JP2012145196A - Base isolation device - Google Patents

Base isolation device Download PDF

Info

Publication number
JP2012145196A
JP2012145196A JP2011005704A JP2011005704A JP2012145196A JP 2012145196 A JP2012145196 A JP 2012145196A JP 2011005704 A JP2011005704 A JP 2011005704A JP 2011005704 A JP2011005704 A JP 2011005704A JP 2012145196 A JP2012145196 A JP 2012145196A
Authority
JP
Japan
Prior art keywords
elastic
plate
isolation device
plug
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011005704A
Other languages
Japanese (ja)
Other versions
JP5703035B2 (en
Inventor
Hideaki Kato
秀章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011005704A priority Critical patent/JP5703035B2/en
Publication of JP2012145196A publication Critical patent/JP2012145196A/en
Application granted granted Critical
Publication of JP5703035B2 publication Critical patent/JP5703035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation device in which a damping property by a damping member can be improved by enhancing constraint force for the damping member.SOLUTION: In the base isolation device 1 in which a laminated body 4 composed by alternately laminating a rigid plate 41 having rigidity and an elastic plate 40 having elasticity is disposed between a pair of flange plates 2, 3, a bore part 10 penetrating the laminated body 4 in the lamination direction is formed, and the damping member 5 for damping vibration is housed inside the bore part 10, a high elastic part 40B is provided which is annularly disposed on the radial outer side of the damping member 5, disposed on the inner circumferential side of a body part 40A of the elastic plate 40, and has a higher shearing elasticity than an elastic material of the body part 40A, in an inner circumferential portion of the elastic plate 40.

Description

本発明は、積層体に減衰材が貫設された免震装置に関する。   The present invention relates to a seismic isolation device in which a damping material is provided in a laminated body.

この種の免震装置として、従来、例えば下記特許文献1に示すような、積層体の中央部分に鉛プラグ(減衰材)が貫設された免震装置が知られている。詳しく説明すると、上記した積層体は、ゴム等からなる弾性板と鋼板などからなる剛性板とを交互に積層した構成からなり、その積層方向の両側にそれぞれ配設された一対のフランジ板の間に介在されている。また、免震装置には、積層体の積層方向に貫通する孔部が形成されており、その孔部の内側に鉛プラグが収容されている。この鉛プラグは、振動を減衰させるダンパー部材であり、例えば前記した孔部の内側に圧入されている。また、孔部の軸方向の両端部にはキャップ(栓体)がそれぞれ嵌合されており、このキャップによって鉛プラグの両端面がそれぞれ押さられている。   As this type of seismic isolation device, there has been conventionally known a seismic isolation device in which a lead plug (attenuating material) is provided through a central portion of a laminated body as shown in Patent Document 1, for example. More specifically, the laminated body described above has a configuration in which an elastic plate made of rubber or the like and a rigid plate made of steel plate or the like are alternately laminated, and is interposed between a pair of flange plates respectively arranged on both sides in the lamination direction. Has been. Further, the seismic isolation device is formed with a hole penetrating in the stacking direction of the laminate, and a lead plug is accommodated inside the hole. The lead plug is a damper member that attenuates vibration, and is press-fitted inside the hole, for example. Further, caps (plug bodies) are respectively fitted to both end portions in the axial direction of the hole portions, and both end surfaces of the lead plug are pressed by the caps.

上記した構成の免震装置は、これら一対のフランジ板のうちの下側のフランジ板を基礎等の下部構造に固定させると共に上側のフランジ板を建物等の上部構造に固定させることで、下部構造と上部構造との間に介装される。この免震装置によれば、積層体のせん断変形時に減衰材が塑性変形することにより振動エネルギーを吸収することができ、上部構造に伝達される振動を減衰させることができる。   The seismic isolation device having the above-described structure has a lower structure by fixing the lower flange plate of the pair of flange plates to the lower structure such as the foundation and fixing the upper flange plate to the upper structure of the building or the like. And the upper structure. According to this seismic isolation device, vibration energy can be absorbed by the damping material being plastically deformed at the time of shear deformation of the laminate, and vibration transmitted to the superstructure can be attenuated.

また、従来、例えば下記特許文献2に記載されているように、減衰材を有しないタイプの免震装置において、上記した弾性板が、弾性率の異なる複数の弾性材料からなる構成が知られている。詳しく説明すると、この免震装置は、弾性板の外周部分、または外周部分及び内周部分に、弾性板の本体部(高弾性率ゴム部)の弾性材料よりもせん断弾性率が低い弾性材料からなる低弾性部(外周側低弾性部、内周側低弾性部)が設けられている。   Conventionally, as described in, for example, Patent Document 2 below, in a seismic isolation device of a type that does not have a damping material, a configuration in which the elastic plate is made of a plurality of elastic materials having different elastic moduli is known. Yes. More specifically, this seismic isolation device is made of an elastic material having a lower shear elastic modulus than the elastic material of the main body portion (high elastic modulus rubber portion) of the elastic plate on the outer peripheral portion of the elastic plate, or the outer peripheral portion and the inner peripheral portion. The low elastic part (the outer peripheral side low elastic part, the inner peripheral side low elastic part) is provided.

