacement data indicating the amount of displacement of the position from the measurement reference time set at the start is performed.

軸温度検出部27は、X軸テーブル温度センサS1、Y軸テーブル温度センサS2の計測出力データから、Y軸移動テーブル7、X軸移動テーブル8の軸温度を検出する。面補正データ作成処理部28は、軸温度検出部27によって検出された軸温度と、変位検出部26によって検出された個別変位データ、すなわち面補正用基板40の計測点41やマークポスト15の位置基準点15aの計測基準時点からの変位量とを関連づけることにより、変位・温度相関データを作成する処理を行う。作成された変位・温度相関データ23は記憶部21に記憶される。   The shaft temperature detector 27 detects the shaft temperatures of the Y-axis movement table 7 and the X-axis movement table 8 from the measurement output data of the X-axis table temperature sensor S1 and the Y-axis table temperature sensor S2. The surface correction data creation processing unit 28 includes the shaft temperature detected by the shaft temperature detection unit 27 and the individual displacement data detected by the displacement detection unit 26, that is, the positions of the measurement points 41 and the mark posts 15 on the surface correction substrate 40. A process of creating displacement / temperature correlation data is performed by associating the displacement of the reference point 15a from the measurement reference time point. The created displacement / temperature correlation data 23 is stored in the storage unit 21.

図5を参照して、記憶部21に記憶される変位・温度相関データ23の具体例について説明する。この変位・温度相関データは、電子部品実装装置1において実際に部品を基板に実装することなく、ヘッド移動機構9によって実装ヘッド10を部品供給部5と基板4との間で往復移動させる模擬動作を反復実行するエージング動作の過程において取得される。すなわちこの過程において、Y軸移動テーブル7、X軸移動テーブル8の温度状態を示す軸温度は徐々に上昇し、この温度変化に伴って基板認識カメラ12が移動する到達位置もわずかに変動する。そしてこの到達位置の変動により、基板認識カメラ12によって計測点41や位置基準点15aを撮像して位置認識した結果にも位置ずれが生じる。そしてこの位置ずれ量は、Y軸移動テーブル7、X軸移動テーブル8の温度状態の依存すると考えられることから、前述の模擬動作を反復実行するエージング動作において、変位検出部26による変位量の検出と軸温度検出部27による軸温度検出とを、所定インターバルで同期して実行する。そして同期して得られた軸温度と変位量とを面補正データ作成処理部28によって関連づけることにより、変位・温度相関データ23が作成される。   A specific example of the displacement / temperature correlation data 23 stored in the storage unit 21 will be described with reference to FIG. This displacement / temperature correlation data is a simulated operation in which the mounting head 10 is reciprocated between the component supply unit 5 and the substrate 4 by the head moving mechanism 9 without actually mounting the component on the substrate in the electronic component mounting apparatus 1. Is obtained in the course of an aging operation that repeatedly executes. That is, in this process, the shaft temperature indicating the temperature state of the Y-axis movement table 7 and the X-axis movement table 8 gradually increases, and the arrival position at which the substrate recognition camera 12 moves slightly varies with this temperature change. Due to the variation of the arrival position, a positional deviation also occurs in the result of the position recognition by imaging the measurement point 41 and the position reference point 15a by the substrate recognition camera 12. Since this displacement amount is considered to depend on the temperature state of the Y-axis movement table 7 and the X-axis movement table 8, the displacement detection unit 26 detects the displacement amount in the aging operation in which the above-described simulation operation is repeatedly executed. And the shaft temperature detection by the shaft temperature detector 27 are executed in synchronization with each other at a predetermined interval. Then, the surface temperature data and the displacement amount obtained in synchronization are correlated by the surface correction data creation processing unit 28, thereby creating the displacement / temperature correlation data 23.

