JP2012139628A - System and method for sludge treatment - Google Patents

System and method for sludge treatment Download PDF

Info

Publication number
JP2012139628A
JP2012139628A JP2010293133A JP2010293133A JP2012139628A JP 2012139628 A JP2012139628 A JP 2012139628A JP 2010293133 A JP2010293133 A JP 2010293133A JP 2010293133 A JP2010293133 A JP 2010293133A JP 2012139628 A JP2012139628 A JP 2012139628A
Authority
JP
Japan
Prior art keywords
sludge
flocculant
inorganic flocculant
dehydrated
conditioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010293133A
Other languages
Japanese (ja)
Inventor
Nobuhiro Otsuki
伸浩 大月
Shinichi Nagamatsu
真一 永松
Tetsuya Sonoda
哲也 園田
Yoshiyuki Sugawara
良行 菅原
Masabumi Hazama
正文 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environment Co Ltd filed Critical Nishihara Environment Co Ltd
Priority to JP2010293133A priority Critical patent/JP2012139628A/en
Publication of JP2012139628A publication Critical patent/JP2012139628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system and a method for sludge treatment that can unify a sludge conditioning step and sludge dehydrating step by efficiently combining therewith, make the whole facilities of the sludge treatment compact, reliably perform dehydrating conditioned sludge while suppressing use of the flocculant, and reduce the volume of dehydrated sludge more efficiently, in sludge treatment conditioning the sludge by injecting the flocculant so that the sludge is in a suitable state for dehydrating, and dehydrating the conditioned sludge by a centrifugal dehydrator.SOLUTION: The sludge treatment system includes: a sludge conditioner 1 for conditioning the sludge in which a polymeric flocculant is injected; a centrifugal dehydrator 2 for separating the conditioned sludge into dehydrated sludge and dehydrated and separated liquid; and a conditioned sludge supply pipe 3 for supplying the conditioned sludge to the centrifugal dehydrator 2.

Description

本発明は、水処理施設で発生する汚泥(余剰汚泥や消化汚泥など)の処理システムおよびその方法に関し、汚泥を調質した後、調質汚泥を効率よく脱水するものである。   The present invention relates to a treatment system and method for sludge generated in a water treatment facility (excess sludge, digested sludge, etc.), and after the sludge has been conditioned, the conditioned sludge is efficiently dehydrated.

水処理施設では含水率99〜99.5%の汚泥が大量に発生するが、これを処理・処分するには莫大なエネルギーやコストがかかってしまう。そのため濃縮・脱水を主とする汚泥処理により減容化が行われ、減容化した汚泥は有効利用、搬出埋立、乾燥焼却される。   A large amount of sludge having a water content of 99 to 99.5% is generated in the water treatment facility, but it takes enormous energy and cost to treat and dispose of the sludge. Therefore, the volume is reduced by sludge treatment mainly for concentration and dehydration, and the reduced sludge is effectively used, carried out, landfilled, and dried and incinerated.

汚泥の濃縮は、重力濃縮と機械濃縮に大別される。重力濃縮では汚泥をタンク内に一定時間滞留させることで水より比重の高い汚泥を沈降濃縮させるものであり、汚泥の沈降性が濃縮効率に影響を与える。機械濃縮は遠心濃縮、常圧浮上濃縮、ベルト式ろ過濃縮など機械的に濃縮する方法で、必要に応じて汚泥に凝集剤を混合して濃縮する。
濃縮された汚泥は、汚泥中の有機物の分解・安定化を目的として微生物による消化処理を経て、またはそのまま脱水処理される。汚泥の脱水は、ろ過式や遠心分離式等があり、汚泥脱水や機械濃縮では通常凝集剤が使用される。
Concentration of sludge is roughly divided into gravity concentration and mechanical concentration. In gravity concentration, sludge stays in the tank for a certain period of time to settle and concentrate sludge having a specific gravity higher than that of water. The sedimentation efficiency of sludge affects the concentration efficiency. Mechanical concentration is a mechanical concentration method such as centrifugal concentration, atmospheric pressure flotation concentration, or belt-type filtration concentration. If necessary, flocculant is mixed with sludge and concentrated.
The concentrated sludge is subjected to a digestion treatment with microorganisms for the purpose of decomposing and stabilizing organic matter in the sludge or dehydrated as it is. Sludge dehydration includes a filtration method and a centrifugal separation method, and a flocculant is usually used for sludge dewatering and mechanical concentration.

このように、通常汚泥は汚泥濃縮設備において濃縮処理を行った後、別途汚泥脱水設備で脱水処理を行うため、汚泥処理施設全体が大掛かりになっていた。また、濃縮された汚泥が脱水処理されるまで時間がかかったり、撹拌などが不十分だったりすると、変質してしまうことがあり、濃縮汚泥が変質(嫌気化、腐敗、汚泥フロックの解体など脱水に悪影響を与える)してしまうと、脱水処理では変質の度合いに応じて細やかに運転調整(汚泥供給量、凝集剤注入量など)して対応していた。   As described above, since the normal sludge is subjected to the concentration treatment in the sludge concentration facility and then subjected to the dewatering treatment separately in the sludge dewatering facility, the entire sludge treatment facility is large. Also, if it takes time until the concentrated sludge is dehydrated or if stirring is insufficient, the sludge may be altered, and the concentrated sludge may be denatured (anaerobic, spoilage, sludge floc dismantling, etc.). In the dehydration process, the operation was finely adjusted (sludge supply amount, coagulant injection amount, etc.) according to the degree of alteration.

また、スクリュウ式やベルト式等のろ過式の汚泥脱水機の場合は、処理する固形物量に応じて(つまり高濃度の汚泥なら少量だが、低濃度の汚泥なら多量に処理できる)、機械仕様が決まるが、遠心式の汚泥脱水機の場合は、処理する水量(汚泥供給量)に応じて(つまり汚泥濃度の高低にかかわらない)機械仕様が決まる。   In addition, in the case of screw-type sludge dewatering machines such as screw type and belt type, depending on the amount of solids to be treated (that is, a small amount of high-concentration sludge can be treated in large quantities if low-concentration sludge), the machine specifications are However, in the case of a centrifugal sludge dehydrator, machine specifications are determined according to the amount of water to be treated (sludge supply amount) (that is, regardless of the sludge concentration level).

そこで遠心式の汚泥脱水機(遠心脱水機)を用いて脱水処理する場合、高濃度の汚泥を供給する方が効率的に運転でき省エネルギー化にも有効だが、供給する汚泥の性状は変動するので、常に高濃度の汚泥を遠心脱水機に供給するのは難しく、そのため低濃度で多量の汚泥を処理することを想定して、多めの水量(汚泥供給量)を処理できる機械仕様の遠心脱水機が選定されていた。   Therefore, when dewatering using a centrifugal sludge dewatering machine (centrifugal dewatering machine), supplying high-concentration sludge is more efficient and energy-saving, but the properties of the supplied sludge vary. However, it is difficult to always supply high-concentration sludge to the centrifugal dehydrator. Therefore, it is assumed that a large amount of sludge is processed at a low concentration, and the machine-specific centrifugal dehydrator can process a large amount of water (sludge supply amount). Was selected.

一方、機械濃縮や脱水に用いられる凝集剤は一般に有機系の高分子凝集剤を使用する他、有機系凝集剤と無機系凝集剤を濃縮・脱水工程に応じて使い分けられている。これは原汚泥や濃縮汚泥の性状に適した凝集剤を選定し、その注入量を調整することで安定した濃縮・脱水がなされ、且つ使用する凝集剤の節約につながるためである。   On the other hand, as the coagulant used for mechanical concentration and dehydration, an organic polymer coagulant is generally used, and an organic coagulant and an inorganic coagulant are selectively used according to the concentration / dehydration process. This is because by selecting a flocculant suitable for the properties of raw sludge and concentrated sludge and adjusting the amount of injection, stable concentration and dehydration can be achieved, and the flocculant used can be saved.

凝集剤の適正な注入方法について、例えば、特許文献1では有機系汚泥に無機系凝集剤と分子内両性高分子凝集剤(両性ポリマー)とを併用して注入し、これを造粒濃縮槽で濃縮した後に脱水処理する方法において、従来法での高分子凝集剤の注入量低減という課題に対し、両性高分子凝集剤の分注場所を造粒濃縮槽の中央部又は分離水を分離する部位とし、その注入量を総両性高分子凝集剤注入量に対して10〜20%分注することで、一度造粒した汚泥が造粒濃縮槽に長く滞留している間に崩壊した場合においても再造粒が起こり、分離水SSの低下と共に、脱水機の運転状況を改善させるという技術が開示されている。   Regarding an appropriate injection method for the flocculant, for example, in Patent Document 1, an inorganic flocculant and an intramolecular amphoteric polymer flocculant (amphoteric polymer) are injected in combination with organic sludge, and this is injected in a granulation concentration tank. In the method of dehydrating after concentration, the site where the amphoteric polymer flocculant is dispensed in the central part of the granulation concentration tank or the separation water is separated in order to reduce the amount of the polymer flocculant injected in the conventional method. And even when the sludge once granulated collapses while it stays in the granulation concentration tank for a long time by dispensing 10-20% with respect to the total amphoteric polymer flocculant injection amount. A technique has been disclosed in which re-granulation occurs and the operating condition of the dehydrator is improved along with a decrease in the separated water SS.

また、特許文献2では、汚泥に高分子凝集剤を注入して凝集処理した後に濃縮処理する凝集濃縮処理工程と、該凝集濃縮処理工程からの凝集濃縮汚泥を、脱水機により脱水処理して脱水汚泥と脱水分離液とに分離する脱水処理工程とを有する汚泥処理方法において、脱水分離液を凝集濃縮処理工程に返送することで、脱水分離液に残留する高分子凝集剤を凝集濃縮処理工程で再利用し、新たに注入する高分子凝集剤の使用量を低減させながらも濃縮処理工程を安定化させるという技術が開示されている。   In Patent Document 2, a coagulation concentration treatment step in which a polymer flocculant is injected into the sludge for agglomeration treatment and then a concentration treatment, and agglomeration concentration sludge from the agglomeration concentration treatment step is dehydrated by a dehydrator and dehydrated. In the sludge treatment method having a dewatering treatment step for separating sludge and dewatered separation liquid, the polymer flocculant remaining in the dewatering separation liquid is returned to the coagulation concentration treatment step by returning the dewatering separation liquid to the coagulation concentration treatment step. A technique for stabilizing the concentration process while reducing the amount of polymer flocculant to be reused and newly injected is disclosed.

特許第3509169号公報(段落〔0008〕)Japanese Patent No. 3509169 (paragraph [0008]) 特開2006−35166号公報(段落〔0009〕)Japanese Patent Laying-Open No. 2006-35166 (paragraph [0009])

従来、汚泥濃縮設備および汚泥脱水設備は、別個独立して設けられることが多く、そのため汚泥処理施設全体が大掛かりなものになり、建設コストが高く、広い設置面積が必要であった。また、運転操作や維持管理が煩雑になり、人件費や凝集剤代など運転コストも上昇し、効率的な汚泥処理に支障を来たしていた。   Conventionally, the sludge concentration facility and the sludge dewatering facility are often provided separately and independently, so that the entire sludge treatment facility becomes large, the construction cost is high, and a large installation area is required. In addition, the operation and maintenance became complicated, and the operation costs such as labor costs and coagulant cost increased, which hindered efficient sludge treatment.

特に重力濃縮技術においては、近年の汚泥沈降性の悪化により、濃縮汚泥の低濃度化が進み、後段に続く脱水の効率を悪化させていた。   Particularly in the gravity concentration technology, due to the recent deterioration of sludge sedimentation, the concentration of concentrated sludge has been lowered, and the efficiency of dehydration following the latter stage has been deteriorated.

さらに、汚泥濃縮設備と汚泥脱水設備とが別々に設けられることにより、濃縮された汚泥は一旦汚泥貯留槽等に貯留され、その後脱水処理されることになるが、貯留されることにより濃縮汚泥が変質(嫌気化、腐敗、汚泥フロック解体)してしまい、脱水処理に悪影響(脱水汚泥含水率の上昇、SS回収率の悪化、脱水分離液の水質悪化、脱水性能の悪化による運転管理作業や凝集剤使用量の増大など)を及ぼしていた。   Furthermore, by providing the sludge concentration facility and the sludge dewatering facility separately, the concentrated sludge is once stored in a sludge storage tank, etc., and then dewatered. Changes in quality (anaerobic, decay, sludge floc dismantling), adversely affecting dehydration treatment (increase in dehydrated sludge moisture content, deterioration in SS recovery rate, deterioration in water quality of dehydrated separation liquid, deterioration in dewatering performance and coagulation Increase in the amount of agent used).

また、汚泥貯留槽等で貯留している濃縮汚泥(貯留汚泥)が腐敗しないように、さらには汚泥濃度が均一になるように、撹拌設備を設けて貯留汚泥を撹拌するが、長時間撹拌したり、過度に撹拌したりすると貯留汚泥に含まれる凝集フロックが細分化(解体)してしまい、脱水処理に際して再度凝集剤を十分に注入して凝集フロックを再形成させなければならず、凝集剤使用量(凝集剤代)の増大につながっていた。   In addition, agitation equipment is provided to stir the stored sludge so that the concentrated sludge (stored sludge) stored in the sludge storage tank does not rot, and the sludge concentration is uniform. If the agglomeration flocs contained in the stored sludge are subdivided (disassembled), the flocculant must be sufficiently injected again during the dehydration process to regenerate the agglomeration flocs. This led to an increase in the amount used (floating agent cost).

遠心脱水機を用いて脱水処理する場合、高濃度の汚泥を脱水する方が効率的であるが、汚泥の性状は諸要因により変動するため、施設計画においては低濃度で多量の汚泥を処理することを想定して、多めの水量(汚泥供給量)を処理できる機械仕様の遠心脱水機が選定する必要がある。そのため、設備コストの上昇を招くばかりか、予備機なども配備する場合には汚泥脱水設備がかなり大きくなってしまっていた。   When dewatering using a centrifugal dehydrator, it is more efficient to dewater high-concentration sludge. However, because the properties of sludge vary depending on various factors, a large amount of sludge is treated at a low concentration in the facility plan. Therefore, it is necessary to select a centrifugal dehydrator with mechanical specifications that can handle a large amount of water (sludge supply amount). For this reason, not only will the equipment cost increase, but the sludge dewatering equipment has become quite large when spare machines are deployed.

また、効率的で安定した脱水処理を行うために、汚泥を常に均質化できるよう大きな汚泥貯留槽を設けることも考えられるが、上述したように汚泥の腐敗や撹拌による凝集フロックの細分化など脱水処理に支障を来たす結果になってしまう。   In addition, in order to perform efficient and stable dehydration treatment, it is conceivable to provide a large sludge storage tank so that the sludge can always be homogenized, but as described above, dewatering such as sludge decay and agglomeration of flocs by agitation As a result, the processing will be hindered.

汚泥の脱水処理においては、遠心脱水機の脱水性能を十分に引き出し、効率的な脱水を行うため、汚泥へ凝集剤を適切に注入する必要があるが、適正な凝集剤注入量(注入率)は汚泥の性状により変化するので、経時的に変化する汚泥の性状に合わせて、適宜注入量を管理しなければならず、運転操作が非常に煩雑になってしまっていた。   In the sludge dewatering process, it is necessary to properly inject the flocculant into the sludge in order to fully extract the dewatering performance of the centrifugal dehydrator and perform efficient dewatering. Since it changes depending on the properties of the sludge, the injection amount must be appropriately controlled in accordance with the properties of the sludge that changes over time, and the operation operation has become very complicated.

また、適切な凝集剤が選定されていても、凝集剤が汚泥等に対して常に適切に注入されていない場合もあり、凝集剤の注入量が不十分な場合には濃縮処理や脱水処理に支障を来たし、汚泥を十分に減容化できないばかりか、濃縮分離液や脱水分離液の水質が悪化し、後段の排水処理施設への汚濁負荷増大につながってしまう。逆に、凝集剤の注入量が過剰な場合には、濃縮処理や脱水処理に影響を及ぼすこともあり、また未反応の凝集剤成分が濃縮分離液や脱水分離液に残留したり、分離性能(SS回収率)自体が悪くなったりして、その結果分離液の水質を悪化させてしまう。   Even if an appropriate flocculant is selected, the flocculant may not always be properly injected into sludge, etc.If the amount of flocculant injected is insufficient, it may be used for concentration treatment or dehydration treatment. Not only can the volume of sludge be reduced sufficiently, but the water quality of the concentrated and dehydrated separation liquid deteriorates, leading to an increase in the pollution load on the subsequent wastewater treatment facility. Conversely, if the amount of flocculant injected is excessive, it may affect the concentration process and dehydration process, and unreacted flocculant components may remain in the concentrated and dehydrated separation liquids. (SS recovery rate) itself deteriorates, and as a result, the water quality of the separated liquid deteriorates.

さらに、汚泥への凝集剤注入量が適切であっても、汚泥と凝集剤とが十分に且つ確実に混合して反応(フロック化)しないと、濃縮性能や脱水性能が低下してしまう。とくに効率的に遠心脱水することができる高濃度汚泥は、凝集剤と速やかに混合することが難しく、汚泥と凝集剤とが速やかに且つ効率よく混合して凝集フロックを形成させないと、十分な脱水性能を得ることができない。   Furthermore, even if the amount of the flocculant injected into the sludge is appropriate, if the sludge and the flocculant are mixed sufficiently and reliably and do not react (flocculate), the concentration performance and dewatering performance will deteriorate. In particular, high-concentration sludge that can be efficiently centrifugally dehydrated is difficult to mix quickly with the flocculant, and if the sludge and flocculant are mixed quickly and efficiently to form an aggregate floc, sufficient dewatering is possible. Unable to get performance.

高濃度の汚泥を無機凝集剤と高分子凝集剤を併用して脱水を行う脱水処理(2液法)において、汚泥と凝集剤とが確実に反応しないと強固な凝集フロックが形成されず、分離性能が悪くなって分離液のSS濃度が上昇(SS回収率が悪化)するばかりか、汚泥に高濃度に含まれるりんが、無機凝集剤と反応して不溶性塩になり脱水汚泥に取り込まれて除去されず、分離液に移行して排出されてしまい、その結果、水質性状の悪い分離液が排水処理設備に還流して汚濁負荷を増大させてしまうことになる。   In the dehydration process (two-component method) in which high-concentration sludge is dehydrated using a combination of an inorganic flocculant and a polymer flocculant, if the sludge and the flocculant do not react reliably, strong flocs cannot be formed and separated. Not only does the performance deteriorate and the SS concentration of the separation liquid increases (SS recovery rate deteriorates), but the phosphorus contained in the sludge at a high concentration reacts with the inorganic flocculant to become an insoluble salt and is taken into the dewatered sludge. Instead of being removed, the liquid is transferred to the separation liquid and discharged. As a result, the separation liquid having poor water quality is returned to the waste water treatment facility to increase the pollution load.

そこで、高濃度汚泥に対して無機凝集剤や高分子凝集剤の注入量を増やしたり、汚泥処理量を低減させたりして、分離液の水質を改善(SS回収率の向上やりん濃度の低減)することもできるが、これにより効率的で安定した汚泥処理(脱水汚泥含水率の低減、運転時間の短縮、凝集剤代や電気代など運転コストの低減)に支障を来す結果になってしまう。   Therefore, the amount of inorganic flocculant and polymer flocculant injected into high-concentration sludge is increased or the amount of sludge treated is reduced to improve the water quality of the separation liquid (improvement of SS recovery rate and reduction of phosphorus concentration). ), But this will hinder efficient and stable sludge treatment (reducing water content of dehydrated sludge, shortening operating time, reducing operating costs such as coagulant and electricity costs). End up.

本発明は、上述のような課題を解決するためになされたもので、汚泥に凝集剤を注入して遠心脱水に適した状態に調質(凝集フロック形成、水分排除、減容化、濃縮など)し、この調質汚泥を遠心脱水機で脱水する汚泥処理において、汚泥調質工程と汚泥脱水工程を効率的に組み合せて一元化し、汚泥処理設備全体のコンパクト化を図ると共に、凝集剤の使用を抑えながら調質汚泥を確実に脱水処理して脱水汚泥の減容化ができる汚泥処理システムおよび汚泥処理方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and injects a flocculant into sludge and tempers it into a state suitable for centrifugal dehydration (coagulation floc formation, moisture removal, volume reduction, concentration, etc.) In the sludge treatment that dehydrates this tempered sludge with a centrifugal dehydrator, the sludge tempering process and the sludge dewatering process are efficiently combined and unified to reduce the size of the entire sludge treatment facility and to use a flocculant. An object of the present invention is to provide a sludge treatment system and a sludge treatment method capable of reducing the volume of dehydrated sludge by reliably dewatering conditioned sludge while suppressing the above-mentioned.

本発明に係る汚泥処理システムは、汚泥に高分子凝集剤を注入して調質する汚泥調質機と、調質汚泥を脱水汚泥と脱水分離液とに分離する遠心脱水機と、該遠心脱水機に前記調質汚泥を供給する調質汚泥供給管とからなるものである。   The sludge treatment system according to the present invention includes a sludge refining machine for injecting a polymer flocculant into the sludge and refining, a centrifugal dehydrator for separating the reconditioned sludge into dehydrated sludge and a dehydrated separation liquid, and the centrifugal dewatering A conditioned sludge supply pipe for supplying the conditioned sludge to the machine.

本発明に係る汚泥処理システムは、調質汚泥に無機凝集剤を注入する無機凝集剤注入管を備えたものである。   The sludge treatment system according to the present invention includes an inorganic flocculant injection pipe for injecting an inorganic flocculant into conditioned sludge.

本発明に用いられる遠心脱水機は、外胴ボウルおよび内胴スクリュウを有すると共に、前記内胴スクリュウ内を延伸して、前記外胴ボウルのテーパ部に無機凝集剤を注入するテーパ注入管を備えたものである。   A centrifugal dehydrator used in the present invention includes an outer body bowl and an inner body screw, and includes a taper injection tube that extends inside the inner body screw and injects an inorganic flocculant into a tapered portion of the outer body bowl. It is a thing.

本発明に用いられる無機凝集剤は、鉄含有率が高い高比重無機凝集剤であることを特徴とするものである。   The inorganic flocculant used in the present invention is a high specific gravity inorganic flocculant having a high iron content.

本発明に係る汚泥処理システムは、脱水分離液の酸化還元電位を測定する酸化還元電位計と該酸化還元電位計の計測値に基づき、無機凝集剤の注入、高分子凝集剤の注入および遠心脱水機の運転のうち、一つまたは二つ以上を制御する制御器を備えたものである。   The sludge treatment system according to the present invention includes an oxidation-reduction potentiometer that measures the oxidation-reduction potential of a dehydration separation liquid, and injection of an inorganic flocculant, injection of a polymer flocculant, and centrifugal dehydration based on the measured value of the oxidation-reduction potentiometer It is equipped with a controller that controls one or more of the machine operations.

本発明に係る汚泥処理方法は、汚泥に高分子凝集剤を注入し、高分子凝集剤が注入された汚泥を汚泥調質機で調質し、調質された汚泥に無機凝集剤を注入し、無機凝集剤が注入された調質汚泥を遠心脱水機へ供給して脱水するものである。   In the sludge treatment method according to the present invention, a polymer flocculant is injected into the sludge, the sludge into which the polymer flocculant is injected is tempered with a sludge tempering machine, and the inorganic flocculant is injected into the conditioned sludge. The tempered sludge injected with the inorganic flocculant is supplied to a centrifugal dehydrator for dehydration.

本発明に係る汚泥処理システムによれば、遠心脱水に適した汚泥の状態に調質する汚泥調質機、調質汚泥を遠心脱水する遠心脱水機、および遠心脱水機に調質汚泥を供給する汚泥供給管を備えることにより、次のような優れた作用効果を奏する。
(1)汚泥を調質した後ただちに脱水するため、調質での高分子凝集剤注入で脱水処理まで完了することができる。
(2)汚泥の調質により脱水する汚泥が減容化(高濃度化)されるため、遠心脱水機で効率的に脱水処理することができる。
(3)汚泥を調質した後ただちに脱水できることから、長時間の貯留によって生じる調質汚泥の変質(嫌気化、腐敗、凝集フロックの解体など)を防止でき、脱水処理における脱水汚泥含水率の上昇、SS回収率の悪化、脱水分離液の水質悪化等の悪影響を防止することができる。
(4)前記調質汚泥の変質を抑止できるため、従来変質への対応として行っていた凝集剤の過剰注入を回避でき、凝集剤の使用量を削減できる。
(5)施設計画時での機種選定においては、より小型機種の遠心脱水機を提案することができ、さらに汚泥調質機と遠心分離機とをパッケージ化することにより、一層汚泥処理施設全体をコンパクト化することができる。
According to the sludge treatment system according to the present invention, the sludge refining machine for conditioning the sludge suitable for centrifugal dewatering, the centrifugal dehydrator for centrifugally dewatering the conditioned sludge, and supplying the conditioned sludge to the centrifugal dehydrator By providing the sludge supply pipe, the following excellent effects can be obtained.
(1) Since the sludge is dehydrated immediately after tempering, the dehydration process can be completed by injecting the polymer flocculant during tempering.
(2) Since the sludge to be dewatered is reduced in volume (high concentration) due to sludge refining, it can be efficiently dewatered with a centrifugal dehydrator.
(3) Since the sludge can be dewatered immediately after it has been tempered, it is possible to prevent alteration of the tempered sludge (anaerobic, decay, disintegration of coagulated flocs, etc.) caused by long-term storage, and an increase in the moisture content of the dewatered sludge in the dewatering process Further, adverse effects such as deterioration of SS recovery rate and deterioration of water quality of the dehydrated separation liquid can be prevented.
(4) Since the alteration of the tempered sludge can be suppressed, it is possible to avoid excessive injection of the flocculant, which has been performed as a countermeasure to the conventional alteration, and to reduce the amount of the flocculant used.
(5) For model selection at the time of facility planning, we can propose a more compact model of centrifugal dehydrator, and further package the sludge tempering machine and centrifuge to further improve the overall sludge treatment facility. It can be made compact.

本発明に係る汚泥処理システムによれば、調質汚泥に無機凝集剤を注入・混合する手段を備えたことで、調質汚泥と無機凝集剤との混合が確実に行えるため、凝集剤が混合しにくい性状の汚泥が供給されても効率よく脱水に適した凝集フロックを得ることができる。これにより遠心脱水機での脱水汚泥や脱水分離液が良質となり、且つ安定化する。   According to the sludge treatment system according to the present invention, the means for injecting and mixing the inorganic flocculant into the tempered sludge can be reliably mixed with the tempered sludge and the inorganic flocculant, so that the flocculant is mixed. Even when sludge having a property that is difficult to perform is supplied, agglomerated floc suitable for dehydration can be obtained efficiently. As a result, the dewatered sludge and dehydrated separation liquid in the centrifugal dehydrator are of good quality and stabilized.

本発明に係る汚泥処理システムによれば、遠心脱水機の外胴ボウルのテーパ部に無機凝集剤を注入するテーパ注入管を備えたことにより、ある程度脱水の進んだ汚泥に直接無機凝集剤を注入し、且つ遠心脱水機内での汚泥を搬送する力と遠心力によって確実に混合することが可能となるため、比較的少量の無機凝集剤で効率よく良質の脱水汚泥を得ることができる。これにより無機凝集剤の過剰使用を抑制するのみならず、調質による汚泥の減容化およびこれに伴う遠心脱水機の小型化ができ、さらに遠心脱水機の外部に設置していた汚泥貯留槽や汚泥と凝集剤の混合設備などを省略することができ、汚泥処理施設の省スペース化も可能であり、運転コストや設備コストの削減、設備設置面積の縮小に有効である。   According to the sludge treatment system of the present invention, the inorganic flocculant is directly injected into the sludge that has been dewatered to some extent by providing the taper injection pipe for injecting the inorganic flocculant into the tapered portion of the outer bowl of the centrifugal dehydrator. In addition, since it is possible to reliably mix the sludge in the centrifugal dehydrator by the conveying force and the centrifugal force, a high-quality dehydrated sludge can be efficiently obtained with a relatively small amount of the inorganic flocculant. This not only prevents excessive use of the inorganic flocculant, but also reduces the volume of sludge by refining and downsizing the centrifugal dehydrator, and the sludge storage tank that was installed outside the centrifugal dehydrator In addition, the sludge and flocculant mixing equipment can be omitted, and the sludge treatment facility can be saved in space, which is effective in reducing the operating cost and equipment cost and the equipment installation area.

本発明に係る汚泥処理システムによれば、遠心脱水機から排出される脱水分離液の酸化還元電位を測定する酸化還元電位計および酸化還元電位計の測定値に基づき調質汚泥への各種凝集剤の注入および/または遠心脱水機の運転を制御する制御器を備えたことにより、常時脱水分離液の変動状況を監視し、無機凝集剤の注入量や遠心脱水機の運転を変更する必要が生じた場合にも適切な制御を行うため、安定した汚泥脱水が図れる。   According to the sludge treatment system according to the present invention, the oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the dehydrated separation liquid discharged from the centrifugal dehydrator, and various coagulants for the conditioned sludge based on the measured values of the oxidation-reduction potentiometer It is necessary to constantly monitor the fluctuation state of the dehydration separation liquid and change the injection amount of the inorganic flocculant and the operation of the centrifugal dehydrator. Therefore, stable sludge dewatering can be achieved because appropriate control is performed.

本発明に係る汚泥処理システムでは、無機凝集剤に鉄含有率が高い高比重無機凝集剤を用いることにより、比較的少ない注入率で従来の無機凝集剤と同等以上の脱水性能が安定して得られるのみならず、汚泥処理システム全体における凝集剤使用量を削減することができる。   In the sludge treatment system according to the present invention, by using a high specific gravity inorganic flocculant having a high iron content as the inorganic flocculant, a dehydration performance equivalent to or higher than that of the conventional inorganic flocculant can be stably obtained with a relatively small injection rate. In addition, the amount of flocculant used in the entire sludge treatment system can be reduced.

本発明に係る汚泥処理方法によれば、汚泥に高分子凝集剤を注入して汚泥調質機で調質し、調質汚泥に無機凝集剤を注入して遠心脱水機で脱水するため、汚泥の処理全体として調和のとれた処理が可能となり、調質汚泥の貯留槽や貯留中の撹拌設備が不要となり設備の縮減やそれに伴う設備の一体化、運転管理の一元化が図れ、また、調質汚泥をただちに遠心脱水するために、調質汚泥の変質(嫌気化、腐敗、凝集フロックの解体など)による凝集剤の過剰注入(再注入)を回避できて凝集剤注入量も削減できる等、建設コストや運転コストを低減化できる優れた作用効果を得ることができる。   According to the sludge treatment method of the present invention, the polymer flocculant is injected into the sludge and conditioned by the sludge tempering machine, and the inorganic flocculant is injected into the conditioned sludge and dehydrated by the centrifugal dehydrator. As a whole, it is possible to achieve a harmonious treatment, eliminating the need for tempered sludge storage tanks and agitation equipment during storage, reducing the size of the equipment, integrating the equipment, and centralizing operation management. In order to immediately dewater sludge, it is possible to avoid excessive injection (re-injection) of flocculant due to alteration of tempered sludge (anaerobic, decay, dismantling of flocs flocs, etc.) and reduce the amount of flocculant injected. It is possible to obtain an excellent effect that can reduce the cost and the operating cost.

<実施の形態1>
図1は本発明の実施の形態1による汚泥処理システムの概略的な構成図である。
本発明に係る汚泥処理システムは、高分子凝集剤を注入した汚泥を高濃度で安定した凝集フロックを含む汚泥(調質汚泥)に調質する汚泥調質機1Aと、調質汚泥を脱水汚泥と脱水分離液とに分離する遠心脱水機2と、調質汚泥を遠心脱水機2に供給する調質汚泥供給管3を備えた基本構造となっている。
<Embodiment 1>
FIG. 1 is a schematic configuration diagram of a sludge treatment system according to Embodiment 1 of the present invention.
The sludge treatment system according to the present invention includes a sludge refining machine 1A for refining sludge injected with a polymer flocculant into sludge (refined sludge) containing stable flocs at a high concentration and dewatered sludge. The basic structure is provided with a centrifugal dehydrator 2 that separates into a dehydrated separation liquid and a tempered sludge supply pipe 3 that supplies the conditioned sludge to the centrifugal dehydrator 2.

汚泥調質機1Aは、ベルト式ろ過であり、高分子凝集剤を注入した汚泥を調質して調質汚泥と調質分離液とに分離する無端ベルト1aと、この無端ベルト1aを回転させる一対の回転ローラ1b,1cと、これらの回転ローラ1b,1cを回転駆動させる駆動機構(図示せず)とから概略構成されている。この汚泥調質機1Aには、汚泥が汚泥供給管4を通じて供給されるように構成され、且つ、高分子凝集剤が高分子凝集剤注入管5を通じて汚泥供給管4内の汚泥に供給されるように構成されている。高分子凝集剤注入管5には、高分子凝集剤を汚泥供給管4内に注入する高分子凝集剤注入ポンプ6と、高分子凝集剤の注入を調節する開閉弁6aが設けられている。なお、汚泥調質機1Aは、高分子凝集剤を注入した汚泥を調質して調質汚泥と調質分離液とに分離できる機構であれば、例えば常圧浮上方式など、ろ過方式に限るものではない。   The sludge refining machine 1A is a belt-type filtration, refining the sludge into which the polymer flocculant has been injected and separating it into a refining sludge and a refining separation liquid, and to rotate the endless belt 1a. It is schematically constituted by a pair of rotating rollers 1b, 1c and a drive mechanism (not shown) for rotating these rotating rollers 1b, 1c. This sludge refining machine 1A is configured such that sludge is supplied through the sludge supply pipe 4, and the polymer flocculant is supplied to the sludge in the sludge supply pipe 4 through the polymer flocculant injection pipe 5. It is configured as follows. The polymer flocculant injection pipe 5 is provided with a polymer flocculant injection pump 6 for injecting the polymer flocculant into the sludge supply pipe 4 and an on-off valve 6a for adjusting the injection of the polymer flocculant. The sludge refining machine 1A is limited to a filtration method such as an atmospheric pressure flotation method as long as it is a mechanism capable of refining sludge injected with a polymer flocculant and separating it into a conditioned sludge and a tempered separation liquid. It is not a thing.

汚泥調質機1Aに供給される汚泥は、水処理から発生する汚泥/消化汚泥であり、含水率が高く、そのまま脱水処理すると、汚泥処理全体としての効率が悪く、施設全体の規模が大きくなると同時にエネルギーや薬品使用量が過剰となるなどの不都合が生じやすい。   The sludge supplied to the sludge refining machine 1A is sludge / digested sludge generated from water treatment, has a high moisture content, and if dewatered as it is, the overall efficiency of the sludge treatment is poor and the scale of the entire facility increases. At the same time, inconveniences such as excessive use of energy and chemicals are likely to occur.

このため、汚泥は、汚泥調質機1Aに供給されて調質される。調質では当該汚泥に高分子凝集剤が注入され、この高分子凝集剤の凝集作用により、汚泥の固形物が確実に凝集し、より分離性の高い強固な凝集フロックが汚泥に生成する。この様な汚泥は汚泥調質機1Aによって効率よく確実に固液分離することが可能となる。高分子凝集剤としては、例えば、両性高分子凝集剤、カチオン系高分子凝集剤、アニオン系高分子凝集剤、ノニオン系高分子凝集剤等を用いることができる。   For this reason, sludge is supplied to the sludge tempering machine 1A and tempered. In tempering, a polymer flocculant is injected into the sludge, and due to the aggregating action of the polymer flocculant, solids of the sludge are surely agglomerated, and a strong flocculation floc having higher separability is generated in the sludge. Such sludge can be solid-liquid separated efficiently and reliably by the sludge tempering machine 1A. As the polymer flocculant, for example, amphoteric polymer flocculants, cationic polymer flocculants, anionic polymer flocculants, nonionic polymer flocculants and the like can be used.

供給される汚泥中の固形物量(SS含有量)は通常汚泥重量当たり0.5〜2.0%程度の範囲であり、汚泥濃縮が目的の場合、高分子凝集剤はこの固形物量に対して重量比で0.2〜0.4%程度の注入率となるように添加し、濃縮汚泥を得ることが可能である。通常の汚泥処理ではこの濃縮汚泥は一旦貯留され脱水処理されるが、貯留されている間に撹拌や腐敗によって凝集フロックの解体が生じたり、腐敗した汚泥から凝集阻害成分(有機酸ほか)が溶出したりするなど、脱水処理に対して悪影響を及ぼす状態となる。このため脱水の前に濃縮汚泥の固形物量当たり0.5〜2.0%、凝集阻害性成分の溶出状況によってはそれ以上の高分子凝集剤を注入して再度凝集フロックを形成させる必要があった。しかし、調質が目的である本発明においては、高分子凝集剤の注入率は固形物量に対して重量比で0.5〜2.0%程度と汚泥濃縮が目的である場合よりも高いが、このように凝集剤が注入されて調質され脱水に供される調質汚泥は、高濃度の凝集フロックは安定しており脱水に適した状態に保たれているため、新たな凝集剤の注入を必要とせず、そのまま遠心分離機によって脱水することができるため、汚泥処理全体としては高分子凝集剤の注入量を減少することができる。つまり、調質に用いる高分子凝集剤だけで脱水処理まで完了することができる。   The amount of solids (SS content) in the supplied sludge is usually in the range of about 0.5 to 2.0% per sludge weight. When sludge concentration is intended, the polymer flocculant is based on the amount of solids. It is possible to obtain concentrated sludge by adding so that the injection rate is about 0.2 to 0.4% by weight. In normal sludge treatment, this concentrated sludge is once stored and dehydrated, but while it is being stored, agglomeration flocs are dismantled due to agitation and rot, or aggregation inhibiting components (organic acids, etc.) are eluted from the septic sludge. It will be in the state which exerts a bad influence on dehydration processing. For this reason, before dewatering, it is necessary to inject a polymer flocculant of 0.5 to 2.0% per solid content of the concentrated sludge, and depending on the elution status of the aggregation-inhibiting component, to form an aggregation floc again. It was. However, in the present invention where refining is the purpose, the injection rate of the polymer flocculant is about 0.5 to 2.0% by weight with respect to the amount of solids, which is higher than when sludge concentration is intended. In this way, the tempered sludge that is tempered after being injected with the flocculant and subjected to dehydration is stable in the high concentration of floc floc and kept in a state suitable for dehydration. Since no injection is required and dehydration can be carried out as it is with a centrifuge, the amount of the polymer flocculant injected can be reduced as a whole sludge treatment. That is, the dehydration process can be completed with only the polymer flocculant used for tempering.

次に動作について説明する。
まず、汚泥に高分子凝集剤が注入(ライン注入)され、高分子凝集剤の凝集作用により凝集フロックが生成した汚泥(凝集汚泥)は、汚泥調質機1Aの無端ベルト1aに供給され、水分が排除され減容化した高濃度で安定した凝集フロックを含む調質汚泥が
次に、この調質汚泥は、調質汚泥供給管3を通じて、遠心脱水機2内に供給されて脱水処理され、含水率の低い脱水汚泥と脱水分離液とに分離され、それぞれ機外へ排出される。
Next, the operation will be described.
First, a polymer flocculant is injected into the sludge (line injection), and the sludge (aggregated sludge) generated by the flocculent action of the polymer flocculant is supplied to the endless belt 1a of the sludge refining machine 1A, and moisture Then, the conditioned sludge containing the high-concentration and stable flocs with reduced volume is supplied to the centrifugal dehydrator 2 through the conditioned sludge supply pipe 3 and dehydrated. Separated into dehydrated sludge and dehydrated separation liquid with low water content, each is discharged out of the machine.

本発明の実施の形態1によれば、含水率の高い汚泥に高分子凝集剤を注入して混合し、汚泥中に凝集フロックが形成した後に、その汚泥を汚泥調質機1Aにおいて、遠心脱水に適した状態にある高濃度で安定した凝集フロックを含む調質汚泥と調質分離液とに分離し、その調質汚泥を、調質汚泥供給管3を経て遠心脱水機2に直接供給することにより、含水率の低い脱水汚泥と脱水分離液とに分離することができる。   According to Embodiment 1 of the present invention, a polymer flocculant is injected and mixed in sludge having a high water content, and after the flocs are formed in the sludge, the sludge is subjected to centrifugal dehydration in the sludge refining machine 1A. Is separated into a tempered sludge and a tempered separation liquid containing a high concentration and a stable coagulated floc in a state suitable for the sewage, and the tempered sludge is directly supplied to the centrifugal dehydrator 2 through the tempered sludge supply pipe 3. Thus, it can be separated into dehydrated sludge and dehydrated separation liquid having a low water content.

本発明の実施の形態1によれば、汚泥に注入される高分子凝集剤の注入率を汚泥中の固形物量に対して重量比で0.5〜2.0%程度に設定して汚泥中に凝集フロックを形成し、汚泥調質機1Aにおいて遠心脱水に適した高濃度で安定した凝集フロックを含む調質汚泥を得ることにより、濃縮工程を設けた場合に必要となる、濃縮に用いられる高分子凝集剤の使用量を削減することができる。また、調質による汚泥の減容化によって、既設遠心脱水機の処理性能が向上する。あるいは施設計画段階においてより小型の遠心脱水機の提案が可能となる。   According to Embodiment 1 of the present invention, the injection rate of the polymer flocculant injected into the sludge is set to about 0.5 to 2.0% by weight with respect to the amount of solids in the sludge. In the sludge refining machine 1A, the sludge refining machine 1A is used for concentration, which is necessary when a concentration step is provided by obtaining a refining sludge containing a high concentration and stable agglomerated floc suitable for centrifugal dehydration. The amount of the polymer flocculant used can be reduced. Moreover, the processing performance of the existing centrifugal dehydrator is improved by reducing the volume of sludge by refining. Alternatively, a smaller centrifugal dehydrator can be proposed at the facility planning stage.

本発明の実施の形態1によれば、汚泥を汚泥調質機1Aによって遠心脱水に適した高濃度で安定した凝集フロックを含む調質汚泥とすることで、汚泥調質後ただちに遠心脱水機2によって脱水汚泥と脱水分離液とに分離することが可能となり、貯留施設を必要とせずに施設全体がコンパクトになるのみならず、貯留を行った場合に懸念される撹拌や汚泥の腐敗などに起因する凝集フロックの解体と凝集阻害性分(有機酸など)の溶出に起因する汚泥脱水への悪影響と、それに伴い必要となる通常の注入率よりも高い凝集剤の使用を行わなくて済む。   According to Embodiment 1 of the present invention, the sludge is made into a conditioned sludge containing a high concentration and stable flocculated floc suitable for centrifugal dewatering by the sludge refining machine 1A. Can be separated into dehydrated sludge and dehydrated separation liquid, and the entire facility becomes compact without the need for a storage facility. It is not necessary to use a flocculant higher than the normal injection rate required in connection with the adverse effects on sludge dehydration due to the dismantling of the flocculant flocs and the elution of the aggregation inhibitory components (organic acid etc.).

本発明の実施の形態1によれば、調質汚泥を速やかに脱水に供するように構成したことにより、調質汚泥を貯留した場合に嫌気化して生じる調質汚泥自体の腐敗成分やりんの溶出による脱水分離液の品質低下(有機酸やりんを主とする汚濁物の増大)を防止できる。   According to Embodiment 1 of the present invention, the tempered sludge is subjected to rapid dehydration, so that the septic components and phosphorus elution of the conditioned sludge itself generated by anaerobic when the tempered sludge is stored are stored. It is possible to prevent the quality of the dehydrated separation liquid from deteriorating (increase in contaminants mainly organic acids and phosphorus).

<実施の形態2>
図2は本発明の実施の形態2による汚泥処理システムの概略的な構成図であり、図1と同一の構成要素には同一符号を付して重複説明を省略する。
<Embodiment 2>
2 is a schematic configuration diagram of a sludge treatment system according to Embodiment 2 of the present invention. The same components as those in FIG.

実施の形態2による汚泥処理システムでは、汚泥調質機1Aと遠心脱水機2と調質汚泥供給管3とが一つのパッケージボックス7内に設置されることでパッケージ化されており、パッケージボックス内の汚泥調質機1に、汚泥の供給および高分子凝集剤の注入に加えて、無機凝集剤を注入でき、且つ、パッケージボックス7内の調質汚泥供給管3に無機凝集剤を注入できるように構成された点で、実施の形態1と異なる。   In the sludge treatment system according to the second embodiment, the sludge refining machine 1A, the centrifugal dehydrator 2, and the refining sludge supply pipe 3 are packaged by being installed in one package box 7. In addition to supplying sludge and polymer flocculant, the inorganic flocculant can be injected into the sludge refining machine 1 and the inorganic flocculant can be injected into the tempered sludge supply pipe 3 in the package box 7. This is different from the first embodiment in that it is configured as described above.

パッケージボックス7は、その底部を、汚泥処理システムが一体化されて設置される機械基礎上に固定できるように構成されている。パッケージボックス7の外部には、汚泥供給タンク8が配設されている。汚泥供給タンク8内には、回転羽根9が設けられており、この回転羽根9により汚泥を撹拌し、汚泥のタンク内での局所的な堆積とそれに伴い生じる嫌気化を防止することが可能である。また、汚泥供給タンク8からパッケージボックス7内の汚泥調質機1Aへ延伸する汚泥供給管10が設けられ、この汚泥供給管10には、汚泥供給ポンプ11が設けられている。なお、汚泥供給管10を、例えば最終沈殿池からの余剰汚泥引抜管や汚泥返送管と接続して汚泥を供給してもよい。   The package box 7 is configured such that its bottom can be fixed on a machine foundation on which the sludge treatment system is integrated. A sludge supply tank 8 is disposed outside the package box 7. A rotary blade 9 is provided in the sludge supply tank 8, and the sludge is stirred by this rotary blade 9, and it is possible to prevent local accumulation in the tank of sludge and anaerobic generation caused thereby. is there. Further, a sludge supply pipe 10 extending from the sludge supply tank 8 to the sludge tempering machine 1A in the package box 7 is provided, and a sludge supply pump 11 is provided in the sludge supply pipe 10. Sludge may be supplied by connecting the sludge supply pipe 10 to, for example, an excess sludge extraction pipe or a sludge return pipe from the final sedimentation basin.

また、パッケージボックス7の外部には、高分子凝集剤を収容する高分子凝集剤タンク12が配設されて、この高分子凝集剤タンク12から汚泥供給管10に延伸する高分子凝集剤注入管5が設けられている。   Further, a polymer flocculant tank 12 containing a polymer flocculant is disposed outside the package box 7, and a polymer flocculant injection pipe extending from the polymer flocculant tank 12 to the sludge supply pipe 10. 5 is provided.

さらに、パッケージボックス7の外部には、無機凝集剤を収容する無機凝集剤タンク13が配設されている。無機凝集剤タンク13から無機凝集剤注入管14がパッケージボックス7内へ延伸し、この無機凝集剤注入管14には、無機凝集剤注入ポンプ15が設けられている。無機凝集剤注入管14は、パッケージボックス7内に配設されている調質汚泥供給管3に無機凝集剤を注入(ライン注入)するものであり、また汚泥調質機1A内に無機凝集剤を注入する機内注入管14aと、汚泥供給管10に無機凝集剤を注入する前注入管14bが分岐されている。無機凝集剤注入管14,機内注入管14a,前注入管14bには、無機凝集剤の注入を調節する開閉弁15a,開閉弁15b,開閉弁15cが配置されている。   Further, an inorganic flocculant tank 13 for accommodating the inorganic flocculant is disposed outside the package box 7. An inorganic flocculant injection pipe 14 extends from the inorganic flocculant tank 13 into the package box 7, and the inorganic flocculant injection pipe 15 is provided with an inorganic flocculant injection pump 15. The inorganic flocculant injection pipe 14 is for injecting an inorganic flocculant into the conditioned sludge supply pipe 3 disposed in the package box 7 (line injection), and also in the sludge tempering machine 1A. The in-machine injection pipe 14a for injecting the liquid and the pre-injection pipe 14b for injecting the inorganic flocculant into the sludge supply pipe 10 are branched. The inorganic flocculant injection pipe 14, the in-machine injection pipe 14a, and the front injection pipe 14b are provided with an on-off valve 15a, an on-off valve 15b, and an on-off valve 15c for adjusting the injection of the inorganic flocculant.

無機凝集剤タンク13に収容される無機凝集剤としては、例えば、ポリ硫酸第2鉄(ポリ鉄)、ポリ塩化アルミニウム(PAC)、ポリ硫酸アルミニウム(硫酸バンド)等を用いることができる。このような無機凝集剤を汚泥に注入することにより、汚泥を確実に凝集させ、分離性の高い凝集フロックを生成することができると共に、汚泥に含まれる溶解性汚濁成分(りん等)と反応して不溶性塩にして除去することができる。   As the inorganic flocculant accommodated in the inorganic flocculant tank 13, for example, polyferric ferric sulfate (polyiron), polyaluminum chloride (PAC), polyaluminum sulfate (sulfuric acid band) and the like can be used. By injecting such an inorganic flocculant into the sludge, the sludge can be reliably agglomerated and a highly segregated floc can be generated, and it reacts with soluble pollutants (phosphorus, etc.) contained in the sludge. Insoluble salts can be removed.

また、凝集剤を用いる汚泥処理では適正な処理が行えるように、供給される汚泥の性状や処理の状況により凝集剤の種類、注入率および注入する場所や順番について試行錯誤によって設定する。この設定は、実施の形態2による汚泥処理システムの稼動前に、実験的に検証されることで行われる。このため、当該設定を実行できるように、図2に示す汚泥処理システムでは、上述のように、無機凝集剤を注入する無機凝集剤注入管14を設け、注入位置についても調質汚泥供給管3を注入位置とするほか、汚泥調質機1を注入位置とする機内注入管14a、および汚泥供給管10を注入位置とする前注入管14bを備えている。   In addition, in the sludge treatment using a flocculant, the type of flocculant, the injection rate, and the place and order of injection are set by trial and error according to the properties of the sludge supplied and the state of the treatment. This setting is performed by experimental verification before the sludge treatment system according to the second embodiment is operated. For this reason, in the sludge treatment system shown in FIG. 2, the inorganic flocculant injection pipe 14 for injecting the inorganic flocculant is provided as described above so that the setting can be executed, and the tempered sludge supply pipe 3 is also provided at the injection position. Is an in-machine injection pipe 14a having the sludge tempering machine 1 as an injection position, and a pre-injection pipe 14b having the sludge supply pipe 10 as an injection position.

次に動作について説明する。
まず、汚泥供給タンク8内の汚泥の性状等に基づいて、高分子凝集剤や無機凝集剤の種類、注入率、注入場所、等の諸条件が設定される。この設定に基づいて、汚泥供給管10内の汚泥には、高分子凝集剤注入管5を通じて、高分子凝集剤が注入(ライン注入)され、混合される。この高分子凝集剤の注入前に、汚泥に無機凝集剤を注入することが汚泥調質にとって適正である場合には、無機凝集剤が無機凝集剤注入管14から分岐する前注入管14bを通じて注入される。このようにして凝集汚泥が形成される。
次に、汚泥供給管10を通じて汚泥調質機1A内に供給される凝集汚泥は、その汚泥調質機1Aにより調質されて、調質汚泥と調質分離液とに分離される。調質中の汚泥に無機凝集剤を注入することが汚泥処理にとって適正である場合には、無機凝集剤が無機凝集剤注入管14から分岐する機内注入管14aを通じて注入される。
次に、調質汚泥供給管3を通じて遠心脱水機2内に供給されるこの調質汚泥は、その遠心脱水機2によって脱水処理されて、含水率の低い脱水汚泥と、脱水分離液とに分離される。脱水処理前の調質汚泥に無機凝集剤を注入することが汚泥処理にとって適正である場合には、無機凝集剤が無機凝集剤注入管14を通じてから注入される。
Next, the operation will be described.
First, various conditions such as the type of polymer flocculant and inorganic flocculant, the injection rate, and the injection location are set based on the properties of the sludge in the sludge supply tank 8 and the like. Based on this setting, the polymer flocculant is injected into the sludge in the sludge supply pipe 10 through the polymer flocculant injection pipe 5 (line injection) and mixed. If it is appropriate for the sludge conditioning to inject the inorganic flocculant into the sludge before the injection of the polymer flocculant, the inorganic flocculant is injected through the pre-injection pipe 14b branched from the inorganic flocculant injection pipe 14. Is done. In this way, agglomerated sludge is formed.
Next, the coagulated sludge supplied into the sludge tempering machine 1A through the sludge supply pipe 10 is tempered by the sludge tempering machine 1A and separated into the tempered sludge and the tempered separation liquid. When it is appropriate for the sludge treatment to inject the inorganic flocculant into the sludge being tempered, the inorganic flocculant is injected through the in-machine injection pipe 14 a branched from the inorganic flocculant injection pipe 14.
Next, this conditioned sludge supplied into the centrifugal dehydrator 2 through the conditioned sludge supply pipe 3 is dehydrated by the centrifugal dehydrator 2 and separated into a dehydrated sludge having a low water content and a dehydrated separation liquid. Is done. When it is appropriate for the sludge treatment to inject the inorganic flocculant into the conditioned sludge before the dehydration treatment, the inorganic flocculant is injected through the inorganic flocculant injection pipe 14.

なお、無機凝集剤の注入は、上記設定に基づいて、あるいは、その後の汚泥処理の状況に基づいて、無機凝集剤注入管14、機内注入管14aおよび前注入管14bの一つまたは二つ以上を適宜選択して利用してもよい。   In addition, the inorganic flocculant is injected based on the above setting or based on the state of subsequent sludge treatment, one or more of the inorganic flocculant injection pipe 14, the in-machine injection pipe 14a, and the front injection pipe 14b. May be appropriately selected and used.

本発明の実施の形態2によれば、実施の形態1と同様に、含水率の高い汚泥に高分子凝集剤を注入して混合し、凝集汚泥を形成した後に、この凝集汚泥を汚泥調質機1Aにおいて、脱水に適した調質汚泥と調質分離液とに分離し、その調質汚泥を、調質汚泥供給管3を経て遠心脱水機2に供給することにより、含水率の低い脱水汚泥と脱水分離液とに効率よく分離することができる。   According to the second embodiment of the present invention, as in the first embodiment, the polymer flocculant is injected into the sludge having a high water content and mixed to form the agglomerated sludge. The machine 1A separates the conditioned sludge suitable for dehydration and the tempered separation liquid, and supplies the conditioned sludge to the centrifugal dehydrator 2 through the conditioned sludge supply pipe 3, thereby dehydrating with a low water content. It can be efficiently separated into sludge and dehydrated separation liquid.

本発明の実施の形態2によれば、無機凝集剤注入管14、機内注入管14aおよび前注入管14bを配設したことにより、供給される汚泥の性状が変動し、無機凝集剤の注入が汚泥調質に必要となった場合においても、適切な注入位置で無機凝集剤を注入することができる。   According to the second embodiment of the present invention, the inorganic flocculant injection pipe 14, the in-machine injection pipe 14a, and the front injection pipe 14b are arranged, so that the properties of the supplied sludge vary, and the inorganic flocculant is injected. Even when it is necessary for sludge conditioning, the inorganic flocculant can be injected at an appropriate injection position.

本発明の実施の形態2によれば、前注入管14bを通じて無機凝集剤を注入して汚泥中の溶解性汚濁成分(りん等)を凝集し、比較的微細な凝集フロックを生成させた後に、高分子凝集剤注入管5を通じて高分子凝集剤を注入することにより、比較的微細な凝集フロックを汚泥中の固形物分と共に、更に凝集させて安定した凝集フロックとすることができる。これにより、溶解性汚濁成分は脱水分離液と共に流出・還流することなく、脱水汚泥に取り込まれて排出・処分され、調質分離液や脱水分離液の水質低下防止という効果が得られる。   According to Embodiment 2 of the present invention, after injecting an inorganic flocculant through the pre-injection tube 14b to agglomerate soluble contaminant components (such as phosphorus) in the sludge to produce relatively fine agglomerated flocs, By injecting the polymer flocculant through the polymer flocculant injection tube 5, it is possible to further agglomerate the relatively fine aggregated floc together with the solid matter in the sludge to obtain a stable aggregated floc. As a result, the soluble pollutant component is taken into and discharged from the dewatered sludge without flowing out and refluxing together with the dehydrated separation liquid, and the effect of preventing deterioration of the water quality of the conditioned and dehydrated separation liquid is obtained.

<実施の形態3>
図3(A)は本発明の実施の形態3による汚泥処理システムの概略的な構成図であり、図3(B)は図3(A)に示されたテーパ注入管先端の開口およびその周囲を拡大して示す断面図である。図1と同一の構成要素には同一符号を付して重複説明を省略する。
<Embodiment 3>
FIG. 3 (A) is a schematic configuration diagram of a sludge treatment system according to Embodiment 3 of the present invention, and FIG. 3 (B) shows the opening at the tip of the tapered injection tube shown in FIG. 3 (A) and its surroundings. It is sectional drawing which expands and shows. The same components as those in FIG.

実施の形態3による汚泥処理システムは、無機凝集剤注入管として、無機凝集剤を遠心脱水機2内の後述の外胴ボウルのテーパ部に注入(テーパ注入)するテーパ注入管16を配設した点と、テーパ注入管16に給水管17を接続し、給水管17に、給水ポンプ18と、給水を調節する開閉弁18aを設けた点で、実施の形態1と異なる。   The sludge treatment system according to Embodiment 3 is provided with a taper injection pipe 16 for injecting an inorganic flocculant into a tapered portion of an outer shell bowl (described later) in the centrifugal dehydrator 2 as an inorganic flocculant injection pipe. This is different from the first embodiment in that a water supply pipe 17 is connected to the taper injection pipe 16, and a water supply pump 18 and an on-off valve 18a for adjusting the water supply are provided in the water supply pipe 17.

実施の形態3における遠心脱水機2は、一端側に脱水分離液排出口2aが、他端側に脱水汚泥排出口2bが設けられたケーシング20と、このケーシング20内に回転可能に配設された外胴ボウル21と、この外胴ボウル21内に回転可能に配設された内胴スクリュウ22と、外胴ボウル21および内胴スクリュウ22を回転駆動する回転駆動機23と、外胴ボウル21と内胴スクリュウ22とに回転差を与えるバックドライブモータ24とを備えており、外胴ボウル21と内胴スクリュウ22との間にプール(濃縮・脱水ゾーン)25が形成される構造となっている。   The centrifugal dehydrator 2 according to Embodiment 3 is rotatably disposed in a casing 20 having a dehydrated separation liquid discharge port 2a on one end side and a dewatered sludge discharge port 2b on the other end side. An outer body bowl 21, an inner body screw 22 rotatably disposed in the outer body bowl 21, a rotary drive machine 23 that rotationally drives the outer body bowl 21 and the inner body screw 22, and the outer body bowl 21 And a back drive motor 24 that gives a rotational difference between the inner body screw 22 and the inner body screw 22. A pool (concentration / dehydration zone) 25 is formed between the outer body bowl 21 and the inner body screw 22. Yes.

調質汚泥供給管3は、内胴スクリュウ22内の汚泥供給室26の内側まで延伸しており、その先端は吐出孔3aとなっている。調質汚泥供給管3内には、テーパ注入管16が配設されており、その先端の吐出孔16aは、上記吐出孔3aよりも僅かに上流側の調質汚泥供給管3の周壁部から内胴スクリュウ22の内胴テーパ部22aに向けて開口している。内胴テーパ部22aの外側には、外胴ボウル21の2段テーパ部21aが形成されている。なお、実施の形態3では、外胴ボウルのテーパ部を2段テーパ部としたが、本発明はこれに限定されず、1段テーパ部としてもよい。   The tempered sludge supply pipe 3 extends to the inside of the sludge supply chamber 26 in the inner cylinder screw 22, and the tip thereof is a discharge hole 3a. In the tempered sludge supply pipe 3, a taper injection pipe 16 is disposed, and the discharge hole 16a at the tip thereof is from the peripheral wall portion of the tempered sludge supply pipe 3 slightly upstream of the discharge hole 3a. The inner cylinder screw 22 opens toward the inner cylinder taper portion 22a. A two-step tapered portion 21a of the outer trunk bowl 21 is formed outside the inner trunk tapered portion 22a. In Embodiment 3, the taper portion of the outer body bowl is a two-step taper portion, but the present invention is not limited to this and may be a one-step taper portion.

また、汚泥供給室26には、調質汚泥供給管3の吐出孔3aから供給される調質汚泥をプール25へ供給する汚泥供給口26aと、内胴テーパ部22aに設けられ、且つ、テーパ注入管16の吐出孔16aから注入される無機凝集剤をプール25へ流出させる凝集剤流出口26bと、この凝集剤流出口26b近傍の内胴テーパ部22aに設けられ、且つ、汚泥供給口26aと凝集剤流出口26bとを仕切る仕切板26cが設けられている。   Further, the sludge supply chamber 26 is provided with a sludge supply port 26a for supplying conditioned sludge supplied from the discharge hole 3a of the conditioned sludge supply pipe 3 to the pool 25, an inner trunk taper portion 22a, and a taper. The flocculant outlet 26b for allowing the inorganic flocculant injected from the discharge hole 16a of the injection pipe 16 to flow into the pool 25 and the inner cylinder taper portion 22a in the vicinity of the flocculant outlet 26b are provided, and the sludge supply port 26a. And a flocculant outlet 26b are provided with a partition plate 26c.

無機凝集剤としては、高い鉄含有率で、高比重の無機凝集剤(以下、「高比重無機凝集剤」という)の水溶液であることが好ましい。この高比重無機凝集剤としては、その比重が1.45〜1.75で、かつ、鉄含有率(T-Fe(トータルFe)換算での鉄の濃度)が12.0%〜16.0%のものが好適であり、成分としてはポリ硫酸第二鉄(〔Fe2(OH)n(SO4)3-n/2〕m)が特に有効であるが、鉄系の高比重無機凝集剤で上記性状であり、ポリ硫酸第二鉄と同等の効果が得られるものであれば、これに限るものではない。このような比重および鉄含有率の高比重無機凝集剤は、通常の無機凝集剤に比べ、特に遠心脱水機の遠心効果などにより、汚泥に効率よく混合(浸透)させることができる。   The inorganic flocculant is preferably an aqueous solution of an inorganic flocculant having a high iron content and a high specific gravity (hereinafter referred to as “high specific gravity inorganic flocculant”). As this high specific gravity inorganic flocculant, that whose specific gravity is 1.45 to 1.75 and whose iron content (iron concentration in terms of T-Fe (total Fe)) is 12.0% to 16.0% is preferable. As a component, polyferric sulfate ([Fe2 (OH) n (SO4) 3-n / 2] m) is particularly effective, but it is an iron-based high specific gravity inorganic flocculant and has the above properties. If the effect equivalent to ferrous iron is obtained, it will not restrict to this. Such a high specific gravity inorganic flocculant having a specific gravity and iron content can be more efficiently mixed (permeated) into sludge than a normal inorganic flocculant, particularly by the centrifugal effect of a centrifugal dehydrator.

高比重無機凝集剤は、遠心脱水機2の遠心効果による混合(浸透)以外の混合方法でも汚泥に効率よく混合(浸透)させることができる。なお、図2に示された実施の形態2に係る汚泥処理システムにおいても、無機凝集剤注入管14、機内注入管14aおよび前注入管14bから高比重無機凝集剤を注入することにより、汚泥や調質汚泥と効率よく混合(浸透)させることができるため、供給される汚泥の性状によって高比重無機凝集剤を適宜注入することで汚泥処理システムを良好な状態に維持することが可能である。   The high specific gravity inorganic flocculant can be efficiently mixed (penetrated) into the sludge by a mixing method other than mixing (penetration) by the centrifugal effect of the centrifugal dehydrator 2. In the sludge treatment system according to Embodiment 2 shown in FIG. 2, sludge or flocculant can be obtained by injecting the high specific gravity inorganic flocculant from the inorganic flocculant injection pipe 14, the in-machine injection pipe 14a, and the front injection pipe 14b. Since it can be efficiently mixed (penetrated) with the conditioned sludge, the sludge treatment system can be maintained in a good state by appropriately injecting a high specific gravity inorganic flocculant depending on the properties of the supplied sludge.

給水管17および給水ポンプ18による給水は、上記のような高比重無機凝集剤をテーパ注入管16内で効率よく確実に希釈し、大きい遠心力が及ぶ2段テーパ部21aで、調質汚泥へ希釈により増量した高比重無機凝集剤を速やかに且つ広範囲に注入できるようにし、且つ、遠心脱水機2を稼動停止する際に、テーパ注入管16へ給水することにより、テーパ注入管16、吐出孔16a、凝集剤流出口26bなど、付着固化しやすい高比重無機凝集剤が接触する部位を確実に洗浄でき、高比重無機凝集剤による目詰まりや閉塞を防止することができるようにすることを目的とするものである。   The water supply by the water supply pipe 17 and the water supply pump 18 efficiently and surely dilutes the high specific gravity inorganic flocculant as described above in the taper injection pipe 16 to the conditioned sludge by the two-stage taper portion 21a to which a large centrifugal force is applied. The high specific gravity inorganic flocculant increased by dilution can be injected quickly and over a wide range, and when the centrifugal dehydrator 2 is shut down, water is supplied to the taper injection pipe 16 so that the taper injection pipe 16 and the discharge hole are discharged. 16a, the flocculant outlet 26b, and the like are capable of reliably washing the portion where the high specific gravity inorganic flocculant that easily adheres and solidifies comes into contact, and can prevent clogging or blockage by the high specific gravity inorganic flocculant. It is what.

次に動作について説明する。
まず、汚泥に高分子凝集剤が注入され、高分子凝集剤の凝集作用により凝集フロックが生成した汚泥(凝集汚泥)は、汚泥調質機1Aの無端ベルト1aに供給され、水分が排除され減容化した高濃度で安定した凝集フロックを含む汚泥(調質汚泥)が
次に、この調質汚泥は、調質汚泥供給管3の開口3aから汚泥供給室26内に供給されると共に、無機凝集剤は、テーパ注入管16から内胴テーパ部22aの凝集剤流出口26bを介して、大きな遠心力のかかる外胴ボウル21のテーパ部に流れ出し、スクリュウ羽根22bにより外胴ボウル21のテーパ部を掻き上げられ脱水汚泥排出側へ移行中の固液分離がある程度進んだ調質汚泥(分離汚泥)へ、速やかに注入(テーパ注入)される。なお、テーパ注入管16には給水管17が接続されており、必要に応じて、給水管17からテーパ注入管16へ給水して、無機凝集剤を希釈し、希釈された無機凝集剤(希釈液)を分離汚泥へ速やかに且つ広範囲にテーパ注入することができる。
Next, the operation will be described.
First, a polymer flocculant is injected into the sludge, and the sludge (flocculated sludge) generated by the flocculant action of the polymer flocculant is supplied to the endless belt 1a of the sludge tempering machine 1A, and moisture is eliminated and reduced. Next, the sewage sludge containing flocculated high concentration and stable flocs (refined sludge) is supplied to the sludge supply chamber 26 from the opening 3a of the conditioned sludge supply pipe 3 and is also inorganic. The flocculant flows out from the taper injection pipe 16 through the flocculant outlet 26b of the inner barrel taper portion 22a to the taper portion of the outer barrel bowl 21 to which a large centrifugal force is applied. Is quickly injected (tapered injection) into tempered sludge (separated sludge) that has undergone solid-liquid separation to some extent during the transition to the dewatered sludge discharge side. In addition, a water supply pipe 17 is connected to the taper injection pipe 16, and if necessary, water is supplied from the water supply pipe 17 to the taper injection pipe 16 to dilute the inorganic flocculant and dilute the inorganic flocculant (diluted). Liquid) can be quickly and widely injected into the separated sludge.

このように無機凝集剤または希釈液が注入された調質汚泥が遠心脱水機2により、脱水処理され、含水率の低い脱水汚泥と、脱水分離液とに分離され、それぞれ機外へ排出される。
なお、遠心脱水機2を稼動停止する際には、テーパ注入管16へ給水することにより、テーパ注入管16の吐出孔16aなど、付着固化しやすい無機凝集剤が接触する部位が確実に洗浄される。
The conditioned sludge into which the inorganic flocculant or the diluent has been injected is dehydrated by the centrifugal dehydrator 2, separated into a dehydrated sludge having a low water content and a dehydrated separation liquid, and each is discharged to the outside. .
When the centrifugal dehydrator 2 is shut down, water is supplied to the taper injection tube 16 so that the portion where the inorganic flocculant that tends to adhere and solidify, such as the discharge hole 16a of the taper injection tube 16 is reliably washed. The

本発明の実施の形態3によれば、含水率の高い汚泥に高分子凝集剤を注入して混合した後に、その汚泥を汚泥調質機1Aに供給することにより、脱水に適した状態にある高濃度で安定した凝集フロックを含む調質汚泥と調質分離液とに分離することができる。   According to Embodiment 3 of the present invention, the polymer flocculant is injected into and mixed with the sludge having a high water content, and then the sludge is supplied to the sludge refining machine 1A, thereby being in a state suitable for dewatering. It can be separated into a tempered sludge and a tempered separation liquid containing coagulated floc that is stable at a high concentration.

実施の形態3によれば、テーパ注入管16により、外胴ボウル21のテーパ部21a付近に掻き寄せられてきたある程度脱水がなされ固形物濃度が高くなったため薬剤を混合しにくい状態にある調質汚泥(分離汚泥)に対して直接無機凝集剤を添加することができるため、テーパ部付近の汚泥の搬送力と遠心力によって少量の無機凝集剤であっても確実に混合することが可能となる。分離汚泥と無機凝集剤とが速やかに混合・反応して、効率よく安定して分離汚泥の固液分離(分離液の分離)が促進され、従来に比べ低い含水率の脱水汚泥を得ることができる。   According to the third embodiment, the taper injection tube 16 has been tempered in a state in which it is difficult to mix the drug because the solid matter concentration has been increased to a certain degree by being dehydrated to the vicinity of the tapered portion 21a of the outer body bowl 21. Since the inorganic flocculant can be added directly to the sludge (separated sludge), even a small amount of inorganic flocculant can be reliably mixed by the conveying force and centrifugal force of the sludge near the taper portion. . Separation sludge and inorganic flocculant are quickly mixed and reacted to promote efficient and stable solid-liquid separation (separation of the separation liquid) of the separated sludge, resulting in a dehydrated sludge having a lower water content than before. it can.

本発明の実施の形態3によれば、遠心脱水機2の外胴ボウル21のテーパ部21aに無機凝集剤を注入するテーパ注入管16を備えたことにより、ある程度脱水の進んだ汚泥に直接無機凝集剤を注入し、且つ、遠心脱水機2内での汚泥を搬送する力と遠心力によって確実に混合することが可能となるため、比較的少量の無機凝集剤で効率よく良質の脱水汚泥を得ることができる。よって無機凝集剤の過剰使用を抑制するのみならず、遠心脱水機の外部に設置していた汚泥と凝集剤の混合器の設置スペースも無くなることから施設の省スペース化も可能であり、運転コストや設備コストの削減、設備設置面積の縮小に有効である。   According to the third embodiment of the present invention, the taper injection pipe 16 for injecting the inorganic flocculant into the taper portion 21a of the outer body bowl 21 of the centrifugal dehydrator 2 is provided, so that the inorganic material is directly added to the sludge that has been dehydrated to some extent. Since it is possible to inject the flocculant and to mix it reliably by the force of conveying the sludge in the centrifugal dehydrator 2 and the centrifugal force, it is possible to efficiently produce a good quality dehydrated sludge with a relatively small amount of inorganic flocculant. Obtainable. Therefore, not only the excessive use of the inorganic flocculant is suppressed, but the installation space for the sludge and flocculant mixer installed outside the centrifugal dehydrator is also eliminated, so that the space of the facility can be saved and the operating cost can be reduced. It is effective in reducing equipment costs and equipment installation area.

本発明の実施の形態3によれば、無機凝集剤として、鉄含有率が高い高比重無機凝集剤を用いることにより、比較的少ない注入率で従来の無機凝集剤と同等以上の脱水性能が安定して得られるのみならず、汚泥処理システム全体における凝集剤使用量を削減することができる。   According to Embodiment 3 of the present invention, by using a high specific gravity inorganic flocculant having a high iron content as the inorganic flocculant, dehydration performance equivalent to or higher than that of the conventional inorganic flocculant is stable with a relatively small injection rate. As a result, the amount of the flocculant used in the entire sludge treatment system can be reduced.

本発明の実施の形態3によれば、テーパ注入管16に給水する給水管17を備えたことにより、高比重無機凝集剤を効率よく確実にテーパ注入管16内で希釈でき、大きい遠心効果のかかる2段テーパ部21aで、分離汚泥へ希釈により増量した高比重無機凝集剤を速やかに且つ広範囲に注入できる。これにより分離汚泥の固液分離が一層進み、脱水工程の終盤での操作(高比重無機凝集剤注入)であるにもかかわらず、分離汚泥から効率的に且つ確実に脱水分離液を分離して、より低い含水率の脱水汚泥を得ることができ、加えて無機凝集剤を効率的に注入できるので、その使用量を抑えることもできる。
また、給水により高比重無機凝集剤を予め希釈して増量させることにより、高比重無機凝集剤を、凝集剤流出口26bを介して分離汚泥へスムーズに、満遍なく注入することができ、短時間で速やかに分離汚泥と高比重無機凝集剤とを反応させることができ、より一層効率的に且つ確実に脱水汚泥の含水率を低下させることができる。
さらに、給水により高比重無機凝集剤を希釈できるため、高濃度の高比重無機凝集剤原液を用いることができ、高比重無機凝集剤タンクや高比重無機凝集剤注入ポンプの小型化が可能であり、設備コストや設置面積の削減に有効である。
According to Embodiment 3 of the present invention, by providing the water supply pipe 17 for supplying water to the taper injection pipe 16, the high specific gravity inorganic flocculant can be diluted efficiently and reliably in the taper injection pipe 16, and a large centrifugal effect can be obtained. With such a two-step tapered portion 21a, the high specific gravity inorganic flocculant increased by dilution to the separated sludge can be quickly and widely injected. As a result, the solid-liquid separation of the separated sludge further progresses, and the dehydrated separated liquid is separated efficiently and reliably from the separated sludge in spite of the operation at the end of the dehydration process (injection of high specific gravity inorganic flocculant). In addition, dehydrated sludge having a lower water content can be obtained, and in addition, the inorganic flocculant can be efficiently injected, so that the amount of use can be suppressed.
In addition, by diluting and increasing the high specific gravity inorganic flocculant in advance with water supply, the high specific gravity inorganic flocculant can be smoothly and evenly injected into the separated sludge via the flocculant outlet 26b. The separated sludge and the high specific gravity inorganic flocculant can be reacted quickly, and the water content of the dewatered sludge can be reduced more efficiently and reliably.
Furthermore, since the high specific gravity inorganic flocculant can be diluted with water supply, a high concentration high specific gravity inorganic flocculant stock solution can be used, and the high specific gravity inorganic flocculant tank and the high specific gravity inorganic flocculant injection pump can be downsized. Effective in reducing equipment costs and installation area.

実施例1.
表1は、鉄含有率が高い高比重の無機凝集剤(鉄系の高比重無機凝集剤)の物性について、他の無機凝集剤(4種類)と比較したものである。
Example 1.
Table 1 compares the physical properties of a high specific gravity inorganic flocculant with high iron content (iron-based high specific gravity inorganic flocculant) with other inorganic flocculants (4 types).

Figure 2012139628
Figure 2012139628

表1から理解されるように、鉄系の高比重無機凝集剤は、比重が1.45以上と高く、鉄含有率(T-Fe換算での鉄の濃度)も12.0%以上と高い値である。   As understood from Table 1, the iron-based high specific gravity inorganic flocculant has a high specific gravity of 1.45 or more and an iron content (iron concentration in terms of T-Fe) is a high value of 12.0% or more.

後述する脱水性能の比較実験では、鉄系の高比重無機凝集剤として、比重が1.50〜1.60、鉄含有率(T-Fe換算での鉄の濃度)が12.5%〜14.5%のポリ硫酸第二鉄(〔Fe2(OH)n(SO4)3-n/2〕m)を使用した。   In a comparative experiment of dehydration performance, which will be described later, as an iron-based high specific gravity inorganic flocculant, polysulfuric acid 2 with a specific gravity of 1.50 to 1.60 and an iron content (iron concentration in terms of T-Fe) of 12.5% to 14.5% Iron ([Fe2 (OH) n (SO4) 3-n / 2] m) was used.

上記実施の形態3による汚泥処理システムにおいて比較実験を行った。結果を表2に示す。   A comparative experiment was performed in the sludge treatment system according to the third embodiment. The results are shown in Table 2.

この比較実験では下水処理場の消化汚泥(汚泥濃度:1.52〜1.70%)を用いて、高分子凝集剤(汚泥調質で注入)と異なる種類の無機凝集剤(5種:通常の鉄系、低比重の鉄系、高比重の鉄系、塩化アルミニウム系および硫酸アルミニウム系の無機凝集剤のテーパ注入)を併用した場合の脱水性能を調べた。   In this comparative experiment, digested sludge (sludge concentration: 1.52-1.70%) from a sewage treatment plant was used, and a different type of inorganic flocculant (5 types: normal iron-based, The dewatering performance was investigated in combination with low specific gravity iron-based, high specific gravity iron-based, aluminum chloride-based and aluminum sulfate-based inorganic flocculants.

無機凝集剤の種類および添加率以外の、汚泥調質機および遠心脱水機の運転条件は、ほぼ一定(高分子凝集剤の注入率:1.41〜1.58%TS、遠心効果:2000G、差速:1.2〜2.0min-1)とした。 The operating conditions of the sludge refining machine and centrifugal dehydrator other than the type and addition rate of the inorganic flocculant are almost constant (Polymer flocculant injection rate: 1.41-1.58% TS, centrifugal effect: 2000G, differential speed: 1.2 ˜2.0 min −1 ).

表2から理解されるように、高比重の鉄系無機凝集剤(ポリ硫酸第二鉄)をテーパ注入することにより、分離液のSS濃度が安定して低い値を示しており、つまり十分に固形物を回収できた(固形物回収率:99.7%以上)。さらに、消費電力も1.12〜1.16kWh/m3であり、他の無機凝集剤と同等以上の省エネルギー効果および温室効果ガスの排出低減効果が得られた。 As can be seen from Table 2, by taper-injecting a high specific gravity iron-based inorganic flocculant (polyferric sulfate), the SS concentration of the separation liquid shows a stable and low value. Solids could be recovered (solids recovery rate: 99.7% or more). Furthermore, the power consumption was 1.12 to 1.16 kWh / m 3 , and energy saving effects and greenhouse gas emission reduction effects equivalent to or better than other inorganic flocculants were obtained.

特に、脱水性能で重要な脱水汚泥の含水率については、表2のデータに基づき図7に実験結果を示した。なお、図7(無機凝集剤注入率に対する脱水汚泥含水率の比較図)において、通常の鉄系無機凝集剤の結果を■(黒四角)で、本発明に用いられる高比重の鉄系無機凝集剤の結果を●(黒丸)で、低比重の鉄系無機凝集剤の結果を▲(黒三角)で、ポリ塩化アルミニウム系(PAC)無機凝集剤の結果を○(白丸)で、ポリ硫酸アルミニウム系(硫酸バンド)無機凝集剤の結果を△(白三角)で示した。   In particular, the moisture content of dewatered sludge, which is important for dewatering performance, is shown in FIG. In FIG. 7 (comparison of dehydrated sludge moisture content relative to inorganic flocculant injection rate), the result of normal iron-based inorganic flocculant is shown by ■ (black square), and high specific gravity iron-based inorganic flocculent used in the present invention. The result of the agent is ● (black circle), the result of low specific gravity iron-based inorganic flocculant is ▲ (black triangle), the result of polyaluminum chloride-based (PAC) inorganic flocculant is ○ (white circle), polyaluminum sulfate The result of the system (sulfuric acid band) inorganic flocculant is indicated by Δ (white triangle).

図7から理解されるように、高比重の鉄系無機凝集剤をテーパ注入した場合には、脱水汚泥の含水率は、他の無機凝集剤に比べて明らかに低い値を示しており、通常の運転条件である無機凝集剤の注入率(35%/TS)では、脱水汚泥の含水率が66%台を示しており、昨今の目標である含水率70%以下を容易に達成することができ、とても優れた脱水性能を得ることができた。   As understood from FIG. 7, when the high specific gravity iron-based inorganic flocculant is taper-injected, the water content of the dewatered sludge is clearly lower than that of other inorganic flocculants. In the inorganic flocculant injection rate (35% / TS), which is the operating condition of the dehydrating sludge, the moisture content of the dewatered sludge is in the 66% range, and the water content of 70% or less, which is the current target, can be easily achieved. And very good dewatering performance.

さらに、通常の運転条件より高い無機凝集剤の注入率(47.5%/TS)にした場合には、脱水汚泥の含水率はなんと61%台にすることができ、他の凝集剤や他の汚泥処理機器の追随を許さない非常に優れた脱水性能を発揮させることができた。   Furthermore, when the injection rate of inorganic flocculant (47.5% / TS) is higher than normal operating conditions, the moisture content of dewatered sludge can be in the 61% range, and other flocculants and other sludge We were able to demonstrate very good dewatering performance that did not allow the processing equipment to follow.

このように、汚泥に高分子凝集剤を注入して汚泥調質し、高比重の鉄系無機凝集剤をテーパ注入して遠心分離することにより、凝集剤の過剰注入を行わずに効率よく安定して脱水汚泥の含水率を低減化することができるので、汚泥の減容化に大変有効であると共に、その後の脱水汚泥の処理処分も容易になり、SS回収率や消費電力の良好な結果と合わせ、非常に高効率・省エネルギーであり、温室効果ガスの削減に十分寄与することができる。   In this way, the polymer flocculant is injected into the sludge and the sludge is tempered, and the high specific gravity iron-based inorganic flocculant is taper-injected and centrifuged to stabilize efficiently without excessive injection of the flocculant. As a result, the moisture content of the dewatered sludge can be reduced, which is very effective for reducing the volume of the sludge and facilitates the subsequent disposal of the dewatered sludge, resulting in good SS recovery and power consumption. Together with this, it is extremely efficient and energy-saving, and can fully contribute to the reduction of greenhouse gases.

Figure 2012139628
Figure 2012139628

<実施の形態4>
図4は本発明の実施の形態4による汚泥処理システムの概略構成図であり、図3(A)と同一の構成要素には同一符号を付して重複説明を省略する。
<Embodiment 4>
FIG. 4 is a schematic configuration diagram of a sludge treatment system according to Embodiment 4 of the present invention. The same components as those in FIG.

実施の形態4による汚泥処理システムは、脱水分離液の酸化還元電位(ORP)を測定するORP計27と、ORP値に基づき各凝集剤の注入等を制御する制御器28を設けた点で、実施の形態3と異なる。   The sludge treatment system according to Embodiment 4 is provided with an ORP meter 27 that measures the oxidation-reduction potential (ORP) of the dehydrated separation liquid and a controller 28 that controls injection of each flocculant based on the ORP value. Different from the third embodiment.

詳述すると、実施の形態4では、ORP計27により測定された脱水分離液のORP値に基づいて脱水分離液の水質の悪化を検知でき、悪化を検知した場合には遠心脱水機2の処理状況(運転状態)が悪いと判断でき、遠心脱水機2の処理状況(運転状態)の改善のため、制御器28により、無機凝集剤の注入、高分子凝集剤の注入、遠心脱水機2の運転のうち、一つまたは二つ以上を制御するように構成されている。   More specifically, in the fourth embodiment, the deterioration of the water quality of the dehydrated separation liquid can be detected based on the ORP value of the dehydrated separation liquid measured by the ORP meter 27, and when the deterioration is detected, the processing of the centrifugal dehydrator 2 is performed. It can be judged that the situation (operating state) is bad, and in order to improve the treatment state (operating state) of the centrifugal dehydrator 2, the controller 28 injects the inorganic flocculant, the polymer flocculant, and the centrifugal dehydrator 2 It is configured to control one or more of the operations.

ORP計27は、脱水分離液排出口2aから排出される脱水分離液を収容するORP計測槽27aと、このORP計測槽27a内に設けられた撹拌羽根27bと、ORP計測槽27a内の脱水分離液のORPを測定するための測定電極27cを備えている。ORP計27と制御器28とは電気的に接続されており、ORP計27により測定された脱水分離液のORP値の計測信号が制御器28に送られるように構成されている。なお、ORP計27から制御器28へ入力される計測信号の流れは、図4の一点鎖線で示されている。   The ORP meter 27 includes an ORP measurement tank 27a that stores the dehydrated separation liquid discharged from the dehydrated separation liquid discharge port 2a, a stirring blade 27b provided in the ORP measurement tank 27a, and a dehydration separation in the ORP measurement tank 27a. A measurement electrode 27c for measuring the ORP of the liquid is provided. The ORP meter 27 and the controller 28 are electrically connected so that a measurement signal of the ORP value of the dehydrated separation liquid measured by the ORP meter 27 is sent to the controller 28. The flow of the measurement signal input from the ORP meter 27 to the controller 28 is indicated by a one-dot chain line in FIG.

脱水分離液のORP値は、脱水分離液排出口2aから排出される脱水分離液を、測定電極27cを備えるORP計測槽27aで受けて測定している。ORP計測槽27aで脱水分離液を一端貯留、混合することにより緩衝作用が働き、ORP値の変動が緩やかとなるため制御が安定する。さらに、遠心脱水機2が長時間休止する場合においても、測定電極27cはORP計測槽27a内の脱水分離液に浸された状態となるため、測定電極27cの乾燥による劣化を防止できる。脱水分離液のORP値を緩衝作用によって安定化できる場合や測定電極27cの乾燥による劣化を懸念する必要がない場合には、ORP計測槽27aを設けなくてもよい。   The ORP value of the dehydrated / separated liquid is measured by receiving the dehydrated / separated liquid discharged from the dehydrated / separated liquid discharge port 2a in an ORP measurement tank 27a including the measurement electrode 27c. By storing and mixing the dehydrated separation liquid at one end in the ORP measurement tank 27a, the buffering action works, and the fluctuation of the ORP value becomes gentle, so that the control is stabilized. Furthermore, even when the centrifugal dehydrator 2 is stopped for a long time, the measurement electrode 27c is immersed in the dehydrated separation liquid in the ORP measurement tank 27a, so that deterioration of the measurement electrode 27c due to drying can be prevented. When the ORP value of the dehydrated separation liquid can be stabilized by a buffering action or when there is no need to worry about deterioration due to drying of the measurement electrode 27c, the ORP measurement tank 27a may not be provided.

制御器28は、高分子凝集剤注入ポンプ6、無機凝集剤注入ポンプ15、回転駆動機23およびバックドライブモータ24にそれぞれ電気的に接続されており、ORP計27からのORP値に基づいて、高分子凝集剤注入管5からの高分子凝集剤の注入、テーパ注入管16からの無機凝集剤の注入、回転駆動機23の駆動、バックドライブモータ24の駆動(差速)を適切に制御するように構成されている。制御器28から高分子凝集剤注入ポンプ6、無機凝集剤注入ポンプ15、回転駆動機23、バックドライブモータ24へ、それぞれ出力される制御指令の流れは、図4の二点鎖線で示されている。なお、この制御器28は、機器類を直接制御してもよく、またインバータ制御としてもよい。また、制御器28により高分子凝集剤、無機凝集剤の注入を制御する場合には、各凝集剤注入ポンプ6,15を制御する他に、開閉弁6a,15aを制御してもよい。   The controller 28 is electrically connected to the polymer flocculant injection pump 6, the inorganic flocculant injection pump 15, the rotary drive machine 23, and the back drive motor 24, respectively, and based on the ORP value from the ORP meter 27, The injection of the polymer flocculant from the polymer flocculant injection pipe 5, the injection of the inorganic flocculant from the taper injection pipe 16, the drive of the rotary drive 23, and the drive (differential speed) of the back drive motor 24 are appropriately controlled. It is configured as follows. The flow of control commands output from the controller 28 to the polymer flocculant injection pump 6, the inorganic flocculant injection pump 15, the rotary drive machine 23, and the back drive motor 24 is indicated by a two-dot chain line in FIG. Yes. Note that the controller 28 may directly control the devices or may perform inverter control. When the controller 28 controls the injection of the polymer flocculant and the inorganic flocculant, in addition to controlling the flocculant injection pumps 6 and 15, the on-off valves 6 a and 15 a may be controlled.

ここで、酸化還元電位(ORP)について説明する。
ORPは、水中の酸化還元状態を表す数値(単位:mV)である。酸化状態ではプラスの値になり、還元状態ではマイナスの値になる。
Here, the oxidation-reduction potential (ORP) will be described.
ORP is a numerical value (unit: mV) representing a redox state in water. It becomes a positive value in the oxidation state and a negative value in the reduction state.

水中に存在する酸化性物質には溶存酸素や3価の鉄イオンなどがあり、一方、水中に存在する還元性物質には2価の鉄イオン、硫化物、有機物などがあり、水中のORPはこれら物質の量のバランスによりプラス数値になったり、マイナス数値になったりする。   Oxidizing substances present in water include dissolved oxygen and trivalent iron ions, while reducing substances present in water include divalent iron ions, sulfides, and organic substances. ORP in water is Depending on the balance of the amount of these substances, it may be positive or negative.

遠心脱水機2から流出する脱水分離液のORP値がマイナスの数値である場合には、脱水分離液中に還元性物質が酸化性物質より多く含まれていること(還元状態)を表し、つまり脱水分離液の水質が悪化(有機物であるSSの濃度が上昇)していることを意味している。   When the ORP value of the dehydrated separation liquid flowing out from the centrifugal dehydrator 2 is a negative value, it indicates that the reducing substance contains more reducing substances than the oxidizing substances (reduced state). This means that the water quality of the dehydrated separation liquid has deteriorated (the concentration of SS, which is an organic substance, has increased).

逆に、脱水分離液のORP値がプラスの数値である場合には、脱水分離液中に酸化性物質が還元性物質より多く含まれていること(酸化状態)を表し、つまり脱水分離液中に還元性物質であるSSが少なく、脱水分離液の水質が良好である(有機物であるSSの濃度が低下している=SS回収率が良い)ことを意味している。   Conversely, when the ORP value of the dehydrated separation liquid is a positive value, it indicates that the dehydrated separation liquid contains more oxidizing substance than the reducing substance (oxidized state), that is, in the dehydrated separation liquid. This means that the SS, which is a reducing substance, is small and the water quality of the dehydrated separation liquid is good (the concentration of SS, which is an organic substance, is reduced = the SS recovery rate is good).

この作用に基づき、ORP値がマイナス側にあるときは脱水分離液の水質が悪く、遠心脱水機2の処理状況(運転状態)が適正でない判断でき、逆に、ORP値がプラス側にあるときは脱水分離液の水質が良好であり、遠心脱水機2の処理状況(運転状態)が適正である判断できるわけである。   Based on this action, when the ORP value is on the negative side, it is possible to determine that the water quality of the dehydrated separation liquid is poor and the processing status (operating state) of the centrifugal dehydrator 2 is not appropriate, and conversely, when the ORP value is on the positive side. Therefore, it is possible to judge that the water quality of the dehydration separation liquid is good and the processing state (operation state) of the centrifugal dehydrator 2 is appropriate.

ORPの測定は、酸化還元物質を含む溶液に、不活性な金属電極である測定電極27c(予め酸化還元電位の決まった参照電極であり、例えば、標準水素電極や銀−塩化銀電極などがある)を入れることにより生じる電位差を基に、その溶液のORPを決定する一般的なORP計を用いるが、これに限るものではなく、安定して確実に脱水分離液のORP値を測定できるORP計であれば使用してもよい。   In the measurement of ORP, a measurement electrode 27c (a reference electrode having a predetermined oxidation-reduction potential, which is an inactive metal electrode in a solution containing an oxidation-reduction substance, such as a standard hydrogen electrode or a silver-silver chloride electrode, is available. ) Is used to determine the ORP of the solution based on the potential difference caused by the insertion of a), but is not limited to this, and the ORP meter can stably and reliably measure the ORP value of the dehydrated separation liquid If so, it may be used.

次に動作について説明する。
まず、実施の形態3と同様に、遠心脱水機2により、無機凝集剤またはその希釈液が注入された調質汚泥が脱水処理され、脱水汚泥と脱水分離液とに分離される。
次に、ORP計27により脱水分離液のORPが測定され、そのORP値は制御器28に送られる。ORP値がプラス側にあれば(ただし凝集剤等が過剰に注入され脱水汚泥の含水率があまり低下せず、ORP値がとても高い状態は除く:例えば+80mV以上)、脱水分離液の水質が良好であり、調質汚泥の固液分離(汚泥脱水処理)が効率よく良好に行われていると判断される。
Next, the operation will be described.
First, in the same manner as in the third embodiment, the tempered sludge into which the inorganic flocculant or its diluent has been injected is dehydrated by the centrifugal dehydrator 2 and separated into the dehydrated sludge and the dehydrated separation liquid.
Next, the ORP of the dehydrated separation liquid is measured by the ORP meter 27, and the ORP value is sent to the controller 28. If the ORP value is on the positive side (except when the flocculant is injected excessively and the moisture content of the dewatered sludge does not decrease so much and the ORP value is very high: eg +80 mV or more), the water quality of the dehydrated separation liquid is good. Therefore, it is judged that solid-liquid separation (sludge dewatering treatment) of conditioned sludge is performed efficiently and satisfactorily.

このように調質汚泥の固液分離が良好に行われ、脱水汚泥の含水率が低く、SS回収率が高い(=脱水分離液SS濃度が低い)場合には、高分子凝集剤注入ポンプ6、無機凝集剤注入ポンプ15、回転駆動機23やバックドライブモータ24の駆動はその状態を維持するよう制御器28により制御される。   Thus, when solid-liquid separation of conditioned sludge is performed well, the moisture content of dehydrated sludge is low, and the SS recovery rate is high (= dehydrated separation liquid SS concentration is low), the polymer flocculant injection pump 6 The driving of the inorganic flocculant injection pump 15, the rotary drive machine 23 and the back drive motor 24 is controlled by the controller 28 so as to maintain the state.

しかし、ORP値がマイナス側にあれば、脱水分離液の水質が悪化しており、調質汚泥の固液分離(汚泥脱水処理)が適正に行われていないと判断される。このような状況では、脱水汚泥の含水率が低くならず、SS回収率が低い(=脱水分離液SS濃度が高い)ので、調質汚泥の固液分離(汚泥脱水処理)が効率よく良好に行われるよう、制御器28は、高分子凝集剤注入ポンプ6、無機凝集剤注入ポンプ15、回転駆動機23やバックドライブモータ24の駆動を制御し、遠心脱水機2の運転状態を適正にする。   However, if the ORP value is on the minus side, it is determined that the water quality of the dewatered separation liquid has deteriorated, and the solid-liquid separation (sludge dewatering treatment) of the conditioned sludge has not been performed properly. In such a situation, the moisture content of the dewatered sludge is not low, and the SS recovery rate is low (= the concentration of the dewatered separation liquid SS is high), so that the solid-liquid separation (sludge dewatering treatment) of the conditioned sludge is efficiently and satisfactorily performed. The controller 28 controls the driving of the polymer flocculant injection pump 6, the inorganic flocculant injection pump 15, the rotary drive machine 23 and the back drive motor 24 so as to make the operation state of the centrifugal dehydrator 2 appropriate. .

特に、高分子凝集剤注入ポンプ6を制御することにより、調質汚泥の固液分離性能は速やかに変化し、調質汚泥の固液分離(汚泥脱水処理)が改善される。例えば、ORP値がマイナス側(−40mV〜−10mV)にある場合には、制御器28は、高分子凝集剤注入ポンプ6の駆動を促進させ、高分子凝集剤の注入量を増加させる。また、無機凝集剤注入ポンプ15の駆動を促進させ、無機凝集剤の注入量を増加させる制御も即効性が得られる。   In particular, by controlling the polymer flocculant injection pump 6, the solid-liquid separation performance of the conditioned sludge is rapidly changed, and the solid-liquid separation (sludge dewatering treatment) of the conditioned sludge is improved. For example, when the ORP value is on the negative side (−40 mV to −10 mV), the controller 28 accelerates the driving of the polymer flocculant injection pump 6 and increases the injection amount of the polymer flocculant. In addition, the control of accelerating the driving of the inorganic flocculant injection pump 15 and increasing the injection amount of the inorganic flocculant can obtain an immediate effect.

このような制御により、汚泥処理システム(調質ならびに固液分離)を適正に管理することができ、脱水分離液のORP値を測定して、このORP値に基づき遠心脱水機2の運転要素を制御することは、汚泥処理システム(調質ならびに固液分離)の状態(調質・分離状況、運転状態)を判定・把握する上で簡便且つ有効な手段であると共に、効率的で安定した汚泥処理システムの運転に資するものである。   By such control, the sludge treatment system (tempering and solid-liquid separation) can be properly managed, the ORP value of the dehydrated separation liquid is measured, and the operating elements of the centrifugal dehydrator 2 are determined based on this ORP value. Controlling is a simple and effective means for judging and grasping the state (tempering / separation state, operating state) of the sludge treatment system (tempering and solid-liquid separation), and efficient and stable sludge. Contributes to the operation of the processing system.

遠心脱水機2から流出する脱水分離液のORP値は、概ね±100mVの範囲である。SS回収率が高く、脱水分離液のSS濃度が低い場合には、脱水分離液のORP値は、概ね−5 mV〜+40 mVであり、SS回収率が低く、脱水分離液のSS濃度が高い場合には、脱水分離液のORP値は、概ね−70 mV〜±0 mVである。   The ORP value of the dehydrated separation liquid flowing out from the centrifugal dehydrator 2 is generally in the range of ± 100 mV. When the SS recovery rate is high and the SS concentration of the dehydration separation liquid is low, the ORP value of the dehydration separation liquid is approximately −5 mV to +40 mV, the SS recovery rate is low, and the SS concentration of the dehydration separation liquid is high. In some cases, the ORP value of the dehydrated separation is approximately -70 mV to ± 0 mV.

なお、ORP値は、汚泥や分離液の性状、ORP計27の特性、環境、測定条件などにより、一定でなく変動する。そのため、ORP値に基づき遠心脱水機2の運転諸要素を制御する場合には、予めORP値の好適制御範囲を設定する必要がある(マイナスだから不良、プラスだから良とは断定できない)。   The ORP value is not constant and varies depending on the properties of the sludge and the separation liquid, the characteristics of the ORP meter 27, the environment, the measurement conditions, and the like. Therefore, when controlling the operation elements of the centrifugal dehydrator 2 based on the ORP value, it is necessary to set a suitable control range of the ORP value in advance (it is not good because it is negative and cannot be determined good because it is positive).

また、ORP値がプラス(例えば+65mV)で、SS回収率が良好であっても、必要以上に高分子凝集剤等が注入されている過剰注入状態だったり、外胴ボウル21と内胴スクリュウ22との回転差(差速)が必要以上に大きかったりすると、脱水汚泥の含水率が高くなってしまい、遠心脱水機2が適正な運転状態となっていない場合もあり、ORP値には上限から下限にわたる好適制御範囲が存在するため、上記同様に予め設定する必要がある。   Further, even if the ORP value is positive (for example, +65 mV) and the SS recovery rate is good, the polymer flocculant or the like is injected more than necessary, or the outer shell bowl 21 and the inner shell screw 22 are overfilled. If the rotation difference (differential speed) is larger than necessary, the moisture content of the dewatered sludge increases, and the centrifugal dehydrator 2 may not be in an appropriate operating state. Since there exists a suitable control range over the lower limit, it is necessary to set in advance as described above.

実施の形態4による汚泥処理システムにおいて、ORP計27により測定された脱水分離液のORP値がマイナス側(例えば−20mV)であった場合、遠心脱水機2の回転数(回転駆動機23)や外胴ボウル21と内胴スクリュウ23との回転差(バックドライブモータ24)を制御したりして、安定して効率的な汚泥脱水処理(脱水汚泥の低含水率化や高いSS回収率)を行うことができる(図8参照)。また、上記遠心脱水機2の制御の他に、脱水分離液のORP値に基づき、制御器28により、高分子凝集剤注入ポンプ6や無機凝集剤注入ポンプ15の駆動を制御し、また必要に応じて調質汚泥供給ポンプ(図示せず)の駆動も制御して、各種凝集剤の注入量を増加させたり、調質汚泥の供給量を低減させたりしてもよい(図9参照)。   In the sludge treatment system according to the fourth embodiment, when the ORP value of the dehydrated separation liquid measured by the ORP meter 27 is negative (for example, −20 mV), the rotational speed of the centrifugal dehydrator 2 (rotary drive machine 23) Controlling the rotation difference (back drive motor 24) between the outer shell bowl 21 and the inner shell screw 23 to perform stable and efficient sludge dewatering treatment (low water content of dewatered sludge and high SS recovery rate) (See FIG. 8). In addition to the control of the centrifugal dehydrator 2, the controller 28 controls the driving of the polymer flocculant injection pump 6 and the inorganic flocculant injection pump 15 based on the ORP value of the dehydrated separation liquid. Accordingly, the drive of a tempered sludge supply pump (not shown) may be controlled to increase the injection amount of various flocculants or reduce the amount of conditioned sludge supplied (see FIG. 9).

各種凝集剤注入ポンプの制御が有効であるが、差速(同じ方向に回転する外胴ボウル21と内胴スクリュウ22との回転数の差で、バックドライブモータ24で内胴スクリュウ22の回転を調整する)の制御も有効であり、ORP値が低い(例えば−15mVで、脱水分離液のSS濃度が高い)ときは、差速を大きくしてSS回収率の向上を図り、ORP値が高い(例えば+50mVで、脱水分離液のSS濃度が低いが脱水汚泥の含水率が低くない)ときは、差速を小さくして汚泥含水率の低減を図るなど、容易に運転制御でき、高い固液分離性能を発揮(維持)することができる。   Control of various flocculant injection pumps is effective, but the differential speed (the difference in the rotational speed between the outer body bowl 21 and the inner body screw 22 rotating in the same direction causes the back drive motor 24 to rotate the inner body screw 22. Control is also effective, and when the ORP value is low (for example, −15 mV and the SS concentration of the dehydrated separation liquid is high), the differential recovery rate is increased to improve the SS recovery rate and the ORP value is high. (For example, at + 50mV, the SS concentration of the dewatered separation liquid is low but the water content of the dewatered sludge is not low). The operation can be easily controlled by reducing the differential speed and reducing the water content of the sludge. Separation performance can be demonstrated (maintained).

本発明の実施の形態4によれば、含水率の高い汚泥に高分子凝集剤を注入して混合した後に、その汚泥を汚泥調質機1Aに供給することにより、脱水に適した状態にある調質汚泥と調質分離液とに分離することができる。   According to Embodiment 4 of the present invention, the polymer flocculant is injected into and mixed with the sludge having a high water content, and then the sludge is supplied to the sludge refining machine 1A, thereby being in a state suitable for dewatering. It can be separated into tempered sludge and tempered separation liquid.

本発明の実施の形態4によれば、遠心脱水機2からの脱水分離液のORPをORP計27により測定し、そのORP値から遠心脱水機2における運転状況の良否を判定(推測)し、その判定結果から、凝集剤の注入、汚泥の供給量、遠心脱水機2の運転を適切に調整することにより、安定して適正に汚泥処理(固液分離)を行うことができる。   According to Embodiment 4 of the present invention, the ORP of the dehydrated separation liquid from the centrifugal dehydrator 2 is measured by the ORP meter 27, and the operating condition of the centrifugal dehydrator 2 is judged (estimated) from the ORP value, From the determination result, the sludge treatment (solid-liquid separation) can be stably and appropriately performed by appropriately adjusting the injection of the flocculant, the supply amount of the sludge, and the operation of the centrifugal dehydrator 2.

実施例2.
実施の形態4に係る汚泥処理システムにおいて、脱水分離液のORP値が−25 mVのときに、制御器28により高分子凝集剤注入ポンプ6を制御して高分子凝集剤の注入量を10%程度増加させた(1.0%/対汚泥SS→1.1%/対汚泥SS)。
これにより、ORP値は+10mVとなり、脱水汚泥の含水率は75%から72%に3ポイント低下すると共に、SS回収率は92%から97%に5ポイントも改善し、脱水性能が明らかに改善(含水率および脱水分離液SS濃度の低下)された。
Example 2
In the sludge treatment system according to the fourth embodiment, when the ORP value of the dehydrated separation liquid is −25 mV, the controller 28 controls the polymer flocculant injection pump 6 to control the injection amount of the polymer flocculant to 10%. Increased to some extent (1.0% / sludge SS → 1.1% / sludge SS).
As a result, the ORP value is +10 mV, the moisture content of the dewatered sludge is reduced by 3 points from 75% to 72%, and the SS recovery rate is improved by 5 points from 92% to 97%. Reduced water content and concentration of dehydrated separation liquid SS).

<実施の形態5>
図5は本発明の実施の形態5による汚泥処理システムの概略構成図であり、図1および図2と同一の構成要素には同一符号を付して重複説明を省略する。
<Embodiment 5>
FIG. 5 is a schematic configuration diagram of a sludge treatment system according to Embodiment 5 of the present invention. The same components as those in FIGS.

実施の形態5による汚泥処理システムは、汚泥調質機と高分子凝集剤混合器と無機凝集剤混合器を組み合わせた点で、実施の形態1および2と異なる。   The sludge treatment system according to the fifth embodiment is different from the first and second embodiments in that a sludge refining machine, a polymer flocculant mixer, and an inorganic flocculant mixer are combined.

より具体的には、実施の形態5では、汚泥に高分子凝集剤を混合する高分子凝集剤混合器29が汚泥供給管4に設けられ、汚泥調質機1に代えて、汚泥調質機30が設けられ、この汚泥調質機30からの調質汚泥に無機凝集剤を混合する無機凝集剤混合器31が設けられている。   More specifically, in the fifth embodiment, a polymer flocculant mixer 29 for mixing the polymer flocculant with sludge is provided in the sludge supply pipe 4, and the sludge tempering machine is replaced with the sludge tempering machine 1. 30 and an inorganic flocculant mixer 31 for mixing the inorganic flocculant with the conditioned sludge from the sludge refining machine 30 is provided.

汚泥調質機1Bは、水槽1dと、この水槽1d内に鉛直方向に配設され、周面に複数の短冊状の分離羽根1eが間隙をもって配設された筒状回転体1fと、この筒状回転体1fの上部中央に設けられ、且つ、高分子凝集剤が混合された汚泥を受け入れるセンターウェル1gと、前記筒状回転体1fを低速で回転させる駆動機(図示せず)とを備えている。図5において、筒状回転体1fは複数の短冊状の分離羽根1eが間隙をもって配設されているが、例えば、間隔をもって開けられた複数の穴を有するパンチングメタルで構成された筒状回転体など、周面に複数の間隙を有する構造の筒状の回転体であれば、これらに限るものではない。   The sludge refining machine 1B includes a water tank 1d, a cylindrical rotating body 1f provided in the water tank 1d in a vertical direction, and a plurality of strip-shaped separation blades 1e disposed on the circumferential surface with a gap between the water tank 1d and the cylinder. A center well 1g that is provided in the upper center of the cylindrical rotating body 1f and receives sludge mixed with a polymer flocculant, and a drive unit (not shown) that rotates the cylindrical rotating body 1f at a low speed. ing. In FIG. 5, a cylindrical rotating body 1f has a plurality of strip-like separation blades 1e arranged with gaps. For example, a cylindrical rotating body made of punching metal having a plurality of holes opened at intervals. If it is a cylindrical rotating body having a structure having a plurality of gaps on the peripheral surface, the present invention is not limited to these.

無機凝集剤混合器31は、調質汚泥に無機凝集剤を収容する混合器本体31aと、この混合器本体31a内の調質汚泥及び無機凝集剤を撹拌して混合する撹拌羽根31bを備えている。また、調質汚泥供給管3には、調質汚泥供給ポンプ32が設けられている。   The inorganic flocculant mixer 31 includes a mixer main body 31a that contains the inorganic flocculant in the tempered sludge, and a stirring blade 31b that stirs and mixes the tempered sludge and the inorganic flocculant in the mixer main body 31a. Yes. The conditioned sludge supply pipe 3 is provided with a conditioned sludge supply pump 32.

次に動作について説明する。
まず、汚泥は、高分子凝集剤混合器29内で、高分子凝集剤と混合されて凝集フロックを形成し、この凝集フロックの形成した汚泥が汚泥調質機1Bのセンターウェル1gから筒状回転体1fの内部に供給されて、調質汚泥と調質分離液とに分離される。すなわち、筒状回転体1fで凝集フロックを回転させても、筒状回転体1fの分離羽根1e間に設けられた間隔(スリット)は筒状回転体1f内の凝集フロックを流出し難い形状もしくは寸法に設定されており、凝集フロックは筒状回転体1eの外に出ないため筒状回転体1eの内部に大量に保持され、調質汚泥として下部から排出され、無機凝集剤混合器31に供給される。高分子凝集剤混合器29は汚泥と高分子凝集剤が確実に安定して混合できる機構であれば良く、例えば、後述する無機凝集剤混合器31,34,35,および36などがある。
次に、調質汚泥は、無機凝集剤混合器31内で、撹拌羽根31bにより無機凝集剤と混合された後に、調質汚泥供給管3を通じて遠心脱水機2内に供給され、その遠心脱水機2によって脱水処理されて、含水率の低い脱水汚泥と、脱水分離液とに分離される。
Next, the operation will be described.
First, the sludge is mixed with the polymer flocculant in the polymer flocculant mixer 29 to form a floc floc, and the sludge formed by the floc floc rotates from the center well 1g of the sludge refining machine 1B into a cylindrical shape. It is supplied to the inside of the body 1f and separated into a tempered sludge and a tempered separation liquid. That is, even if the aggregation floc is rotated by the cylindrical rotating body 1f, the interval (slit) provided between the separation blades 1e of the cylindrical rotating body 1f is shaped so that the aggregation floc in the cylindrical rotating body 1f does not easily flow out. The floc flocs are set in the dimensions and do not go out of the cylindrical rotating body 1e, so that they are held in large quantities inside the cylindrical rotating body 1e and discharged from the lower part as conditioned sludge, and are fed to the inorganic flocculant mixer 31. Supplied. The polymer flocculant mixer 29 may be any mechanism that can reliably and stably mix sludge and polymer flocculant. Examples thereof include inorganic flocculant mixers 31, 34, 35, and 36 described later.
Next, the conditioned sludge is mixed with the inorganic flocculant in the inorganic flocculant mixer 31 by the stirring blade 31b, and then supplied into the centrifugal dehydrator 2 through the conditioned sludge supply pipe 3, and the centrifugal dehydrator. 2 is dehydrated and separated into a dehydrated sludge having a low water content and a dehydrated separation liquid.

本発明の実施の形態5によれば、高分子凝集剤混合器29を設けることにより、供給される汚泥が消化槽汚泥の混合率が高く、固形物分が高濃度で、汚泥供給管4に高分子凝集剤を注入しても汚泥と高分子凝集剤が容易に混合しない状況においても確実に混合することが可能であり、汚泥調質機1Bでの汚泥調質を安定して行うことができる。   According to Embodiment 5 of the present invention, by providing the polymer flocculant mixer 29, the sludge to be supplied has a high mixing ratio of digester sludge, a high solid content, and the sludge supply pipe 4 has a high concentration. Even when the polymer flocculant is injected, the sludge and the polymer flocculant can be reliably mixed even in a situation where the sludge is not easily mixed, and the sludge refining in the sludge refining machine 1B can be performed stably. it can.

本発明の実施の形態5によれば、汚泥調質機1Bを設けることにより、汚泥を、凝集フロックとして円筒回転体1fの内部に大量に保持できるため、効率よく調質汚泥と調質分離液とに分離することができる。   According to Embodiment 5 of the present invention, by providing the sludge refining machine 1B, sludge can be retained in a large amount inside the cylindrical rotating body 1f as agglomerated flock, so that the conditioned sludge and the conditioned separation liquid can be efficiently used. And can be separated.

本発明の実施の形態5によれば、無機凝集剤混合器31を設けることにより、調質汚泥供給管3に無機凝集剤を注入しても調質汚泥と無機凝集剤が容易に混合しない状況においても、調質汚泥と無機凝集剤を確実に混合できるので、その調質汚泥を脱水に適した状態とすることができる。   According to Embodiment 5 of the present invention, by providing the inorganic flocculant mixer 31, even if the inorganic flocculant is injected into the conditioned sludge supply pipe 3, the conditioned sludge and the inorganic flocculant are not easily mixed. In this case, the tempered sludge can be reliably mixed with the inorganic flocculant, so that the tempered sludge can be brought into a state suitable for dehydration.

<実施の形態6>
図6(A)は本発明の実施の形態6による汚泥処理システムの概略構成図であり、図6(B)および図6(C)は、それぞれ、図6(A)に示す無機凝集剤混合器の他の例を示す断面図である。図5と同一の構成要素には同一符号を付して重複説明を省略する。
<Embodiment 6>
FIG. 6 (A) is a schematic configuration diagram of a sludge treatment system according to Embodiment 6 of the present invention, and FIGS. 6 (B) and 6 (C) show the inorganic flocculant mixing shown in FIG. 6 (A), respectively. It is sectional drawing which shows the other example of a container. The same components as those in FIG.

実施の形態6による汚泥処理システムは、実施の形態5の汚泥調質機と高分子凝集剤混合器の各機能を併せ持つ汚泥調質機と無機凝集剤混合器を組み合わせた点で、実施の形態5と異なる。   The sludge treatment system according to the sixth embodiment is a combination of the sludge tempering machine having both functions of the sludge tempering machine and the polymer flocculant mixer according to the fifth embodiment and an inorganic flocculant mixer. Different from 5.

より具体的には、図6(A)に示すように、実施の形態6では、実施の形態5の高分子凝集剤混合器29および汚泥調質機1Bに代えて、汚泥に高分子凝集剤を直接注入し、且つ、該汚泥を調質する汚泥調質機1Cが配設されており、この汚泥調質機1Cの下流側には、実施の形態5の無機凝集剤混合器31に代えて、汚泥調質機1Cからの調質汚泥に無機凝集剤を混合し、且つ、その混合を継続しながら遠心脱水機2まで搬送する搬送混合器タイプの無機凝集剤混合器34が設けられている。   More specifically, as shown in FIG. 6A, in the sixth embodiment, instead of the polymer flocculant mixer 29 and the sludge refining machine 1B of the fifth embodiment, the polymer flocculant is added to sludge. 1C, and the sludge refining machine 1C for refining the sludge is disposed, and instead of the sludge refining machine 1C, the inorganic flocculant mixer 31 of the fifth embodiment is used instead. In addition, an inorganic flocculant mixer 34 that mixes the inorganic flocculant with the conditioned sludge from the sludge refining machine 1C and conveys it to the centrifugal dehydrator 2 while continuing the mixing is provided. Yes.

汚泥調質機1Cは、実施の形態1等の汚泥調質機1と異なり、水平方向に対して傾斜して設置された円筒状の調質機本体1hと、この調質機本体1h内に配設された中心軸1iに固定され、且つ、固形成分を通過させず水分を通過させる円盤状のスクリーン1jと、このスクリーン1jの上面を摺動するように中心軸1i回りに回転する回転羽根1kを備えている。また、汚泥調質機1Cには、調質機本体1h内のスクリーン1j上に汚泥を供給する汚泥供給管4が接続されると共に、該汚泥に高分子凝集剤を注入して凝集フロックを生成する高分子凝集剤注入管5が接続されている。   The sludge refining machine 1C differs from the sludge refining machine 1 of the first embodiment and the like in a cylindrical refining machine main body 1h that is installed inclined with respect to the horizontal direction, and in this refining machine main body 1h. A disc-shaped screen 1j that is fixed to the central shaft 1i and that allows moisture to pass without passing through solid components, and a rotating blade that rotates about the central shaft 1i so as to slide on the upper surface of the screen 1j 1k. The sludge refining machine 1C is connected to a sludge supply pipe 4 for supplying sludge onto the screen 1j in the refining machine body 1h, and a flocculant floc is generated by injecting a polymer flocculant into the sludge. A polymer flocculant injection tube 5 is connected.

無機凝集剤混合器34は、調質汚泥供給管3と、この調質汚泥供給管3内に配設されたスクリュウコンベア34aとから構成されている。調質汚泥供給管3の上流側には、調質汚泥に無機凝集剤を注入する無機凝集剤注入管14が接続されている。   The inorganic flocculant mixer 34 includes a tempered sludge supply pipe 3 and a screw conveyor 34a disposed in the tempered sludge supply pipe 3. An inorganic flocculant injection pipe 14 for injecting an inorganic flocculant into the conditioned sludge is connected to the upstream side of the conditioned sludge supply pipe 3.

なお、実施の形態6では、図6(A)に示す無機凝集剤混合器34に代えて、例えば図6(B)に示す無機凝集剤混合器35、または、図6(C)に示す無機凝集剤混合器36など、他の方式による無機凝集剤混合器も同様に使用可能である。   In Embodiment 6, instead of the inorganic flocculant mixer 34 shown in FIG. 6 (A), for example, the inorganic flocculant mixer 35 shown in FIG. 6 (B) or the inorganic flocculant mixer shown in FIG. 6 (C). Other types of inorganic flocculant mixers, such as flocculant mixer 36, can be used as well.

無機凝集剤混合器35は、図6(B)に示すように、調質汚泥供給管3と、この調質汚泥供給管3の内壁に形成された一つ以上の突起部35aとから構成されている。調質汚泥供給管3の上流側には、調質汚泥に無機凝集剤を注入する無機凝集剤注入管14が接続されている。   As shown in FIG. 6B, the inorganic flocculant mixer 35 includes a tempered sludge supply pipe 3 and one or more protrusions 35a formed on the inner wall of the tempered sludge supply pipe 3. ing. An inorganic flocculant injection pipe 14 for injecting an inorganic flocculant into the conditioned sludge is connected to the upstream side of the conditioned sludge supply pipe 3.

無機凝集剤混合器36は、図6(C)に示すように、調質汚泥供給管3と、この調質汚泥供給管3を折り返して形成された一つ以上の屈曲部36aとから構成されている。調質汚泥供給管3の上流側には、調質汚泥に無機凝集剤を注入する無機凝集剤注入管14が接続されている。   As shown in FIG. 6C, the inorganic flocculant mixer 36 includes a tempered sludge supply pipe 3 and one or more bent portions 36a formed by folding the tempered sludge supply pipe 3. ing. An inorganic flocculant injection pipe 14 for injecting an inorganic flocculant into the conditioned sludge is connected to the upstream side of the conditioned sludge supply pipe 3.

図6(A)〜図6(C)に示した無機凝集剤混合器34,35,36は、それぞれ単独で使用できるが、これに限定されず、互いに組み合わせて使用されてもよい。例えば、スクリュウコンベア34aを配設した調質汚泥供給管3の内壁に、あるいは、屈曲部36aを形成した調質汚泥供給管3の内壁に、それぞれ、無機凝集剤混合器35の突起部35aを設けてもよい。また、無機凝集剤混合器34,35,36は、必要に応じて、実施の形態5の無機凝集剤混合器31あるいは他の機構を備えた混合器と組み合わせて使用されてもよい。   Each of the inorganic flocculant mixers 34, 35, and 36 shown in FIGS. 6A to 6C can be used alone, but is not limited thereto, and may be used in combination with each other. For example, the protrusion 35a of the inorganic flocculant mixer 35 is provided on the inner wall of the tempered sludge supply pipe 3 provided with the screw conveyor 34a or on the inner wall of the tempered sludge supply pipe 3 formed with the bent portion 36a, respectively. It may be provided. In addition, the inorganic flocculant mixers 34, 35, and 36 may be used in combination with the inorganic flocculant mixer 31 of the fifth embodiment or a mixer equipped with another mechanism as required.

次に動作について説明する。
まず、汚泥調質機1C内に汚泥が供給されると、スクリーン1j上で汚泥に高分子凝集剤が注入され、回転羽根1kの回転により、汚泥と高分子凝集剤が混合され、汚泥の中に凝集フロックが形成される。この凝集フロックが回転羽根1kの回転により、傾斜したスクリーン1j上で斜め上方に掻き上げられると共に、凝集フロックを含む汚泥中の水分は、スクリーン1jを通過して除去されて、調質分離液として排出される。汚泥中の凝集フロックは、スクリーン1j上に残留しており、回転羽根1kの回転により、さらに掻き上げられ、調質汚泥として、無機凝集剤混合器34に供給される。
次に、調質汚泥は、無機凝集剤混合器34の調質汚泥供給管3内で、スクリュウコンベア34aにより無機凝集剤と混合されながら、遠心脱水機2内に供給され、その遠心脱水機2によって脱水処理されて、含水率の低い脱水汚泥と、脱水分離液とに分離される。
Next, the operation will be described.
First, when sludge is supplied into the sludge refining machine 1C, the polymer flocculant is injected into the sludge on the screen 1j, and the sludge and the polymer flocculant are mixed by the rotation of the rotary blade 1k. Agglomerated flocs are formed on the surface. The aggregated floc is scraped up obliquely on the inclined screen 1j by the rotation of the rotary blade 1k, and the water in the sludge containing the aggregated floc is removed by passing through the screen 1j to obtain a tempered separation liquid. Discharged. Aggregated floc in the sludge remains on the screen 1j, and is further scraped up by the rotation of the rotary blade 1k, and is supplied to the inorganic flocculant mixer 34 as tempered sludge.
Next, the conditioned sludge is supplied into the centrifugal dehydrator 2 while being mixed with the inorganic flocculant in the conditioned sludge supply pipe 3 of the inorganic flocculant mixer 34 by the screw conveyor 34a. Is dehydrated and separated into a dehydrated sludge having a low water content and a dehydrated separation liquid.

なお、調質汚泥を無機凝集剤混合器35に供給する場合、調質汚泥は、無機凝集剤混合器35の調質汚泥供給管3内で、突起部35aにより物理的に迂回を繰り返し流れに乱れが生じ、無機凝集剤と混合する機会が増加することから、無機凝集剤と混合しやすくなる。このような混合状態の調質汚泥は、遠心脱水機2内に供給され、その遠心脱水機2によって脱水処理されて、含水率の低い脱水汚泥と、脱水分離液とに分離される。   In addition, when supplying refining sludge to the inorganic flocculant mixer 35, the refining sludge flows in the recirculation physically repetitively by the protrusion 35a in the refining sludge supply pipe 3 of the inorganic flocculant mixer 35. Disturbance occurs and the opportunity to mix with the inorganic flocculant increases, so that it becomes easy to mix with the inorganic flocculant. The tempered sludge in such a mixed state is supplied into the centrifugal dehydrator 2 and dehydrated by the centrifugal dehydrator 2 to be separated into a dehydrated sludge having a low water content and a dehydrated separation liquid.

また、調質汚泥を無機凝集剤混合器36に供給する場合、調質汚泥は、無機凝集剤混合器36の調質汚泥供給管3内で、屈曲部36aにより物理的に迂回を繰り返し流れに乱れが生じ、無機凝集剤と混合する機会が増加することから、無機凝集剤と混合しやすくなる。このような混合状態の調質汚泥は、遠心脱水機2内に供給され、その遠心脱水機2によって脱水処理されて、含水率の低い脱水汚泥と、脱水分離液とに分離される。なお、図6(C)では屈曲部36a間に直胴部36bが図示されているが、屈曲部36aがつづら折り状あるいはコイル状に連なっても良い。   Further, when supplying the conditioned sludge to the inorganic flocculant mixer 36, the conditioned sludge is physically recirculated by the bent portion 36a in the conditioned sludge supply pipe 3 of the inorganic flocculant mixer 36. Disturbance occurs and the opportunity to mix with the inorganic flocculant increases, so that it becomes easy to mix with the inorganic flocculant. The tempered sludge in such a mixed state is supplied into the centrifugal dehydrator 2 and dehydrated by the centrifugal dehydrator 2 to be separated into a dehydrated sludge having a low water content and a dehydrated separation liquid. In FIG. 6C, the straight body portion 36b is illustrated between the bent portions 36a, but the bent portion 36a may be formed in a zigzag or coil shape.

本発明の実施の形態6によれば、汚泥調質機1Cを設けることにより、汚泥調質機1Cに供給された汚泥と高分子凝集剤が汚泥調質機1C内において、スクリーン1jの上部の回転羽根1kの回転により確実に混合されるため、質の高い調質汚泥(固形物濃度が高い、凝集が安定している、など)が得られる。また、このような質の高い調質汚泥は粘性が高く、無機凝集剤の混合や遠心脱水機までの搬送が困難となるため、無機凝集剤混合器34を設けることにより、調質汚泥供給管3による調質汚泥の搬送中に無機凝集剤との混合を行い、上記のような困難を確実に克服することができる。   According to Embodiment 6 of the present invention, by providing the sludge tempering machine 1C, the sludge and the polymer flocculant supplied to the sludge tempering machine 1C are disposed in the upper part of the screen 1j in the sludge tempering machine 1C. Since the mixing is ensured by the rotation of the rotary blade 1k, high-quality tempered sludge (the solid concentration is high, the aggregation is stable, etc.) is obtained. Further, such a high quality conditioned sludge has a high viscosity and it becomes difficult to mix the inorganic flocculant and transport it to the centrifugal dehydrator. Therefore, by providing the inorganic flocculant mixer 34, the conditioned sludge supply pipe is provided. Mixing with an inorganic flocculant during conveyance of the conditioned sludge according to 3 can reliably overcome the above-mentioned difficulties.

本発明の実施の形態1による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by Embodiment 1 of this invention. 本発明の実施の形態2による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by Embodiment 2 of this invention. 本発明の実施の形態3による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by Embodiment 3 of this invention. 図3(A)のテーパ注入管部分の拡大断面図である。It is an expanded sectional view of the taper injection pipe part of FIG. 3 (A). 本発明の実施の形態4による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by Embodiment 4 of this invention. 本発明の実施の形態5による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by Embodiment 5 of this invention. 本発明の実施の形態6による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by Embodiment 6 of this invention. 本発明の実施の形態6による汚泥処理システムに用いられる無機凝集剤混合器とは他の無機凝集剤混合器の断面図である。The inorganic flocculant mixer used for the sludge treatment system by Embodiment 6 of this invention is sectional drawing of another inorganic flocculant mixer. 本発明の実施の形態6による汚泥処理システムに用いられる無機凝集剤混合器とはさらに他の無機凝集剤混合器の断面図である。The inorganic flocculant mixer used in the sludge treatment system according to Embodiment 6 of the present invention is a sectional view of still another inorganic flocculant mixer. 本発明の実施例1での比較実験結果である。It is a comparative experiment result in Example 1 of the present invention. 遠心脱水機を用いた場合において、ORP値に基づいて、遠心脱水機の外胴ボウルと内胴スクリュウとの差速を制御したときの脱水汚泥含水率(%)およびSS回収率(%)の各変化を示す説明図である。In the case of using a centrifugal dehydrator, the moisture content of dewatered sludge (%) and SS recovery rate (%) when the differential speed between the outer body bowl and the inner body screw of the centrifugal dehydrator is controlled based on the ORP value. It is explanatory drawing which shows each change. 遠心脱水機を用いた場合において、ORP値に基づいて、高分子凝集剤の注入量(率)を制御したときの脱水汚泥含水率(%)およびSS回収率(%)の各変化を示す説明図である。In the case of using a centrifugal dehydrator, an explanation showing each change in dehydrated sludge moisture content (%) and SS recovery rate (%) when the injection amount (rate) of the polymer flocculant is controlled based on the ORP value. FIG.

1A 汚泥調質機
1B 汚泥調質機
1C 汚泥調質機
1a 無端ベルト
1b,1c 回転ローラ
1d 水槽
1e 分離羽根
1f 筒状回転体
1g センターウェル
1h 調質機本体
1i 中心軸
1j スクリーン
1k 回転羽根
2 遠心脱水機
2a 脱水分離液排出口
2b 脱水汚泥排出口
3 調質汚泥供給管
3a 開口
4 汚泥供給管
5 高分子凝集剤注入管
6 高分子凝集剤注入ポンプ
6a 開閉弁
7 パッケージボックス
8 汚泥供給タンク
9 回転羽根
10 汚泥供給管
11 汚泥供給ポンプ
12 高分子凝集剤タンク
13 無機凝集剤タンク
14 無機凝集剤注入管
14a 機内注入管
14b 前注入管
15 無機凝集剤注入ポンプ
15a,15b,15c 開閉弁
16 テーパ注入管
16a 吐出孔
17 給水管
18 給水ポンプ
18a 開閉弁
20 ケーシング
21 外胴ボウル
21a 2段テーパ部
22 内胴スクリュウ
22a 内胴テーパ部
22b スクリュウ羽根
23 回転駆動機
24 バックドライブモータ
25 プール
26 汚泥供給室
26a 汚泥供給口
26b 凝集剤流出口
26c 仕切板
27 ORP計
27a ORP計測槽
27b 撹拌羽根
27c 測定電極
28 制御器
29 高分子凝集剤混合器
31 無機凝集剤混合器
31a 混合器本体
31b 撹拌羽根
32 調質汚泥供給ポンプ
34 無機凝集剤混合器
34a スクリュウコンベア
35 無機凝集剤混合器
35a 突起部
36 無機凝集剤混合器
36a 屈曲部
36b 直胴部
1A sludge refining machine 1B sludge refining machine 1C sludge refining machine 1a endless belt 1b, 1c rotating roller 1d water tank 1e separating blade 1f cylindrical rotating body 1g center well 1h refining machine main body 1i central shaft 1j screen 1k rotating blade 2 Centrifugal dehydrator 2a Dehydrated separation liquid outlet 2b Dehydrated sludge outlet 3 Conditioned sludge supply pipe 3a Opening 4 Sludge supply pipe 5 Polymer flocculant injection pipe 6 Polymer flocculant injection pump 6a On-off valve 7 Package box 8 Sludge supply tank 9 Rotating blade 10 Sludge supply pipe 11 Sludge supply pump 12 Polymer flocculant tank 13 Inorganic flocculant tank 14 Inorganic flocculant injection pipe 14a In-machine injection pipe 14b Pre-injection pipe 15 Inorganic flocculant injection pumps 15a, 15b, 15c On-off valve 16 Taper injection pipe 16a Discharge hole 17 Water supply pipe 18 Water supply pump 18a On-off valve 20 Casing 21 Outer body bowl 21a Step taper part 22 Inner cylinder screw 22a Inner cylinder taper part 22b Screw blade 23 Rotation drive machine 24 Back drive motor 25 Pool 26 Sludge supply chamber 26a Sludge supply port 26b Coagulant outlet 26c Partition plate 27 ORP meter 27a ORP measurement tank 27b Stirring Blade 27c Measuring electrode 28 Controller 29 Polymer flocculant mixer 31 Inorganic flocculant mixer 31a Mixer body 31b Agitation blade 32 Conditioned sludge supply pump 34 Inorganic flocculant mixer 34a Screw conveyor 35 Inorganic flocculant mixer 35a Projection Part 36 inorganic flocculant mixer 36a bent part 36b straight body part

Claims (6)

汚泥に高分子凝集剤を注入して調質する汚泥調質機と、
調質汚泥を脱水汚泥と脱水分離液に分離する遠心脱水機と、
該遠心脱水機に前記調質汚泥を供給する調質汚泥供給管と
を備えたことを特徴とする汚泥処理システム。
A sludge tempering machine for injecting a polymer flocculant into the sludge
A centrifugal dehydrator for separating the conditioned sludge into dehydrated sludge and dehydrated separation liquid;
A sludge treatment system, comprising: a conditioned sludge supply pipe for supplying the conditioned sludge to the centrifugal dehydrator.
前記調質汚泥に無機凝集剤を注入する無機凝集剤注入管
を備えたことを特徴とする請求項1に記載の汚泥処理システム。
The sludge treatment system according to claim 1, further comprising an inorganic flocculant injection pipe for injecting an inorganic flocculant into the conditioned sludge.
前記遠心脱水機は、
外胴ボウルおよび内胴スクリュウを有すると共に、
前記内胴スクリュウ内を延伸して、
前記外胴ボウルのテーパー部に無機凝集剤を注入するテーパー注入管
を備えたことを特徴とする請求項1または2に記載の汚泥処理システム。
The centrifugal dehydrator is
Having an outer body bowl and an inner body screw,
Stretching the inner body screw,
The sludge treatment system according to claim 1 or 2, further comprising a taper injection pipe for injecting an inorganic flocculant into the taper portion of the outer body bowl.
前記無機凝集剤は、
鉄含有率が高い高比重無機凝集剤である
ことを特徴とする請求項1から3いずれかに記載の汚泥処理システム。
The inorganic flocculant is
The sludge treatment system according to any one of claims 1 to 3, wherein the sludge treatment system is a high specific gravity inorganic flocculant having a high iron content.
前記脱水分離液の酸化還元電位を測定する酸化還元電位計と
該酸化還元電位計の計測値に基づき、
無機凝集剤の注入、高分子凝集剤の注入および遠心脱水機の運転のうち、
一つまたは二つ以上を制御する制御器と
を備えたことを特徴とする請求項1から4いずれかに記載の汚泥処理システム。
Based on the redox potential meter for measuring the redox potential of the dehydrated separation liquid and the measured value of the redox potential meter,
Among inorganic flocculant injection, polymer flocculant injection and centrifugal dehydrator operation,
A sludge treatment system according to any one of claims 1 to 4, further comprising: a controller that controls one or more of them.
汚泥に高分子凝集剤を注入し、
高分子凝集剤が注入された汚泥を汚泥調質機で調質し、
調質された汚泥に無機凝集剤を注入し、
無機凝集剤が注入された調質汚泥を遠心脱水機へ供給して脱水する
ことを特徴とする汚泥処理方法。
Injecting the polymer flocculant into the sludge,
Conditioning sludge injected with polymer flocculant with sludge tempering machine,
Injecting an inorganic flocculant into the conditioned sludge,
A sludge treatment method characterized in that conditioned sludge into which an inorganic flocculant has been injected is supplied to a centrifugal dehydrator for dehydration.
JP2010293133A 2010-12-28 2010-12-28 System and method for sludge treatment Pending JP2012139628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293133A JP2012139628A (en) 2010-12-28 2010-12-28 System and method for sludge treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293133A JP2012139628A (en) 2010-12-28 2010-12-28 System and method for sludge treatment

Publications (1)

Publication Number Publication Date
JP2012139628A true JP2012139628A (en) 2012-07-26

Family

ID=46676480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293133A Pending JP2012139628A (en) 2010-12-28 2010-12-28 System and method for sludge treatment

Country Status (1)

Country Link
JP (1) JP2012139628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184355A (en) * 2013-03-21 2014-10-02 Metawater Co Ltd Sludge treatment system
WO2015107988A1 (en) * 2014-01-14 2015-07-23 三菱重工環境・化学エンジニアリング株式会社 Dehydration system for organic sludge
JP2017136514A (en) * 2016-02-01 2017-08-10 水ing株式会社 Polymer coagulant and dewatering method and dewatering device of sludge using polymer coagulant
CN108751400A (en) * 2018-06-11 2018-11-06 李晓伟 A kind of urban sewage treating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150844A (en) * 1978-05-16 1979-11-27 Kobe Steel Ltd Dehydration of sludge
JPS5949900A (en) * 1982-09-10 1984-03-22 Shinko Fuaudoraa Kk Dehydrating method of organic sludge
JPS61257300A (en) * 1985-05-08 1986-11-14 Ishikawajima Harima Heavy Ind Co Ltd Dehydrating method for sludge
JPH1128500A (en) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd Sludge treating device
JP2002320957A (en) * 2001-04-27 2002-11-05 Toshiba Corp Water quality controlling system for wastewater treatment facilities
JP2006055819A (en) * 2004-08-24 2006-03-02 Ishigaki Co Ltd Method and apparatus for loading flocculent into filtration chamber in screw press
JP2010264419A (en) * 2009-05-18 2010-11-25 Nishihara Environment Technology Inc Centrifugal separation apparatus
JP2010264417A (en) * 2009-05-18 2010-11-25 Nishihara Environment Technology Inc Centrifugal separation apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150844A (en) * 1978-05-16 1979-11-27 Kobe Steel Ltd Dehydration of sludge
JPS5949900A (en) * 1982-09-10 1984-03-22 Shinko Fuaudoraa Kk Dehydrating method of organic sludge
JPS61257300A (en) * 1985-05-08 1986-11-14 Ishikawajima Harima Heavy Ind Co Ltd Dehydrating method for sludge
JPH1128500A (en) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd Sludge treating device
JP2002320957A (en) * 2001-04-27 2002-11-05 Toshiba Corp Water quality controlling system for wastewater treatment facilities
JP2006055819A (en) * 2004-08-24 2006-03-02 Ishigaki Co Ltd Method and apparatus for loading flocculent into filtration chamber in screw press
JP2010264419A (en) * 2009-05-18 2010-11-25 Nishihara Environment Technology Inc Centrifugal separation apparatus
WO2010134310A1 (en) * 2009-05-18 2010-11-25 株式会社西原環境テクノロジー Centrifugal separation device
JP2010264417A (en) * 2009-05-18 2010-11-25 Nishihara Environment Technology Inc Centrifugal separation apparatus
WO2010134309A1 (en) * 2009-05-18 2010-11-25 株式会社西原環境テクノロジー Centrifugal separation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184355A (en) * 2013-03-21 2014-10-02 Metawater Co Ltd Sludge treatment system
WO2015107988A1 (en) * 2014-01-14 2015-07-23 三菱重工環境・化学エンジニアリング株式会社 Dehydration system for organic sludge
CN105764859A (en) * 2014-01-14 2016-07-13 三菱重工环境·化学工程株式会社 Dehydration system for organic sludge
JP2017136514A (en) * 2016-02-01 2017-08-10 水ing株式会社 Polymer coagulant and dewatering method and dewatering device of sludge using polymer coagulant
CN108751400A (en) * 2018-06-11 2018-11-06 李晓伟 A kind of urban sewage treating device

Similar Documents

Publication Publication Date Title
JP5490442B2 (en) Centrifuge
JP5425523B2 (en) Centrifuge
JP2007136347A (en) Method for constant control of raw sludge supply amount of dehydrator and its control apparatus
JP6909878B2 (en) Organic matter processing method and processing equipment
JP2012139628A (en) System and method for sludge treatment
JP5619965B2 (en) Centrifuge
JP5611688B2 (en) Centrifugal separator and sludge treatment method
KR101936065B1 (en) Sludge Dehydration Equipment System Enhanced Efficiency Using Cohesion Mixing Tank
CN105016451B (en) Recycling method for iron-enriched sludge of pulping and papermaking factory wastewater
JP4173899B2 (en) Sludge dewatering device and sludge dewatering method
JP2004105833A (en) Wastewater treatment method and its apparatus
KR101369979B1 (en) Spiral-vortex-flow type ultra rapid coagulation apparatus
CN111050933B (en) Method for desalting chlorine-containing powder and apparatus for desalting chlorine-containing powder
CN208604005U (en) A kind of belt type dewaterer flocculation stirring device
CN114180689B (en) Magnetic coagulation water treatment method for separating and recycling in-situ magnetic seeds
CN214683482U (en) Pollute soil drip washing and sewage treatment system that integrates
JP2011125790A (en) Turbid water treatment apparatus and turbid water treatment method
JP2015174000A (en) Sludge dehydration system and sludge dehydration method
JP2012115800A (en) Sludge dehydrator and method for dehydrating sludge
JP4565371B2 (en) Waste water treatment method and waste water treatment equipment
JP6846760B2 (en) Sludge treatment method and sludge treatment equipment
JP6664251B2 (en) Sludge dewatering method and sludge dewatering device
JP2011230019A (en) Control system, control device and control method
JP2012030158A (en) Concentrated sludge dehydration system and control method therefor
JP2012115816A (en) Apparatus and method for treating sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412