特開2009−115176号公報JP 2009-115176 A 特開2000−74141号公報JP 2000-74141 A

ところで、上記した免震装置では、上部構造の重量等によって上側のフランジ板を介して積層体に鉛直荷重が作用するが、上記した従来の減衰材を有する免震装置では、弾性板が全体に亘って同一の弾性材料からなるため、弾性板の鉛直荷重負担率は全体に亘って等しくなる。このように積層体に鉛直荷重が作用すると、弾性材料からなる弾性板の非圧縮性によって弾性板から減衰材に圧力(静水圧)が作用して減衰材が拘束される。この減衰材に対する拘束力は、上記した圧力が高いほど大きくなり、また、減衰材に対する拘束力が高いほど減衰材による減衰性が向上する。   By the way, in the above-described seismic isolation device, a vertical load acts on the laminated body through the upper flange plate due to the weight of the upper structure, etc., but in the above-described conventional seismic isolation device having a damping material, the elastic plate is entirely formed. Since it consists of the same elastic material over the whole, the vertical load share rate of an elastic board becomes equal over the whole. When a vertical load acts on the laminated body in this way, pressure (hydrostatic pressure) acts on the damping material from the elastic plate due to the incompressibility of the elastic plate made of an elastic material, thereby restraining the damping material. The restraining force with respect to the damping material increases as the pressure increases, and the damping property with the damping material improves as the restraining force with respect to the damping material increases.

そこで、本発明は、減衰材に対する拘束力を高めて減衰材による減衰性を向上させることができる免震装置を提供することを目的とする。   Then, an object of this invention is to provide the seismic isolation apparatus which can raise the restraining force with respect to a damping material and can improve the damping property by a damping material.

本発明に係る免震装置は、一対のフランジ板の間に、剛性を有する剛性板と弾性を有する弾性板とを交互に積層してなる積層体が介在されており、該積層体を積層方向に貫通する孔部が形成され、該孔部の内側に振動を減衰させる減衰材が収容された免震装置において、前記弾性板の内周部分に、前記減衰材の径方向外側に環状に周設されていると共に前記弾性板の本体部の内周側に配設され、該本体部の弾性材料よりもせん断弾性率が高い弾性材料からなる高弾性部が設けられていることを特徴としている。   The seismic isolation device according to the present invention includes a laminate formed by alternately laminating a rigid plate having rigidity and an elastic plate having elasticity between a pair of flange plates, and penetrates the laminate in the laminating direction. In the seismic isolation device in which a hole is formed, and a damping material for damping vibration is accommodated inside the hole, the elastic plate is annularly provided on the inner peripheral portion of the elastic plate and radially outward of the damping material. And a high elastic portion made of an elastic material having a shear modulus higher than that of the elastic material of the main body portion and provided on the inner peripheral side of the main body portion of the elastic plate.

このような特徴により、弾性板の内周部分に高い弾性材料からなる高弾性部が設けられるので、弾性板の内周部分に鉛直剛性が高い領域が形成される。鉛直剛性が高い領域は、それよりも低い領域と比較して鉛直荷重の負担率が高くなるため、上記した免震装置では、減衰材の周りの内周部分の鉛直荷重負担率が高くなる。その結果、フランジ板を介して積層体に鉛直荷重が加わったときに減衰材に作用する圧力が増大し、減衰材に対する拘束力が高められる。   With such a feature, since a high elastic portion made of a high elastic material is provided on the inner peripheral portion of the elastic plate, a region having high vertical rigidity is formed on the inner peripheral portion of the elastic plate. In the region where the vertical rigidity is high, the load factor of the vertical load is higher than that in a region where the vertical rigidity is lower than that. As a result, when a vertical load is applied to the laminate via the flange plate, the pressure acting on the damping material increases, and the restraining force on the damping material is increased.

また、本発明に係る免震装置は、前記高弾性部の径方向の幅寸法が、前記減衰材の半径寸法以上であり、且つ、前記弾性板の径方向の幅寸法の1/2以下であることが好ましい。
これにより、減衰材の周りの内周部分の鉛直荷重負担率が顕著に高くなり、その結果、減衰材に対する圧力がより増大し、減衰材に対する拘束力が高められる。
Further, in the seismic isolation device according to the present invention, a radial width dimension of the highly elastic portion is not less than a radial dimension of the damping material and not more than ½ of a radial width dimension of the elastic plate. Preferably there is.
Thereby, the vertical load burden rate of the inner peripheral part around a damping material becomes high remarkably, As a result, the pressure with respect to a damping material increases more and the restraint force with respect to a damping material is raised.

本発明に係る免震装置によれば、上述したように減衰材に対する圧力が増大し、減衰材に対する拘束力が高められるため、減衰材による減衰性を向上させることができる。   According to the seismic isolation device of the present invention, as described above, the pressure on the damping material increases and the restraining force on the damping material is increased, so that the damping performance by the damping material can be improved.

本発明の実施の形態を説明するための免震装置の縦断面図である。It is a longitudinal cross-sectional view of the seismic isolation apparatus for demonstrating embodiment of this invention. 図1に示すA−A間の横断面図である。It is a cross-sectional view between AA shown in FIG.

以下、本発明に係る免震装置の実施の形態について、図面に基いて説明する。   Hereinafter, embodiments of the seismic isolation device according to the present invention will be described with reference to the drawings.

図1に示す免震装置1は、基礎等の図示せぬ下部構造と建物本体等の図示せぬ上部構造との間に介装され、上部構造を下部構造に対して相対的に水平移動可能に支持する装置である。この免震装置1の概略構成としては、図1に示すように、上下に対向して配置された一対のフランジ板(下フランジ板2及び上フランジ板3)と、一対のフランジ板2,3の間に介在された積層体4と、積層体4に貫設されたプラグ5(本発明における減衰材)と、を備えている。
なお、図1に示す一点鎖線Oは、積層体4の積層方向に延在する積層体4の中心軸線であり、以下「軸線O」と記す。また、軸線Oに沿った方向を「軸方向」とし、軸線Oに直交する方向を「径方向」とし、軸線O周りの方向を「周方向」とする。
The seismic isolation device 1 shown in FIG. 1 is interposed between a lower structure (not shown) such as a foundation and an upper structure (not shown) such as a building body, and the upper structure can be moved horizontally relative to the lower structure. It is a device to support. As shown in FIG. 1, as a schematic configuration of the seismic isolation device 1, a pair of flange plates (a lower flange plate 2 and an upper flange plate 3) that are disposed facing each other vertically, and a pair of flange plates 2 and 3. And a plug 5 (attenuating material according to the present invention) penetrating through the laminate 4.
1 is a central axis line of the stacked body 4 extending in the stacking direction of the stacked body 4, and is hereinafter referred to as an “axis O”. A direction along the axis O is referred to as an “axial direction”, a direction orthogonal to the axis O is referred to as a “radial direction”, and a direction around the axis O is referred to as a “circumferential direction”.

下フランジ板2は、下部構造に固定される固定部材であり、上フランジ板3は上部構造に固定される固定部材である。下フランジ板2及び上フランジ板3は、剛性を有する平面視円形の硬質板であり、例えば鋼板からなる。これら下フランジ板2及び上フランジ板3は、それぞれ積層体4の断面形状よりも大径に形成されており、これら下フランジ板2及び上フランジ板3の各外周部は、全周に亘って積層体4の径方向外側に向けて突出されている。また、下フランジ板2及び上フランジ板3の各外周部には、周方向に間隔をあけて複数の図示せぬボルト孔が形成されており、例えばアンカーボルト等を介して下部構造や上部構造にそれぞれ固定される。   The lower flange plate 2 is a fixing member fixed to the lower structure, and the upper flange plate 3 is a fixing member fixed to the upper structure. The lower flange plate 2 and the upper flange plate 3 are rigid hard plates having a circular shape in plan view, and are made of, for example, a steel plate. The lower flange plate 2 and the upper flange plate 3 are each formed to have a larger diameter than the cross-sectional shape of the laminate 4, and the outer peripheral portions of the lower flange plate 2 and the upper flange plate 3 extend over the entire circumference. The laminated body 4 protrudes outward in the radial direction. Further, a plurality of bolt holes (not shown) are formed in the outer peripheral portions of the lower flange plate 2 and the upper flange plate 3 at intervals in the circumferential direction. Fixed to each.

積層体4は、弾性を有する弾性板40と剛性を有する剛性板41とが交互に積層された柱状体であり、水平方向にせん断変形可能なせん断変形部である。複数の弾性板40と剛性板41は、それぞれ平面視円形状に形成されており、積層体4は、軸方向に延在する略円柱形状に形成されている。また、積層体4の外周面部分には、弾性板40及び剛性板41の外周を全周に亘って被覆する被覆部42が設けられている。   The laminated body 4 is a columnar body in which elastic plates 40 having elasticity and rigid plates 41 having rigidity are alternately laminated, and is a shear deformable portion capable of shear deformation in the horizontal direction. The plurality of elastic plates 40 and the rigid plates 41 are each formed in a circular shape in plan view, and the laminate 4 is formed in a substantially cylindrical shape extending in the axial direction. In addition, a covering portion 42 that covers the outer periphery of the elastic plate 40 and the rigid plate 41 over the entire periphery is provided on the outer peripheral surface portion of the laminate 4.