図5はこのようにして得られた変位・温度相関データ23をグラフ表示したデータテーブルDTを示している。ここでは、横軸に軸温度(℃)、縦軸に変位量ΔX、ΔY(計測基準時点からの変位量μm)を取り、X軸方向の変位量ΔXとX軸テーブル軸温度(X軸テーブル温度センサS1によって検出された温度計測点7aの温度)との相関を示すグラフを実線の曲線L(X)で、またY軸方向の変位量ΔYとY軸テーブル軸温度(Y軸テーブル温度センサS2によって検出された温度計測点8aの温度)との相関を示すグラフを破線の曲線L(Y)でそれぞれ示している。   FIG. 5 shows a data table DT in which the displacement / temperature correlation data 23 obtained in this way is displayed as a graph. Here, the horizontal axis represents the shaft temperature (° C.), the vertical axis represents the displacement amounts ΔX and ΔY (displacement amount μm from the measurement reference point), and the X-axis direction displacement amount ΔX and the X-axis table shaft temperature (X-axis table). The graph showing the correlation with the temperature measurement point 7a detected by the temperature sensor S1 is a solid curve L (X), the displacement amount ΔY in the Y-axis direction and the Y-axis table axis temperature (Y-axis table temperature sensor). A graph showing a correlation with the temperature of the temperature measurement point 8a detected by S2 is indicated by a dashed curve L (Y).

この変位・温度相関データ23を示すグラフにおいて、軸温度を指定することにより、Y軸移動テーブル7、X軸移動テーブル8の温度がその軸温度に昇温した状態における基板認識カメラ12による位置認識の位置ずれ量を推定することができる。また変位量を指定することにより、基板認識カメラ12による位置認識の変位量が当該変位量となった状態におけるY軸移動テーブル7、X軸移動テーブル8の軸温度を推定することができる。   In the graph showing the displacement / temperature correlation data 23, the position recognition by the substrate recognition camera 12 in a state where the temperatures of the Y-axis movement table 7 and the X-axis movement table 8 are increased to the axis temperatures by designating the axis temperature. Can be estimated. Also, by specifying the displacement amount, it is possible to estimate the shaft temperatures of the Y-axis movement table 7 and the X-axis movement table 8 in a state where the displacement amount of the position recognition by the substrate recognition camera 12 becomes the displacement amount.

次に図6を参照して、本発明の部品実装方法における電子部品実装処理フローについて説明する。この部品実装方法は、基板保持部3に位置決め保持された基板4を基板認識カメラ12で撮像して位置認識し、ヘッド移動機構9により実装ヘッド10を移動させて部品供給部5から電子部品Pを取り出し、基板認識カメラ12による位置認識の結果に基づいて実装ヘッド10を基板4に対して位置決めして電子部品Pを基板4に実装するものである。   Next, the electronic component mounting process flow in the component mounting method of the present invention will be described with reference to FIG. In this component mounting method, the substrate 4 positioned and held by the substrate holding unit 3 is imaged by the substrate recognition camera 12 to recognize the position, the mounting head 10 is moved by the head moving mechanism 9, and the electronic component P is transferred from the component supply unit 5. The electronic component P is mounted on the substrate 4 by positioning the mounting head 10 with respect to the substrate 4 based on the result of position recognition by the substrate recognition camera 12.

図6において、まず複数の計測点41が格子状に形成された面補正用基板40を基板保持部3に保持させる(ST1)。次いでヘッド移動機構9により基板認識カメラ12を基板4およびマークポスト15の上方へ移動させて、図7(a)、(b)に示すように、複数の計測点41および基板保持部3との位置関係が固定されたマークポスト15上の位置基準点15aを順次撮像する(ST2)(矢印a,b,c,d,eに示す撮像順序参照)。そして変位検出部26によってこれらの計測点41、位置基準点15aの位置を計測し、計測基準時点における位置からの変位量を示す個別変位データを、ヘッド移動機構9を構成する駆動軸であるY軸移動テーブル7、X軸移動テーブル8毎に取得する(ST3)(位置計測工程)。   In FIG. 6, first, the surface correction substrate 40 on which a plurality of measurement points 41 are formed in a lattice shape is held by the substrate holding unit 3 (ST1). Next, the substrate recognition camera 12 is moved above the substrate 4 and the mark post 15 by the head moving mechanism 9, and as shown in FIGS. 7A and 7B, the plurality of measurement points 41 and the substrate holding unit 3 are connected. The position reference point 15a on the mark post 15 whose positional relationship is fixed is sequentially imaged (ST2) (see the imaging order indicated by arrows a, b, c, d, and e). Then, the displacement detection unit 26 measures the positions of these measurement points 41 and the position reference point 15a, and the individual displacement data indicating the amount of displacement from the position at the measurement reference point is used as a drive shaft constituting the head moving mechanism 9. Obtained for each axis movement table 7 and X-axis movement table 8 (ST3) (position measurement step).

上述の位置計測工程は、実装ヘッド10を部品供給部5と基板4との間で往復移動させる模擬動作を反復実行するエージング動作の過程において、予め設定されたタイミングにおいて複数回反復実行される。そしてこの過程において、駆動軸毎に当該駆動軸の軸温度と当該時点において取得された個別変位データとを関連づけ、変位・温度相関データを求める(ST4)。ここでは軸温度検出部27によって当該駆動軸の当該時点における温度状態を代表的に示す代表温度として計測される軸温度と、変位検出部26によって当該時点において取得された個別変位データとを、面補正データ作成処理部28によって関連づけることにより面補正データを作成し、位置基準点15aおよび複数の計測点41毎に記憶部21に記憶させる(ST5)(変位・温度相関データ記憶工程)。   The above-described position measurement process is repeatedly performed a plurality of times at a preset timing in the process of an aging operation in which a simulation operation for reciprocating the mounting head 10 between the component supply unit 5 and the substrate 4 is repeatedly performed. In this process, the displacement / temperature correlation data is obtained by associating the shaft temperature of the drive shaft with the individual displacement data acquired at the time point for each drive shaft (ST4). Here, the shaft temperature measured as a representative temperature representatively indicating the temperature state of the drive shaft at the time point by the shaft temperature detection unit 27 and the individual displacement data acquired by the displacement detection unit 26 at the time point Surface correction data is created by associating with the correction data creation processing unit 28 and stored in the storage unit 21 for each of the position reference point 15a and the plurality of measurement points 41 (ST5) (displacement / temperature correlation data storage step).

すなわち図8に示すように、面補正用基板40に設定された各計測点41について、計測点41(1)、(2)、(3)・・・(i)・・・のそれぞれに対応したデータテーブルDT(1)、(2)、(3)・・・(i)・・・を、図5に示す変位・温度相関データ23のデータテーブルDTと同様に作成し、さらにマークポスト15上面の位置基準点15aに対応したデータテーブルDT(BP)を同様に作成する。   That is, as shown in FIG. 8, each measurement point 41 set on the surface correction substrate 40 corresponds to each of the measurement points 41 (1), (2), (3)... (I). The data tables DT (1), (2), (3)... (I)... Are created in the same manner as the data table DT of the displacement / temperature correlation data 23 shown in FIG. Similarly, a data table DT (BP) corresponding to the position reference point 15a on the upper surface is created.

この後、部品実装作業が開始されると、実装ヘッド10をヘッド移動機構9によって部品供給部5と基板4との間を移動させて、部品供給部5から取り出した電子部品Pを基板4に実装する部品実装動作が反復実行される。この部品実装動作においては、ヘッド移動機構9によって実装ヘッド10とともに基板認識カメラ12を一体的に移動させることにより基板4の部品実装点を位置認識し、この位置認識結果に基づいて実装ヘッド10を基板4に対して位置決めする。このため、部品実装動作においてはヘッド移動機構9を構成するY軸移動テーブル7、X軸移動テーブル8の温度状態の経時変化によって位置認識結果に誤差が生じる。   Thereafter, when the component mounting operation is started, the mounting head 10 is moved between the component supply unit 5 and the substrate 4 by the head moving mechanism 9, and the electronic component P taken out from the component supply unit 5 is transferred to the substrate 4. The component mounting operation to be mounted is repeatedly executed. In this component mounting operation, the position of the component mounting point on the board 4 is recognized by moving the board recognition camera 12 together with the mounting head 10 by the head moving mechanism 9, and the mounting head 10 is moved based on the position recognition result. Position with respect to the substrate 4. For this reason, in the component mounting operation, an error occurs in the position recognition result due to the temporal change of the temperature state of the Y-axis movement table 7 and the X-axis movement table 8 constituting the head movement mechanism 9.

この誤差を補正するため、実装ヘッド10を基板4に対して位置決めする過程において、記憶部21に記憶された変位・温度相関データ23に基づいて実装ヘッド10の位置補正量を演算する(ST6)(位置補正演算工程)。そして基板認識カメラ12による位置認識の結果に、変位・温度相関データ23に基づく位置補正量を加味してヘッド移動機構9を制御することにより、実装ヘッド10を基板4に対して位置決めして電子部品Pを実装する(ST7)(実装実行工程)。   In order to correct this error, in the process of positioning the mounting head 10 with respect to the substrate 4, the position correction amount of the mounting head 10 is calculated based on the displacement / temperature correlation data 23 stored in the storage unit 21 (ST6). (Position correction calculation process). Then, the head moving mechanism 9 is controlled by adding the position correction amount based on the displacement / temperature correlation data 23 to the result of position recognition by the board recognition camera 12, thereby positioning the mounting head 10 with respect to the board 4. The component P is mounted (ST7) (mounting execution process).

次に、図9,図10を参照して、上述の位置補正演算工程の詳細について説明する。位置補正演算工程においては、まず位置基準点15aを基板認識カメラ12によって撮像して当該時点における位置基準点15aの個別変位データを求める(ST11)。すなわち図10(a)に示すように、基板認識カメラ12をマークポスト15の上方に移動させ、位置基準点15aを撮像した撮像結果を、変位検出部26によって検出処理することにより、当該時点における位置基準点15aの計測基準時点からの変位量ΔX*、ΔY*を求める。   Next, the details of the above-described position correction calculation process will be described with reference to FIGS. In the position correction calculation step, first, the position reference point 15a is imaged by the substrate recognition camera 12, and individual displacement data of the position reference point 15a at that time is obtained (ST11). That is, as shown in FIG. 10A, the substrate recognition camera 12 is moved above the mark post 15, and the imaging result obtained by imaging the position reference point 15 a is detected by the displacement detection unit 26. Displacement amounts ΔX * and ΔY * of the position reference point 15a from the measurement reference point are obtained.

次いで求められた個別変位データである変位量ΔX*、ΔY*に対応する軸温度を、駆動軸毎に変位・温度相関データ23から求める。すなわち、図10(b)に示すように、位置基準点15aについての変位・温度相関データ23であるデータテーブルDT(BP)において、変位量ΔX*、ΔY*にそれぞれ対応する軸温度Tx,Tyを、曲線L(X)、L(Y)から求める。そしてこのような軸温度Tx,Tyに対応する位置補正量を求めるために、記憶部21に記憶された変位・温度相関データ23のうち、当該部品実装動作で対象となる基板4の実装点MPに、部品実装領域におけるXY座標位置が最も近接した計測点41(i)に対応するデータテーブルDT(i)を参照する。   Next, the shaft temperatures corresponding to the displacement amounts ΔX * and ΔY *, which are individual displacement data obtained, are obtained from the displacement / temperature correlation data 23 for each drive shaft. That is, as shown in FIG. 10B, in the data table DT (BP) which is the displacement / temperature correlation data 23 for the position reference point 15a, the shaft temperatures Tx and Ty respectively corresponding to the displacement amounts ΔX * and ΔY *. Is obtained from the curves L (X) and L (Y). In order to obtain the position correction amount corresponding to the shaft temperatures Tx and Ty, the mounting point MP of the board 4 that is the target in the component mounting operation among the displacement / temperature correlation data 23 stored in the storage unit 21. In addition, the data table DT (i) corresponding to the measurement point 41 (i) having the closest XY coordinate position in the component mounting area is referred to.

すなわち図10(c)に示すように、当該データテーブルDT(i)において、軸温度Tx,Tyに対応する変位量ΔX(i)、ΔY(i)を、変位・温度相関データ23によって示される曲線L(X)、L(Y)から求める。そして求められた変位量ΔX(i)、ΔY(i)を、実装点MPを対象とする部品実装動作における位置補正量とする。これにより、ヘッド移動機構9を構成するY軸移動テーブル7、X軸移動テーブル8の温度状態が経時的に変動している場合にあっても、部品実装動作を実行する時点における温度状態に応じた適正な位置補正量を加味して、実装ヘッド10の基板4への位置合わせを行うことができる。   That is, as shown in FIG. 10C, in the data table DT (i), displacement amounts ΔX (i) and ΔY (i) corresponding to the shaft temperatures Tx and Ty are indicated by the displacement / temperature correlation data 23. Obtained from the curves L (X) and L (Y). Then, the obtained displacement amounts ΔX (i) and ΔY (i) are set as position correction amounts in the component mounting operation for the mounting point MP. Thereby, even when the temperature states of the Y-axis moving table 7 and the X-axis moving table 8 constituting the head moving mechanism 9 are fluctuating with time, the temperature depends on the temperature state at the time when the component mounting operation is executed. In addition, the mounting position of the mounting head 10 to the substrate 4 can be adjusted in consideration of the appropriate position correction amount.

なお上記例では、部品実装作業の実行過程において、位置基準点15aの位置を基板認識カメラ12によって認識することにより、変位・温度相関データ23に含まれるデータテーブルDT(BP)を介して軸温度Tx,Tyを推測するようにしているが、温度計測点7a、8aに配設されたX軸テーブル温度センサS1、Y軸テーブル温度センサS2によって軸温度を直接求め、この軸温度に対応した変位量ΔX(i)、ΔY(i)を位置補正量とするようにしてもよい。   In the above example, in the process of performing the component mounting operation, the position of the position reference point 15a is recognized by the board recognition camera 12, so that the shaft temperature is obtained via the data table DT (BP) included in the displacement / temperature correlation data 23. Tx and Ty are estimated, but the shaft temperature is directly obtained by the X-axis table temperature sensor S1 and the Y-axis table temperature sensor S2 disposed at the temperature measurement points 7a and 8a, and the displacement corresponding to the shaft temperature is obtained. The amounts ΔX (i) and ΔY (i) may be used as position correction amounts.

上記説明したように、本実施の形態に示す部品実装方法は、面補正用基板40の複数の計測点41毎および位置基準点15aを基板認識カメラ12で認識して面補正用データを作成するに際し、基板4を認識する基板認識カメラ12および実装ヘッド10を移動させるヘッド移動機構9の駆動軸毎に当該駆動軸の当該時点における温度状態を代表的に示す代表温度として計測される軸温度と、当該時点において計測点41毎および位置基準点15aについて取得された個別変位データとを関連づけ、変位・温度相関データ23として位置基準点15aおよび計測点41毎に記憶部21に記憶させておき、部品実装作業時に実装ヘッド10を基板4に対して位置決めする過程において、変位・温度相関データ23に基づいて実装ヘッド10の位置補正量を演算する方式を採用したものである。これにより、装置稼働状態の経時的な変化によって温度変動が生じた場合にあっても、常に適正な面補正データを用いて有効な位置補正効果を得ることができる。   As described above, the component mounting method shown in the present embodiment creates surface correction data by recognizing the measurement points 41 and the position reference points 15a of the surface correction substrate 40 by the substrate recognition camera 12. At this time, for each drive axis of the board recognition camera 12 for recognizing the board 4 and the head moving mechanism 9 for moving the mounting head 10, an axis temperature measured as a representative temperature representatively indicating a temperature state at the time of the drive axis The individual displacement data acquired for each measurement point 41 and the position reference point 15a at the time point is associated with each other, and the displacement / temperature correlation data 23 is stored in the storage unit 21 for each position reference point 15a and each measurement point 41. In the process of positioning the mounting head 10 with respect to the substrate 4 during component mounting work, the position of the mounting head 10 is determined based on the displacement / temperature correlation data 23. It is obtained by employing the method of calculating the correction amount. As a result, even when temperature fluctuations occur due to changes in the operating state of the apparatus over time, an effective position correction effect can always be obtained using appropriate surface correction data.

本発明の電子部品実装方法は、装置稼働状態の経時的な変化によって温度変動が生じた場合にあっても、常に適正な面補正データを用いて有効な位置補正効果を得ることができるという効果を有し、実装ヘッドによって部品を基板に移送搭載する分野に利用可能である。   The electronic component mounting method of the present invention has an effect that an effective position correction effect can always be obtained using appropriate surface correction data even when a temperature variation occurs due to a change in the operating state of the apparatus over time. And can be used in a field where a component is transferred and mounted on a substrate by a mounting head.

1 電子部品実装装置
3 基板保持部
4 基板
5 部品供給部
7 Y軸移動テーブル
7a、8a 温度計測点
8 X軸移動テーブル
9 ヘッド移動機構
10 実装ヘッド
11a 吸着ノズル
12 基板認識カメラ
15a 位置基準点
40 面補正用基板
41 計測点
M マーク
MP 実装点
DT データテーブル
ΔX、ΔY 変位量
DESCRIPTION OF SYMBOLS 1 Electronic component mounting apparatus 3 Board | substrate holding part 4 Board | substrate 5 Component supply part 7 Y-axis movement table 7a, 8a Temperature measurement point 8 X-axis movement table 9 Head movement mechanism 10 Mounting head 11a Adsorption nozzle 12 Substrate recognition camera 15a Position reference point 40 Surface correction board 41 Measurement point M mark MP Mounting point DT Data table ΔX, ΔY Displacement

Claims (2)

基板保持部に位置決め保持された基板を基板認識用のカメラで撮像して位置認識し、ヘッド移動機構により実装ヘッドを移動させて部品供給部から電子部品を取り出し、前記位置認識の結果に基づいて前記実装ヘッドを前記基板に対して位置決めして電子部品を基板に実装する電子部品実装方法であって、
複数の計測点が格子状に形成された面補正用基板を前記基板保持部に保持させ、前記ヘッド移動機構により前記カメラを移動させて前記複数の計測点および前記基板保持部との位置関係が固定された位置基準点を順次撮像して位置を計測し、計測基準時点における位置からの変位量を示す個別変位データを、前記ヘッド移動機構を構成する駆動軸毎に取得する位置計測工程と、
前記位置計測工程を予め設定されたタイミングにおいて複数回反復実行する過程において、前記駆動軸毎に当該駆動軸の当該時点における温度状態を代表的に示す代表温度として計測される軸温度と当該時点において取得された前記個別変位データとを関連づけ、変位・温度相関データとして前記位置基準点および複数の計測点毎に記憶部に記憶させる変位・温度相関データ記憶工程と、
前記実装ヘッドを前記基板に対して位置決めする過程において、前記変位・温度相関データに基づいて実装ヘッドの位置補正量を演算する位置補正演算工程と、
前記位置認識の結果に前記位置補正量を加味して前記ヘッド移動機構を制御することにより、前記実装ヘッドを前記基板に対して位置決めして電子部品を実装する実装実行工程とを含むことを特徴とする電子部品実装方法。
Based on the result of the position recognition, the board positioned and held on the board holding part is imaged with a camera for board recognition to recognize the position, the mounting head is moved by the head moving mechanism and the electronic component is taken out from the component supply part. An electronic component mounting method for mounting an electronic component on a substrate by positioning the mounting head with respect to the substrate,
A substrate for surface correction in which a plurality of measurement points are formed in a lattice shape is held by the substrate holding unit, and the camera is moved by the head moving mechanism so that the positional relationship between the plurality of measurement points and the substrate holding unit is A position measuring step of sequentially imaging fixed position reference points to measure the position, and acquiring individual displacement data indicating the amount of displacement from the position at the measurement reference time for each drive axis constituting the head moving mechanism;
In the process of repeatedly performing the position measurement step a plurality of times at a preset timing, the shaft temperature measured as a representative temperature representatively indicating the temperature state of the drive shaft at the time point for each drive shaft and the time point Displacement / temperature correlation data storage step for associating the acquired individual displacement data and storing the position reference point and a plurality of measurement points in a storage unit as displacement / temperature correlation data;
In the process of positioning the mounting head with respect to the substrate, a position correction calculation step of calculating a position correction amount of the mounting head based on the displacement / temperature correlation data;
And a mounting execution step of mounting the electronic component by positioning the mounting head with respect to the substrate by controlling the head moving mechanism by adding the position correction amount to the position recognition result. Electronic component mounting method.
前記位置補正演算工程において、まず前記位置基準点を前記カメラによって撮像して当該時点における前記個別変位データを求め、次いで求められた個別変位データに対応する軸温度を前記駆動軸毎に前記変位・温度相関データから求め、さらに求められた前記軸温度に対応する個別変位データを前記駆動軸毎に前記変位・温度相関データから求め、求められた前記個別変位データに示す変位量を位置補正量とすることを特徴とする請求項1記載の電子部品実装方法。   In the position correction calculation step, first, the position reference point is imaged by the camera to obtain the individual displacement data at the time point, and then the shaft temperature corresponding to the obtained individual displacement data is determined for each of the drive axes. Obtained from the temperature correlation data, further obtained individual displacement data corresponding to the obtained shaft temperature from the displacement / temperature correlation data for each drive shaft, and the displacement amount indicated in the obtained individual displacement data as a position correction amount. The electronic component mounting method according to claim 1, wherein:
JP2011005813A 2011-01-14 2011-01-14 Electronic component mounting method Expired - Fee Related JP5510342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005813A JP5510342B2 (en) 2011-01-14 2011-01-14 Electronic component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005813A JP5510342B2 (en) 2011-01-14 2011-01-14 Electronic component mounting method

Publications (2)

Publication Number Publication Date
JP2012146907A true JP2012146907A (en) 2012-08-02
JP5510342B2 JP5510342B2 (en) 2014-06-04

Family

ID=46790160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005813A Expired - Fee Related JP5510342B2 (en) 2011-01-14 2011-01-14 Electronic component mounting method

Country Status (1)

Country Link
JP (1) JP5510342B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079545A1 (en) * 2013-11-29 2015-06-04 株式会社日立製作所 Component mounting device
JP2016058603A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
JP2016058604A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
WO2016103413A1 (en) * 2014-12-25 2016-06-30 富士機械製造株式会社 Component mounting machine
JP2018041802A (en) * 2016-09-06 2018-03-15 パナソニックIpマネジメント株式会社 Mounting method and mounting apparatus for electronic component
EP3410833A4 (en) * 2016-01-25 2019-01-23 Fuji Corporation Component mounting apparatus
JP2020017637A (en) * 2018-07-25 2020-01-30 芝浦メカトロニクス株式会社 Mounting device, and correction board for use in mounting device
WO2020021657A1 (en) * 2018-07-25 2020-01-30 ヤマハ発動機株式会社 Surface mounting machine
CN111434203A (en) * 2017-12-15 2020-07-17 株式会社富士 Component mounting machine
CN112740852A (en) * 2018-10-31 2021-04-30 株式会社富士 Substrate-aligning working machine and moving head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274799A (en) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd Electronic components mounting apparatus
JP2000068695A (en) * 1998-08-26 2000-03-03 Juki Corp Part mounting equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274799A (en) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd Electronic components mounting apparatus
JP2000068695A (en) * 1998-08-26 2000-03-03 Juki Corp Part mounting equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079545A1 (en) * 2013-11-29 2015-06-04 株式会社日立製作所 Component mounting device
JP2016058603A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
JP2016058604A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
WO2016103413A1 (en) * 2014-12-25 2016-06-30 富士機械製造株式会社 Component mounting machine
CN107114008A (en) * 2014-12-25 2017-08-29 富士机械制造株式会社 Component mounter
JPWO2016103413A1 (en) * 2014-12-25 2017-09-28 富士機械製造株式会社 Component mounter
CN107114008B (en) * 2014-12-25 2019-11-01 株式会社富士 Component mounter
EP3410833A4 (en) * 2016-01-25 2019-01-23 Fuji Corporation Component mounting apparatus
JP2018041802A (en) * 2016-09-06 2018-03-15 パナソニックIpマネジメント株式会社 Mounting method and mounting apparatus for electronic component
CN111434203B (en) * 2017-12-15 2021-01-26 株式会社富士 Component mounting machine
US11576291B2 (en) * 2017-12-15 2023-02-07 Fuji Corporation Component mounting machine
CN111434203A (en) * 2017-12-15 2020-07-17 株式会社富士 Component mounting machine
WO2020021657A1 (en) * 2018-07-25 2020-01-30 ヤマハ発動機株式会社 Surface mounting machine
KR20210003241A (en) * 2018-07-25 2021-01-11 야마하하쓰도키 가부시키가이샤 Surface mounter
CN112514553A (en) * 2018-07-25 2021-03-16 雅马哈发动机株式会社 Surface mounting machine
JPWO2020021657A1 (en) * 2018-07-25 2021-06-03 ヤマハ発動機株式会社 Surface mounter
JP6990309B2 (en) 2018-07-25 2022-01-12 ヤマハ発動機株式会社 Surface mounter
CN112514553B (en) * 2018-07-25 2022-04-12 雅马哈发动机株式会社 Surface mounting machine
JP7112274B2 (en) 2018-07-25 2022-08-03 芝浦メカトロニクス株式会社 Mounting equipment and calibration substrates used for mounting equipment
KR102432607B1 (en) * 2018-07-25 2022-08-16 야마하하쓰도키 가부시키가이샤 surface mount machine
JP2020017637A (en) * 2018-07-25 2020-01-30 芝浦メカトロニクス株式会社 Mounting device, and correction board for use in mounting device
CN112740852A (en) * 2018-10-31 2021-04-30 株式会社富士 Substrate-aligning working machine and moving head
CN112740852B (en) * 2018-10-31 2022-04-05 株式会社富士 Substrate-aligning working machine and moving head

Also Published As

Publication number Publication date
JP5510342B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5510342B2 (en) Electronic component mounting method
JP6277422B2 (en) Component mounting method and component mounting system
JP4828298B2 (en) Component mounting method and component mounting apparatus
JP2007173552A (en) Electronic component packaging system and method therefor
JP6585529B2 (en) Component mounting method and component mounting apparatus
JP4648964B2 (en) Mark recognition system, mark recognition method, and surface mounter
JP4824641B2 (en) Parts transfer device
JP2009016673A5 (en)
JP6249650B2 (en) Method for correcting pitch, component mounting apparatus, and component mounting system
JP6277423B2 (en) Component mounting method and component mounting system
JP2017224781A (en) Substrate work device
JP4712819B2 (en) Electronic component mounting method
JP4728293B2 (en) Parts transfer device
JP6572437B2 (en) Component mounting apparatus and component mounting method
JP5755935B2 (en) Component pitch measuring apparatus and component pitch measuring method
JP2009170465A5 (en)
JP2009010177A5 (en)
JP2010267916A (en) Mounting machine
JP2006093177A (en) Electronic component mounting apparatus
JP2008004626A (en) Method for mounting electronic component
JP2016205958A (en) Method for correcting movable head position of x-y substrate inspection device, and x-y substrate inspection device
JP2011191307A (en) Correction tool
JP2020174136A (en) Substrate work device
JP2017045913A (en) Component mounting device and component mounting method
JP4989199B2 (en) Electronic component mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5510342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees