JP2012139657A - Solvent-recovering system - Google Patents

Solvent-recovering system Download PDF

Info

Publication number
JP2012139657A
JP2012139657A JP2011000437A JP2011000437A JP2012139657A JP 2012139657 A JP2012139657 A JP 2012139657A JP 2011000437 A JP2011000437 A JP 2011000437A JP 2011000437 A JP2011000437 A JP 2011000437A JP 2012139657 A JP2012139657 A JP 2012139657A
Authority
JP
Japan
Prior art keywords
solvent
solvent recovery
exhaust
gas
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011000437A
Other languages
Japanese (ja)
Other versions
JP5628051B2 (en
Inventor
Koichi Nishimura
浩一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2011000437A priority Critical patent/JP5628051B2/en
Publication of JP2012139657A publication Critical patent/JP2012139657A/en
Application granted granted Critical
Publication of JP5628051B2 publication Critical patent/JP5628051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solvent-recovering system which reduces a cost required for recovering the vapor of a solvent in a gas to be fed again to a dryer.SOLUTION: The solvent-recovering system 1 feeds exhaust, which is emitted from the drying chambers 17A-G of a dryer 16, to the drying chambers 17A-G. In addition, the system includes: a first solvent-recovering part 2 which recovers the vapor of a solvent contained in the exhaust emitted from the drying chambers 17A-G; a second solvent-recovering part 3 which recovers the vapor of the solvent, which remains in the exhaust which passes through the first solvent-recovering part 2, and then feeds the vapor concerned, as a drying gas, to the drying chambers 17A-G; and a gas-feeding route 19H which feeds the exhaust, as a preliminary drying gas, to the drying chambers 17A-G, just after the exhaust passes through the first solvent-recovering part 2, so that the exhaust may contact an object to be coated, just after the exhaust passes through the first solvent-recovering part 2, before the drying gas fed by the second solvent-recovering part 3 contacts the object concerned, the vapor of the solvent remaining more in the exhaust just after the exhaust passes through the first solvent-recovering part 2 than in the drying gas fed to the drying chambers 17A-G by the second solvent-recovering part 3.

Description

本発明は、溶剤回収システムに関する。   The present invention relates to a solvent recovery system.

化学的な処理を伴う生産設備等においては、排気される気体に溶剤蒸気が含まれている。このような溶剤蒸気を回収する技術として、例えば、溶剤蒸気を凝縮させた後に吸着材に吸着させるものが提案されている(特許文献1を参照)。   In production facilities involving chemical treatment, solvent vapor is included in the exhausted gas. As a technique for recovering such solvent vapor, for example, a technique in which the solvent vapor is condensed and adsorbed on an adsorbent has been proposed (see Patent Document 1).

特開2010−69435号公報JP 2010-69435 A 特開平5−15725号公報Japanese Patent Laid-Open No. 5-15725 特開2008−180459号公報JP 2008-180459 A 特開2009−66578号公報JP 2009-66578 A 特開2005−103378号公報JP-A-2005-103378 特開2005−152762号公報JP 2005-152762 A 特開2009−162404号公報JP 2009-162404 A

例えば、NMP溶剤を塗布するリチウムイオン電池用の電極のように、各種の溶剤を塗布した被塗布物を乾燥させる処理を施す場合、塗布した溶剤の効果的な乾燥と、乾燥処理に要するコストの削減との両立を図るために、被塗布物を乾燥させるドライヤ(乾燥炉)の排気から溶剤蒸気を回収処理して乾燥気とし、これを再びドライヤへ給気することが行なわれる。このとき、ドライヤに給気する乾燥気は、処理対象の製品に要求される仕様にもよるが、塗布されている溶剤が確実に乾燥するように、比較的高い乾燥度が要求される。   For example, when a treatment for drying an object to be coated with various solvents, such as an electrode for a lithium ion battery to which an NMP solvent is applied, is effective in drying the applied solvent and the cost required for the drying process. In order to achieve a balance with the reduction, solvent vapor is recovered from the exhaust of a dryer (drying furnace) for drying an object to be dried to be dried and supplied to the dryer again. At this time, the dry air supplied to the dryer is required to have a relatively high dryness so that the applied solvent is surely dried, although it depends on the specifications required for the product to be processed.

しかし、ドライヤが大きいと、ドライヤへ再び給気する気体の乾燥度を保つために要するコストも多大である。本発明は、このような問題に鑑みてなされたものであり、ドライヤへ再び給気する気体の溶剤蒸気の回収に要するコストを抑制する溶剤回収システムを提供することを課題とする。   However, if the dryer is large, the cost required to maintain the dryness of the gas supplied to the dryer again is great. This invention is made | formed in view of such a problem, and makes it a subject to provide the solvent collection | recovery system which suppresses the cost required in collection | recovery of the gaseous solvent vapor | steam supplied again to a dryer.

上記課題を解決するため、本発明は、ドライヤの排気中の溶剤蒸気を段階的に回収処理する少なくとも2以上の溶剤回収部を備え、残留する溶剤蒸気が比較的多い第1段の溶剤回収部の排気が、残留する溶剤蒸気が比較的少ない第2段の溶剤回収部の排気よりも前に被塗布物に当たるようにした。   In order to solve the above-mentioned problems, the present invention includes at least two or more solvent recovery sections that recover and process solvent vapor in the exhaust of a dryer in stages, and a first stage solvent recovery section that has a relatively large amount of residual solvent vapor. Was exhausted before the exhaust of the second-stage solvent recovery part with relatively little residual solvent vapor.

詳細には、溶剤を塗布した被塗布物を乾燥させるドライヤの乾燥室へ、該乾燥室内で気化した溶剤蒸気を回収処理した該乾燥室の排気を給気する溶剤回収システムであって、前記乾燥室の排気に含まれる前記溶剤蒸気を回収する第一の溶剤回収部と、前記第一の溶剤回収部を通過した前記排気に残る前記溶剤蒸気を回収して前記乾燥室へ乾燥気として給気する第二の溶剤回収部と、前記第二の溶剤回収部が前記乾燥室へ給気する前記乾燥気よりも溶剤蒸気が多く残留する、前記第一の溶剤回収部を通過した直後の前記排気が、該第二の溶剤回収部が給気する前記乾燥気よりも前に前記被塗布物に当たるように、該第一の溶剤回収部を通過した直後の前記排気を予乾燥気として該乾燥室へ給気する給気経路と、を
備える。
Specifically, the solvent recovery system supplies air to the drying chamber of a dryer that dries an object to which the solvent is applied and recovers the vapor of the solvent vaporized in the drying chamber. A first solvent recovery section for recovering the solvent vapor contained in the exhaust of the chamber; and the solvent vapor remaining in the exhaust gas that has passed through the first solvent recovery section is recovered and supplied to the drying chamber as dry air And the exhaust immediately after passing through the first solvent recovery section, wherein more solvent vapor remains than the dry air supplied to the drying chamber by the second solvent recovery section. However, the exhaust immediately after passing through the first solvent recovery unit is used as pre-dry air so that the second solvent recovery unit hits the object to be coated before the dry air supplied by the second solvent recovery unit. An air supply path for supplying air to

被塗布物に当てる乾燥気の乾燥度は極力高い方が乾燥の促進という面からは好ましいが、乾燥処理に要するコストの削減という観点に鑑みれば、溶剤を回収する機器が最も効率的な動作点で運転されることが好ましい。換言すると、ドライヤの乾燥室内にある何れの被塗布物もが略均等な乾燥速度で乾燥していくことが好ましい。   Although it is preferable from the aspect of promoting drying that the dryness of the dry air applied to the object to be coated is as high as possible, from the viewpoint of reducing the cost required for the drying treatment, the equipment that recovers the solvent is the most efficient operating point. It is preferable to be operated at. In other words, it is preferable that any object to be coated in the drying chamber of the dryer is dried at a substantially uniform drying rate.

そこで、上記溶剤回収システムでは、乾燥開始直後の被塗布物を乾燥させる乾燥気は、乾燥終了直前の被塗布物を乾燥させる乾燥気よりも乾燥度が高くても差し支えないことに着目し、少なくとも2段階構成にした溶剤回収部の第一段目にあたる第一の溶剤回収部の比較的高濃度の排気をドライヤへ送り、主に乾燥開始直後の被塗布物の乾燥気に用いることで、第二段目以降にあたる第二の溶剤回収部の容量を小さくしている。これにより、溶剤回収に要する設備のイニシャルコストやランニングコストが抑制でき、溶剤回収に係るコストを削減できる。   Therefore, in the solvent recovery system, paying attention to the fact that the drying air for drying the coating immediately after the start of drying may have a higher degree of drying than the drying air for drying the coating immediately before the end of drying, By sending a relatively high concentration exhaust gas from the first solvent recovery section, which is the first stage of the solvent recovery section having a two-stage configuration, to the dryer, and mainly using it as the dry air of the coating object immediately after the start of drying, The capacity of the second solvent recovery section corresponding to the second and subsequent stages is reduced. Thereby, the initial cost and running cost of the equipment required for solvent recovery can be suppressed, and the cost for solvent recovery can be reduced.

また、前記被塗布物は、前記ドライヤの乾燥室内を流れるように通過しており、前記給気経路は、前記乾燥室内のうち、前記第二の溶剤回収部からの給気が当たる被塗布物よりも上流側の被塗布物に当たるように、前記予乾燥気を該乾燥室へ給気するものであってもよい。ドライヤの乾燥室内を被塗布物が連続的に通過することで乾燥処理が施される場合、上流側と下流側とで被塗布物の乾燥度合いが異なる。このように、乾燥度合いが異なる被塗布物が並存するドライヤの乾燥室に上記溶剤回収システムを適用すれば、溶剤回収部を多段階としたことによるコスト削減効果、すなわち、第二段目以降にあたる第二の溶剤回収部の容量を小さくできることによるコスト削減効果がより効果的に発揮される。   In addition, the object to be coated passes so as to flow in the drying chamber of the dryer, and the air supply path is a material to be coated which is supplied with air from the second solvent recovery unit in the drying chamber. The pre-drying air may be supplied to the drying chamber so as to hit an object to be coated on the upstream side. In the case where the drying process is performed by continuously passing the coating object through the drying chamber of the dryer, the degree of drying of the coating object differs between the upstream side and the downstream side. In this way, if the solvent recovery system is applied to the drying chamber of a dryer in which objects to be coated with different degrees of drying coexist, the cost reduction effect due to the multistage of the solvent recovery unit, that is, the second and subsequent stages. The cost reduction effect due to the fact that the capacity of the second solvent recovery unit can be reduced is more effectively exhibited.

また、前記第一の溶剤回収部は、冷凍設備において冷却された冷却媒体が管内を流れるコイルに前記排気を接触させて、該排気に含まれる前記溶剤蒸気を凝縮回収し、前記第二の溶剤回収部は、前記第一の溶剤回収部を通過した前記排気を吸着材に接触させて、該排気に残る前記溶剤蒸気を吸着回収して前記乾燥室へ乾燥気として給気するものであってもよい。溶剤蒸気の回収に際しては、凝縮回収法よりも吸着回収法の方がガス中の溶剤蒸気の濃度をより低くすることができる。よって、第一の溶剤回収部を凝縮回収法によるものとし、第二の溶剤回収部を吸着回収法によるものとすれば、各溶剤回収部の排気の溶剤濃度をより段階的に差別化することができ、溶剤回収部を多段階としたことによるコスト削減効果、すなわち、第二段目以降にあたる第二の溶剤回収部の容量を小さくできることによるコスト削減効果がより効果的に発揮される。   In addition, the first solvent recovery unit brings the exhaust into contact with a coil in which a cooling medium cooled in a refrigeration facility flows in a pipe, and condenses and recovers the solvent vapor contained in the exhaust, and the second solvent The recovery unit is configured to bring the exhaust gas that has passed through the first solvent recovery unit into contact with an adsorbent, so that the solvent vapor remaining in the exhaust gas is adsorbed and recovered and supplied to the drying chamber as dry air. Also good. When recovering the solvent vapor, the adsorption recovery method can lower the concentration of the solvent vapor in the gas than the condensation recovery method. Therefore, if the first solvent recovery unit is based on the condensation recovery method and the second solvent recovery unit is based on the adsorption recovery method, the solvent concentration in the exhaust gas of each solvent recovery unit can be differentiated in stages. Thus, the cost reduction effect due to the multi-stage solvent recovery unit, that is, the cost reduction effect due to the capacity of the second solvent recovery unit corresponding to the second and subsequent stages being more effectively exhibited.

上記溶剤回収システムであれば、ドライヤへ再び給気する気体中の溶剤蒸気の回収に要するコストを抑制することが可能である。   If it is the said solvent collection | recovery system, it is possible to suppress the cost required for collection | recovery of the solvent vapor | steam in the gas supplied again to a dryer.

溶剤回収システムの構成図である。It is a block diagram of a solvent collection | recovery system. ドライヤの構成図である。It is a block diagram of a dryer. NMP飽和濃度を示したグラフである。It is the graph which showed NMP saturation concentration. 各乾燥室の給気の溶剤濃度を示したグラフ。The graph which showed the solvent density | concentration of the air supply of each drying chamber. 変形例に係る溶剤回収システムの構成図である。It is a block diagram of the solvent collection | recovery system which concerns on a modification. 変形例に係るドライヤの構成図である。It is a block diagram of the dryer which concerns on a modification.

本発明の実施形態に係る溶剤回収システムの構成を図1に示す。溶剤回収システム1は、図1に示すように、溶剤蒸気を含む所定の気体(以下、単にガスと呼ぶ)をコイルで冷
却して溶剤を凝縮回収する溶剤回収装置2と、溶剤回収装置2を通過したガス中に残る溶剤をゼオライトあるいは活性炭等の吸着材で吸着回収する濃縮装置3とを備える。また、溶剤回収システム1は、ガスを送気する各種のファンや熱交換を行うコイルを備える。
A configuration of a solvent recovery system according to an embodiment of the present invention is shown in FIG. As shown in FIG. 1, the solvent recovery system 1 includes a solvent recovery device 2 that condenses and recovers a solvent by cooling a predetermined gas containing solvent vapor (hereinafter simply referred to as gas) with a coil, and a solvent recovery device 2. And a concentrating device 3 for adsorbing and recovering a solvent remaining in the gas passed by an adsorbent such as zeolite or activated carbon. The solvent recovery system 1 includes various fans for supplying gas and a coil for performing heat exchange.

溶剤回収システム1は、有機溶剤によって各種の化学処理を行う生産設備類から排気される排気中の溶剤蒸気を回収する装置である。本実施形態では、リチウムイオン電池工場で使用されるN−メチルピロリドン(以下、NMPという)の溶剤蒸気を含む生産排気からNMPを回収することを前提に説明するが、その他の溶剤類であってもよい。リチウムイオン電池工場では電極製造時にNMPを使用する。電極に塗布されたNMPは、塗布されたNMPを乾燥処理するドライヤで蒸発して排気される。本実施形態に係る溶剤回収システム1が併設されるドライヤを図2に示す。   The solvent recovery system 1 is an apparatus that recovers solvent vapor in exhaust gas exhausted from production facilities that perform various chemical treatments with an organic solvent. In the present embodiment, description will be made on the assumption that NMP is recovered from production exhaust gas containing solvent vapor of N-methylpyrrolidone (hereinafter referred to as NMP) used in a lithium ion battery factory. Also good. In lithium ion battery factories, NMP is used when manufacturing electrodes. The NMP applied to the electrode is evaporated and exhausted by a dryer for drying the applied NMP. FIG. 2 shows a dryer provided with the solvent recovery system 1 according to this embodiment.

ドライヤ16は、図2に示すように、複数の乾燥室17A〜Gに分割されており、各乾燥室17A〜G内を、NMP溶剤が表面に塗布された電極が順に通過する。ドライヤ16は、半密閉であり、電極を通過する出入り口が設けられている。溶剤蒸気を含むガスが漏れないよう、出入り口は負圧になるように給排気が調整されている。各乾燥室17A〜G内には、高温のガスが導入されており、電極が内部を通過する過程で、電極の表面に塗布されたNMP溶剤が蒸発する。各乾燥室17A〜G内に導入される高温のガスは、省エネルギーのため、その多くが乾燥室17A〜Gから排気されてファン15Sから加熱コイルと微粒子フィルタ(HEPAフィルタ)を通って再び還流されるガスであるが、そのガスの一部は本実施形態に係る溶剤回収システム1が浄化した後に乾燥室17A〜G内へ戻している。   As shown in FIG. 2, the dryer 16 is divided into a plurality of drying chambers 17 </ b> A to 17 </ b> G, and electrodes in which the NMP solvent is applied to the surface sequentially pass through the drying chambers 17 </ b> A to 17 </ b> G. The dryer 16 is semi-hermetic and is provided with an entrance through which an electrode passes. In order to prevent gas containing solvent vapor from leaking, the supply / exhaust is adjusted so that the inlet / outlet has a negative pressure. A high temperature gas is introduced into each of the drying chambers 17 </ b> A to 17 </ b> G, and the NMP solvent applied to the surface of the electrode evaporates as the electrode passes through the inside. In order to save energy, most of the high-temperature gas introduced into the drying chambers 17A to 17G is exhausted from the drying chambers 17A to 17G and is recirculated from the fan 15S through the heating coil and the particulate filter (HEPA filter). A part of the gas is returned to the drying chambers 17A to 17G after being purified by the solvent recovery system 1 according to the present embodiment.

本実施形態に係る溶剤回収システム1は、このようなドライヤ16に付帯して設置される装置であり、ドライヤ16の排気中の溶剤蒸気を回収する。本実施形態では、ドライヤ16から排気される溶剤蒸気の想定濃度を2000ppmとしている。ドライヤ16の排気は、80〜100℃程度を想定している。溶剤回収システム1で用いる冷却水は、生産設備が設置された建物で生産装置の発熱部を冷却する冷却塔で生成された空調設備のものを用いている。この冷却水には、2種類の温度帯域のものが用意されており、屋外に設置された冷却塔で冷却された冷却水と、冷凍機によって冷却された冷却水(冷水と呼んでもよい)とがある。前者は、外気温度にもよるが、設計温度を32℃としているため、冷却塔で冷却された冷却水の事を、以下、32℃冷却水と呼ぶことにする。一方、後者は、冷凍機によって7℃に冷却された冷却水であるため、冷凍機で冷却された冷却水の事を、以下、7℃冷却水と呼ぶことにする。32℃冷却水の製造に要する動力は、ヒートポンプを使った7℃冷却水の製造に要する動力に比べて遥かに小さいため、熱負荷をなるべく32℃冷却水で処理することが、溶剤回収システム1全体が消費する動力の削減に効果的である。   The solvent recovery system 1 according to the present embodiment is an apparatus attached to the dryer 16 and recovers the solvent vapor in the exhaust of the dryer 16. In this embodiment, the assumed concentration of solvent vapor exhausted from the dryer 16 is 2000 ppm. The exhaust of the dryer 16 is assumed to be about 80 to 100 ° C. The cooling water used in the solvent recovery system 1 is that of an air conditioning facility generated by a cooling tower that cools the heat generating part of the production apparatus in a building where the production facility is installed. This cooling water is prepared in two types of temperature bands, cooling water cooled by a cooling tower installed outdoors, and cooling water cooled by a refrigerator (may be called cold water) There is. Although the former depends on the outside air temperature, the design temperature is set to 32 ° C., and hence the cooling water cooled by the cooling tower is hereinafter referred to as 32 ° C. cooling water. On the other hand, since the latter is cooling water cooled to 7 ° C. by the refrigerator, the cooling water cooled by the refrigerator is hereinafter referred to as 7 ° C. cooling water. The power required for producing the 32 ° C. cooling water is much smaller than that required for producing the 7 ° C. cooling water using the heat pump. Therefore, it is possible to treat the heat load with the 32 ° C. cooling water as much as possible. It is effective in reducing the power consumed by the whole.

溶剤回収装置2は、図1に示すように、直列に並んだ4基の熱交換コイル(符号4〜7)を有している。以下、上流側から順に、予冷却器4、前置冷却器5、主冷却器6、後置加熱器7と呼ぶことにする。   As shown in FIG. 1, the solvent recovery device 2 has four heat exchange coils (reference numerals 4 to 7) arranged in series. Hereinafter, the pre-cooler 4, the pre-cooler 5, the main cooler 6, and the post-heater 7 will be referred to in order from the upstream side.

予冷却器4は、ドライヤ16に給気するためのファン15AH,15ALの下流側に設けられた予加熱器8H,8Lと水循環系9を介して接続されている。このほか、溶剤回収システム1は、後述する吸着ロータ13に冷却凝縮された残りの溶剤蒸気混じりのガスを送気するファン15B、吸着ロータ13の吸着機能の再生のためのファン15Cを備える。予冷却器4は、ドライヤ16から送られたガスを冷却する。予冷却器4で除去されたガスの熱は、水循環系9を循環する水によって予加熱器8H,8Lへ移送され、溶剤回収装置2や濃縮装置3で浄化されて再びドライヤへ送られる各ガスを加熱する。予冷却器4に流入した約100℃のガスは、63℃になって前置冷却器5へ送られる。   The precooler 4 is connected to preheaters 8H and 8L provided on the downstream side of the fans 15AH and 15AL for supplying air to the dryer 16 via a water circulation system 9. In addition, the solvent recovery system 1 includes a fan 15 </ b> B that feeds the gas mixed with the remaining solvent vapor cooled and condensed to the adsorption rotor 13, which will be described later, and a fan 15 </ b> C for regenerating the adsorption function of the adsorption rotor 13. The precooler 4 cools the gas sent from the dryer 16. The heat of the gas removed by the precooler 4 is transferred to the preheaters 8H and 8L by water circulating in the water circulation system 9, purified by the solvent recovery device 2 and the concentration device 3, and sent to the dryer again. Heat. The gas of about 100 ° C. flowing into the precooler 4 reaches 63 ° C. and is sent to the precooler 5.

水循環系9は、循環系内の圧力を大気圧よりも高く(例えば、ゲージ圧で0.2MPaならば飽和蒸気温度は133.7℃なので、この温度以下であれば沸騰しない)なっており、ドライヤから送られるガスの温度が高温になっても系内の水が沸騰しない。水循環系9内の圧力は、アキュームレータによって一定に保たれる。   In the water circulation system 9, the pressure in the circulation system is higher than atmospheric pressure (for example, if the gauge pressure is 0.2 MPa, the saturated steam temperature is 133.7 ° C., and if it is below this temperature, it will not boil), Even if the temperature of the gas sent from the dryer becomes high, the water in the system does not boil. The pressure in the water circulation system 9 is kept constant by the accumulator.

前置冷却器5は、予冷却器4によって冷却されたガスを更に冷却する。予冷却器4は、経路中に冷却塔を擁する32℃冷却水循環系11の冷却水でガスを冷却する。前置冷却器5に流入した63℃のガスは、27℃になって主冷却器6へ送られる。   The precooler 5 further cools the gas cooled by the precooler 4. The precooler 4 cools the gas with the cooling water of the 32 ° C. cooling water circulation system 11 having a cooling tower in the path. The 63 ° C. gas flowing into the precooler 5 reaches 27 ° C. and is sent to the main cooler 6.

主冷却器6は、前置冷却器5によって冷却されたガスを更に冷却する。主冷却器6は、経路中に冷凍機を擁する7℃冷却水循環系12の冷却水でガスを冷却する。主冷却器6は、前置冷却器5から送られた27℃のガスを12℃まで冷やす。主冷却器6を通過する冷却水の流量は、主冷却器6の下流側のガスの温度が12℃になるように温度制御を行う流量調整弁10によって調整される。ドライヤから送られるガスが主冷却器6で12℃まで冷やされることにより、主冷却器6の冷却コイルの表面でNMP蒸気が凝縮する。   The main cooler 6 further cools the gas cooled by the pre-cooler 5. The main cooler 6 cools the gas with the cooling water of the 7 ° C. cooling water circulation system 12 having a refrigerator in the path. The main cooler 6 cools the 27 ° C. gas sent from the precooler 5 to 12 ° C. The flow rate of the cooling water passing through the main cooler 6 is adjusted by the flow rate adjusting valve 10 that controls the temperature so that the temperature of the gas on the downstream side of the main cooler 6 becomes 12 ° C. When the gas sent from the dryer is cooled to 12 ° C. by the main cooler 6, NMP vapor is condensed on the surface of the cooling coil of the main cooler 6.

図3は、NMP飽和濃度を示したグラフである。溶剤回収装置2では、溶剤蒸気を含むガスが予冷却器4を通過して63℃になると溶剤蒸気の濃度が約2000ppm程度になり、前置冷却器5を通過して27℃になると溶剤蒸気の濃度が約800ppm程度になり、主冷却器6を通過して12℃になると溶剤蒸気の濃度が約270ppmになる。   FIG. 3 is a graph showing the NMP saturation concentration. In the solvent recovery device 2, when the gas containing the solvent vapor passes through the precooler 4 and reaches 63 ° C., the concentration of the solvent vapor reaches about 2000 ppm, and when the gas passes through the precooler 5 and reaches 27 ° C. The concentration of the solvent vapor becomes about 800 ppm, and when it passes through the main cooler 6 and reaches 12 ° C., the concentration of the solvent vapor becomes about 270 ppm.

後置加熱器7は、主冷却器6によって冷却されたガスを加熱する。後置加熱器7は、経路中に冷却塔を要する32℃冷却水循環系11の冷却水でガスを加熱する。後置加熱器7は、主冷却器6から送られた12℃のガスを27℃まで加熱する。   The post heater 7 heats the gas cooled by the main cooler 6. The post heater 7 heats the gas with the cooling water of the 32 ° C. cooling water circulation system 11 that requires a cooling tower in the path. The post heater 7 heats the 12 ° C. gas sent from the main cooler 6 to 27 ° C.

ここで、32℃冷却水循環系11の冷却水は、次のような経路を辿る。すなわち、冷却塔で冷却された冷却水は、冷却塔を出たのちに後置加熱器7を通り、その次に前置冷却器5を通って再び冷却塔へ戻る。後置加熱器7に流入するガスの温度が12℃なので、後置加熱器7に流入する32℃の冷却水は、後置加熱器7の通過後に17℃となり、前置冷却器5へ流入する。前置冷却器5に流入するガスの温度が63℃なので、前置冷却器5に流入する冷却水は、前置冷却器5の通過後に53℃となり、冷却塔へ再び送られる。なお、32℃冷却水循環系11に設けられる冷却塔は、他の生産設備の冷却塔と統合して運用されているため、冷却塔へ再び送られる53℃の冷却水は他の生産設備の冷却水と混合されることにより、冷却塔に戻る冷却水の返り温度は53℃よりも低い温度になる。   Here, the cooling water of the 32 ° C. cooling water circulation system 11 follows the following path. That is, the cooling water cooled in the cooling tower passes through the post heater 7 after leaving the cooling tower, and then returns to the cooling tower through the pre cooler 5 again. Since the temperature of the gas flowing into the post heater 7 is 12 ° C., the 32 ° C. cooling water flowing into the post heater 7 becomes 17 ° C. after passing through the post heater 7 and flows into the pre cooler 5. To do. Since the temperature of the gas flowing into the precooler 5 is 63 ° C., the cooling water flowing into the precooler 5 becomes 53 ° C. after passing through the precooler 5 and is sent again to the cooling tower. In addition, since the cooling tower provided in the 32 degreeC cooling water circulation system 11 is integrated and operated with the cooling tower of another production facility, the 53 degreeC cooling water sent to the cooling tower again cools the other production equipment. By mixing with water, the return temperature of the cooling water returning to the cooling tower is lower than 53 ° C.

このため、溶剤回収装置2では、熱の多くが32℃冷却水循環系11によって処理される。すなわち、32℃冷却水循環系11の冷却水を、後置加熱器7を介さないで前置冷却器5へ流した場合、前置冷却器5を通過したガスは27℃にまでは低下しないため、7℃冷却水循環系12の冷凍機の負荷が増大してしまう。しかし、本実施形態に係る溶剤回収装置2であれば、32℃冷却水循環系11の冷却水を、後置加熱器7を介して前置冷却器5へ流すことにより、後置加熱器7を通過することで17℃に冷却された冷却水が前置冷却器5を通過するので、主冷却器6に流入させるガスを予め27℃にまで冷却することができる。   For this reason, in the solvent recovery apparatus 2, most of the heat is processed by the 32 ° C. cooling water circulation system 11. That is, when the cooling water of the 32 ° C. cooling water circulation system 11 is flowed to the pre-cooler 5 without passing through the post-heater 7, the gas that has passed through the pre-cooler 5 does not decrease to 27 ° C. The load of the refrigerator of the 7 degreeC cooling water circulation system 12 will increase. However, in the case of the solvent recovery apparatus 2 according to the present embodiment, the post heater 7 is made to flow by flowing the cooling water of the 32 ° C. cooling water circulation system 11 to the pre cooler 5 through the post heater 7. Since the cooling water cooled to 17 ° C. by passing through the pre-cooler 5, the gas flowing into the main cooler 6 can be cooled to 27 ° C. in advance.

溶剤回収装置2によってある程度の溶剤が回収され、その最下流で昇温されたガスは、濃縮装置3へ送られて更に浄化される。濃縮装置3は、図1に示すように、吸着ロータ13や蒸気加熱コイル14を有しており、次のように構成されている。   A certain amount of solvent is recovered by the solvent recovery device 2, and the gas heated at the most downstream side thereof is sent to the concentration device 3 for further purification. As shown in FIG. 1, the concentrating device 3 has an adsorption rotor 13 and a steam heating coil 14 and is configured as follows.

吸着ロータ13は、円筒状の部材の内部にゼオライト等の吸着材を担持したものである
。吸着ロータ13の両端面には、図示しないセクション分割カセットが配置されており、このカセットによって吸着ロータ13のガス通過域が3つのセクションに区画される。吸着ロータ13は、このセクション分割カセットと相対的に回転可能なようになっており、このカセットによって吸着ロータ13に処理領域R1、再生領域R2、パージ領域R3が形成される。
The adsorption rotor 13 carries an adsorbent such as zeolite inside a cylindrical member. A section division cassette (not shown) is arranged on both end faces of the adsorption rotor 13, and the gas passage area of the adsorption rotor 13 is divided into three sections by this cassette. The suction rotor 13 is rotatable relative to the section division cassette, and a processing region R1, a regeneration region R2, and a purge region R3 are formed in the suction rotor 13 by this cassette.

処理領域R1には、ファン15Bによって送られる溶剤回収装置2を出た27℃のガスが通過する。処理領域R1は、通気するガス中のNMPを吸着し、浄化したガスを排出する。処理領域R1を出たガスの多くは、溶剤回収システム1を出てドライヤへ送られる。また、処理領域R1を出たガスの一部は、パージ領域R3へ送られる。なお、処理領域R1を出たガスは、一部あるいは全量を屋外へ排気してもよい。   The 27 ° C. gas exiting the solvent recovery device 2 sent by the fan 15B passes through the processing region R1. The processing region R1 adsorbs NMP in the gas to be vented and discharges the purified gas. Most of the gas exiting the processing region R1 exits the solvent recovery system 1 and is sent to the dryer. Further, part of the gas exiting the processing region R1 is sent to the purge region R3. Note that part or all of the gas exiting the processing region R1 may be exhausted outdoors.

パージ領域R3は、吸着ロータ13がセクション分割カセットと相対的に回転することにより、吸着ロータ13のある一点が再生領域R2から処理領域R1へ遷移する途中で形成される領域である。パージ領域R3は、再生直後でインサービス前の高温状態にある吸着材を冷却するための領域であり、処理領域R1を出たガスの一部が通過することにより冷却される。吸着ロータ13が、図1の矢印が示す方向に回転することで、吸着ロータ13のある一点が処理領域R1、再生領域R2、パージ領域R3の順に繰り返し遷移する。   The purge region R3 is a region formed in the middle of the transition of the suction rotor 13 from the regeneration region R2 to the processing region R1 as the suction rotor 13 rotates relative to the section division cassette. The purge region R3 is a region for cooling the adsorbent that is in a high-temperature state immediately after regeneration and before in-service, and is cooled by passing a part of the gas exiting the processing region R1. As the suction rotor 13 rotates in the direction indicated by the arrow in FIG. 1, one point of the suction rotor 13 repeatedly changes in the order of the processing region R1, the regeneration region R2, and the purge region R3.

パージ領域R3を出たガスは、蒸気加熱コイル14で加熱された後、再生領域R2へ送られる。蒸気加熱コイル14は、溶剤回収システム1が設置された建屋のユーティリティ配管から供給されるボイラーの蒸気でガスを加熱する。蒸気加熱コイル14内の復水は、ドレントラップを介して再びボイラーの給水タンクへ戻される。パージ領域R3から排出された68℃のガスは、蒸気加熱コイル14による加熱で130℃になり、再生領域R2へ送られる。これにより、再生領域R2は高温になり、吸着した溶剤を離脱する。再生領域R2を出たガスは、溶剤回収装置2へ再び送られる。これにより、再生加熱によって吸着ロータ13から離脱した溶剤の多くが、溶剤回収装置2の主冷却器6で凝縮して回収されることになる。なお、前述のように32℃冷却水循環系11の冷却塔を出た冷却水がそのままの温度で主冷却器6を出たガスと熱交換することは、蒸気加熱コイル14に高熱を供給するボイラーの負荷低減に寄与する。   The gas exiting the purge region R3 is heated by the steam heating coil 14 and then sent to the regeneration region R2. The steam heating coil 14 heats the gas with the steam of the boiler supplied from the utility pipe of the building where the solvent recovery system 1 is installed. Condensate in the steam heating coil 14 is returned again to the boiler water supply tank via the drain trap. The gas at 68 ° C. discharged from the purge region R3 becomes 130 ° C. by heating by the steam heating coil 14, and is sent to the regeneration region R2. As a result, the regeneration region R2 becomes high temperature, and the adsorbed solvent is released. The gas exiting the regeneration region R2 is sent again to the solvent recovery device 2. As a result, most of the solvent detached from the adsorption rotor 13 by regenerative heating is condensed and recovered by the main cooler 6 of the solvent recovery device 2. As described above, the heat exchange of the cooling water exiting the cooling tower of the 32 ° C. cooling water circulation system 11 with the gas exiting the main cooler 6 at the same temperature is the boiler that supplies the steam heating coil 14 with high heat. This contributes to a reduction in the load.

ところで、乾燥室17A〜G内では、NMP溶剤が気化するために気中のNMP濃度が非常に高濃度(例えば、2000ppm程度)になるため、乾燥能力を保つためには、各乾燥室17A〜G内に導入するガスのNMP濃度をこれよりも低い濃度(例えば、300〜500ppm程度)にする必要がある。このため、乾燥室17A〜Gから排気されたガスの一部を浄化する溶剤回収システム1から排気されて乾燥室17A〜G内へ戻るガスのNMP濃度は、10〜200ppm程度にまで浄化される必要があるが、その濃度は送り先の乾燥室に応じて異なる。すなわち、ドライヤ16の中でも乾燥開始直後の上流工程においては、電極に大量のNMP溶剤が付着しているために乾燥室内のNMP濃度が高く、ドライヤ16の中でも乾燥終了直前の下流工程においては、電極に付着していたNMP溶剤の多くが既に乾燥しているために乾燥室内のNMP濃度が低い。   By the way, in the drying chambers 17A to 17G, since the NMP solvent is vaporized, the NMP concentration in the air becomes very high (for example, about 2000 ppm). The NMP concentration of the gas introduced into G needs to be lower than this (for example, about 300 to 500 ppm). For this reason, the NMP concentration of the gas exhausted from the solvent recovery system 1 that purifies part of the gas exhausted from the drying chambers 17A to 17G and returned to the drying chambers 17A to 17G is purified to about 10 to 200 ppm. Although it is necessary, the concentration differs depending on the drying chamber of the destination. That is, in the upstream process of the dryer 16 immediately after the start of drying, a large amount of NMP solvent adheres to the electrode, so that the NMP concentration in the drying chamber is high. The NMP concentration in the drying chamber is low because most of the NMP solvent adhering to is already dried.

そこで、本実施形態に係る溶剤回収システム1は、ドライヤ16の各乾燥室17A〜Gを、2つの領域に概念的に分けており、ドライヤ16の上流側の領域18Hに属する乾燥室17A〜EにはNMP濃度が比較的高い溶剤回収装置2の排気が給気経路19Hを介して送られ、ドライヤ16の下流側の領域18Lに属する乾燥室17F〜GにはNMP濃度が比較的低い濃縮装置3の排気が給気経路19Lを介して送られるようになっている。すなわち、領域18Hには、溶剤回収装置2のファン15Bから濃縮装置3の吸着ロータ13へ流れるガスの一部が、ファン15AHから送られる。このガスを、高濃度系のドライヤ給気と呼ぶ。また、領域18Lには、吸着ロータ13の処理領域R1を出たガスの一部
が、ファン15ALから送られる。このガスを、低濃度系のドライヤ給気と呼ぶ。
Therefore, in the solvent recovery system 1 according to the present embodiment, the drying chambers 17A to 17G of the dryer 16 are conceptually divided into two regions, and the drying chambers 17A to 17E belonging to the region 18H on the upstream side of the dryer 16 are divided. The exhaust of the solvent recovery device 2 having a relatively high NMP concentration is sent through the air supply path 19H, and the concentrating device having a relatively low NMP concentration is supplied to the drying chambers 17F to G belonging to the region 18L on the downstream side of the dryer 16. 3 exhaust gas is sent through the air supply path 19L. That is, a part of the gas flowing from the fan 15B of the solvent recovery device 2 to the adsorption rotor 13 of the concentration device 3 is sent from the fan 15AH to the region 18H. This gas is called a high concentration dryer air supply. Further, a part of the gas exiting the processing region R1 of the adsorption rotor 13 is sent from the fan 15AL to the region 18L. This gas is called a low-concentration dryer air supply.

この溶剤回収システム1であれば、濃縮装置3を出たガスよりもNMP濃度の高い、溶剤回収装置2を通過直後のガスを予乾燥気としてドライヤ16へ給気するための給気経路19Hが備わっているため、濃縮装置3の容量が小さくて済み、溶剤回収に係るコストを削減できる。   In the case of this solvent recovery system 1, there is an air supply path 19 </ b> H for supplying the dryer 16 with pre-drying gas having a higher NMP concentration than that of the gas exiting the concentration device 3 and having just passed through the solvent recovery device 2. Since it is equipped, the capacity | capacitance of the concentration apparatus 3 can be small, and the cost concerning solvent collection | recovery can be reduced.

図4は、溶剤回収システム1から各乾燥室へ送られる給気の溶剤濃度を、本実施形態のもの(実施例)と従来技術のもの(すなわち、給気経路19Hを省いて全乾燥室17A〜Gへ給気経路19Lのガスを流したもの)とを比較したグラフである。このグラフから判るように、本実施形態では、領域18Hに属する乾燥室17A〜EにNMP濃度が比較的高い給気が送られる。このため、本実施形態であれば、従来技術に比べて濃縮装置3の容量を大幅に小さくすることができ、システム全体の動作効率を改善することができることが判る。   FIG. 4 shows the solvent concentration of the supply air sent from the solvent recovery system 1 to each drying chamber and that of the present embodiment (example) and that of the prior art (that is, the entire drying chamber 17A without the supply passage 19H). It is the graph which compared with what flowed the gas of 19 L of supply path | routes to ~ G). As can be seen from this graph, in the present embodiment, the supply air having a relatively high NMP concentration is sent to the drying chambers 17A to 17E belonging to the region 18H. For this reason, according to the present embodiment, it can be seen that the capacity of the concentrating device 3 can be significantly reduced as compared with the prior art, and the operation efficiency of the entire system can be improved.

本実施形態では、このように、溶剤回収システムが効率的な動作点で作動することができるため、濃縮装置などを小型化することができ、イニシャルコストやランニングコストの抑制を図ることができる。   In this embodiment, since the solvent recovery system can operate at an efficient operating point as described above, the concentrator and the like can be downsized, and the initial cost and running cost can be suppressed.

なお、上記溶剤回収システム1は、溶剤回収を三段階以上で行い、各段階の排気をドライヤへ給気するようにしてもよい。例えば、三段階の場合であれば、図5に示すように、溶剤回収装置2から出たガス中に残留する溶剤蒸気を、濃縮装置3Aと濃縮装置3Bの2段階で除去する。この変形例の場合、給気経路19Hや19Lの他に、給気経路19Mが加わることになる。そして、ドライヤ16を構成する各乾燥室17A〜Gは、給気経路19Hを経由して送られる高濃度の給気が送られる領域18H、給気経路19Mを経由して送られる中濃度の給気が送られる領域18M、給気経路19Lを経由して送られる低濃度の給気が送られる領域18Lの3つの領域に概念的に分割されることになる。   In addition, the said solvent collection | recovery system 1 may perform solvent collection | recovery in three or more steps, and may make it supply the exhaust of each step to a dryer. For example, in the case of three stages, as shown in FIG. 5, the solvent vapor remaining in the gas discharged from the solvent recovery apparatus 2 is removed in two stages of the concentrator 3A and the concentrator 3B. In the case of this modification, an air supply path 19M is added in addition to the air supply paths 19H and 19L. Then, each of the drying chambers 17A to 17G constituting the dryer 16 has a medium concentration supply that is sent via an air supply path 19H, an area 18H where a high concentration supply air is sent via an air supply path 19H, and an air supply path 19M. This is conceptually divided into three areas: an area 18M where air is sent and an area 18L where air with a low concentration sent via the air supply path 19L is sent.

また、蒸気溶剤回収システム1は、溶剤蒸気を段階的に除去可能なものであれば、如何なるものを採用してもよく、例えば、高濃度系のドライヤ給気分は凝縮式の溶剤回収装置で処理しつつ、スクラバーのようなNMP溶剤を水などに吸収除去させる湿式の装置を併用することで、湿式の装置の容量を大幅に小さくすることができる。   The vapor solvent recovery system 1 may adopt any system as long as the solvent vapor can be removed step by step. For example, a high-concentration dryer air supply is processed by a condensing solvent recovery device. However, the combined use of a wet apparatus that absorbs and removes an NMP solvent such as a scrubber in water can significantly reduce the capacity of the wet apparatus.

1・・溶剤回収システム
2・・溶剤回収装置
3・・濃縮装置
16・・ドライヤ
17A〜G・・乾燥室
18H,18L・・領域
19H,19L・・給気経路
1. Solvent recovery system 2. Solvent recovery device 3. Concentration device 16. Dryers 17A to G ... Drying chambers 18H, 18L ... Areas 19H, 19L ... Air supply path

Claims (3)

溶剤を塗布した被塗布物を乾燥させるドライヤの乾燥室へ、該乾燥室内で気化した溶剤蒸気を回収処理した該乾燥室の排気を給気する溶剤回収システムであって、
前記乾燥室の排気に含まれる前記溶剤蒸気を回収する第一の溶剤回収部と、
前記第一の溶剤回収部を通過した前記排気に残る前記溶剤蒸気を回収して前記乾燥室へ乾燥気として給気する第二の溶剤回収部と、
前記第二の溶剤回収部が前記乾燥室へ給気する前記乾燥気よりも溶剤蒸気が多く残留する、前記第一の溶剤回収部を通過した直後の前記排気が、該第二の溶剤回収部が給気する前記乾燥気よりも前に前記被塗布物に当たるように、該第一の溶剤回収部を通過した直後の前記排気を予乾燥気として該乾燥室へ給気する給気経路と、を備える、
溶剤回収システム。
A solvent recovery system for supplying an exhaust of the drying chamber in which a solvent vapor evaporated in the drying chamber is recovered to a drying chamber of a dryer for drying an object to be coated with a solvent,
A first solvent recovery section for recovering the solvent vapor contained in the exhaust of the drying chamber;
A second solvent recovery unit that recovers the solvent vapor remaining in the exhaust gas that has passed through the first solvent recovery unit and supplies the dry vapor to the drying chamber;
The exhaust gas immediately after passing through the first solvent recovery section, in which more solvent vapor remains than the dry air supplied to the drying chamber by the second solvent recovery section is the second solvent recovery section. An air supply path for supplying the exhaust immediately after passing through the first solvent recovery section as pre-dry air to the drying chamber so as to hit the coating object before the dry air supplied by Comprising
Solvent recovery system.
前記被塗布物は、前記ドライヤの乾燥室内を流れるように通過しており、
前記給気経路は、前記乾燥室内のうち、前記第二の溶剤回収部からの給気が当たる被塗布物よりも上流側の被塗布物に当たるように、前記予乾燥気を該乾燥室へ給気する、
請求項1に記載の溶剤回収システム。
The coating object passes so as to flow in the drying chamber of the dryer,
The air supply path supplies the pre-drying air to the drying chamber so as to hit an object to be coated on the upstream side of the object to be coated with air supplied from the second solvent recovery unit. Care
The solvent recovery system according to claim 1.
前記第一の溶剤回収部は、冷凍設備において冷却された冷却媒体が管内を流れるコイルに前記排気を接触させて、該排気に含まれる前記溶剤蒸気を凝縮回収し、
前記第二の溶剤回収部は、前記第一の溶剤回収部を通過した前記排気を吸着材に接触させて、該排気に残る前記溶剤蒸気を吸着回収して前記乾燥室へ乾燥気として給気する、
請求項1または2に記載の溶剤回収システム。
The first solvent recovery unit brings the exhaust into contact with a coil in which a cooling medium cooled in a refrigeration facility flows in a pipe, and condenses and recovers the solvent vapor contained in the exhaust,
The second solvent recovery unit brings the exhaust gas that has passed through the first solvent recovery unit into contact with an adsorbent, adsorbs and recovers the solvent vapor remaining in the exhaust gas, and supplies the drying chamber with dry air. To
The solvent recovery system according to claim 1 or 2.
JP2011000437A 2011-01-05 2011-01-05 Solvent recovery system Active JP5628051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000437A JP5628051B2 (en) 2011-01-05 2011-01-05 Solvent recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000437A JP5628051B2 (en) 2011-01-05 2011-01-05 Solvent recovery system

Publications (2)

Publication Number Publication Date
JP2012139657A true JP2012139657A (en) 2012-07-26
JP5628051B2 JP5628051B2 (en) 2014-11-19

Family

ID=46676506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000437A Active JP5628051B2 (en) 2011-01-05 2011-01-05 Solvent recovery system

Country Status (1)

Country Link
JP (1) JP5628051B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087746A (en) * 2012-10-30 2014-05-15 Taikisha Ltd Solvent recovery facility
JP2014193422A (en) * 2013-03-28 2014-10-09 Taikisha Ltd Solvent collection equipment
KR20170060576A (en) 2015-11-24 2017-06-01 가부시키가이샤 세이부 기켄 Drying apparatus
WO2022270380A1 (en) * 2021-06-23 2022-12-29 東洋紡株式会社 Organic solvent recovery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087746A (en) * 2012-10-30 2014-05-15 Taikisha Ltd Solvent recovery facility
JP2014193422A (en) * 2013-03-28 2014-10-09 Taikisha Ltd Solvent collection equipment
KR20170060576A (en) 2015-11-24 2017-06-01 가부시키가이샤 세이부 기켄 Drying apparatus
US9958205B2 (en) 2015-11-24 2018-05-01 Seibu Giken Co., Ltd. Drying apparatus
WO2022270380A1 (en) * 2021-06-23 2022-12-29 東洋紡株式会社 Organic solvent recovery system

Also Published As

Publication number Publication date
JP5628051B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
KR102528072B1 (en) Drying apparatus
US8500886B2 (en) Apparatus for removing carbon dioxide from a gas
JP5243900B2 (en) Solvent recovery equipment
KR101565033B1 (en) NMP recovery purification system
US10046267B2 (en) Dehumidifier system for regenerating a dissicant wheel by means of steam and a dehumidifier comprising said system
JP5588163B2 (en) Solvent recovery device
JP5628051B2 (en) Solvent recovery system
JP5829498B2 (en) Solvent recovery system
JP4200439B2 (en) Gas adsorption / desorption treatment equipment
JP6078237B2 (en) Solvent recovery apparatus and control method thereof
JP2016140841A (en) Organic solvent recovery device
KR101723507B1 (en) System for separating chemical material from exhaust gas
JP5581554B2 (en) Adsorption / desorption type concentrator
KR101146557B1 (en) Co? collecting apparatus
JP4669863B2 (en) Gas treatment system containing volatile organic compounds
JP2013132582A (en) Organic solvent-containing gas treatment system
JP2011062687A (en) Organic solvent recovery system
JP5600048B2 (en) Solvent recovery device
CN115608133A (en) Flue gas carbon capture system and method for capturing carbon in flue gas
JP5681435B2 (en) Gas dehumidifier
KR101466059B1 (en) air dryer recycling apparatus using compressor waste heat
JPH0583287B2 (en)
JP2012061389A (en) Adsorption/desorption type concentration device
JP5871308B2 (en) Low boiling point solvent recovery method and apparatus
JP2011136304A (en) Organic solvent recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5628051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150