複数の剛性板41は、例えば鋼板からなる硬質板であり、下フランジ板2や上フランジ板3と平行に配設されている。
なお、上記した剛性板41、下フランジ板2及び上フランジ板3は、鋼板以外であってもよく、例えば硬質樹脂からなる板材であってもよい。
The plurality of rigid plates 41 are, for example, hard plates made of steel plates, and are disposed in parallel with the lower flange plate 2 and the upper flange plate 3.
Note that the rigid plate 41, the lower flange plate 2, and the upper flange plate 3 described above may be other than a steel plate, for example, a plate material made of hard resin.

また、弾性板40は、弾性変形可能な弾性材料からなる軟質板であり、剛性板41,41の間、及び剛性板41とフランジ板2,3との間に介在されている。
また、被覆部42は、弾性変形可能な弾性材料からなり、弾性板40と一体に形成されている。具体的に説明すると、弾性板40及び被覆部42はそれぞれ加硫ゴムからなり、未加硫の弾性板40及び被覆部42を上記した複数の剛性板41及びフランジ板2,3と共に加硫させることで、弾性板40及び被覆部42と複数の剛性板41及びフランジ板2,3とが加硫接着されている。
なお、上記した弾性板40及び被覆部42はゴム以外であってもよく、例えば軟質樹脂で形成することも可能である。
The elastic plate 40 is a soft plate made of an elastic material that can be elastically deformed, and is interposed between the rigid plates 41 and 41 and between the rigid plate 41 and the flange plates 2 and 3.
The covering portion 42 is made of an elastic material that can be elastically deformed, and is formed integrally with the elastic plate 40. More specifically, the elastic plate 40 and the covering portion 42 are each made of vulcanized rubber, and the unvulcanized elastic plate 40 and the covering portion 42 are vulcanized together with the plurality of rigid plates 41 and the flange plates 2 and 3 described above. Thus, the elastic plate 40 and the covering portion 42 are bonded to the plurality of rigid plates 41 and the flange plates 2 and 3 by vulcanization.
The elastic plate 40 and the covering portion 42 described above may be other than rubber, and may be formed of, for example, a soft resin.

また、上記した下フランジ板2、上フランジ板3及び積層体4には、軸方向に延在する孔部10が形成されている。この孔部10は、プラグ5を収容する平面視円形の孔であり、積層体4の中心位置に配設され、軸線Oを共通軸にして積層体4と同軸上に形成されている。また、孔部10は、軸方向に貫通した貫通孔である。すなわち、上記した下フランジ板2、上フランジ板3、弾性板40及び剛性板41の各中心部分には、互いに連通する円形孔がそれぞれ形成されており、これらの円形孔によって孔部10が形成されている。なお、孔部10の軸方向両側の開口端部は、縦断面視において略T字状に拡径されている。   Further, the lower flange plate 2, the upper flange plate 3, and the laminated body 4 are formed with a hole 10 extending in the axial direction. The hole 10 is a circular hole in plan view that accommodates the plug 5, is disposed at the center position of the stacked body 4, and is formed coaxially with the stacked body 4 with the axis O as a common axis. The hole 10 is a through hole penetrating in the axial direction. That is, a circular hole communicating with each other is formed in each central portion of the lower flange plate 2, the upper flange plate 3, the elastic plate 40, and the rigid plate 41, and the hole portion 10 is formed by these circular holes. Has been. In addition, the opening edge part of the axial direction both sides of the hole part 10 is expanded in the substantially T shape in the longitudinal cross-sectional view.

また、上記した弾性板40は、図2に示すように、せん断弾性率の異なる2種類の弾性材料からなる。詳しく説明すると、弾性板40の内周部分に、弾性板40の本体部40Aの弾性材料よりもせん断弾性率が高い弾性材料からなる高弾性部40Bが設けられている。すなわち、弾性板40には、平面視円環状の本体部40Aと、本体部40Aの内周側(径方向内側)に配設された高弾性部40Bと、が備えられている。   Moreover, the above-mentioned elastic board 40 consists of two types of elastic materials from which a shear elastic modulus differs, as shown in FIG. More specifically, a high elastic portion 40B made of an elastic material having a higher shear elastic modulus than the elastic material of the main body portion 40A of the elastic plate 40 is provided on the inner peripheral portion of the elastic plate 40. In other words, the elastic plate 40 includes a main body portion 40A having an annular shape in plan view, and a highly elastic portion 40B disposed on the inner peripheral side (radially inner side) of the main body portion 40A.

本体部40Aは、弾性板40のうちの外周部及び径方向中間部を構成する部分である。この本体部40Aは、軸線Oを中心軸線とする平面視円環状に形成されており、本体部40Aの外縁及び内縁はそれぞれ平面視円形状に形成されている。この本体部40Aのせん断弾性率は例えば0.4〜0.6MPa程度である。なお、ここでいう「せん断弾性率」とは、せん断歪みが100%のせん断変形を与えたとき、つまり積層体4を複数の弾性板40の総厚さ寸法分だけせん断変形させた場合の弾性率である。   The main body portion 40A is a portion constituting the outer peripheral portion and the radial intermediate portion of the elastic plate 40. The main body portion 40A is formed in an annular shape in plan view with the axis O as the central axis, and the outer edge and inner edge of the main body portion 40A are each formed in a circular shape in plan view. The shear modulus of the main body 40A is, for example, about 0.4 to 0.6 MPa. The “shear elastic modulus” referred to here is the elasticity when shear deformation of 100% is applied, that is, when the laminate 4 is shear-deformed by the total thickness dimension of the plurality of elastic plates 40. Rate.

高弾性部40Bは、弾性板40の内周部を構成する部分である。この高弾性部40Bは、軸線Oを中心軸線とする平面視円環状に形成されており、本体部40Aの内縁に沿って全周に亘って形成されていると共にプラグ5の外周側(径方向外側)に全周に亘って周設されている。また、高弾性部40Bは、本体部40Aと共に加硫することで本体部40Aと一体化されており、高弾性部40Bの外縁は、本体部40Aの内縁に対して全周に亘って一体的に接合されている。   The highly elastic portion 40 </ b> B is a portion constituting the inner peripheral portion of the elastic plate 40. This highly elastic portion 40B is formed in an annular shape in plan view with the axis O as the central axis, and is formed over the entire circumference along the inner edge of the main body portion 40A and at the outer peripheral side (radial direction) of the plug 5 The outer circumference is provided around the entire circumference. Further, the high elastic portion 40B is integrated with the main body portion 40A by vulcanizing together with the main body portion 40A, and the outer edge of the high elastic portion 40B is integrated over the entire circumference with respect to the inner edge of the main body portion 40A. It is joined to.

上記した高弾性部40Bのせん断弾性率は、本体部40Aのせん断弾性率の1.5以上2.0倍以下であることが好ましい。これは、高弾性部40Bのせん断弾性率を本体部40Aのせん断弾性率の1.5以上にすることで、高弾性部40Bの鉛直荷重負担率を効果的に高めることができ、また、高弾性部40Bのせん断弾性率を本体部40Aのせん断弾性率の2.0倍以下にすることで、高弾性部40Bと本体部40Aとの境界において応力が不連続にならず、応力集中を防止することができると共に、鉛直荷重負担率が過度に高くなることによるフランジ板2,3の撓み変形を防止することができるためである。   The above-described high elastic portion 40B preferably has a shear elastic modulus of 1.5 to 2.0 times that of the main body portion 40A. This is because the high elastic portion 40B has a shear elastic modulus of 1.5 or more of the shear elastic modulus of the main body portion 40A, thereby effectively increasing the vertical load share of the high elastic portion 40B. By making the shear modulus of the elastic portion 40B 2.0 times or less than the shear modulus of the main body portion 40A, stress does not become discontinuous at the boundary between the high elastic portion 40B and the main body portion 40A, and stress concentration is prevented. This is because it is possible to prevent bending deformation of the flange plates 2 and 3 due to an excessively high vertical load ratio.

また、上記した高弾性部40Bの径方向の幅寸法w1が、プラグ5の半径寸法r以上であり、且つ、弾性板40全体の径方向の幅寸法Wの1/2以下である。すなわち、高弾性部40Bの径方向の幅寸法w1は、本体部40Aの径方向の幅寸法w2よりも小さくなっており、高弾性部40Bの外縁は、弾性板40全体の径方向のセンターラインL(幅寸法Wの半分の位置)よりも径方向内側に位置している。   Further, the radial width dimension w1 of the high elastic portion 40B is equal to or larger than the radial dimension r of the plug 5, and is equal to or smaller than ½ of the radial width dimension W of the entire elastic plate 40. That is, the radial width w1 of the highly elastic portion 40B is smaller than the radial width w2 of the main body portion 40A, and the outer edge of the highly elastic portion 40B is the radial center line of the entire elastic plate 40. It is located radially inward from L (a position that is half the width dimension W).

図1に示すように、上記した孔部10の内側には、プラグ5が収容されている。このプラグ5の軸方向両側の端面は、孔部10の軸方向両側の開口端部に嵌合されたキャップ体7,7によってそれぞれ押さえられており、これにより、プラグ5の軸方向位置が保持されている。   As shown in FIG. 1, a plug 5 is accommodated inside the hole 10 described above. The end surfaces on both sides in the axial direction of the plug 5 are respectively held by cap bodies 7 and 7 fitted to the opening ends on the both sides in the axial direction of the hole portion 10, whereby the axial position of the plug 5 is maintained. Has been.

プラグ5は、積層体4のせん断変形時に塑性変形することで振動エネルギーを吸収するダンパー部材であり、例えば円柱形状の鉛プラグからなる。詳しく説明すると、プラグ5は、孔部10と同径若しくは孔部10よりも若干大径に形成されており、孔部10の何れか一方の端部から圧入されて孔部10の内側に隙間無く充填されている。このプラグ5の長さ寸法(軸方向寸法)は、積層体4の高さ寸法(軸方向寸法)よりも大きく、プラグ5の上端面は積層体4の上端面よりも上方に位置し、プラグ5の下端面は積層体4の下端面よりも下方に位置する。つまり、プラグ5は、積層体4の全長に亘って充填されていると共に両端部が下フランジ板2や上フランジ板3の孔部にそれぞれ挿入されている。
なお、上記したプラグ5は、鉛プラグ以外であってもよく、例えば、錫や合金等の他の金属からなる部材であってもよい。さらに、上記したプラグ5は、金属製以外の部材であってもよく、例えばゴムに鉄粉等を混合させたエラストマー部材であってもよい。
The plug 5 is a damper member that absorbs vibration energy by plastic deformation at the time of shear deformation of the laminate 4, and is made of, for example, a cylindrical lead plug. More specifically, the plug 5 is formed to have the same diameter as the hole 10 or a slightly larger diameter than the hole 10, and is press-fitted from either one end of the hole 10 so that a gap is formed inside the hole 10. It is completely filled. The length dimension (axial dimension) of the plug 5 is larger than the height dimension (axial dimension) of the stacked body 4, and the upper end surface of the plug 5 is located above the upper end surface of the stacked body 4. The lower end surface of 5 is located below the lower end surface of the laminate 4. That is, the plug 5 is filled over the entire length of the laminated body 4 and both ends are inserted into the holes of the lower flange plate 2 and the upper flange plate 3, respectively.
Note that the plug 5 described above may be other than a lead plug, and may be a member made of another metal such as tin or an alloy. Further, the plug 5 described above may be a member other than a metal member, for example, an elastomer member obtained by mixing iron powder or the like with rubber.

キャップ体7は、孔部10の開口端部を封栓する栓体であり、下フランジ板2や上フランジ板3にボルト締結や溶接などで固定されている。   The cap body 7 is a plug body that plugs the opening end portion of the hole 10 and is fixed to the lower flange plate 2 and the upper flange plate 3 by bolt fastening, welding, or the like.

上記した構成の免震装置1によれば、図示せぬ下部構造と図示せぬ上部構造との間に上記した免震装置1を介装させると、免震装置1によって支持された上部構造の振動系の固有周期が長くなり、例えば地震時に上部構造が受ける応力が緩和される。具体的には、地震等によって下部構造が振動すると、積層体4が水平方向にせん断変形する。これにより、上部構造に伝達される振動が低減される。   According to the seismic isolation device 1 having the above-described configuration, when the above-described seismic isolation device 1 is interposed between a lower structure (not shown) and an upper structure (not shown), the upper structure supported by the seismic isolation device 1 The natural period of the vibration system becomes longer, and the stress that the superstructure receives during, for example, an earthquake is relaxed. Specifically, when the lower structure vibrates due to an earthquake or the like, the laminate 4 undergoes shear deformation in the horizontal direction. Thereby, the vibration transmitted to the superstructure is reduced.

また、上述した積層体4のせん断変形に伴いプラグ5が塑性変形する。これにより、振動エネルギーが吸収され、上部構造に伝達される振動が減衰される。この減衰性は、プラグ5の拘束力が高いほど増大し、プラグ5の拘束力は、プラグ5の周りの内周部分の鉛直荷重負担率が大きいほどプラグ5に対する圧力(静水圧)が増大して高くなる。ここで、上記した構成の免震装置1では、弾性板40の内周部分に高弾性部40Bが設けられており、弾性板40の内周部分に鉛直剛性が高い領域(高弾性部40B)が形成されているので、弾性板40のうち、プラグ5の周りの内周部分の鉛直荷重負担率が高められる。その結果、プラグ5に対する圧力(静水圧)が増大し、プラグ5に対する拘束力が高められ、上記したプラグ5による減衰性を向上させることができる。   Further, the plug 5 is plastically deformed with the shear deformation of the laminate 4 described above. Thereby, vibration energy is absorbed, and vibration transmitted to the superstructure is attenuated. This damping property increases as the restraining force of the plug 5 increases. As the restraining force of the plug 5 increases, the pressure (hydrostatic pressure) on the plug 5 increases as the vertical load ratio of the inner peripheral portion around the plug 5 increases. Become higher. Here, in the seismic isolation device 1 having the above-described configuration, the high elastic portion 40B is provided on the inner peripheral portion of the elastic plate 40, and the region having high vertical rigidity (the high elastic portion 40B) is provided on the inner peripheral portion of the elastic plate 40. Therefore, the vertical load share rate of the inner peripheral portion around the plug 5 in the elastic plate 40 is increased. As a result, the pressure (hydrostatic pressure) on the plug 5 is increased, the restraining force on the plug 5 is increased, and the damping property by the plug 5 can be improved.

特に、上記した免震装置1では、高弾性部40Bの径方向の幅寸法w1が、プラグ5の半径寸法r以上であり、且つ、弾性板40全体の径方向の幅寸法Wの1/2以下であるため、プラグ5の周りの内周部分の鉛直荷重負担率が顕著に高くなる。その結果、プラグ5に対する圧力がより増大し、プラグ5に対する拘束力が高められ、プラグ5による減衰性を確実に向上させることができる。   In particular, in the seismic isolation device 1 described above, the radial width w1 of the highly elastic portion 40B is equal to or larger than the radial dimension r of the plug 5, and 1/2 of the radial width W of the entire elastic plate 40. Since it is below, the vertical load burden rate of the inner peripheral part around the plug 5 becomes remarkably high. As a result, the pressure on the plug 5 is further increased, the restraining force on the plug 5 is increased, and the damping property by the plug 5 can be reliably improved.

以上、本発明に係る免震装置の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本発明は、積層体が斜めに傾けて設置され、積層体が水平面に対して傾斜した方向にせん断変形する構成であってもよい。
As mentioned above, although embodiment of the seismic isolation apparatus which concerns on this invention was described, this invention is not limited to above-described embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, the present invention may be configured such that the laminated body is installed obliquely and the laminated body is subjected to shear deformation in a direction inclined with respect to the horizontal plane.

また、上記した実施の形態では、環状の高弾性部40Bの内側にプラグ5が圧入されており、高弾性部40Bの内周面とプラグ5の外周面とが密接しているが、本発明は、高弾性部40Bの内周面とプラグ5の外周面とが直に接していなくてもよい。例えば、プラグ5の外周面が剛性板41によって削られたり弾性板40の部分に入り込んだりするのを防止するため、プラグ5の外周を筒体で覆った構成にすることも可能である。   In the above-described embodiment, the plug 5 is press-fitted inside the annular high elastic portion 40B, and the inner peripheral surface of the high elastic portion 40B and the outer peripheral surface of the plug 5 are in close contact with each other. The inner peripheral surface of the highly elastic portion 40B and the outer peripheral surface of the plug 5 may not be in direct contact with each other. For example, in order to prevent the outer peripheral surface of the plug 5 from being scraped by the rigid plate 41 or entering the elastic plate 40, the outer periphery of the plug 5 may be covered with a cylindrical body.

また、本発明は、積層体4の軸方向端部に端板が設けられ、この端板がフランジ板2、3に当接する構成であってもよい。
その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。
Further, the present invention may be configured such that an end plate is provided at an end portion in the axial direction of the laminated body 4 and the end plate abuts on the flange plates 2 and 3.
In addition, in the range which does not deviate from the main point of this invention, it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.

1 免震装置
2 下フランジ板(フランジ板)
3 上フランジ板(フランジ板)
4 積層体
5 プラグ(減衰材)
10 孔部
40 弾性板
40A 本体部
40B 高弾性部
41 剛性板
1 Seismic isolation device 2 Lower flange plate (flange plate)
3 Upper flange plate (flange plate)
4 Laminate 5 Plug (damping material)
DESCRIPTION OF SYMBOLS 10 Hole 40 Elastic board 40A Main-body part 40B High elastic part 41 Rigid board

Claims (2)

一対のフランジ板の間に、剛性を有する剛性板と弾性を有する弾性板とを交互に積層してなる積層体が介在されており、
該積層体を積層方向に貫通する孔部が形成され、該孔部の内側に振動を減衰させる減衰材が収容された免震装置において、
前記弾性板の内周部分に、前記減衰材の径方向外側に環状に周設されていると共に前記弾性板の本体部の内周側に配設され、該本体部の弾性材料よりもせん断弾性率が高い弾性材料からなる高弾性部が設けられていることを特徴とする免震装置。
Between the pair of flange plates, there is interposed a laminate formed by alternately laminating a rigid plate having rigidity and an elastic plate having elasticity,
In the seismic isolation device in which a hole penetrating the laminated body in the laminating direction is formed and a damping material that attenuates vibration is accommodated inside the hole,
The elastic plate is annularly arranged on the radially outer side of the damping material on the inner peripheral portion of the elastic plate and is disposed on the inner peripheral side of the main body portion of the elastic plate, and is more elastic than the elastic material of the main body portion. A seismic isolation device having a high elastic portion made of an elastic material having a high rate.
請求項1に記載の免震装置において、
前記高弾性部の径方向の幅寸法が、前記減衰材の半径寸法以上であり、且つ、前記弾性板の径方向の幅寸法の1/2以下であることを特徴とする免震装置。
The seismic isolation device according to claim 1,
The seismic isolation device characterized in that a radial width dimension of the highly elastic portion is not less than a radial dimension of the damping material and not more than 1/2 of a radial width dimension of the elastic plate.
JP2011005704A 2011-01-14 2011-01-14 Seismic isolation device Expired - Fee Related JP5703035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005704A JP5703035B2 (en) 2011-01-14 2011-01-14 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005704A JP5703035B2 (en) 2011-01-14 2011-01-14 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2012145196A true JP2012145196A (en) 2012-08-02
JP5703035B2 JP5703035B2 (en) 2015-04-15

Family

ID=46788955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005704A Expired - Fee Related JP5703035B2 (en) 2011-01-14 2011-01-14 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP5703035B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213274A (en) * 2014-08-29 2014-12-17 卓郎(江苏)纺织机械有限公司 Damping device for transverse-moving yarn guiding rod of spinning machine
CN106320560A (en) * 2016-11-11 2017-01-11 华东建筑设计研究院有限公司 Damper with assembled structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228944A (en) * 1985-04-03 1986-10-13 株式会社ブリヂストン Laminated structure
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support
JP2000074141A (en) * 1998-08-31 2000-03-07 Bando Chem Ind Ltd Base isolation device
JP2009115176A (en) * 2007-11-06 2009-05-28 Oiles Ind Co Ltd Laminated rubber bearing body
JP2010133472A (en) * 2008-12-03 2010-06-17 Sumitomo Rubber Ind Ltd Damping structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228944A (en) * 1985-04-03 1986-10-13 株式会社ブリヂストン Laminated structure
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support
US5324117A (en) * 1992-08-07 1994-06-28 Sumitomo Rubber Industries, Ltd. Laminated rubber bearing
JP2000074141A (en) * 1998-08-31 2000-03-07 Bando Chem Ind Ltd Base isolation device
JP2009115176A (en) * 2007-11-06 2009-05-28 Oiles Ind Co Ltd Laminated rubber bearing body
JP2010133472A (en) * 2008-12-03 2010-06-17 Sumitomo Rubber Ind Ltd Damping structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213274A (en) * 2014-08-29 2014-12-17 卓郎(江苏)纺织机械有限公司 Damping device for transverse-moving yarn guiding rod of spinning machine
CN106320560A (en) * 2016-11-11 2017-01-11 华东建筑设计研究院有限公司 Damper with assembled structure

Also Published As

Publication number Publication date
JP5703035B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5541329B2 (en) Seismic isolation device
EP3412929B1 (en) Seismic isolation device
JP5692335B2 (en) Seismic isolation device
JP3205393U (en) Seismic isolation device
WO2017183542A1 (en) Seismic isolator apparatus
JP6432271B2 (en) Seismic isolation support device
JP5703035B2 (en) Seismic isolation device
JP2010190409A (en) Seismic isolation device and building
JP2012246643A (en) Seismic isolator
CN109072574B (en) Shock-proof support device for bridge and bridge using same
JP6275978B2 (en) Anti-vibration support device
JP2006207680A (en) Laminated rubber supporter
JP5984012B2 (en) Laminated rubber support
JP2011133112A (en) Seismic isolation unit
JP2013185634A (en) Vibration-isolating support device
JP5136622B2 (en) Laminated rubber body with lead plug
JP6354303B2 (en) Laminated rubber bearing device
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP2012145197A (en) Base isolation device
TW201805508A (en) Base isolation supporting device
JP2009210064A (en) Laminated support
JP5330472B2 (en) Elastic body restraint variable structure and bearing device
JP6557033B2 (en) Bearing structure
JP2012052644A (en) Base isolation device
JP5577147B2 (en) Isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5703035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees