JP2012141299A - In-plane capacitance type mems accelerometer - Google Patents

In-plane capacitance type mems accelerometer Download PDF

Info

Publication number
JP2012141299A
JP2012141299A JP2011272954A JP2011272954A JP2012141299A JP 2012141299 A JP2012141299 A JP 2012141299A JP 2011272954 A JP2011272954 A JP 2011272954A JP 2011272954 A JP2011272954 A JP 2011272954A JP 2012141299 A JP2012141299 A JP 2012141299A
Authority
JP
Japan
Prior art keywords
substrate
proof mass
electrode
plane
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011272954A
Other languages
Japanese (ja)
Inventor
Shuwen Guo
グオ,シューウェン
Spivak Alexander
スピバク,アレキサンダー
Fink Anita
フィンク,アニタ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosemount Aerospace Inc
Original Assignee
Rosemount Aerospace Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount Aerospace Inc filed Critical Rosemount Aerospace Inc
Publication of JP2012141299A publication Critical patent/JP2012141299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Abstract

PROBLEM TO BE SOLVED: To provide an extremely robust and high-performance triaxial accelerometer including both of an in-plane accelerometer and an out-of-plane accelerometer fabricated on a single chip by using a MEMS manufacturing technology.SOLUTION: A structure of the accelerometer includes an in-plane accelerometer with a substrate rigidly attached to an object, and a proof mass 102 formed from an integrally molded material and movably positioned at predetermined distance above the substrate 104. The proof mass 102 includes a plurality of electrode protrusions 116 extending downward from the proof mass to form a gap of varying height between the proof mass and the substrate. The proof mass 102 is configured to move in a direction parallel to the upper surfaces of each of the plurality of substrate electrodes 108, 110 when the object is accelerating, which results in a change in the area of the gap, and a change in capacitance between the substrate and the proof mass. The in-plane accelerometer can be fabricated using the same techniques used to fabricate an out-of-plane accelerometer and is suitable for high-shock applications.

Description

発明の背景
発明の属する技術分野
本発明は加速度計及びその他の力検出装置に関し、より具体的には基板上の複数の電極の上方に位置する一体成形の材料から形成されたプルーフマスを含む超頑強な、面内MEMS容量型加速度計に関する。基板が加速すると、プルーフマスは基板の上面に平行な方向に移動し、プルーフマスと基板との間の容量を変える。この容量の変化を変位の測定及び基板が付けられている物体の加速度の特定に使用することが可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to accelerometers and other force sensing devices, and more particularly to a super proof mass formed from a single piece of material positioned over a plurality of electrodes on a substrate. It relates to a robust in-plane MEMS capacitive accelerometer. As the substrate accelerates, the proof mass moves in a direction parallel to the top surface of the substrate, changing the capacitance between the proof mass and the substrate. This change in capacitance can be used to measure displacement and identify the acceleration of the object to which the substrate is attached.

関連技術の説明
加速度計は全ての種類の車用のナビゲーション及び誘導システムに一般に用いられる慣性計測装置(IMU)内の重要な要素である。一般的なIMUはリニア加速度計、ジャイロ回転速度センサー、及び関連電子機器を各々含む3つの均等なモジュールからなる。こうした3軸IMUは航空機や宇宙船から精密誘導ミサイルや大砲弾にわたる範囲の航空宇宙応用内のナビゲーション、誘導及びデータ測定システムに用いられる。こうした用途の多くで、IMUは極度の振動及び衝撃負荷にさらされる。このため、こうした過酷な条件に耐えるように設計されなければならない。
Description of Related Art Accelerometers are an important element in inertial measurement units (IMUs) commonly used in navigation and guidance systems for all types of vehicles. A typical IMU consists of three equal modules each including a linear accelerometer, a gyro rotational speed sensor, and associated electronics. These three-axis IMUs are used in navigation, guidance and data measurement systems in aerospace applications ranging from aircraft and spacecraft to precision guided missiles and cannonballs. In many of these applications, the IMU is exposed to extreme vibration and shock loads. For this reason, it must be designed to withstand these harsh conditions.

過酷な衝撃負荷に耐えることができる慣性計測装置は超頑強IMUとして知られる。こうした高性能IMUは重力の数千倍の力にさらされたときでさえ完全に機能的であり続ける。高性能加速度計及びその他の部品の使用はIMUが搭載された車や自動推進体の信頼できる、一貫した、精密な誘導を可能にする。   An inertial measurement device that can withstand severe impact loads is known as a super robust IMU. Such high performance IMUs remain fully functional even when exposed to forces several thousand times that of gravity. The use of high performance accelerometers and other components allows for reliable, consistent and precise guidance of vehicles and auto-propellants that are equipped with IMUs.

微小重力解像度、高感度、高直線性及び低バイアスドリフト付き高性能加速度計は超頑強IMUの使用に必須である。伝統的に、IMUは大型機械式加速度計及び従来の回転型ジャイロを含んでいた。しかし、最新のIMU、特に超頑強で高性能のIMUは微小電気機械(MEMS)製造技術を用いて製造される。   A high performance accelerometer with microgravity resolution, high sensitivity, high linearity and low bias drift is essential for the use of ultra-stubborn IMUs. Traditionally, IMUs included large mechanical accelerometers and conventional rotary gyros. However, the latest IMUs, particularly ultra-rugged and high performance IMUs, are manufactured using micro-electromechanical (MEMS) manufacturing techniques.

MEMS製造技術は微小重力解像度を達成しながら大質量、大容量及び小減衰が同時に加速度計で得られるのを確実にするのに重要な役割を果たす。シリコン容量型加速度計は超頑強IMUのために非常に魅力的になるいくつかの利点を有する。シリコン容量型加速度計は高感度、かつ、良好な直流応答及びノイズ特性、低ドリフト、低温感度、低電力消費及び簡単な構造を有する。MEMS製造技術を用いて単一チップ上に超頑強な、高性能の3軸加速度計を構築することは有利である。しかし、このためには、同じ製造技術を用いたチップ上の面外及び面内両方の加速度計の組み立てが必要である。   MEMS manufacturing technology plays an important role in ensuring that large masses, large volumes and small damping are simultaneously obtained with accelerometers while achieving microgravity resolution. Silicon capacitive accelerometers have several advantages that make them very attractive for super robust IMUs. The silicon capacitive accelerometer has high sensitivity and good DC response and noise characteristics, low drift, low temperature sensitivity, low power consumption and simple structure. It is advantageous to build a super robust, high performance 3-axis accelerometer on a single chip using MEMS manufacturing techniques. However, this requires assembly of both out-of-plane and in-plane accelerometers on the chip using the same manufacturing techniques.

既知の面内加速度計の構成は、側壁間で感知間隔が形成され感知が感知間隔の大きさによって決定されるMEMS櫛指加速度計を含む。従来のMEMS櫛指加速度計が図7に示され、全体で番号700で記される。加速度計700は2つのアンカー704にバネで付けられ複数の可動指706を有するプルーフマス又は感知プレート702を含む。可動指706は可動及び固定指の間に側部の隙間が形成された状態で複数の固定指708と交互に配置される。側部の隙間の最小サイズは面内加速度計700を製造するのに用いられる乾式反応性イオンエッチング(DRIE)技術のアスペクト比に基づきプレート厚さの約1/10から1/15の間に制限される。これは75μm(ミクロン)厚のプレートの最小の側部の隙間が5.0から7.5μmの間であることを意味する。既存のDRIE技術で可能な最小の大きさは10μmの隙間の生成である。75μmの厚さのプレートに、この技術を用いてMEMS櫛指、面内加速度計を製造することは不可能である。   Known in-plane accelerometer configurations include MEMS comb finger accelerometers where a sensing interval is formed between the sidewalls and sensing is determined by the magnitude of the sensing interval. A conventional MEMS comb accelerometer is shown in FIG. The accelerometer 700 includes a proof mass or sensing plate 702 that is spring-loaded to two anchors 704 and has a plurality of movable fingers 706. The movable finger 706 is alternately arranged with a plurality of fixed fingers 708 in a state where a side gap is formed between the movable and fixed fingers. The minimum size of the side gap is limited to about 1/10 to 1/15 of the plate thickness based on the aspect ratio of the dry reactive ion etching (DRIE) technique used to manufacture the in-plane accelerometer 700. Is done. This means that the minimum lateral gap of a 75 μm (micron) thick plate is between 5.0 and 7.5 μm. The smallest size possible with existing DRIE technology is the creation of a 10 μm gap. It is impossible to manufacture a MEMS comb finger or an in-plane accelerometer using this technique on a plate having a thickness of 75 μm.

マイクロマシニングとバルクマイクロマシニングとを組み合わせた他の製造技術を、側部の隙間を1.1μmに減らすのに用いることが可能である。ポリシリコン蒸着技術が一例である。しかしながら、こうした技術の処理フローは非常に複雑で、低収率となる。さらに、結果として生じる構造は脆弱で、高い衝撃の用途に向かない構造になる。こうした既存の技術は超頑強なMEMS加速度計の製造に用いることができない。   Other manufacturing techniques combining micromachining and bulk micromachining can be used to reduce the side gap to 1.1 μm. Polysilicon deposition technology is an example. However, the processing flow of these techniques is very complex and results in low yields. Furthermore, the resulting structure is fragile, making it unsuitable for high impact applications. These existing technologies cannot be used to make super robust MEMS accelerometers.

加えて、従来の櫛指加速度計の構成には非線形性問題が内在している。線形性を向上するために、側部の隙間の変化は小さい差動容量出力をもたらす小さい範囲に制限されなければならない。   In addition, non-linearity problems are inherent in the configuration of conventional comb finger accelerometers. In order to improve linearity, the change in the side gap must be limited to a small range resulting in a small differential capacitance output.

これらの制限を考えると、同じMEMS製造技術を用いた単一チップ上に作られた面内加速度計と面外加速度計の両方を含む超頑強、かつ、高性能な、3軸加速度計が切実に求められている。本発明はこのニーズを扱う。   Given these limitations, super robust and high performance 3-axis accelerometers, including both in-plane and out-of-plane accelerometers made on a single chip using the same MEMS manufacturing technology, are desperate. It is sought after. The present invention addresses this need.

本発明は物体の面内加速度を特定するためのシステムおよび方法に関する。同システムおよび方法は当業者には以下の数個の図面と併せて後述の同発明の詳細な説明からより簡単に明らかになるであろう。   The present invention relates to a system and method for identifying in-plane acceleration of an object. The system and method will be more readily apparent to those skilled in the art from the following detailed description of the invention in conjunction with the following several figures.

物体の面内加速度を特定するためのシステムが開示され、物体に強固に取り付けられた基板付きの面内加速度計及び一体成形の材料からなる、基板の上方に可動可能に所定の距離を離間されるプルーフマスを含む。複数の第1の基板電極が基板から上に延び、同じく基板から上に延びる複数の第2の基板電極と交互になっている。各基板電極は平面的な上面を有する。複数の第1の基板電極は互いに電気的に接続され、複数の第2の基板電極も互いに電気的に接続される。プルーフマスはプルーフマスと基板との間に異なる高さの隙間を形成するためにプルーフマスから下に延びる複数の電極突部を含む。第1のコンデンサはプルーフマスと複数の第1の基板電極との間に形成され、第2のコンデンサはプルーフマスと複数の第2の基板電極との間に形成される。プルーフマスはプルーフマスが均衡位置にあるとき、複数の電極突部の各々が1つの第1の基板電極の一部及び隣接する第2の基板電極の一部の上方に配置される状態で、物体の速度が一定のとき、均衡位置に保持される構成である。プルーフマスは物体が加速しているときに複数の基板電極の各々の上面に平行な方向に動く構成である。これにより各基板電極の上面とプルーフマスとの間の隙間の領域の変化が起きる。   A system for determining in-plane acceleration of an object is disclosed, and is composed of an in-plane accelerometer with a substrate firmly attached to the object and a monolithic material movably spaced a predetermined distance above the substrate. Including a proof mass. A plurality of first substrate electrodes extend upward from the substrate and alternate with a plurality of second substrate electrodes that also extend upward from the substrate. Each substrate electrode has a planar upper surface. The plurality of first substrate electrodes are electrically connected to each other, and the plurality of second substrate electrodes are also electrically connected to each other. The proof mass includes a plurality of electrode protrusions extending downward from the proof mass to form gaps of different heights between the proof mass and the substrate. The first capacitor is formed between the proof mass and the plurality of first substrate electrodes, and the second capacitor is formed between the proof mass and the plurality of second substrate electrodes. When the proof mass is in an equilibrium position, each of the plurality of electrode protrusions is disposed above a part of one first substrate electrode and a part of an adjacent second substrate electrode, When the speed of the object is constant, the object is held in an equilibrium position. The proof mass is configured to move in a direction parallel to the upper surface of each of the plurality of substrate electrodes when the object is accelerating. This causes a change in the area of the gap between the upper surface of each substrate electrode and the proof mass.

物体の面内加速度を測定する方法もまた開示されている。この方法は:基板の物体への堅牢な取り付け;プルーフマスと基板との間の異なる高さの隙間を形成するための基板の上方に所定の距離の均衡位置へのプルーフマスの固定;第1の基板電極と第2の基板電極が基板上に交互に配置される、プルーフマスと複数の第1の基板電極との間への第1の差動コンデンサの形成とプルーフマスと複数の第2の基板電極との間への第2の差動コンデンサの形成と;物体に加速力を加えることによる均衡位置から基板電極の平面的な上面に平行な方向へのプルーフマスの移動と;第1の差動コンデンサ内の容量の第1の変化の測定と;第2の差動コンデンサ内の容量の第2の変化の測定と;測定された容量の変化を物体の加速度を表す電圧に変換するための回路の使用のステップを含む。   A method for measuring in-plane acceleration of an object is also disclosed. This method is: a robust attachment of the substrate to the object; fixing the proof mass in a balanced position at a predetermined distance above the substrate to form gaps of different heights between the proof mass and the substrate; Forming a first differential capacitor between the proof mass and the plurality of first substrate electrodes, the proof mass and the plurality of second substrate electrodes being alternately arranged on the substrate. Formation of a second differential capacitor between the substrate electrode and the substrate electrode; movement of the proof mass in a direction parallel to the planar upper surface of the substrate electrode from an equilibrium position by applying an acceleration force to the object; Measuring a first change in capacitance in the second differential capacitor; measuring a second change in capacitance in the second differential capacitor; and converting the measured capacitance change into a voltage representative of the acceleration of the object. Using a circuit for the purpose.

物体の面内加速度を測定する追加の方法もまた開示される。その方法は:物体への基板の堅牢な取り付け;プルーフマスが1方向のみに動くように拘束される、プルーフマスの基板の上方でのぶら下げ;基板電極の上の平面に平行な方向にプルーフマスが動くときに各基板電極の上の平面とプルーフマスとの間の領域が変化するように各電極突部が2つの基板電極の上方で心出しされた状態でプルーフマスが複数の電極突部を含む、プルーフマスと基板との間への差動コンデンサの形成と;物体に加速力を加えることによるプルーフマスの移動と;各基板電極とプルーフマスとの間の容量の変化の測定と;回路を用いた、測定された容量の変化から物体の加速度を表す電圧への変換と;各基板電極の上の平面とプルーフマスとの間の領域の変化に比例する回路からの電圧を出力する工程を含む。   Additional methods for measuring the in-plane acceleration of an object are also disclosed. The method is: a robust attachment of the substrate to the object; the proof mass is constrained to move in only one direction; the proof mass is suspended above the substrate; the proof mass in a direction parallel to the plane above the substrate electrode A plurality of electrode protrusions with each electrode protrusion centered above the two substrate electrodes so that the area between the plane above each substrate electrode and the proof mass changes as the electrode moves Forming a differential capacitor between the proof mass and the substrate, including: moving the proof mass by applying an accelerating force to the object; measuring a change in capacitance between each substrate electrode and the proof mass; Using a circuit to convert the measured change in capacitance to a voltage representing the acceleration of the object; outputting a voltage from the circuit proportional to the change in the area between the plane above each substrate electrode and the proof mass Process.

物体の面内加速度を特定するためのシステムおよび方法を如何に実施するかを当業者が容易に理解できるように、次の図を参照して同システムおよび方法の好ましい実施形態を以下に詳細に記載する。   In order that those skilled in the art will readily understand how to implement a system and method for determining the in-plane acceleration of an object, a preferred embodiment of the system and method is described in detail below with reference to the following figures: Describe.

基板の上方に懸架されトッピング・ウエハで包まれたプルーフマスを示す本発明による面内加速度計の断面図である。1 is a cross-sectional view of an in-plane accelerometer according to the present invention showing a proof mass suspended above a substrate and wrapped with a topping wafer. プルーフマスが初期位置にある図1に示される面内加速度計の一部の詳細図である。FIG. 2 is a detailed view of a portion of the in-plane accelerometer shown in FIG. 1 with the proof mass in the initial position. プルーフマスが加速による変位の後に第2の位置にある図1に示される面内加速度計の追加の詳細図である。2 is an additional detail view of the in-plane accelerometer shown in FIG. 1 with the proof mass in a second position after displacement due to acceleration. FIG. 本発明の面内加速度計によって形成されたコンデンサのための等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit for a capacitor formed by an in-plane accelerometer of the present invention. 容量の変化の形式の加速度計からの入力を受け、入力をプルーフマスの加速度を表す電圧出力に変換する本発明のセンサー・インターフェース回路の機能ブロック図である。FIG. 4 is a functional block diagram of the sensor interface circuit of the present invention that receives input from an accelerometer in the form of a capacitance change and converts the input to a voltage output representing the proof mass acceleration. 乾式反応性(DRIE)処理によって形成されたプルーフマス上の電極突部を示す、本発明の面内加速度計の代替実施形態の断面図である。FIG. 6 is a cross-sectional view of an alternative embodiment of an in-plane accelerometer of the present invention showing electrode protrusions on a proof mass formed by a dry reactive (DRIE) process. 側部の感知間隔を形成するための固定指が可動指と交互に配置された状態の先行技術の面内加速度計の上面図である。FIG. 6 is a top view of a prior art in-plane accelerometer with stationary fingers alternately arranged with movable fingers to form side sensing intervals.

単一チップ上の面内加速度計と面外加速度計の両方を含む超頑強、かつ、高性能の3軸の慣性計測装置の切迫した必要性がある。この目的に適した斬新な面外MEMS加速度計が2007年10月26日に出願された「均衡の取れたガス減衰付き懸架加速度計」という名称の米国特許出願番号11/978,090に記載される。本明細書に参照として組み込まれる出願は、非対称なプルーフマス付き懸架容量型加速度計を記載する。懸架感知プレートは実質的に空洞の第1の側と中空でない第2の側を含む。この出願に記載される面外加速度計は感知構造としての75μm(ミクロン)のシリコン・オン・インシュレータ(SOI)層を用いる。そうした非対称な非中空/中空のプルーフマスセンサー構造は比較的厚いプルーフマス及びプルーフマスと面外懸架加速度計の基板との間の狭い垂直隙間のために表面マイクロマシニング揺動構造より高い感度を示す。   There is an urgent need for a super robust and high performance 3-axis inertial measurement device that includes both in-plane and out-of-plane accelerometers on a single chip. A novel out-of-plane MEMS accelerometer suitable for this purpose is described in US patent application Ser. No. 11 / 978,090, filed Oct. 26, 2007, entitled “Balanced Gas Damped Suspension Accelerometer”. The The application incorporated herein by reference describes a suspended capacitive accelerometer with an asymmetric proof mass. The suspension sensing plate includes a first side that is substantially hollow and a second side that is not hollow. The out-of-plane accelerometer described in this application uses a 75 μm (micron) silicon-on-insulator (SOI) layer as the sensing structure. Such an asymmetric non-hollow / hollow proof mass sensor structure is more sensitive than a surface micromachined oscillating structure because of the relatively thick proof mass and the narrow vertical gap between the proof mass and the substrate of the out-of-plane suspended accelerometer .

この開示は、面外懸架加速度計の製造に使用される技術に似た技術を用いて製造可能な面内加速度計を記述する。この製造技術の例は、また、本明細書に参照として組み込まれる2010年6月15日に発行された「高性能MEMS加速度計のためのウエハ処理フロー」の名称の米国特許番号7,736,931に開示される。   This disclosure describes an in-plane accelerometer that can be manufactured using techniques similar to those used to manufacture out-of-plane suspended accelerometers. An example of this manufacturing technique is also described in US Pat. No. 7,736, entitled “Wafer Processing Flow for High Performance MEMS Accelerometers” issued June 15, 2010, which is incorporated herein by reference. 931.

この開示は基板の上方に配置されたプルーフマスが基板の上面に平行な方向に動くのに伴い差動容量を測定する超頑強な、面内MEMS加速度計を記載する。高性能な、超頑強、かつ、低ノイズの、面内加速度計を得るために、プルーフマスのサイズを大きくし、感知間隔を減少し、減衰を減少することが必要である。しかし、厚いプルーフマスMEMSの処理において、面外加速度計に典型的な垂直隙間を小さくするより、図7の従来の直列加速度計に示されるように、面内加速度計に典型的な側部隙間を小さくする方がはるかにより困難である。   This disclosure describes a super robust, in-plane MEMS accelerometer that measures differential capacitance as a proof mass placed above the substrate moves in a direction parallel to the top surface of the substrate. In order to obtain a high performance, super robust and low noise in-plane accelerometer, it is necessary to increase the size of the proof mass, reduce the sensing interval, and reduce the attenuation. However, in processing thick proof mass MEMS, rather than reducing the vertical gap typical for out-of-plane accelerometers, the side gap typical for in-plane accelerometers, as shown in the conventional series accelerometer of FIG. Is much more difficult to reduce.

本発明は面外加速度計の製造に使用される技術と同じ技術を用いて製造可能なオフセット櫛指、面内加速度計である。面内加速度計は厚いプルーフマス及び1.0μmもの小ささに製造可能な垂直隙間を使用してよい。容量の測定に隙間の変化の変わりに領域の変化を使用するので、本開示に記載される面内加速度計は加速度に関する線形変化を有する。これは、また開ループ加速度計の設計に適している。何よりまず、製造処理フローは同じ製造技術を使用して単一チップ上の面内加速度計及び面外加速度計の製造を可能にする、既存の面外加速度計と同じである。   The present invention is an offset comb finger and an in-plane accelerometer that can be manufactured using the same technique as that used for manufacturing an out-of-plane accelerometer. In-plane accelerometers may use thick proof masses and vertical gaps that can be made as small as 1.0 μm. The in-plane accelerometer described in this disclosure has a linear change with respect to acceleration, since the change in area is used instead of the change in gap for measuring capacitance. This is also suitable for open loop accelerometer designs. First and foremost, the manufacturing process flow is the same as existing out-of-plane accelerometers that allow the production of in-plane and out-of-plane accelerometers on a single chip using the same manufacturing techniques.

面内加速度計の本実施形態を詳細に記載し、その実施例を図面に示す。限定ではなく説明および例示の目的のために、面内、オフセット、櫛指加速度計の断面図を図1に示し、全体として参照番号100で示す。面内加速度計100はプルーフマス102、基板104及びトッピング・ウエハ106を含む。トッピング・ウエハはプルーフマス102のための衝撃保護を設け、基板104に接着されたガラスフリットでも良い。トッピング・ウエハ106を基板104に接着するのに融着又は共晶接合が用いられても良い。加速度計100は又プルーフマス102周囲のガードリング105を含んでも良い。基板104は物体に堅牢に取り付けられ、プルーフマス102と基板104との間の容量の差動変化を測定することにより、物体の加速度を特定するための加速度計100を可能にする、バネ103または他の適切な手段によって基板104の上方にプルーフマス102は懸架される。1つの実施形態において、プルーフマス102は基板104に融着されるウエハに可動可能に付けられて良い。   This embodiment of the in-plane accelerometer is described in detail and an example is shown in the drawing. For purposes of explanation and illustration, but not limitation, a cross-sectional view of an in-plane, offset, finger comb accelerometer is shown in FIG. In-plane accelerometer 100 includes a proof mass 102, a substrate 104 and a topping wafer 106. The topping wafer may be a glass frit that provides impact protection for the proof mass 102 and is bonded to the substrate 104. Fusion or eutectic bonding may be used to adhere the topping wafer 106 to the substrate 104. The accelerometer 100 may also include a guard ring 105 around the proof mass 102. The substrate 104 is rigidly attached to the object and allows the accelerometer 100 to determine the acceleration of the object by measuring the differential change in capacitance between the proof mass 102 and the substrate 104, or a spring 103 or The proof mass 102 is suspended above the substrate 104 by other suitable means. In one embodiment, the proof mass 102 may be movably attached to a wafer that is fused to the substrate 104.

図2は、また、プルーフマス102及び基板104の詳細を示す、加速度計100の一部の詳細図である。基板104はシリコン・オン・インシュレータ(SOI)材を備えてよい。図示のように、基板104は基板104から上に延びる複数の第1の基板電極108及び、同じく基板104から上に延びる複数の第2の基板電極110を含む。第1の及び第2の基板電極108、110は基板104上の交互のパターンに配列される。換言すると、第1の基板電極108の各々に対して直接隣接する基板電極は第2の基板電極110の1つで、第2の基板電極110の各々に対して直接隣接する基板電極は第1の基板電極108の1つである。第1の及び第2の基板電極の各々は基板104の平面状の上面114から所定の距離上方に平面状の上面112を有する。第1の及び第2の基板電極108、110の平面状の上面112は基板104の平面状の上面114に平行に配置される。1つの実施形態において、基板電極108、110は約0.5μmから約4μmの範囲の高さを有する。   FIG. 2 is also a detailed view of a portion of accelerometer 100 showing details of proof mass 102 and substrate 104. The substrate 104 may comprise a silicon-on-insulator (SOI) material. As shown, the substrate 104 includes a plurality of first substrate electrodes 108 extending upward from the substrate 104 and a plurality of second substrate electrodes 110 also extending upward from the substrate 104. The first and second substrate electrodes 108, 110 are arranged in an alternating pattern on the substrate 104. In other words, the substrate electrode directly adjacent to each of the first substrate electrodes 108 is one of the second substrate electrodes 110 and the substrate electrode directly adjacent to each of the second substrate electrodes 110 is the first. This is one of the substrate electrodes 108. Each of the first and second substrate electrodes has a planar upper surface 112 that is a predetermined distance above the planar upper surface 114 of the substrate 104. The planar upper surfaces 112 of the first and second substrate electrodes 108, 110 are arranged in parallel to the planar upper surface 114 of the substrate 104. In one embodiment, the substrate electrodes 108, 110 have a height in the range of about 0.5 μm to about 4 μm.

図2は、また、プルーフマス102から基板104の方に下に延びる複数の電極突部116を示す。プルーフマス102は一体成形の材料から形成される。実施形態の一つでは、材料はシリコンのような半導体である。プルーフマス102は一体成形の材料から形成されるので、突部116はプルーフマス102から材料を除去することで形成される。突部はプルーフマス102の一体部分で別個には成形されない。各電極突部116は下の平面状の面118を有する。図1〜図3に示される典型的な実施形態において、電極突部116は下の平面状の面118に対して54.7°の角度で各電極突部116上に側壁を作る、水酸化カリウム(KOH)エッチング処理を用いて形成される。窪み120が、例えば2つの電極突部116の間に、各電極突部116に隣接する領域に形成される。窪み120は電極突部116の下の平面状の面118に平行な平面状の窪み面122を含む。   FIG. 2 also shows a plurality of electrode protrusions 116 that extend downward from the proof mass 102 toward the substrate 104. The proof mass 102 is formed from a monolithic material. In one embodiment, the material is a semiconductor such as silicon. Since the proof mass 102 is formed from a monolithic material, the protrusion 116 is formed by removing the material from the proof mass 102. The protrusions are not separately formed in an integral part of the proof mass 102. Each electrode protrusion 116 has a lower planar surface 118. In the exemplary embodiment shown in FIGS. 1-3, the electrode protrusions 116 make sidewalls on each electrode protrusion 116 at an angle of 54.7 ° to the lower planar surface 118. Formed using a potassium (KOH) etch process. A recess 120 is formed in a region adjacent to each electrode protrusion 116 between, for example, two electrode protrusions 116. The depression 120 includes a planar depression surface 122 that is parallel to the planar surface 118 under the electrode protrusion 116.

加速度計100のプルーフマス102はプルーフマス102と基板104との間に隙間124が形成されるように基板104の所定距離上方に位置する。電極突部116が下に延び第1の及び第2の基板電極108、110が基板の頂の上に位置するので、プルーフマス102と基板104との間の隙間124の高さはプルーフマス102の長さLに沿って変化する。   The proof mass 102 of the accelerometer 100 is positioned above the substrate 104 by a predetermined distance so that a gap 124 is formed between the proof mass 102 and the substrate 104. Since the electrode protrusion 116 extends downward and the first and second substrate electrodes 108, 110 are located on the top of the substrate, the height of the gap 124 between the proof mass 102 and the substrate 104 is set to be proof mass 102. Varies along the length L.

プルーフマス102は1つ以上のバネ103によって基板104の上方に可動自在に配置される。バネの設計は高感度と低いクロストークを得るために重要である。クロストークは1つの回路から別の回路への不要な容量結合である。面内加速度計100は単一軸に沿った加速度を測定する設計なので、クロストークを除去する設計である。   The proof mass 102 is movably disposed above the substrate 104 by one or more springs 103. Spring design is important to obtain high sensitivity and low crosstalk. Crosstalk is unwanted capacitive coupling from one circuit to another. Since the in-plane accelerometer 100 is designed to measure acceleration along a single axis, it is designed to eliminate crosstalk.

バネの設計の主要な矛盾は感度とクロストークの調和である。バネはx方向に弾力がありz方向及びy方向に堅くあるべきである。図2に示されるように、x方向はプルーフマス102の長さに添って延び、電極突部116の下の平面状の面に平行である。y方向はx方向に垂直で、z方向は図2に示すようにページの外に真っ直ぐ延びる。y方向とz方向で剛性を達成し、x方向で柔軟性を維持するために、またクロストークを防ぐために、バネはx方向に非常に薄く、y方向とz方向に比較的厚くあるべきである。1つの典型的な実施形態において、x方向のバネの幅はプルーフマス102のx方向の幅と同じである。換言すると、バネとプルーフマスは同じ厚さを有する。   The main contradiction in spring design is the harmony of sensitivity and crosstalk. The spring should be resilient in the x direction and stiff in the z and y directions. As shown in FIG. 2, the x direction extends along the length of the proof mass 102 and is parallel to the planar surface below the electrode protrusion 116. The y direction is perpendicular to the x direction, and the z direction extends straight out of the page as shown in FIG. In order to achieve rigidity in the y and z directions, maintain flexibility in the x direction, and to prevent crosstalk, the spring should be very thin in the x direction and relatively thick in the y and z directions. is there. In one exemplary embodiment, the width of the spring in the x direction is the same as the width of the proof mass 102 in the x direction. In other words, the spring and the proof mass have the same thickness.

バネの設計において、バネの共振周波数の1次モードは共振周波数の2次及び3次モードに近づけないようにしなければならない。バネの設計パラメータが下の表1に示される。   In spring design, the primary mode of the resonant frequency of the spring must be kept away from the secondary and tertiary modes of the resonant frequency. The spring design parameters are shown in Table 1 below.

Figure 2012141299
Figure 2012141299

表から見て取れるように、容量感度は1次モードの共振周波数に左右される。1次モードの周波数が低いほど容量感度は高い。クロストークは2次モードの共振周波数に左右される。2次モードの周波数が高いほど容量感度は低い。容量感度が固定だと、バネがより薄いとより低いクロストークの達成が可能である。バネの最小幅は使用される製造処理の能力、例えば、乾式反応性イオンエッチング(DRIE)処理のアスペクト比によって、制限される。   As can be seen from the table, the capacitance sensitivity depends on the resonance frequency of the primary mode. The lower the primary mode frequency, the higher the capacitive sensitivity. Crosstalk depends on the resonance frequency of the secondary mode. The higher the secondary mode frequency, the lower the capacitive sensitivity. With fixed capacitive sensitivity, lower crosstalk can be achieved with thinner springs. The minimum width of the spring is limited by the capacity of the manufacturing process used, for example, the aspect ratio of the dry reactive ion etching (DRIE) process.

基板104が付けられる物体が静止している、または均衡位置にあるとき、すなわち物体の速度が一定(加速なし)のとき、複数の電極突部の各々が1つの第1の基板電極108の一部及び隣接する第2の基板電極110の一部に重なるようにプルーフマス102はバネ130によって基板104の上方に適所に保持される。   When the object to which the substrate 104 is attached is stationary or in an equilibrium position, that is, when the velocity of the object is constant (no acceleration), each of the plurality of electrode protrusions is one of the first substrate electrodes 108. The proof mass 102 is held in place above the substrate 104 by a spring 130 so as to overlap the portion and a part of the adjacent second substrate electrode 110.

第1の基板電極108の各々は互いに電気的に接続され、第2の基板電極の各々は同様に互いに電気的に接続される。その結果、第1のコンデンサはプルーフマス102と複数の第1の基板電極108との間に形成され、第2のコンデンサはプルーフマス102と複数の第2の基板電極110との間に形成される。1つの典型的な実施形態において、基板電極108、110は、物体の加速度がゼロに等しいとき、すなわち、プルーフマス102が均衡位置にあるとき、第1のコンデンサの容量が第2のコンデンサの容量に等しいように、対称に配列される。基板電極の両グループが固定されているので、基板104が加速されプルーフマス102が、電極突部116と共に、x方向に、すなわち、第1の及び第2の基板電極の平面状の上面112に平行に動くとき、隙間124の領域及び各コンデンサの全容量は変化する。   Each of the first substrate electrodes 108 is electrically connected to each other, and each of the second substrate electrodes is similarly electrically connected to each other. As a result, the first capacitor is formed between the proof mass 102 and the plurality of first substrate electrodes 108, and the second capacitor is formed between the proof mass 102 and the plurality of second substrate electrodes 110. The In one exemplary embodiment, the substrate electrodes 108, 110 have a capacitance of the first capacitor when the acceleration of the object is equal to zero, i.e., when the proof mass 102 is in a balanced position. Are arranged symmetrically to be equal to Since both groups of substrate electrodes are fixed, the substrate 104 is accelerated and the proof mass 102 together with the electrode protrusions 116 in the x direction, ie, on the planar upper surfaces 112 of the first and second substrate electrodes. When moving in parallel, the area of the gap 124 and the total capacitance of each capacitor change.

図2に示すように、プルーフマス102上の電極突部116の形状及び位置のために、各第1の基板電極108は電極突部の下の平面状の面118と第1の基板電極108の平面状の上面112との間の第1の容量C1、及びプルーフマス102の窪みの平面状の面122と第1の電極108の平面状の上面112との間の第2の容量C1’を有する。同様に各第2の電極突部は電極突部の下の平面状の面118と第2の基板電極110の平面状の上面112との間の第1の容量C2、及びプルーフマス102の窪みの平面状の面122と第2の電極110の平面状の上面112との間の第2の容量C2’を有する。   As shown in FIG. 2, due to the shape and position of the electrode protrusions 116 on the proof mass 102, each first substrate electrode 108 has a planar surface 118 under the electrode protrusions and a first substrate electrode 108. A first capacitance C1 between the planar upper surface 112 and a second capacitance C1 ′ between the planar surface 122 of the depression of the proof mass 102 and the planar upper surface 112 of the first electrode 108. Have Similarly, each second electrode protrusion has a first capacitance C2 between the planar surface 118 below the electrode protrusion and the planar upper surface 112 of the second substrate electrode 110, and a dent of the proof mass 102. A second capacitance C2 ′ between the planar surface 122 of the second electrode 110 and the planar upper surface 112 of the second electrode 110.

加速力aがプルーフマス102に加えられると、プルーフマス102は図2に示される均衡位置から図3に示される第2の位置に動く。プルーフマス102が均衡位置から動くにつれて、プルーフマス102と基板電極108、110との間の隙間124内の領域変化のために容量C2は増え容量C1は減る。一方、プルーフマスが均衡位置から動くにつれ容量C2’は減り容量C1’は増える。換言すると、プルーフマス102が、図示のように、x方向に動くにつれ、プルーフマス102と第1の電極基板108の平面状の上面112との間の隙間124の領域が増え、プルーフマス102と第2の電極基板110の平面状の上面との間124の隙間の領域が減る。   When the acceleration force a is applied to the proof mass 102, the proof mass 102 moves from the equilibrium position shown in FIG. 2 to the second position shown in FIG. As the proof mass 102 moves from the equilibrium position, the capacitance C2 increases and the capacitance C1 decreases due to the region change in the gap 124 between the proof mass 102 and the substrate electrodes 108, 110. On the other hand, as the proof mass moves from the equilibrium position, the capacity C2 'decreases and the capacity C1' increases. In other words, as the proof mass 102 moves in the x direction as shown, the area of the gap 124 between the proof mass 102 and the planar upper surface 112 of the first electrode substrate 108 increases, The gap area between the planar upper surface of the second electrode substrate 110 is reduced.

プルーフマス102の長さLに沿って隙間124の高さが変わる。例えば、図2に示すように、隙間124は電極突部116の下の平面状の面118と基板電極108、110の平面状の上面112との間に第1の高さh1、及び窪みの平面状の面122と基板電極108、110の平面状の上面112との間に第2の高さh2を有してよい。   The height of the gap 124 changes along the length L of the proof mass 102. For example, as shown in FIG. 2, the gap 124 has a first height h1 between the planar surface 118 under the electrode protrusion 116 and the planar upper surface 112 of the substrate electrodes 108 and 110, and a depression. A second height h 2 may be provided between the planar surface 122 and the planar upper surfaces 112 of the substrate electrodes 108 and 110.

第2の高さh2は第1の高さh1よりはるかに大きい。例えば、h2はh1の10倍から20倍大きくてよい。容量は電極間の距離と共に減少する。h1とh2の間の高さの差の結果、容量C1はC1’よりはるかに大きく容量C2はC2’よりはるかに大きい。そのため容量の合計の差動変化はC1及びC2に影響される。   The second height h2 is much larger than the first height h1. For example, h2 may be 10 to 20 times larger than h1. The capacity decreases with the distance between the electrodes. As a result of the height difference between h1 and h2, capacitance C1 is much larger than C1 'and capacitance C2 is much larger than C2'. Therefore, the total differential change in capacitance is affected by C1 and C2.

加速度計100の前述の構造にはいくつかの利点がある。第1に、(50μmより大きい)厚いプルーフマスが用いられる場合、隙間124の小さい高さh1は先行技術の直列加速度計の側部隙間より簡単に既知の工程能力で得られる。加えて、上記のオフセット櫛指直列加速度計100内の高G負荷でのスティクション問題が無い。加速度計100は、また横櫛指構造より頑丈で、かつ、超頑強な装置での使用に適している。   The aforementioned structure of accelerometer 100 has several advantages. First, when a thick proof mass (greater than 50 μm) is used, the small height h1 of the gap 124 is more easily obtained with a known process capability than the side gap of prior art series accelerometers. In addition, there is no problem of stiction at a high G load in the offset comb finger accelerometer 100 described above. The accelerometer 100 is also suitable for use in a device that is more robust and super robust than the horizontal comb structure.

図4は面内加速度計100によって作られた回路への等価回路を示す。図示のように、回路は2つのコンデンサを含む。容量C1の第1のコンデンサはプルーフマス102と第1の基板電極108との間に形成される。容量C2の第2のコンデンサはプルーフマス102と第2の基板電極110との間に形成される。また、第1の基板電極108の各々は互いに電気的に接続される。同様に、第2の基板電極110の各々は互いに電気的に接続される。そのため図4に示すように、第1の及び第2のコンデンサは一連の小さいコンデンサからなる。容量C1はC1 = C1.1 + C1.2 +・・・+ C1.nのように、こうした個々のより小さいコンデンサの容量の合計に等しい。ここでnは基板104上の第1の基板電極108の数を表す整数である。同様に、容量C2はC2 = C2.1 + C2.2 +・・・+ C2.nのように、プルーフマス102と第2の電極110との間に形成される個々のより小さいコンデンサの容量の合計に等しい。ここでnは基板104上の第2の基板電極110の数を表す整数である。   FIG. 4 shows an equivalent circuit to the circuit created by the in-plane accelerometer 100. As shown, the circuit includes two capacitors. A first capacitor having a capacitance C1 is formed between the proof mass 102 and the first substrate electrode 108. A second capacitor having a capacitance C <b> 2 is formed between the proof mass 102 and the second substrate electrode 110. The first substrate electrodes 108 are electrically connected to each other. Similarly, each of the second substrate electrodes 110 is electrically connected to each other. Therefore, as shown in FIG. 4, the first and second capacitors consist of a series of small capacitors. Capacitance C1 is equal to the sum of the capacities of these individual smaller capacitors, such as C1 = C1.1 + C1.2 +. Here, n is an integer representing the number of first substrate electrodes 108 on the substrate 104. Similarly, the capacitance C2 is the capacitance of each smaller capacitor formed between the proof mass 102 and the second electrode 110, such that C2 = C2.1 + C2.2 + ... + C2.n. Is equal to the sum of Here, n is an integer representing the number of second substrate electrodes 110 on the substrate 104.

1つの典型的な実施形態において、C1及びC2の公称静電容量値はプルーフマス102と基板電極108、110が対称に配置されるとき、すなわち第1の基板電極108と電極突部116との間の重なりの領域を隣接する第2の基板電極110と同電極突部116との間の重なりに等しくするように、各電極突部116が第1の基板電極108と第2の基板電極110の上方に揃えられるとき、約7.5pF(ピコファラッド)で等しくなる。図2は基板電極108、110の上方に対称に配置された電極突部116付きのプルーフマス102を示す。   In one exemplary embodiment, the nominal capacitance values of C1 and C2 are the same when the proof mass 102 and the substrate electrodes 108, 110 are arranged symmetrically, ie between the first substrate electrode 108 and the electrode protrusion 116. Each electrode protrusion 116 has the first substrate electrode 108 and the second substrate electrode 110 so that the overlapping region is equal to the overlap between the adjacent second substrate electrode 110 and the electrode protrusion 116. When aligned above, equals about 7.5 pF (picofarad). FIG. 2 shows the proof mass 102 with electrode protrusions 116 arranged symmetrically above the substrate electrodes 108, 110.

C1及びC2のための容量値の差はプルーフマス102と基板104との間の溶着のずれによって生じることがある。現在の溶着ずれの公差は5μm、つまりC1及びC2の公称静電容量は2.75から13.75pFまでの違いが生じることがある。   The difference in capacitance values for C1 and C2 may be caused by a weld misalignment between the proof mass 102 and the substrate 104. The current welding deviation tolerance is 5 μm, which means that the nominal capacitance of C1 and C2 can vary from 2.75 to 13.75 pF.

加速度計100の全電気容量Csumは容量C1と容量C2の合計に等しい。それゆえ、C1とC2の共通モード容量変化は、取り消されるため、差動変化のみ増幅される。これは、共通容量変化につながるz軸クロストークが最小化されることを意味する。   The total electric capacity Csum of the accelerometer 100 is equal to the sum of the capacity C1 and the capacity C2. Therefore, since the common mode capacitance change of C1 and C2 is canceled, only the differential change is amplified. This means that z-axis crosstalk leading to common capacitance changes is minimized.

図5は、プルーフマス102と基板電極108、110との間の容量の測定された差を基板104の加速度、ひいては基板が堅固に付けられた物体の加速度を表す出力電圧に変換するための、面内加速度計100と連動してよい回路の例である。図5に示すように、回路はC1とC2を釣り合わせ、バイアス・オフセットを最小化するために使用されて良い内蔵コンデンサ配列を含んでよい。C1_trimは0.2〜10 pFのトリミング範囲を提供する。コンデンサ配列は19 fF +/− 20%ステップの9ビットのプログラム可能性を含む。全差動入力感知コンデンサは次の通りである: 。C1T = C1 + C1_trim。C2T=C2 + C2_trim。   FIG. 5 illustrates the conversion of the measured difference in capacitance between the proof mass 102 and the substrate electrodes 108, 110 into an output voltage representing the acceleration of the substrate 104 and thus the acceleration of the object to which the substrate is firmly attached. 3 is an example of a circuit that may be linked to the in-plane accelerometer 100. As shown in FIG. 5, the circuit may include a built-in capacitor array that may be used to balance C1 and C2 and minimize bias offset. C1_trim provides a trimming range of 0.2 to 10 pF. The capacitor array includes 9 bits of programmability with 19 fF +/− 20% steps. The fully differential input sensing capacitors are as follows: C1T = C1 + C1_trim. C2T = C2 + C2_trim.

1つの典型的な実施形態において、プルーフマスの1次固有共振周波数は1890 Hzで、x軸に沿った桁(ビーム)の最大曲がりは約2.1μmである。溶着ずれの公差が5μmなので、電極突部116と基板電極108、110との間の最小重なりは2.1μmより大きくなければならない。そのため、配置設計の重なりは7.1μmより大きくなければならない。   In one exemplary embodiment, the primary natural resonant frequency of the proof mass is 1890 Hz, and the maximum bending of the beam (beam) along the x-axis is about 2.1 μm. Since the tolerance of welding displacement is 5 μm, the minimum overlap between the electrode protrusion 116 and the substrate electrodes 108 and 110 must be greater than 2.1 μm. Therefore, the layout design overlap must be greater than 7.1 μm.

1つの典型的な実施形態において、各基板電極108、110の幅は15μmで、最高5μmのずれでも基板電極が電極突部116によって覆われることを確実にするために電極突部116の幅は20μmである。公差のずれを減らすことが可能であれば、基板電極の幅も減らすことが可能である。その場合、基板電極の数を増やすことが可能で、加速度計100の感度が増す。オーストラリアのEVグループから入手可能なEVG SmartView(登録商標)自動接着揃えシステムのような溶着揃え機械を用いて1μm未満のずれ公差の達成が可能である。   In one exemplary embodiment, the width of each substrate electrode 108, 110 is 15 μm, and the width of the electrode protrusions 116 is to ensure that the substrate electrodes are covered by the electrode protrusions 116 even with a deviation of up to 5 μm. 20 μm. If the tolerance shift can be reduced, the width of the substrate electrode can also be reduced. In that case, the number of substrate electrodes can be increased, and the sensitivity of the accelerometer 100 is increased. A deviation tolerance of less than 1 μm can be achieved using a weld alignment machine such as the EVG SmartView® automatic adhesive alignment system available from the Australian EV group.

本発明による面内加速度計の代替設計が図6に示され全体で参照番号600で示される。面内加速度計600は前記面内加速度計と同様に、プルーフマス602、基板604及びトッピング・ウエハ606を含む。図示のように、プルーフマス602は基板の上方に可動自在に配置される。面内加速度計100に関して記載された電極と同様に、基板604は互いに電気的に接続される複数の第1の基板電極608及び、同じく互いに電気的に接続される複数の第2の基板電極610を含む。   An alternative design of an in-plane accelerometer according to the present invention is shown in FIG. The in-plane accelerometer 600 includes a proof mass 602, a substrate 604, and a topping wafer 606, similar to the in-plane accelerometer. As shown, the proof mass 602 is movably disposed above the substrate. Similar to the electrodes described with respect to the in-plane accelerometer 100, the substrate 604 is a plurality of first substrate electrodes 608 that are electrically connected to each other and a plurality of second substrate electrodes 610 that are also electrically connected to each other. including.

図1に示される面内加速度計100と違って、面内加速度計600は水酸化カリウム(KOH)よりは乾式反応性イオンエッチング(DRIE)処理によって形成される複数の電極指616を有する。その結果、電極指616の側壁は54.7度の斜面であるよりは垂直である。電極指616の垂直側壁はC1及びC2の並列な浮遊容量の最小化を助ける。加えて、側突起620は高衝撃負荷中にバネが割れないようにするために加速度計600の構造に加えられても良い。   Unlike the in-plane accelerometer 100 shown in FIG. 1, the in-plane accelerometer 600 has a plurality of electrode fingers 616 formed by a dry reactive ion etching (DRIE) process rather than potassium hydroxide (KOH). As a result, the side walls of the electrode fingers 616 are more vertical than the 54.7 degree slope. The vertical sidewalls of the electrode fingers 616 help minimize the parallel stray capacitance of C1 and C2. In addition, side protrusions 620 may be added to the structure of accelerometer 600 to prevent the spring from cracking during high impact loads.

好ましい実施形態システムを参照して物体の面内加速度を特定するためのシステムおよび方法が示され説明されるが、添付の特許請求の範囲に記載される本発明およびその均等物の要旨を逸脱しない範囲でこの開示のシステムおよび方法に様々な変更を行っても良いことは当業者には容易に理解できるであろう。   A system and method for identifying in-plane acceleration of an object with reference to the preferred embodiment system is shown and described, but does not depart from the spirit of the invention and its equivalents as set forth in the appended claims Those skilled in the art will readily understand that various modifications may be made to the systems and methods of this disclosure in scope.

Claims (20)

物体に堅固に付けられた基板と;
前記基板から上に延び、前記基板から上に延びる複数の第2の基板電極と交互になる、各基板電極が平面状の上面を有し、複数の第1の基板電極が互いに電気的に接続され、前記複数の第2の基板電極が互いに電気的に接続される、前記複数の第1の基板電極と;
一体成形の材料から形成される、前記基板の所定距離上方に配置され、プルーフマスと前記基板との間に様々な高さの隙間を形成するために前記プルーフマスから下方に延びる複数の電極突部を含む、第1のコンデンサが前記プルーフマスと前記複数の第1の基板電極との間に形成され、第2のコンデンサが前記プルーフマスと前記複数の第2の基板電極との間に形成される前記プルーフマスとを備え;
前記プルーフマスは前記プルーフマスが均衡位置にあるとき、前記複数の電極突部の各々が1つの第1の基板電極の一部及び隣接する第2の基板電極の一部の上方に配置される状態で、前記物体の速度が一定のとき、均衡位置に保持される構成で;かつ、
前記プルーフマスは前記物体が加速しているときに前記複数の基板電極の各々の前記上面に平行な方向に動く構成で、各前記基板電極の前記上面と前記プルーフマスとの間の前記隙間の領域を変化させる、面内加速度計。
A substrate firmly attached to the object;
Each substrate electrode has a planar upper surface extending from the substrate and alternating with a plurality of second substrate electrodes extending upward from the substrate, and the plurality of first substrate electrodes are electrically connected to each other The plurality of first substrate electrodes, wherein the plurality of second substrate electrodes are electrically connected to each other;
A plurality of electrode protrusions formed from a monolithic material and disposed above a predetermined distance of the substrate and extending downward from the proof mass to form gaps of various heights between the proof mass and the substrate. A first capacitor is formed between the proof mass and the plurality of first substrate electrodes, and a second capacitor is formed between the proof mass and the plurality of second substrate electrodes. Said proof mass to be provided;
In the proof mass, when the proof mass is in an equilibrium position, each of the plurality of electrode protrusions is disposed above a part of one first substrate electrode and a part of an adjacent second substrate electrode. In a state where the object is held in a balanced position when the velocity of the object is constant;
The proof mass is configured to move in a direction parallel to the top surface of each of the plurality of substrate electrodes when the object is accelerating, and the gap between the top surface of each substrate electrode and the proof mass. An in-plane accelerometer that changes the area.
前記プルーフマスが、一体成形のシリコンから形成される請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, wherein the proof mass is formed from monolithic silicon. 前記プルーフマスが前記均衡位置にあるとき、前記第1のコンデンサの容量が前記第2のコンデンサの容量に等しい請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, wherein a capacity of the first capacitor is equal to a capacity of the second capacitor when the proof mass is in the equilibrium position. 前記複数の電極突部が、各前記指の側壁が垂直になるように、深堀反応性イオンエッチング(DRIE)処理を用いて形成された複数の指を備える請求項1に記載の面内加速度計。   2. The in-plane accelerometer according to claim 1, wherein the plurality of electrode protrusions include a plurality of fingers formed using a deep reactive ion etching (DRIE) process such that a side wall of each finger is vertical. . 前記複数の電極突部が、前記突部の前記側壁が54.7度の角度を有するように水酸化カリウム(KOH)を用いて前記材料からエッチングされる請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, wherein the plurality of electrode protrusions are etched from the material using potassium hydroxide (KOH) such that the sidewalls of the protrusions have an angle of 54.7 degrees. . 前記プルーフマスが、隣接する電極突部の各対の間に形成された第1の平面状の面と、各前記電極突部に形成された第2の平面状の面とを含み、前記第1の及び第2の平面状の面の両方が各前記基板電極の前記平面状の上面に平行である請求項1に記載の面内加速度計。 The proof mass includes a first planar surface formed between each pair of adjacent electrode protrusions and a second planar surface formed on each of the electrode protrusions. The in-plane accelerometer according to claim 1, wherein both the first and second planar surfaces are parallel to the planar upper surface of each substrate electrode. 各前記第1の平面状の面と前記基板電極の1つの対応する平面状の上面との間の第1の距離が、各前記第2の平面状の面と前記基板電極の1つの同じ平面状の上面との間の第2の距離より大きい請求項6に記載の面内加速度計。   A first distance between each first planar surface and one corresponding planar upper surface of the substrate electrode is such that each second planar surface and one same plane of the substrate electrode. The in-plane accelerometer according to claim 6, wherein the in-plane accelerometer is greater than a second distance between the upper surface. 前記第1の距離が、前記第2の距離より少なくとも10倍大きい請求項7に記載の面内加速度計。   The in-plane accelerometer according to claim 7, wherein the first distance is at least 10 times greater than the second distance. 前記プルーフマスが、前記基板電極の前記上の平面状の面に平行な方向のみの運動を可能にするバネによって前記均衡位置に保たれる請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, wherein the proof mass is maintained in the balanced position by a spring that allows movement only in a direction parallel to the upper planar surface of the substrate electrode. 前記基板電極の前記平面状の上面に垂直な方向の前記バネのクロストークが、3%未満の請求項9に記載の面内加速度計。   The in-plane accelerometer according to claim 9, wherein the crosstalk of the spring in a direction perpendicular to the planar upper surface of the substrate electrode is less than 3%. 前記プルーフマスが、75μmの厚さを有する請求項1に記載の面内加速度計。 The in-plane accelerometer according to claim 1, wherein the proof mass has a thickness of 75 μm. 各基板電極の高さが、2μmから4μmの間である請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, wherein the height of each substrate electrode is between 2 μm and 4 μm. 前記プルーフマスの周囲のガードリングを、さらに備える請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, further comprising a guard ring around the proof mass. 前記プルーフマスに衝撃保護を設ける構成のトッピング・ウエハをさらに備える請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, further comprising a topping wafer configured to provide impact protection for the proof mass. 前記プルーフマスが前記基板に溶着されたウエハに可動自在に付けられた請求項1に記載の面内加速度計。   The in-plane accelerometer according to claim 1, wherein the proof mass is movably attached to a wafer welded to the substrate. 物体への基板の堅固な取り付けと;
前記プルーフマスと前記基板との間に異なる高さの隙間を形成するための前記基板の所定距離上方の位置へのプルーフマスの固定と;
前記第1の基板電極及び第2の基板電極が前記基板上に交互に配置される、前記プルーフマスと複数の第1の基板電極との間の第1の差動コンデンサの形成及び、前記プルーフマスと複数の第2の基板電極との間の第2の差動コンデンサの形成と;
加速力を前記物体に加えることによる前記基板電極の平面状の上面に平行な方向の均衡位置からの前記プルーフマスの移動と;
前記第1の差動コンデンサ内の容量の第1の変化の測定と;
前記第2の差動コンデンサ内の容量の第2の変化の測定と;
前記測定された容量の変化を前記物体の加速度を表す電圧へ変換するための回路を使用する工程を備える物体の面内加速度の測定の方法。
Rigid attachment of the substrate to the object;
Fixing the proof mass to a position a predetermined distance above the substrate to form gaps of different heights between the proof mass and the substrate;
Forming a first differential capacitor between the proof mass and a plurality of first substrate electrodes, wherein the first substrate electrode and the second substrate electrode are alternately disposed on the substrate; Forming a second differential capacitor between the mass and a plurality of second substrate electrodes;
Movement of the proof mass from an equilibrium position in a direction parallel to the planar upper surface of the substrate electrode by applying an acceleration force to the object;
Measuring a first change in capacitance in the first differential capacitor;
Measuring a second change in capacitance in the second differential capacitor;
A method of measuring in-plane acceleration of an object comprising using a circuit for converting the measured change in capacitance into a voltage representative of the acceleration of the object.
容量の前記第1の変化と容量の前記第2の変化との前記回路における合算を備える請求項16に記載の方法。   The method of claim 16, comprising a summation in the circuit of the first change in capacitance and the second change in capacitance. 差動変化を増幅するための並びに前記第1の及び第2のコンデンサで測定された共通の容量変化を最小化するための前記回路を使用する請求項16に記載の方法。   17. The method of claim 16, wherein the circuit is used to amplify a differential change and to minimize a common capacitance change measured with the first and second capacitors. 第1の差動コンデンサ及び第2の差動コンデンサの前記形成工程が、隣接する第1の及び第2の基板電極の各対の間の前記プルーフマスの電極突部の心出しを備える請求項16に記載の方法。   The forming step of the first differential capacitor and the second differential capacitor comprises centering an electrode protrusion of the proof mass between each pair of adjacent first and second substrate electrodes. 16. The method according to 16. 物体への基板の堅固な取り付けと;
プルーフマスが1つの方向にのみ動くように制約される、前記プルーフマスの前記基板の上方への懸架と;
前記プルーフマスが複数の電極突部を含み、各電極突部が2つの基板電極の上で心出しされ、前記プルーフマスが前記基板電極の上の平面状の面に平行な方向に動くときに各基板電極の上の平面状の面と前記プルーフマスとの間の領域が変化するような、前記プルーフマスと前記基板との間の差動コンデンサの形成と;
前記物体に加速力を加えることによる前記プルーフマスの移動と;
各基板電極と前記プルーフマスとの間の容量の変化の測定と;
前記測定された容量の変化を前記物体の加速度を表す電圧へ変換するための回路の使用と;
各基板電極の上の平面状の面と前記プルーフマスとの間の領域の前記変化に比例する、前記回路からの電圧を出力する工程を備える、物体の面内加速度を特定するための方法。
Rigid attachment of the substrate to the object;
Suspension of the proof mass above the substrate, the proof mass being constrained to move in only one direction;
When the proof mass includes a plurality of electrode protrusions, each electrode protrusion being centered on two substrate electrodes, and the proof mass moves in a direction parallel to a planar surface on the substrate electrode Forming a differential capacitor between the proof mass and the substrate such that the area between the planar surface on each substrate electrode and the proof mass changes;
Movement of the proof mass by applying acceleration force to the object;
Measuring the change in capacitance between each substrate electrode and the proof mass;
Using a circuit to convert the measured change in capacitance into a voltage representative of the acceleration of the object;
A method for determining in-plane acceleration of an object comprising outputting a voltage from the circuit that is proportional to the change in the area between a planar surface on each substrate electrode and the proof mass.
JP2011272954A 2010-12-30 2011-12-14 In-plane capacitance type mems accelerometer Pending JP2012141299A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/982,720 US8656778B2 (en) 2010-12-30 2010-12-30 In-plane capacitive mems accelerometer
US12/982,720 2010-12-30

Publications (1)

Publication Number Publication Date
JP2012141299A true JP2012141299A (en) 2012-07-26

Family

ID=45023739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272954A Pending JP2012141299A (en) 2010-12-30 2011-12-14 In-plane capacitance type mems accelerometer

Country Status (3)

Country Link
US (1) US8656778B2 (en)
EP (1) EP2472269A3 (en)
JP (1) JP2012141299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045597A (en) * 2013-08-29 2015-03-12 株式会社デンソー Semiconductor device and semiconductor device manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940586B2 (en) * 2011-11-23 2015-01-27 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanism for MEMS bump side wall angle improvement
GB201200439D0 (en) * 2012-01-10 2012-02-22 Sparrow Roger L D Lamp
US9027403B2 (en) * 2012-04-04 2015-05-12 Analog Devices, Inc. Wide G range accelerometer
US9547019B2 (en) * 2013-01-09 2017-01-17 Farrokh Mohamadi MEMS tunneling micro seismic sensor
CN106289211B (en) * 2013-01-31 2019-05-21 惠普发展公司,有限责任合伙企业 Sensor with particulate barrier
WO2014120206A1 (en) * 2013-01-31 2014-08-07 Hewlett-Packard Development Company, L.P. Sensor having particle barrier
WO2014145770A2 (en) * 2013-03-15 2014-09-18 Cirque Corporation Flying sense electrodes for creating a secure cage for integrated circuits and pathways
JP5900439B2 (en) 2013-05-22 2016-04-06 株式会社デンソー Capacitive physical quantity sensor
JP5967018B2 (en) 2013-05-31 2016-08-10 株式会社デンソー Capacitive physical quantity sensor
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor
TWI681192B (en) * 2018-12-12 2020-01-01 蘇州明皜傳感科技有限公司 Three-axis accelerometer

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609968A (en) 1984-05-18 1986-09-02 Becton, Dickinson And Company Glass inlays for use in bonding semiconductor wafers
US4574327A (en) 1984-05-18 1986-03-04 Becton, Dickinson And Company Capacitive transducer
US4736629A (en) 1985-12-20 1988-04-12 Silicon Designs, Inc. Micro-miniature accelerometer
US4825335A (en) 1988-03-14 1989-04-25 Endevco Corporation Differential capacitive transducer and method of making
US5092174A (en) * 1989-10-19 1992-03-03 Texas Instruments Incorporated Capacitance accelerometer
US4999735A (en) 1990-03-08 1991-03-12 Allied-Signal Inc. Differential capacitive transducer and method of making
US5205171A (en) 1991-01-11 1993-04-27 Northrop Corporation Miniature silicon accelerometer and method
EP0590658A1 (en) 1992-10-02 1994-04-06 CSEM, Centre Suisse d'Electronique et de Microtechnique S.A. Force measuring apparatus
US5404749A (en) 1993-04-07 1995-04-11 Ford Motor Company Boron doped silicon accelerometer sense element
US5777226A (en) 1994-03-28 1998-07-07 I/O Sensors, Inc. Sensor structure with L-shaped spring legs
US5992233A (en) 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
US5900550A (en) 1997-06-16 1999-05-04 Ford Motor Company Capacitive acceleration sensor
JPH1194873A (en) 1997-09-18 1999-04-09 Mitsubishi Electric Corp Acceleration sensor and its manufacture
JP3399336B2 (en) 1997-12-22 2003-04-21 株式会社豊田中央研究所 Detector
US6065341A (en) * 1998-02-18 2000-05-23 Denso Corporation Semiconductor physical quantity sensor with stopper portion
US6373265B1 (en) 1999-02-02 2002-04-16 Nitta Corporation Electrostatic capacitive touch sensor
US6871544B1 (en) 1999-03-17 2005-03-29 Input/Output, Inc. Sensor design and process
US6531332B1 (en) 2001-01-10 2003-03-11 Parvenu, Inc. Surface micromachining using a thick release process
US6791931B2 (en) 2001-03-16 2004-09-14 Hewlett-Packard Development Company, L.P. Accelerometer using field emitter technology
US6504385B2 (en) 2001-05-31 2003-01-07 Hewlett-Pakcard Company Three-axis motion sensor
US6509620B2 (en) 2001-05-31 2003-01-21 Hewlett-Packard Company Flexure coupling block for motion sensor
WO2003038448A1 (en) 2001-10-26 2003-05-08 Potter Michael D An accelerometer and methods thereof
US7142500B2 (en) 2002-01-11 2006-11-28 Hewlett-Packard Development Company, L.P. Sensor with varying capacitance based on relative position between objects
DE10231730B4 (en) * 2002-07-13 2012-08-30 Robert Bosch Gmbh Microstructure device
US6841992B2 (en) 2003-02-18 2005-01-11 Honeywell International, Inc. MEMS enhanced capacitive pick-off and electrostatic rebalance electrode placement
US6912902B2 (en) 2003-03-26 2005-07-05 Honeywell International Inc. Bending beam accelerometer with differential capacitive pickoff
US6930368B2 (en) 2003-07-31 2005-08-16 Hewlett-Packard Development Company, L.P. MEMS having a three-wafer structure
US7168317B2 (en) * 2003-11-04 2007-01-30 Chung-Shan Institute Of Science And Technology Planar 3-axis inertial measurement unit
US6935175B2 (en) 2003-11-20 2005-08-30 Honeywell International, Inc. Capacitive pick-off and electrostatic rebalance accelerometer having equalized gas damping
US6981416B2 (en) 2003-11-21 2006-01-03 Chung-Shan Institute Of Science And Technology Multi-axis solid state accelerometer
US7013730B2 (en) 2003-12-15 2006-03-21 Honeywell International, Inc. Internally shock caged serpentine flexure for micro-machined accelerometer
US7469588B2 (en) 2006-05-16 2008-12-30 Honeywell International Inc. MEMS vertical comb drive with improved vibration performance
US8079262B2 (en) 2007-10-26 2011-12-20 Rosemount Aerospace Inc. Pendulous accelerometer with balanced gas damping
DE102009026476A1 (en) 2009-05-26 2010-12-02 Robert Bosch Gmbh Micromechanical structure
US7736931B1 (en) 2009-07-20 2010-06-15 Rosemount Aerospace Inc. Wafer process flow for a high performance MEMS accelerometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045597A (en) * 2013-08-29 2015-03-12 株式会社デンソー Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
US8656778B2 (en) 2014-02-25
EP2472269A3 (en) 2012-08-15
US20120167685A1 (en) 2012-07-05
EP2472269A2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP2012141299A (en) In-plane capacitance type mems accelerometer
US6938484B2 (en) Micromachined capacitive lateral accelerometer device and monolithic, three-axis accelerometer having same
US11015933B2 (en) Micromechanical detection structure for a MEMS sensor device, in particular a MEMS gyroscope, with improved driving features
US20110030473A1 (en) Micromachined inertial sensor devices
US9366687B2 (en) Angular velocity detecting device
CN101957200B (en) Monocrystalline silicon MEMS gyro decoupled by symmetrically folded beam springs
US10352960B1 (en) Free mass MEMS accelerometer
US7267005B1 (en) SOI-MEMS gyroscope having three-fold symmetry
CN103901227B (en) Silicon micro-resonance type accelerometer
JPH11337345A (en) Vibratory microgyrometer
US20060137450A1 (en) Pendulous in-plane mems accelerometer device
CN111551161A (en) MEMS vibrating gyroscope structure and manufacturing method thereof
JP2006226770A (en) Mechanical quantity sensor
CN109579811B (en) Butterfly wing type micro gyroscope adopting polygonal vibrating beam and preparation method thereof
Weng et al. Structural design and analysis of micromachined ring-type vibrating sensor of both yaw rate and linear acceleration
Fujiyoshi et al. An SOI 3-axis accelerometer with a zigzag-shaped Z-electrode for differential detection
JP5816320B2 (en) MEMS element
Rödjegård et al. A monolithic three-axis SOI-accelerometer with uniform sensitivity
CN111289772B (en) Single-mass-block three-axis MEMS inertial accelerometer with low depth-to-width ratio and preparation method thereof
JP5816707B2 (en) Angular velocity detector
JP2012242240A (en) Gyro sensor, electronic apparatus
KR100506074B1 (en) Decoupled Z-axis gyroscope and fabricating method thereof
JP5481545B2 (en) Angular velocity detector
Je et al. Z-axis capacitive MEMS accelerometer with moving ground masses
JP2006064538A (en) Gyroscope sensor