JP5619965B2 - Centrifuge - Google Patents

Centrifuge Download PDF

Info

Publication number
JP5619965B2
JP5619965B2 JP2013137947A JP2013137947A JP5619965B2 JP 5619965 B2 JP5619965 B2 JP 5619965B2 JP 2013137947 A JP2013137947 A JP 2013137947A JP 2013137947 A JP2013137947 A JP 2013137947A JP 5619965 B2 JP5619965 B2 JP 5619965B2
Authority
JP
Japan
Prior art keywords
sludge
inorganic flocculant
flocculant
inorganic
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013137947A
Other languages
Japanese (ja)
Other versions
JP2013188751A (en
Inventor
良行 菅原
良行 菅原
貴浩 伊藤
貴浩 伊藤
伸浩 大月
伸浩 大月
間正文
正文 間
哲生 菊川
哲生 菊川
洋一 井上
洋一 井上
徳司 種田
徳司 種田
Original Assignee
株式会社西原環境
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西原環境 filed Critical 株式会社西原環境
Priority to JP2013137947A priority Critical patent/JP5619965B2/en
Publication of JP2013188751A publication Critical patent/JP2013188751A/en
Application granted granted Critical
Publication of JP5619965B2 publication Critical patent/JP5619965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/06Other accessories for centrifuges for cleaning bowls, filters, sieves, inserts, or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Description

本発明は、遠心分離機により汚泥を濃縮または脱水する遠心分離装置に関するものである。   The present invention relates to a centrifuge for concentrating or dewatering sludge with a centrifuge.

廃水やし尿などの有機性廃棄物(原液)を固液分離、生物学的処理、物理学的処理等した際に発生する汚泥を、処理処分したり有効利用したりするためには、効率よく濃縮・脱水する必要があり、濃縮汚泥や脱水汚泥の低含水率化が求められている。
そこで近年、遠心分離機を用いての汚泥処理では、濃縮性能や脱水性能の向上のため、汚泥に2種類の凝集剤を添加して濃縮・脱水する「二液法」が行われている(例えば、特許文献1,2参照)。
In order to dispose of sludge generated when organic waste (raw solution) such as waste water and human waste is subjected to solid-liquid separation, biological treatment, physical treatment, etc., it is efficient for disposal and effective use. It is necessary to concentrate and dehydrate, and there is a need for a low water content in concentrated sludge and dehydrated sludge.
Therefore, in recent years, in the sludge treatment using a centrifugal separator, in order to improve the concentration performance and dewatering performance, a “two-component method” is performed in which two types of flocculants are added to the sludge for concentration and dewatering ( For example, see Patent Documents 1 and 2).

「二液法」は、固液分離機の種類(遠心分離機、ベルトプレス機、スクリュープレス機など)により使用する凝集剤が異なるが、遠心分離機の場合、通常、(1)無機凝集剤としてポリ硫酸第二鉄溶液、(2)高分子凝集剤として両性高分子凝集剤溶液の2液を使用するものであり、汚泥にまず無機凝集剤溶液(第1液)を注入し、次いで高分子凝集剤溶液(第2液)を注入する。   In the “two-component method”, the flocculant used depends on the type of solid-liquid separator (centrifuge, belt press, screw press, etc.), but in the case of a centrifuge, usually (1) inorganic flocculant Using two solutions of polyferric sulfate solution and (2) amphoteric polymer flocculant solution as polymer flocculant. First, the inorganic flocculant solution (first liquid) is injected into the sludge, A molecular flocculant solution (second liquid) is injected.

遠心分離機による汚泥脱水処理において、「二液法」は、高分子凝集剤のみを用いる「一液法」に比べ、脱水汚泥の含水率が低下すると共に、脱水分離液の清澄性が増し(SS回収率向上)、さらに無機凝集剤の併用により脱水分離液からリン(富栄養化物質)を除去することができる。   In the sludge dewatering process using a centrifuge, the "two-component method" reduces the water content of the dehydrated sludge and increases the clarification of the dehydrated separation solution compared to the "one-component method" using only the polymer flocculant ( Improvement of SS recovery rate) Furthermore, phosphorus (eutrophication substance) can be removed from the dehydrated separation liquid by using an inorganic flocculant in combination.

また、ベルトプレス機による汚泥脱水処理では、汚泥にまず高分子凝集剤溶液(第1液)を注入し、次いで無機凝集剤溶液(第2液)を注入して行われるなど、目的や被処理物により、使用方法、運転方法、凝集剤が選定される。   In addition, the sludge dewatering treatment by the belt press machine is performed by first injecting the polymer flocculant solution (first liquid) into the sludge and then injecting the inorganic flocculant solution (second liquid). The method of use, the method of operation, and the flocculant are selected depending on the product.

特開平7−256300号公報(段落〔0005〕)JP-A-7-256300 (paragraph [0005]) 特開平8−71600号公報(段落〔0021〕および図1)JP-A-8-71600 (paragraph [0021] and FIG. 1)

従来の遠心分離機による「二液法」での汚泥脱水処理において、脱水汚泥の低含水率化のために2種類の凝集剤溶液を汚泥に多く注入すると、次のような課題が発生した。
(1) 薬品使用量が増大し、運転コストの上昇を招くばかりか運転管理が煩雑化する。
(2) 無機凝集剤溶液を多量に注入した場合、薬品混合汚泥のpHが大きく低下して、濃縮処理や脱水処理に影響を及ぼすばかりか、遠心分離機等の内部を腐食させる恐れがある。
(3) そこで、低pHの薬品混合汚泥を中和させるためにアルカリ薬品(苛性ソーダ溶液)等を薬品混合汚泥に注入すると、さらに運転コストの上昇を招き、運転管理がよりいっそう煩雑化してしまう。
(4) また、汚泥に多量の薬品を注入した場合、濃縮汚泥や脱水汚泥に各種薬品成分が高濃度に残留し、有効利用(堆肥化や燃料化)に支障をきたす恐れもある。
In the sludge dewatering process by the conventional “two-component method” using a centrifugal separator, when two kinds of flocculant solutions are injected into the sludge in order to reduce the water content of the dewatered sludge, the following problems occur.
(1) The amount of chemicals used increases, leading to an increase in operating costs and complicated operation management.
(2) When a large amount of the inorganic flocculant solution is injected, the pH of the chemical sludge is greatly lowered, which may affect the concentration treatment and dehydration treatment, and may corrode the inside of the centrifuge.
(3) Therefore, if alkaline chemicals (caustic soda solution) or the like is injected into the chemical mixed sludge in order to neutralize the low pH chemical mixed sludge, the operation cost will be further increased, and the operation management will be further complicated.
(4) In addition, when a large amount of chemicals is injected into sludge, various chemical components may remain in concentrated sludge and dewatered sludge at high concentrations, which may hinder effective use (composting and fueling).

逆に、運転コストを増大させず煩雑な運転管理にならないように凝集剤(無機、高分子)の使用量を抑えると、分離物(例えば脱水汚泥)の含水率を低減できず、取り扱いづらくなるばかりか、分離物の容積が増大してしまい、その後の処理処分に支障を来す。   Conversely, if the amount of the flocculant (inorganic or polymer) is suppressed so as not to increase the operating cost and complicated operation management, the water content of the separated material (for example, dehydrated sludge) cannot be reduced, making it difficult to handle. In addition, the volume of the separated material increases, which hinders subsequent disposal.

そこで、凝集剤溶液の注入量を増加させずに脱水汚泥の安定した低含水率化をはかるため、無機凝集剤溶液を遠心分離機内に注入する方法(「機内注入方式」)がある。
この機内注入方式では、従来の「二液法」とは逆の順番で第1液として高分子凝集剤を汚泥に注入した後、遠心分離機へ供給し、遠心分離機内で固液分離(濃縮脱水)がある程度進行した状態で第2液として無機凝集剤を注入する。
Therefore, there is a method of injecting the inorganic flocculant solution into the centrifuge (“in-machine injection method”) in order to achieve a stable low water content of the dewatered sludge without increasing the injection amount of the flocculant solution.
In this in-machine injection method, the polymer flocculant is injected into the sludge as the first liquid in the reverse order to the conventional “two-component method”, then supplied to the centrifuge, and solid-liquid separation (concentration) in the centrifuge. In the state where the dehydration has progressed to some extent, an inorganic flocculant is injected as the second liquid.

しかし、この機内注入方式には、汚泥に無機凝集剤と高分子凝集剤の2種類を添加して強固な凝集フロックを生成する従来の「二液法」に比べ、初期段階では、汚泥に高分子凝集剤を添加するだけなので、固液分離しやすい強固な凝集フロックの生成が難しく、遠心分離機による初期段階での固液分離性能が低下し、目標の含水率を得るためには汚泥処理量を低減するなどの対応をしなければならないという課題があった。   However, in this in-machine injection method, compared to the conventional “two-component method” in which two types of flocculant, inorganic flocculant and polymer flocculant, are added to the sludge to produce a strong flocculant floc, the sludge has a higher level in the initial stage. Since only the molecular flocculant is added, it is difficult to produce strong flocs that are easy to separate into solid and liquid, and the solid-liquid separation performance at the initial stage of the centrifuge decreases, and sludge treatment is required to obtain the target moisture content. There was a problem that measures such as reducing the amount had to be taken.

また、機内注入方式では、脱水汚泥の低含水率化は可能であるが、遠心分離機内での凝集汚泥(高分子凝集剤が注入された汚泥)と無機凝集剤成分との反応時間が極端に短くなるため、分離液の清澄性(SS回収率の向上)や分離液からのリン除去は難しく、また固液分離性能自体に影響を及ぼし、運転操作を厳密に行わないと、汚泥脱水処理が滞るという課題があった。   In addition, the water content of dewatered sludge can be reduced by the in-machine injection method, but the reaction time between the coagulated sludge (sludge into which the polymer coagulant is injected) and the inorganic coagulant component in the centrifuge is extremely large. Because it becomes shorter, it is difficult to clarify the separation liquid (improvement of SS recovery) and remove phosphorus from the separation liquid, and it affects the solid-liquid separation performance itself. There was a problem of stagnation.

さらに、分離液からのリン除去に関して、従来の「二液法」では汚泥に予め無機凝集剤溶液を注入されるため、汚泥に含有するリンは、例えばポリ硫酸第二鉄(無機凝集剤)と反応して不溶性リン化合物(リン酸鉄:FePO4)となり、リンが脱水(濃縮)分離液に移行して排水処理設備に還流することを防止できるが、機内注入方式では、汚泥と無機凝集剤成分との反応時間が極端に短くなるため不溶性リン化合物の生成が進まず、リンを含む脱水分離液は返流水として排水処理設備に還流し、処理水に混入して排水されてしまい、放流先の富栄養化を助長するばかりか、放流水質基準を超過させかねないという課題があった。   Furthermore, regarding the removal of phosphorus from the separation liquid, in the conventional “two-component method”, since the inorganic flocculant solution is injected into the sludge in advance, the phosphorus contained in the sludge is, for example, polyferric sulfate (inorganic flocculant). It reacts to become an insoluble phosphorus compound (iron phosphate: FePO4), which prevents phosphorus from transferring to the dehydrated (concentrated) separation liquid and returning to the wastewater treatment facility, but in the in-flight injection method, sludge and inorganic flocculant components The generation time of insoluble phosphorus compounds does not progress because the reaction time with the water becomes extremely short, and the dehydrated separation liquid containing phosphorus is returned to the wastewater treatment facility as return water, mixed into the treated water and drained, and discharged to the destination. In addition to promoting eutrophication, there was a challenge that could exceed the quality of discharged water.

また、機内注入方式における上記固液分離性能やリン除去の課題を解決するために、多量の無機凝集剤を汚泥に機内注入することも考えられるが、そうなると前述した従来の「二液法」が抱える課題が発生してしまう。   In addition, in order to solve the above-mentioned problems of solid-liquid separation performance and phosphorus removal in the in-machine injection method, it is conceivable to inject a large amount of inorganic flocculant into the sludge. The problem you have will occur.

通常、遠心分離機等で汚泥を濃縮したり脱水したりする場合、各種凝集剤の溶液を汚泥に注入するが、無機凝集剤溶液は遠心分離機の停止休止(流動がない、乾燥が進む)した場合などに固まりやすく、注入−運転に支障を来す。とくに、細孔から無機凝集剤溶液を吐出させる場合、常に目詰対策をしなければならないという課題があった。   Normally, when the sludge is concentrated or dehydrated with a centrifuge, various flocculant solutions are injected into the sludge, but the inorganic flocculant solution is stopped and stopped (no flow, drying proceeds) If this happens, it will harden, which will hinder the injection and operation. In particular, when the inorganic flocculant solution is discharged from the pores, there is a problem that countermeasures against clogging must always be taken.

さらに、無機凝集剤溶液の供給管についても、他の配管との接合部分、湾曲(屈折)部分、注入口部分などで、無機凝集剤溶液が固まりやすく、固まりが成長すると閉塞を起こして無機凝集剤溶液の無機凝集剤溶液の供給が停止し、濃縮処理や脱水処理に支障を来すという課題があった。また、汚泥に多量の無機凝集剤溶液を注入した場合、無機凝集剤の固まりは、凝集汚泥の供給管(汚泥供給管)だけではなく、遠心分離機内で開口する汚泥供給管出口や遠心分離機内の汚泥供給室に設けられた汚泥供給口にも発生し、濃縮処理や脱水処理に支障を来すという課題があった。   In addition, the inorganic flocculant solution supply pipe also tends to solidify at the junction with other pipes, the curved (refractive) part, the inlet part, etc., and when the solid grows, it clogs and causes inorganic agglomeration. There was a problem that the supply of the inorganic flocculant solution as the agent solution was stopped, which hindered the concentration treatment and the dehydration treatment. In addition, when a large amount of the inorganic flocculant solution is injected into the sludge, not only the flocculant sludge supply pipe (sludge supply pipe) but also the sludge supply pipe outlet opening in the centrifuge and the inside of the centrifuge This problem also occurs at the sludge supply port provided in the sludge supply chamber, which interferes with the concentration and dehydration processes.

そこで、供給管等に洗浄設備を設けることが考えられるが、濃縮処理や脱水処理の終了後に遠心分離機の洗浄と一緒に配管洗浄を行う場合、通常、洗浄水は主に汚泥供給管に供給するため、無機凝集剤溶液の供給管や遠心分離機内の汚泥供給室は十分に洗浄できず、十分な洗浄効果を得るために洗浄設備を複数設置すると、建設コストの上昇を招くばかりか、装置が複雑化して運転管理や保守点検が煩雑になってしまうという課題があった。   Therefore, it is conceivable to install a cleaning facility in the supply pipe, etc. However, when pipe cleaning is performed together with centrifuge cleaning after the completion of concentration and dehydration, the cleaning water is usually supplied mainly to the sludge supply pipe. Therefore, the supply pipe for the inorganic flocculant solution and the sludge supply chamber in the centrifuge cannot be cleaned sufficiently, and installing multiple cleaning facilities to obtain a sufficient cleaning effect will not only increase the construction cost, However, there is a problem that operation management and maintenance inspection become complicated.

加えて、高速で回転する遠心分離機はバランス調整がとても重要であるが、遠心分離機内に複数の洗浄設備を複雑に設けると、バランス調整がとても難しくなり、些細なことでバランスが崩れると重大な事故を招きかねないという課題があった。   In addition, balance adjustment is very important for a centrifuge that rotates at high speed, but if multiple cleaning facilities are installed in the centrifuge in a complicated manner, the balance adjustment becomes very difficult, and if the balance is lost due to a trivial matter, it will be serious. There was a problem that could cause a serious accident.

無機凝集剤の固まりの除去洗浄や閉塞防止のため洗浄設備を設けた場合、通常、水道水や地下水を用いることになり、水道料金など運転コストの上昇を招くという課題があった。   When a cleaning facility is provided for removing and cleaning the lump of the inorganic flocculant and preventing clogging, tap water or groundwater is usually used, which causes an increase in operating costs such as water charges.

本発明は、上述のような課題を解決するためになされたもので、外胴ボウルと内胴スクリュウとの間に形成されるプールの分離物排出側へ移行中の固液分離が進んでいる凝集汚泥(分離汚泥)と無機凝集剤を効率的に且つ確実に反応させることができ、分離汚泥からより一層分離液を分離させ、確実に分離物(脱水汚泥)の低含水率化が図れると共に、無機凝集剤を直接分離汚泥に注入でき、無機凝集剤の凝集効果を低下させることなく即座に注入でき、遠心分離機の高い固液分離性能を安定して維持することができる遠心分離装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and solid-liquid separation is progressing during the transition to the separated discharge side of the pool formed between the outer trunk bowl and the inner trunk screw. Agglomerated sludge (separated sludge) and inorganic flocculant can be reacted efficiently and reliably, and the separated liquid can be further separated from the separated sludge, and the water content of the separated product (dehydrated sludge) can be reliably reduced. A centrifuge that can inject inorganic flocculant directly into the separated sludge, can be injected immediately without reducing the flocculation effect of the inorganic flocculant, and can stably maintain the high solid-liquid separation performance of the centrifuge. The purpose is to provide.

本発明に係る遠心分離装置は、汚泥に無機凝集剤および高分子凝集剤を供給し、フロックが形成された前記汚泥を、外胴ボウルおよび内胴スクリュウを備えた遠心分離機で分離物と分離液に固液分離する遠心分離装置において、前記内胴スクリュウに配設され、且つ汚泥供給口と凝集剤流出口が設けられた汚泥供給室の内部へ無機凝集剤を注入する無機凝集剤注入管、該無機凝集剤注入管に設けられた無機凝集剤吐出孔および前記無機凝集剤注入管に接続する給水管を備えたものである。   A centrifugal separator according to the present invention supplies an inorganic flocculant and a polymer flocculant to sludge, and separates the sludge formed with flocks from a separated substance by a centrifuge provided with an outer trunk bowl and an inner trunk screw. An inorganic flocculant injection tube for injecting an inorganic flocculant into a sludge supply chamber disposed in the inner cylinder screw and provided with a sludge supply port and a flocculant outlet, in a centrifuge for solid-liquid separation into liquid And an inorganic flocculant discharge hole provided in the inorganic flocculant injection pipe and a water supply pipe connected to the inorganic flocculant injection pipe.

本発明に係る遠心分離装置は、前記汚泥供給室内に仕切板を設けたものである。   The centrifugal separator according to the present invention is provided with a partition plate in the sludge supply chamber.

本発明に係る遠心分離装置は、前記分離液のリン濃度を測定するリン濃度測定器を備えたものである。   The centrifugal separator according to the present invention includes a phosphorus concentration measuring device that measures the phosphorus concentration of the separation liquid.

本発明に係る遠心分離装置は、前記給水管へ前記分離液を供給する分離液循環配管を備えたものである。   The centrifugal separator according to the present invention includes a separation liquid circulation pipe for supplying the separation liquid to the water supply pipe.

本発明の遠心分離装置によれば、遠心分離機の内胴スクリュウに配設されていて、汚泥供給口と凝集剤流出口が設けられている汚泥供給室の内部へ、無機凝集剤を注入する無機凝集剤注入管を備えたことにより、無機凝集剤を、無機凝集剤注入管を用いて汚泥供給室内へ直接注入し、凝集剤流出口を介して外胴ボウルと内胴スクリュウとの間に形成されるプールの分離物排出側に供給できる。これにより、分離物排出側に移行していて固液分離が進んでいる凝集分離物(分離汚泥)へ再度無機凝集剤を直接注入できるため、次のような幾多の優れた作用効果を奏する。
(1) 効率的に且つ確実に分離汚泥と無機凝集剤とを反応させることができ、分離汚泥からより一層分離液を分離させ、確実に分離物(脱水汚泥)の低含水率化が図れる。
(2) 無機凝集剤を再度分離汚泥に直接注入できるので、無機凝集剤の凝集効果を低下させることなく即座に注入でき、遠心分離機の高い固液分離性能を安定して維持することができる。
(3) 無機凝集剤を直接注入するので、無駄が省け、また注入量を容易に調整できるため、無機凝集剤使用量を節減することができる。これにより、運転コストの上昇が抑えられ、また複雑な運転管理も回避できる。
(4) 無機凝集剤を分離汚泥に直接注入する以前に、汚泥に予め無機凝集剤が注入されるため、汚泥に含まれるリンが確実に無機凝集剤と反応して不溶性塩になり、リンの分離液への移行を抑制することができ、また、分離液の清澄性(高SS回収率)を得ることができる。これにより、排水処理施設への返流水の水質(リン、SS、有機物)悪化を防止でき、適正な放流水質を維持できる。
(5) 無機凝集剤の適正注入により、凝集汚泥の低pH化を防止できるため、遠心分離機の腐食や劣化を抑制でき、また中和設備を設ける必要がなくなり、設備コスト、運転コスト、維持管理や修繕のコスト等を低減できる。さらに、過剰に薬品類が注入されないため、脱水汚泥を有効利用(堆肥化や燃料化)することができる。
(6) 無機凝集剤を再度分離汚泥に直接注入することにより、脱水汚泥を低含水率化でき、また、容積も減るため、取り扱いが容易であると共に、処理処分に要する作業や費用を軽減することができる。
(7) 予め汚泥に無機凝集剤を注入するため、固液分離しやすい強固な凝集フロック(凝集汚泥)を生成でき、遠心分離機における初期段階での固液分離性能を確保でき、処理量も適性に維持できる。
According to the centrifugal separator of the present invention, the inorganic flocculant is injected into the inside of the sludge supply chamber provided in the inner cylinder screw of the centrifuge and provided with the sludge supply port and the flocculant outlet. By providing the inorganic flocculant injection pipe, the inorganic flocculant is directly injected into the sludge supply chamber using the inorganic flocculant injection pipe, and between the outer trunk bowl and the inner trunk screw via the flocculant outlet. Can be supplied to the separated discharge side of the pool formed. As a result, the inorganic flocculant can be directly injected again into the agglomerated separated matter (separated sludge) that has moved to the separated product discharge side and solid-liquid separation is progressing, and thus has many excellent effects as follows.
(1) The separated sludge and the inorganic flocculant can be reacted efficiently and reliably, and the separated liquid can be further separated from the separated sludge, and the water content of the separated product (dehydrated sludge) can be reliably reduced.
(2) Since the inorganic flocculant can be directly injected again into the separated sludge, it can be injected immediately without reducing the flocculation effect of the inorganic flocculant, and the high solid-liquid separation performance of the centrifuge can be stably maintained. .
(3) Since the inorganic flocculant is directly injected, waste is eliminated and the amount of injection can be easily adjusted, so that the amount of inorganic flocculant used can be reduced. As a result, an increase in operating cost can be suppressed, and complicated operation management can be avoided.
(4) Before the inorganic flocculant is directly injected into the separated sludge, the inorganic flocculant is injected into the sludge in advance, so that the phosphorus contained in the sludge surely reacts with the inorganic flocculant to form an insoluble salt. Transition to the separation liquid can be suppressed, and the clarity of the separation liquid (high SS recovery rate) can be obtained. Thereby, deterioration of the water quality (phosphorus, SS, organic matter) of the return water to the wastewater treatment facility can be prevented, and appropriate discharged water quality can be maintained.
(5) Proper injection of the inorganic flocculant can prevent the sludge from lowering the pH of the sludge, so that the centrifuge can be prevented from corroding and degrading, and there is no need to install a neutralization facility. Management and repair costs can be reduced. Furthermore, since chemicals are not injected excessively, dewatered sludge can be effectively used (composted or fueled).
(6) By directly injecting the inorganic flocculant into the separated sludge, the dehydrated sludge can be reduced in water content and the volume is reduced, so that it is easy to handle and reduces the work and cost required for disposal. be able to.
(7) Since the inorganic flocculant is injected into the sludge in advance, it is possible to generate strong flocculent flocs (aggregated sludge) that are easy to separate into solid and liquid, ensuring the solid-liquid separation performance in the initial stage of the centrifuge, and the throughput Can maintain fitness.

また、本発明では、無機凝集剤注入管に給水管を接続し、その無機凝集剤注入管に給水できるようにしたことで、次のような作用効果が得られる。
(1) 遠心分離機の稼動中に無機凝集剤注入管に給水することにより、濃度が高く固まりやすい無機凝集剤溶液を瞬時に希釈できるため、無機凝集剤溶液を速やかに安定して無機凝集剤注入管の無機凝集剤吐出孔から汚泥供給室に吐出させ、凝集剤流出口から外胴ボウルの分離物排出側に供給することができる。
(2) 上述のように無機凝集剤溶液が希釈され増量するため、分離物排出側に移行している分離物に無機凝集剤溶液を万遍なく直接供給でき、短時間で速やかに分離物と無機凝集剤を反応させることができ、より一層効率的に且つ確実に分離物の含水率を低下させることができる。
(3) 無機凝集剤溶液を速やかに希釈することができるため、高濃度の無機凝集剤溶液を用いることができ、これにより溶液貯留(溶解)槽や注入ポンプの小型化が可能であり、設備コストや設置面積の削減に有効である。
In the present invention, the following operation and effect can be obtained by connecting a water supply pipe to the inorganic flocculant injection pipe so that water can be supplied to the inorganic flocculant injection pipe.
(1) By supplying water to the inorganic flocculant injection tube during operation of the centrifuge, the inorganic flocculant solution that is highly concentrated and easily solidified can be instantly diluted, so that the inorganic flocculant solution can be quickly and stably stabilized. It can be discharged from the inorganic flocculant discharge hole of the injection pipe to the sludge supply chamber and supplied from the flocculant outlet to the separated discharge side of the outer shell bowl.
(2) Since the inorganic flocculant solution is diluted and increased as described above, the inorganic flocculant solution can be directly and universally supplied to the separated product moving to the separated product discharge side. The inorganic flocculant can be reacted, and the water content of the separated product can be reduced more efficiently and reliably.
(3) Since the inorganic flocculant solution can be diluted quickly, a high concentration inorganic flocculant solution can be used, which enables downsizing of the solution storage (dissolution) tank and injection pump. It is effective in reducing cost and installation area.

さらに、遠心分離機の稼動停止工程中に無機凝集剤注入管へ給水することにより、次のような作用効果が得られる。
(1) 無機凝集剤供給管、無機凝集剤注入管、無機凝集剤吐出孔、汚泥供給室、凝集剤流出口など、付着固化しやすい無機凝集剤が接触する部位を確実に洗浄でき、無機凝集剤による目詰まりや閉塞を防止することができる。
(2) とくに径が小さい無機凝集剤吐出孔や凝集剤流出口は目詰まりしやすく、一旦目詰まりすると、大がかりなメンテナンス作業を要するが、給水管から無機凝集剤注入管を介して給水(圧送)することにより、凝集剤の付着−固化−成長を確実に防止でき、安定して遠心分離機を稼動させることができる。
(3) 複数で複雑な洗浄設備を設ける必要が無く、無機凝集剤注入管への給水により、遠心分離装置の目詰まりや閉塞しやすい無機凝集剤系統を確実に洗浄することができ、設備コストの上昇や維持管理作業の増加を防止でき、遠心分離機の適切な保守管理にも有益である。
Furthermore, by supplying water to the inorganic flocculant injection tube during the operation stop process of the centrifuge, the following effects can be obtained.
(1) Inorganic coagulant supply pipes, inorganic coagulant injection pipes, inorganic coagulant discharge holes, sludge supply chambers, coagulant outlets, and other parts where inorganic coagulants that tend to adhere and solidify can be reliably washed, and inorganic coagulation It is possible to prevent clogging and blockage by the agent.
(2) The inorganic flocculant discharge hole and the flocculant outlet, which have a particularly small diameter, are likely to be clogged. Once clogged, large maintenance work is required. ), The adhesion-solidification-growth of the flocculant can be reliably prevented, and the centrifuge can be operated stably.
(3) There is no need to install multiple complicated cleaning facilities, and the water supply to the inorganic flocculant injection tube can reliably clean the inorganic flocculant system that is likely to clog or clog the centrifuge, resulting in equipment costs. Can be prevented, and maintenance work can be prevented from increasing, which is also beneficial for proper maintenance of the centrifuge.

さらに本発明では、汚泥供給室内の汚泥供給口と凝集剤流出口との間に仕切板を設け、この仕切板の凝集剤流出口側に無機凝集剤注入管の無機凝集剤吐出孔を開口させたことにより、次のような作用効果が得られる。
(1) 無機凝集剤注入管の無機凝集剤吐出孔から汚泥供給室内に供給された無機凝集剤溶液を汚泥供給室内で拡散させずに、確実に凝集剤流出口に誘導することができる。
(2) 仕切板によってスムーズに凝集剤流出口に誘導され流出した無機凝集剤溶液を、分離物排出側に移行している分離汚泥と満遍なく、短時間で速やかに反応させることができる。
(3) 外胴ボウルの2段テーパ近傍に凝集剤流出口を設けた場合、固液分離作用により分離液が分離された分離汚泥に無機凝集剤溶液を直接かつ速やかに再注入することができ、分離汚泥からより一層分離液を分離させて確実に分離物(脱水汚泥)の低含水率化を図ることができる。
(4) また、凝集剤流出口の近傍に、無機凝集剤注入管の無機凝集剤吐出孔を開口させた場合、無機凝集剤吐出孔から洗浄水が凝集剤流出口に向かって吐出するため、付着固化しやすい無機凝集剤が通過する凝集剤流出口を確実かつ効率よく洗浄することができる。
Furthermore, in the present invention, a partition plate is provided between the sludge supply port in the sludge supply chamber and the flocculant outlet, and an inorganic flocculant discharge hole of the inorganic flocculant injection pipe is opened on the side of the flocculant outlet of the partition plate. As a result, the following effects can be obtained.
(1) The inorganic flocculant solution supplied from the inorganic flocculant discharge hole of the inorganic flocculant injection pipe into the sludge supply chamber can be reliably guided to the flocculant outlet without being diffused in the sludge supply chamber.
(2) The inorganic flocculant solution smoothly guided to the flocculant outlet by the partition plate and allowed to react with the separated sludge moving to the separated discharge side evenly and quickly.
(3) When a flocculant outlet is provided near the two-stage taper of the outer shell bowl, the inorganic flocculant solution can be reinjected directly and quickly into the separated sludge from which the separated liquid has been separated by solid-liquid separation. Further, the separated liquid can be further separated from the separated sludge, and the water content of the separated product (dehydrated sludge) can be reliably reduced.
(4) Further, when the inorganic flocculant discharge hole of the inorganic flocculant injection pipe is opened near the flocculant outlet, the washing water is discharged from the inorganic flocculant discharge hole toward the flocculant outlet, The flocculant outlet through which the inorganic flocculant that easily adheres and solidifies passes can be reliably and efficiently washed.

また、無機凝集剤注入管へ無機凝集剤を供給する無機凝集剤注入ポンプと共に、汚泥に無機凝集剤を供給する無機凝集剤供給ポンプを備え付けることにより、次のような作用効果が得られる。
(1) 汚泥に無機凝集剤とは別に、汚泥に予め無機凝集剤溶液を供給することにより、汚泥に含まれるリン成分を無機凝集剤と反応させ、不溶性塩にして分離物と共に排除でき、このため、リン成分の分離液への移行および排水処理設備等への還流を確実に防止できる。また、汚泥に予め無機凝集剤溶液を供給することにより、固液分離しやすい強固な凝集フロック(凝集汚泥)を生成できると共に、SS回収率が向上するため、分離液のSSも低減でき、排水処理設備への流入負荷を軽減できる。
(2) 無機凝集剤注入管による無機凝集剤の再注入では、無機凝集剤は主に分離物排出側に移行している分離汚泥に供給され、汚泥や分離液排出側に移行している分離液に接触しづらく、そのため、分離液に含まれるリン成分(富栄養化物質で、排水処理での除去では簡単ではない)は分離液と共に排出され、排水処理施設等へ還流してしまうが、予め汚泥に無機凝集剤を供給することにより、それを防止することができる。
(3) 無機凝集剤の注入については、運転状況や処理状況により、無機凝集剤注入ポンプと無機凝集剤供給ポンプとを別途に設けて両ポンプをそれぞれ運転させることが好ましいが、一台のポンプを両用途に併用してもよい。これにより、設備費やランニングコストを削減できると共に、省スペース化にも役立つ。
Further, by providing an inorganic flocculant injection pump for supplying the inorganic flocculant to the sludge together with the inorganic flocculant injection pump for supplying the inorganic flocculant to the inorganic flocculant injection pipe, the following effects can be obtained.
(1) By supplying an inorganic flocculant solution to the sludge in advance separately from the inorganic flocculant, the phosphorus component contained in the sludge can react with the inorganic flocculant to be converted into an insoluble salt and removed together with the separated substance. Therefore, the transfer of the phosphorus component to the separation liquid and the reflux to the wastewater treatment facility can be reliably prevented. In addition, by supplying the inorganic flocculant solution to the sludge in advance, it is possible to generate strong flocculated flocs (aggregated sludge) that are easy to separate into solid and liquid, and the SS recovery rate is improved, so that the SS of the separated liquid can also be reduced, and The inflow load to the processing equipment can be reduced.
(2) In re-injection of the inorganic flocculant by the inorganic flocculant injection pipe, the inorganic flocculant is mainly supplied to the separated sludge that has been transferred to the separated product discharge side, and the separation that has been transferred to the sludge and separation liquid discharge side. It is difficult to come into contact with the liquid, so the phosphorus component contained in the separation liquid (which is a eutrophication substance and is not easy to remove by wastewater treatment) is discharged with the separation liquid and returned to the wastewater treatment facility, etc. This can be prevented by supplying the inorganic flocculant to the sludge in advance.
(3) Regarding the injection of the inorganic flocculant, it is preferable to separately provide an inorganic flocculant injection pump and an inorganic flocculant supply pump depending on the operating conditions and processing conditions, and operate both pumps separately. May be used in both applications. As a result, the equipment cost and running cost can be reduced, and the space can be saved.

さらに、本発明では、分離液からリンを除去するために、予め汚泥に無機凝集剤溶液を供給する場合、リン除去の状況を把握するために分離液のリン濃度を測定するリン濃度測定器を設けることにより、次のような作用効果が得られる。
(1) 分離液のリン濃度が高い場合には、無機凝集剤供給ポンプによる無機凝集剤供給量を増やすように調整し、逆にリン濃度が低い場合には無機凝集剤供給量を減らすように調整でき、分離液からのリン除去を安定して行うことができる。
(2) 分離液からのリン除去のために、汚泥に不必要に無機凝集剤を供給すると、薬品代など運転コストの上昇を招くが、分離液のリン濃度に応じて適宜無機凝集剤供給ポンプを調整できるので、確実にリン除去できるばかりか、運転コストの上昇を抑えることができる。
(3) さらに、リン濃度測定器の計測値に基づき無機凝集剤供給ポンプの運転を制御する制御器を設けることにより、状況に応じて速やかに且つ確実に汚泥への無機凝集剤の供給量を制御することができ、安定した処理が行えると共に、運転コストの削減、省力化、作業軽減に効果がある。
Furthermore, in the present invention, when an inorganic flocculant solution is supplied to sludge in advance to remove phosphorus from the separation liquid, a phosphorus concentration measuring device that measures the phosphorus concentration of the separation liquid in order to grasp the state of phosphorus removal. By providing, the following effects can be obtained.
(1) When the phosphorus concentration of the separation liquid is high, adjust the inorganic flocculant supply amount by the inorganic flocculant supply pump to increase, and conversely, decrease the inorganic flocculant supply amount when the phosphorus concentration is low. It can be adjusted, and phosphorus removal from the separation liquid can be performed stably.
(2) Supplying an inorganic flocculant to sludge unnecessarily to remove phosphorus from the separation liquid will lead to an increase in operating costs such as chemical costs, but depending on the phosphorus concentration of the separation liquid, an appropriate inorganic flocculant supply pump Therefore, it is possible not only to reliably remove phosphorus but also to suppress an increase in operating cost.
(3) Furthermore, by providing a controller that controls the operation of the inorganic flocculant supply pump based on the measurement value of the phosphorus concentration measuring device, the amount of inorganic flocculant supplied to the sludge can be quickly and reliably adjusted according to the situation. It can be controlled, can perform stable processing, and is effective in reducing operating costs, saving labor, and reducing work.

給水管へ分離液を供給する分離液循環配管を備え、給水管を介して分離液を循環させることにより、次のような効果が得られる。
(1) 分離液を有効利用することができ、水道使用料等運転コストの削減化が図れると共に、省資源化に有効である。
(2) 循環利用する分離液は、元来汚泥を構成するもの(=性状が類似)であるため、分離液を遠心分離機に供給することにより、異質な液体(水道水や地下水)を供給する場合に比べ、遠心分離処理(固液分離性能)への影響を排除でき、安定した効率的な運転を行うことができる。
(3) 分離液にはリン成分が残存しているが、分離液を循環利用するため、無機凝集剤注入管内で無機凝集剤と再度反応して不溶性塩になるため、分離液からさらにリンを除去することができる。また、分離液に凝集剤成分が残存する場合には、分離液循環により残存凝集剤を再利用でき、凝集剤使用量の節約を期待できる。
(4) 遠心分離機に給水して洗浄(運転停止)する場合、分離液を循環させることにより、遠心分離機内への給水(=洗浄水)量が増加し、遠心分離機内での水圧や流速が上昇して、洗浄効果を高めることができる。洗浄水を全て水道水などでまかなった場合、運転コストを増加させるばかりか、洗浄設備を大型化する必要があるが、分離液を循環させることにより、運転コストの上昇を抑えられるばかりか、洗浄設備を大型化せずに洗浄効果を上昇させることができる。
The following effects can be obtained by providing a separation liquid circulation pipe for supplying a separation liquid to the water supply pipe and circulating the separation liquid through the water supply pipe.
(1) Separation liquid can be used effectively, which can reduce operation costs such as water usage fees and is effective for resource saving.
(2) Since the separation liquid that circulates originally constitutes sludge (= similar properties), by supplying the separation liquid to the centrifuge, foreign liquids (tap water and groundwater) are supplied. Compared with the case where it does, the influence on a centrifugation process (solid-liquid separation performance) can be excluded, and the stable efficient operation can be performed.
(3) Although the phosphorus component remains in the separation liquid, since the separation liquid is recycled, it reacts again with the inorganic flocculant in the inorganic flocculant injection tube to form an insoluble salt. Can be removed. Further, when the flocculant component remains in the separated liquid, the remaining flocculant can be reused by circulating the separated liquid, and a saving in the amount of flocculant used can be expected.
(4) When supplying water to the centrifuge and washing (stopping operation), circulating the separation liquid increases the amount of water supplied to the centrifuge (= wash water), and the water pressure and flow rate in the centrifuge As a result, the cleaning effect can be enhanced. If all of the cleaning water is covered with tap water, it is necessary to increase the operating cost and increase the size of the cleaning equipment. The cleaning effect can be increased without increasing the size of the equipment.

本発明では、凝集剤として無機凝集剤(ポリ硫酸第二鉄、塩化第二鉄、ポリ塩化アルミニウム等)を用いることにより、汚泥の固形成分を確実に凝集させ、分離性の高い汚泥フロックを生成できると共に、汚泥に含まれるリン成分と反応して不溶性塩にして除去することができる。   In the present invention, by using an inorganic flocculant (such as polyferric sulfate, ferric chloride, polyaluminum chloride, etc.) as the flocculant, solid components of the sludge are reliably agglomerated to produce highly separable sludge flocs. In addition to being able to react with the phosphorus component contained in the sludge, it can be removed as an insoluble salt.

また、本発明では、高分子凝集剤として、両性高分子凝集剤、カチオン系高分子凝集剤、アニオン系高分子凝集剤、ノニオン系高分子凝集剤を用いる。
この場合、汚泥に無機凝集剤、例えばポリ鉄を添加して微細な凝集フロックを生成させた後、両性高分子凝集剤を供給することにより、さらに凝集させて強固な汚泥フロックを生成させることができる。
In the present invention, amphoteric polymer flocculants, cationic polymer flocculants, anionic polymer flocculants, and nonionic polymer flocculants are used as the polymer flocculants.
In this case, after adding an inorganic flocculant, such as polyiron, to the sludge to produce fine flocculent flocs, the amphoteric polymer flocculant is supplied to further agglomerate to produce strong sludge flocs. it can.

さらに、単独で比較的強固な汚泥フロックを生成できるカチオン系高分子凝集剤、アニオン系凝集剤、ノニオン系高分子凝集剤を用いてもよく、例えば汚泥に予め無機凝集剤を少なく注入した場合にはカチオン系高分子凝集剤を、多く注入した場合にはアニオン系高分子凝集剤を使用することにより、強固な汚泥フロックを生成させることができる。また、ノニオン系高分子凝集剤は上水汚泥等を脱水処理する場合に有効である。   In addition, cationic polymer flocculants, anionic flocculants, and nonionic polymer flocculants that can generate relatively strong sludge flocs alone may be used. For example, when a small amount of inorganic flocculant is injected into sludge in advance. Can produce a strong sludge floc by using an anionic polymer flocculant when a large amount of the cationic polymer flocculant is injected. The nonionic polymer flocculant is effective when dewatering the water sludge and the like.

実施の形態1.
図1(A)は本発明の実施の形態1による遠心分離装置を示す断面図、図1(B)は図1(A)の要部拡大断面である。
本発明に係る遠心分離装置は、汚泥に無機凝集剤および高分子凝集剤を供給し、フロックが形成された凝集汚泥を、外胴ボウル3および内胴スクリュウ4を備えた遠心分離機1で固液分離し、無機凝集剤吐出孔23aを有する無機凝集剤注入管23で、遠心分離機の内胴スクリュウに配設されていて、汚泥供給口7aと凝集剤流出口7bが設けられている汚泥供給室7の内部へ、無機凝集剤を再注入する基本構造となっている。
この実施の形態1による遠心分離装置は、無機凝集剤および高分子凝集剤が供給された汚泥を分離物と分離液に固液分離する遠心分離機1と、汚泥を貯留する汚泥貯留槽11と、高分子凝集剤溶液を貯留する高分子凝集剤貯留槽12と、無機凝集剤溶液を貯留する無機凝集剤貯留槽13とを備えた構造となっており、その詳細な構造を以下に説明する。
Embodiment 1 FIG.
1A is a cross-sectional view showing a centrifugal separator according to Embodiment 1 of the present invention, and FIG. 1B is an enlarged cross-sectional view of the main part of FIG.
The centrifugal separator according to the present invention supplies an inorganic flocculant and a polymer flocculant to sludge, and the flocs formed sludge is solidified by a centrifuge 1 having an outer trunk bowl 3 and an inner trunk screw 4. Sludge which is liquid-separated and is provided with an inorganic flocculant injection pipe 23 having an inorganic flocculant discharge hole 23a, which is disposed in the inner cylinder screw of the centrifuge, and which is provided with a sludge supply port 7a and a flocculant outlet 7b. The basic structure is such that the inorganic flocculant is reinjected into the supply chamber 7.
The centrifuge according to the first embodiment includes a centrifuge 1 that solid-liquid separates sludge supplied with an inorganic flocculant and a polymer flocculant into a separated product and a separated liquid, and a sludge storage tank 11 that stores sludge. The polymer flocculant storage tank 12 for storing the polymer flocculant solution and the inorganic flocculant storage tank 13 for storing the inorganic flocculant solution are provided. The detailed structure will be described below. .

まず、遠心分離機1は、一端側に分離液排出口2aを有し且つ他端側に分離物排出口2bを有するケーシング2と、このケーシング2内に回転可能に配設された外胴ボウル3と、この外胴ボウル3内に回転可能に配設された内胴スクリュウ4と、前記外胴ボウル3を回転駆動する回転駆動機5と、前記内胴スクリュウ4を回転駆動する回転駆動機6と、前記外胴ボウル3と内胴スクリュウ4とに回転差を与える差速調整機(図示せず)とを備え、前記外胴ボウル3と内胴スクリュウ4との間に濃縮・脱水ゾーンとしてのプール10が形成された構造となっている。   First, the centrifuge 1 includes a casing 2 having a separation liquid discharge port 2a on one end side and a separated product discharge port 2b on the other end side, and an outer body bowl rotatably disposed in the casing 2 3, an inner body screw 4 rotatably disposed in the outer body bowl 3, a rotational drive unit 5 that rotationally drives the outer body bowl 3, and a rotational drive unit that rotationally drives the inner body screw 4 6 and a differential speed adjuster (not shown) for providing a rotational difference between the outer body bowl 3 and the inner body screw 4, and a concentration / dehydration zone between the outer body bowl 3 and the inner body screw 4. As a result, a pool 10 is formed.

前記外胴ボウル3は、その中間部より分離液排出側が円筒形状の直胴部3aとなっており、分離物排出側に形成されたテーパ部(狭径部)を2段テーパ3b,3cとして形成している。この2段テーパ3b,3cは、水面WL下の2段テーパ3bが急傾斜となり、水面WL上の2段テーパ3cが緩傾斜となるように製作されている。このような2段テーパ3b,3cによって、水面下でのスクリュウ羽根4cによる凝集汚泥への圧搾効果とプール10内での滞留時間延長を可能とし、とくに遠心効果を強く受ける2段テーパ3bでの滞留時間を長くとることができる。なお、外胴ボウル3の分離物排出側に形成されたテーパ部が1段テーパ3dであっても高い遠心分離(脱水)性能を得ることができる。   The outer body bowl 3 has a cylindrical body 3a having a cylindrical shape on the separation liquid discharge side from an intermediate portion thereof, and tapered portions (narrow diameter portions) formed on the separation material discharge side are defined as two-stage tapers 3b and 3c. Forming. The two-step taper 3b, 3c is manufactured such that the two-step taper 3b below the water surface WL has a steep inclination and the two-step taper 3c on the water surface WL has a gentle inclination. Such a two-stage taper 3b, 3c enables the squeezing effect to the coagulated sludge by the screw blade 4c under the water surface and the extension of the residence time in the pool 10, and in particular, the two-stage taper 3b that strongly receives the centrifugal effect. The residence time can be increased. Even if the tapered portion formed on the separated material discharge side of the outer shell bowl 3 is a one-step taper 3d, high centrifugal separation (dehydration) performance can be obtained.

前記内胴スクリュウ4は、その中間部より分離液排出側に形成された円筒形状の直胴部4aと、分離物排出側に形成された内胴テーパ4bと、それらの直胴部4aと内胴テーパ4bの外周に一体形成されたスクリュウ羽根4cとからなっている。   The inner cylinder screw 4 includes a cylindrical straight body part 4a formed on the separation liquid discharge side from an intermediate part thereof, an inner cylinder taper 4b formed on the separated product discharge side, and the straight body part 4a and the inner cylinder screw 4a. The screw blade 4c is integrally formed on the outer periphery of the body taper 4b.

このような内胴スクリュウ4の内部には、直胴部4aおよび内胴テーパ4bに跨る汚泥供給室7が形成され、該汚泥供給室7には、汚泥供給口7aと凝集剤流出口7bと仕切版8が設けられている。さらに詳述すると、前記汚泥供給室7は、前記内胴スクリュウ4の直胴部4aに設けられた汚泥供給口7aを介して前記外胴ボウル3内に連通しており、前記凝集剤流出口7bは前記内胴テーパ4bに設けられ、該内胴テーパ4bの内周面に前記凝集剤流出口7bの近傍で該凝集剤流出口7bと前記直胴部4a側の汚泥供給口7aとを仕切る仕切板8が設けられている。   Inside the inner cylinder screw 4 is formed a sludge supply chamber 7 extending over the straight body portion 4a and the inner cylinder taper 4b. The sludge supply chamber 7 includes a sludge supply port 7a, a flocculant outlet 7b, A partition plate 8 is provided. More specifically, the sludge supply chamber 7 communicates with the outer body bowl 3 through a sludge supply port 7a provided in the straight body portion 4a of the inner body screw 4, and the flocculant outlet 7b is provided on the inner cylinder taper 4b, and on the inner peripheral surface of the inner cylinder taper 4b, the coagulant outlet 7b and the sludge supply port 7a on the straight body 4a side are provided in the vicinity of the coagulant outlet 7b. A partition plate 8 for partitioning is provided.

前記仕切板8は、通常汚泥供給室7内部にドーナッツ状の形状で設置されており、後述する汚泥供給管14とのクリアランス(間隔)は通常10mm以下に設定される。このような仕切板8を設置することにより、後述の無機凝集剤吐出孔23aから汚泥供給室7内に供給された無機凝集剤が、汚泥供給室7内で拡散することを抑制・防止することができる。   The partition plate 8 is usually installed in a donut shape inside the sludge supply chamber 7, and a clearance (interval) with a sludge supply pipe 14 to be described later is normally set to 10 mm or less. By installing such a partition plate 8, the inorganic flocculant supplied into the sludge supply chamber 7 from the inorganic flocculant discharge hole 23a described later is suppressed / prevented from diffusing in the sludge supply chamber 7. Can do.

このように構成された遠心分離機1において、内胴スクリュウ4の汚泥供給室7には、汚泥貯留槽11の汚泥を供給する汚泥供給管14が接続されており、該汚泥供給管14には汚泥供給ポンプ15が配設されている。また、前記汚泥供給管14には、該汚泥供給管14を流れる汚泥(汚泥供給室7に供給過程の汚泥)に、高分子凝集剤貯留槽12の高分子凝集剤溶液を供給する高分子凝集剤供給管16および無機凝集剤貯留槽13の無機凝集剤溶液を供給する無機凝集剤供給管20が接続されている。   In the centrifuge 1 configured as described above, the sludge supply chamber 7 of the inner cylinder screw 4 is connected to a sludge supply pipe 14 that supplies the sludge of the sludge storage tank 11, and the sludge supply pipe 14 is connected to the sludge supply pipe 14. A sludge supply pump 15 is provided. The sludge supply pipe 14 is supplied with the polymer flocculant solution supplied from the polymer flocculant reservoir 12 to the sludge flowing through the sludge supply pipe 14 (sludge being supplied to the sludge supply chamber 7). An inorganic flocculant supply pipe 20 that supplies the inorganic flocculant solution in the agent supply pipe 16 and the inorganic flocculant storage tank 13 is connected.

前記高分子凝集剤供給管16には、高分子凝集剤貯留槽12側から高分子凝集剤供給ポンプ17、流量計18、開閉弁19のそれぞれが配設され、前記無機凝集剤供給管20には、無機凝集剤貯留槽13側から無機凝集剤供給ポンプ21、流量計22のそれぞれが配設されている。なお、通常開閉弁には電動弁が用いられる。   The polymer flocculant supply pipe 16 is provided with a polymer flocculant supply pump 17, a flow meter 18, and an open / close valve 19 from the polymer flocculant reservoir 12 side. Are each provided with an inorganic flocculant supply pump 21 and a flow meter 22 from the inorganic flocculant reservoir 13 side. An electric valve is used as the normal on-off valve.

そして、前記プール10内には、無機凝集剤貯留槽13から無機凝集剤注入管23および凝集剤流出口7bを介して無機凝集剤が再度注入されるようになっている。無機凝集剤注入管23は、通常パイプ形状で汚泥供給管14の内部を該汚泥供給管14と共に延伸し、汚泥供給室7内で開口する無機凝集剤吐出孔23aが設けられていて、この無機凝集剤吐出孔23aから汚泥供給室7内に吐出された無機凝集剤は、凝集剤流出口7bを通過してプール10に流出する構造となっている。   The inorganic flocculant is again injected into the pool 10 from the inorganic flocculant reservoir 13 through the inorganic flocculant injection pipe 23 and the flocculant outlet 7b. The inorganic flocculant injection pipe 23 is generally in the shape of a pipe and extends inside the sludge supply pipe 14 together with the sludge supply pipe 14 and is provided with an inorganic flocculant discharge hole 23 a that opens in the sludge supply chamber 7. The inorganic flocculant discharged from the flocculant discharge hole 23a into the sludge supply chamber 7 passes through the flocculant outlet 7b and flows out into the pool 10.

次に動作について説明する。
汚泥は、汚泥貯留槽11より汚泥供給ポンプ15にて遠心分離機1に供給されるが、その供給過程において汚泥は、汚泥供給管14の途中で無機凝集剤貯留槽13より無機凝集剤供給ポンプ21にて無機凝集剤が供給(前段供給)されて混合し、次いで高分子凝集剤貯留槽12より高分子凝集剤供給ポンプ17にて高分子凝集剤が供給(ライン供給)され混合し、遠心分離機1の汚泥供給室7へ送られる。
Next, the operation will be described.
Sludge is supplied from the sludge storage tank 11 to the centrifuge 1 by the sludge supply pump 15. In the supply process, the sludge is supplied from the inorganic flocculant storage tank 13 to the inorganic flocculant supply tank 13. At 21, the inorganic flocculant is supplied (previous stage supply) and mixed, and then the polymer flocculant is supplied (line supply) from the polymer flocculant storage tank 12 by the polymer flocculant supply pump 17, mixed, and centrifuged. It is sent to the sludge supply chamber 7 of the separator 1.

汚泥と両凝集剤が混合して生成した凝集汚泥は、内胴スクリュウ4に設けられた汚泥供給室7に投入され、順次汚泥供給口7aから内胴スクリュウ4と外胴ボウル3との間に形成されるプール10に供給される。凝集汚泥は、プール10内で強い遠心力を受けながら固液分離が進み、外胴ボウル3と内胴スクリュウ4の回転差(差速)で回転するスクリュウ羽根4cにより、分離物である脱水汚泥は分離物排出側へ移送され分離物排出口2bから排出される。凝集汚泥より分離した分離液(脱水分離液)は、分離物排出側との水位差により、分離液排出側の分離液排出口2aから排出される。   The agglomerated sludge produced by mixing the sludge and the both aggregating agents is put into a sludge supply chamber 7 provided in the inner cylinder screw 4, and sequentially between the inner cylinder screw 4 and the outer cylinder bowl 3 through the sludge supply port 7 a. Supplied to the pool 10 to be formed. The agglomerated sludge undergoes solid-liquid separation while receiving a strong centrifugal force in the pool 10, and the dewatered sludge that is a separated product is produced by the screw blades 4 c that rotate at the rotational difference (different speed) between the outer body bowl 3 and the inner body screw 4. Is transferred to the separation discharge side and discharged from the separation discharge port 2b. The separated liquid (dehydrated separated liquid) separated from the coagulated sludge is discharged from the separated liquid discharge port 2a on the separated liquid discharge side due to the difference in water level from the separated discharge side.

プール10に供給された凝集汚泥は、スクリュウ羽根4cで分離物排出側へ移動しながら固液分離が進み、分離汚泥として水面WL上に掻き上げられ、そして分離汚泥に無機凝集剤貯留槽13より無機凝集剤注入管23の無機凝集剤吐出孔23aを介して無機凝集剤溶液が再注入(後段注入)されてさらに固液分離が進み、脱水汚泥として分離物排出口2bから排出される。
再注入された無機凝集剤は、内胴スクリュウ4に設けられた凝集剤流出口7bからプール10へ流出し、スクリュウ羽根4cにより分離物排出側へ移動しながら水面WL上に掻き上げられている分離汚泥と混合する。
The agglomerated sludge supplied to the pool 10 is solid-liquid separated while moving to the separated product discharge side by the screw blade 4c, and is scraped up on the water surface WL as a separated sludge. The inorganic flocculant solution is re-injected through the inorganic flocculant discharge hole 23a of the inorganic flocculant injection pipe 23 (the latter-stage injection), and solid-liquid separation further proceeds, and is discharged from the separated product outlet 2b as dehydrated sludge.
The reinjected inorganic flocculant flows out to the pool 10 from the flocculant outlet 7b provided in the inner cylinder screw 4, and is scraped up on the water surface WL while moving to the separated material discharge side by the screw blade 4c. Mix with separated sludge.

無機凝集剤溶液のプール10内での注入位置は、2段テーパ3b,3c付近が好ましく、上述したとおり分離汚泥が水面WL上に掻き上げられたところで無機凝集剤溶液が再注入(後段注入)されるような構造とすることにより、無機凝集剤が再注入された分離汚泥からの水(分離液)抜けを効率的に且つ確実に行うことができる。   The injection position of the inorganic flocculant solution in the pool 10 is preferably in the vicinity of the two-stage taper 3b, 3c. As described above, the inorganic flocculant solution is re-injected when the separated sludge is lifted onto the water surface WL (post-injection). By adopting such a structure, water (separated liquid) can be efficiently and reliably removed from the separated sludge into which the inorganic flocculant has been reinjected.

なお、図1(B)は、遠心分離機1内における無機凝集剤注入管23による無機凝集剤の再注入と分離汚泥の脱水状況を示したものであり、無機凝集剤の再注入箇所はプール10内の水面WL上が好ましく、濃縮や脱水がある程度進み、分離物排出側へ移動しながら水面WL上に掻き上げられた分離汚泥に無機凝集剤を再注入することにより、効率的に且つ確実に汚泥濃縮や汚泥脱水が行われる。   FIG. 1B shows the reinjection of the inorganic flocculant and the dewatered state of the separated sludge by the inorganic flocculant injection pipe 23 in the centrifuge 1, and the reinjection location of the inorganic flocculant is the pool. 10 is preferable on the water surface WL, and the concentration and dehydration have progressed to some extent, and by reinjecting the inorganic flocculant into the separated sludge that has been scraped up on the water surface WL while moving to the separated product discharge side, it is efficient and reliable. In addition, sludge concentration and sludge dewatering are performed.

以上説明した実施の形態1による遠心分離装置は、上記のように構成することにより、遠心分離処理(遠心脱水処理や遠心濃縮処理)において重要な含水率(濃縮率)を飛躍的に向上させ(脱水性能をアップさせる)、分離液のリン濃度を低減させ、SS回収率を高いレベルで維持することができる。   The centrifugal separator according to the first embodiment described above is configured as described above, thereby dramatically improving the moisture content (concentration rate) that is important in centrifugal separation processing (centrifugal dehydration processing and centrifugal concentration processing) ( The dehydration performance can be improved), the phosphorus concentration of the separation liquid can be reduced, and the SS recovery rate can be maintained at a high level.

実施例1.
上記実施の形態1による遠心分離装置の運転例を以下に示す。実施条件は、下水消化汚泥を対象に高効率型遠心脱水機を使用し、機械の運転条件を処理量1.5m3/h、遠心効果2500G、両性高分子凝集剤注入(供給)率1.2%、差速1.3〜1.5回転のほぼ同一の条件で従来の装置と本発明にかかる遠心分離装置との比較を行った。消化汚泥の濃度は1.5%、リン濃度は600mg/L程度、pHは7.4である。実施例を表1に示す。
Example 1.
An example of operation of the centrifugal separator according to the first embodiment will be described below. The implementation conditions are high-efficiency centrifugal dehydrator for sewage digested sludge, machine operating conditions are processing volume 1.5m 3 / h, centrifugal effect 2500G, amphoteric polymer flocculant injection (supply) rate 1.2%, A comparison was made between the conventional apparatus and the centrifugal separator according to the present invention under substantially the same conditions of a differential speed of 1.3 to 1.5 revolutions. The digested sludge concentration is 1.5%, the phosphorus concentration is about 600 mg / L, and the pH is 7.4. Examples are shown in Table 1.

Figure 0005619965
Figure 0005619965

通常の2液法を採用した遠心分離装置(従来(1))では、無機凝集剤としてポリ鉄を汚泥供給管へ供給(ライン供給)し、その後両性高分子凝集剤もライン注入して遠心脱水したところ、脱水汚泥の含水率は78.5%、分離液のリン濃度は10mg/L、SS回収率98%であった。この装置では、分離液のリン濃度もSS回収率も良好な結果が得られたが、遠心脱水処理で重要な脱水汚泥の含水率が78.5%にとどまり、さらなる含水率の低減が求められる。   In the centrifugal separator (conventional (1)) employing the usual two-liquid method, polyiron is supplied to the sludge supply pipe (line supply) as an inorganic flocculant, and then the amphoteric polymer flocculant is also injected into the line for centrifugal dehydration. As a result, the moisture content of the dewatered sludge was 78.5%, the phosphorus concentration of the separated liquid was 10 mg / L, and the SS recovery rate was 98%. With this device, good results were obtained in both the phosphorus concentration of the separation liquid and the SS recovery rate, but the water content of the dewatered sludge, which is important in centrifugal dewatering, is only 78.5%, and further reduction of the water content is required.

また、機内注入方式を採用した遠心分離装置(従来(2))では、両性高分子凝集剤を汚泥供給管へライン注入し、その後遠心脱水機内へ無機凝集剤としてポリ鉄を機内注入して遠心脱水したところ、脱水汚泥の含水率は74.0%、分離液のリン濃度は250mg/L、SS回収率96%であった。この装置では、脱水汚泥の含水率は低減されたが、SS回収率が良好ではなく、さらに分離液のリン濃度が非常に高い。これは、汚泥と無機凝集剤との接触(反応)が不十分でリンの不溶性塩の生成が進まなかったためであり、リンやSS濃度の高い分離液の排水処理設備への還流防止のため、別途対策を行わなければならない。   In addition, in the centrifugal separator (conventional (2)) adopting the in-machine injection method, the amphoteric polymer flocculant is line-injected into the sludge supply pipe, and then polyiron is injected into the centrifugal dehydrator as an inorganic flocculant and then centrifuged. When dehydrated, the water content of the dewatered sludge was 74.0%, the phosphorus concentration of the separated liquid was 250 mg / L, and the SS recovery rate was 96%. In this device, the moisture content of the dewatered sludge was reduced, but the SS recovery rate was not good, and the phosphorus concentration of the separation liquid was very high. This is because the contact (reaction) between the sludge and the inorganic flocculant was insufficient, and the generation of insoluble salts of phosphorus did not proceed. To prevent reflux of the separated liquid with high phosphorus and SS concentrations to the wastewater treatment facility, Separate measures must be taken.

これに対して本発明にかかる遠心分離装置(本発明(1)および本発明(2))では、無機凝集剤としてポリ鉄を汚泥供給管14へ供給(前段供給)して、次いで両性高分子凝集剤をライン供給し、さらにポリ鉄を、無機凝集剤注入管23を用いて汚泥供給室7内へ直接注入し、凝集剤流出口7bを介してプール10の分離物排出側に再注入(後段注入)して遠心脱水したところ、脱水汚泥の含水率は75.0%、分離液のリン濃度は10〜90mg/Lであった。本発明にかかる遠心分離装置では、脱水汚泥の含水率が十分に低減し、またSS回収率も良好であり、さらに分離液のリン濃度も低減している。とくに本発明(2)は、分離液のリン濃度が10mg/Lまで大幅に低減しており、汚泥の脱水処理として非常に有効であることが実証できた。   On the other hand, in the centrifugal separator according to the present invention (the present invention (1) and the present invention (2)), polyiron is supplied to the sludge supply pipe 14 as the inorganic flocculant (pre-stage supply), and then the amphoteric polymer. The flocculant is supplied in line, and polyiron is directly injected into the sludge supply chamber 7 using the inorganic flocculant injection pipe 23, and reinjected into the separated product discharge side of the pool 10 through the flocculant outlet 7b ( As a result, the water content of the dewatered sludge was 75.0%, and the phosphorus concentration of the separated liquid was 10 to 90 mg / L. In the centrifugal separator according to the present invention, the water content of the dewatered sludge is sufficiently reduced, the SS recovery rate is good, and the phosphorus concentration of the separation liquid is also reduced. In particular, the present invention (2) shows that the phosphorus concentration of the separation liquid is greatly reduced to 10 mg / L, and it has been proved that it is very effective as a sludge dewatering treatment.

このように本発明にかかる遠心分離装置は、従来と同様の運転条件と薬注率でも、分離液性状(リン濃度やSS回収率)が良好であるばかりか、脱水汚泥の含水率を大幅に低減させることができ。なお、汚泥に含まれるリン(リン濃度)が低下した場合は、前段供給する無機凝集剤の量を削減すればよい。また汚泥の性状変化や処理量の増減に起因して運転方式を変更したい場合、バルブ操作や供給ポンプの稼動停止などにより、従来(1)方式(2液法)や従来(2)(機内注入)に容易に運転変更することができ、応用性の広い遠心分離装置である。   As described above, the centrifugal separator according to the present invention has not only good separation liquid properties (phosphorus concentration and SS recovery rate) even under the same operating conditions and chemical injection rate as in the prior art, but also greatly increases the water content of dehydrated sludge. Can be reduced. In addition, what is necessary is just to reduce the quantity of the inorganic flocculant supplied in the front | former stage, when the phosphorus (phosphorus concentration) contained in sludge falls. Also, if you want to change the operation method due to changes in sludge properties or increase / decrease in the processing volume, the conventional (1) method (two-liquid method) or conventional (2) (in-machine injection) can be performed by operating the valve or supplying pump. ) Is a versatile centrifuge that can be easily changed in operation.

実施の形態2.
図2(A)は本発明の実施の形態2による遠心分離装置を示す断面図、図2(B)は図2(A)の要部拡大断面であり、図1と同一構成要素には同一符号を付して重複説明を省略する。
この実施の形態2による遠心分離装置では、無機凝集剤の無機凝集剤注入管23に給水管26を接続すると共に、無機凝集剤注入管23の2ヶ所に無機凝集剤吐出孔23a,23bを設けた点、遠心分離機1内部に2つの仕切板8a,8bを設けた点、遠心分離機1本体として、外胴ボウル3のテーパ部を1段テーパ3dに形成した点が、前記実施の形態1と大きく異なる。前記給水管26によって無機凝集剤注入管23に給水する目的は、主に遠心分離機1を停止させる際の洗浄および遠心分離機1を運転している際の無機凝集剤の希釈である。
Embodiment 2. FIG.
2A is a cross-sectional view showing a centrifugal separator according to Embodiment 2 of the present invention, FIG. 2B is an enlarged cross-sectional view of the main part of FIG. 2A, and the same components as those in FIG. A reference numeral is attached and a duplicate description is omitted.
In the centrifugal separator according to the second embodiment, a water supply pipe 26 is connected to an inorganic flocculant injection pipe 23 for an inorganic flocculant, and inorganic flocculant discharge holes 23a and 23b are provided at two locations of the inorganic flocculant injection pipe 23. The point that the two partition plates 8a and 8b are provided inside the centrifuge 1 and the point that the taper portion of the outer shell bowl 3 is formed as a one-stage taper 3d as the main body of the centrifuge 1 are described above. It is very different from 1. The purpose of supplying water to the inorganic flocculant injection pipe 23 by the water supply pipe 26 is mainly for washing when the centrifuge 1 is stopped and diluting the inorganic flocculant when the centrifuge 1 is operating.

まず遠心分離機の洗浄では、主に遠心分離機が稼動(処理)を停止する際に、汚泥供給管に洗浄水を供給し、汚泥供給管と共に遠心分離機内の汚泥供給室やプール等を洗浄する。しかしながら、このような洗浄は、装置内に残存する汚泥の排除(汚泥の清掃)が主目的であり、凝集剤注入系統の洗浄(とくに付着固化しやすい無機凝集剤の洗い流し)がなかなか行えない。また、本発明にかかる遠心分離装置の場合、無機凝集剤注入管23の無機凝集剤吐出孔23a,23bや内胴スクリュウ4に設けられた凝集剤流出口7b,7cは、汚泥供給室7内に設けられた仕切板8a,8bにより仕切られていることもあり、通常の洗浄では汚泥の清掃や無機凝集剤の洗い流しを十分に行えない。そこで、安定した遠心分離処理および機器の保守管理のために、無機凝集剤注入管23に給水管26を接続して給水し、凝集剤注入系統(主に無機凝集剤注入管、無機凝集剤吐出孔、凝集剤流出口)等を確実に且つ十分に洗浄することができる。   First, when cleaning the centrifuge, mainly when the centrifuge stops operating (processing), the cleaning water is supplied to the sludge supply pipe, and the sludge supply chamber and pool in the centrifuge are cleaned together with the sludge supply pipe. To do. However, the main purpose of such cleaning is to remove sludge remaining in the apparatus (sludge cleaning), and it is difficult to clean the flocculant injection system (especially washing away the inorganic flocculant that tends to adhere and solidify). In the case of the centrifugal separator according to the present invention, the coagulant outlets 7 b and 7 c provided in the inorganic coagulant discharge holes 23 a and 23 b of the inorganic coagulant injection pipe 23 and the inner cylinder screw 4 are provided in the sludge supply chamber 7. May be partitioned by partition plates 8a and 8b provided on the surface, and normal cleaning cannot sufficiently clean sludge and wash away the inorganic flocculant. Therefore, for stable centrifugal separation processing and equipment maintenance management, a water supply pipe 26 is connected to the inorganic flocculant injection pipe 23 to supply water, and a flocculant injection system (mainly inorganic flocculant injection pipe, inorganic flocculant discharge) The pores, the flocculant outlet) and the like can be reliably and sufficiently washed.

次に遠心分離機1への無機凝集剤の注入では、例えば遠心脱水機での汚泥脱水処理において、無機凝集剤注入管23を用いてプール10の分離物排出側に無機凝集剤を再注入(後段注入)する場合、無機凝集剤注入管23による無機凝集剤注入率を500ppmとすると、供給する汚泥1m3に対して500mLと非常に少ない量しか注入されない。また、無機凝集剤を原液のまま直接注入する場合、溶液濃度は非常に高く、注入量はわずかになる。こうした場合、再注入された無機凝集剤溶液が分離汚泥に速やかに行き渡り、効率的に混合することは難しい。つまり局所的な無機凝集剤の再注入となり、十分に分離汚泥を固液分離することができなくなり、汚泥脱水処理(脱水汚泥の十分な低含水率化)に支障をきたしかねない。 Next, in the injection of the inorganic flocculant into the centrifugal separator 1, for example, in the sludge dewatering process in the centrifugal dehydrator, the inorganic flocculant is reinjected into the separated product discharge side of the pool 10 using the inorganic flocculant injection pipe 23 ( In the case of subsequent injection), if the inorganic flocculant injection rate of the inorganic flocculant injection pipe 23 is 500 ppm, only a very small amount of 500 mL is injected with respect to 1 m 3 of the supplied sludge. When the inorganic flocculant is directly injected as a stock solution, the solution concentration is very high and the injection amount becomes small. In such a case, it is difficult for the reinjected inorganic flocculant solution to quickly reach the separated sludge and to be mixed efficiently. That is, it becomes a local reinjection of the inorganic flocculant, so that the separated sludge cannot be sufficiently solid-liquid separated, which may hinder the sludge dewatering treatment (sufficiently low water content of the dewatered sludge).

そこで、無機凝集剤注入管23に給水管26を接続して給水し、後段注入される無機凝集剤溶液を希釈(通常2〜10倍希釈)して増量させることにより、プール10内でスクリュウ羽根4cにより分離物排出側へ移動しながら水面WL上に掻き上げられている分離汚泥に無機凝集剤が速やかに満遍なく行き渡って混合し、良好な脱水性能が得られ、十分に効率よく分離汚泥を脱水することができる。   Therefore, the water supply pipe 26 is connected to the inorganic flocculant injection pipe 23 to supply water, and the inorganic flocculant solution to be injected later is diluted (usually diluted 2 to 10 times) to increase the amount of screw blades in the pool 10. The inorganic flocculant is quickly and evenly mixed with the separated sludge that has been scraped up on the water surface WL while moving to the separated product discharge side by 4c, and good dewatering performance is obtained, and the separated sludge is dehydrated sufficiently efficiently. can do.

この実施の形態2では、プール10内での無機凝集剤の再注入位置の調整および広範な再注入のため、無機凝集剤注入管23の2ヶ所に無機凝集剤吐出孔23a,23bを設けたが、それらの無機凝集剤吐出孔23a,23bは、外側からボルト(図示せず)により塞ぐことができる構造とするが好ましい。   In the second embodiment, inorganic flocculant discharge holes 23a and 23b are provided at two locations on the inorganic flocculant injection pipe 23 in order to adjust the reinjection position of the inorganic flocculant in the pool 10 and to perform wide reinjection. However, it is preferable that the inorganic flocculant discharge holes 23a and 23b have a structure that can be closed from the outside by bolts (not shown).

脱水性能は無機凝集剤の再注入位置により変化するため、運転状況や汚泥性状等を考慮し、無機凝集剤の再注入位置を調整(変更)する。通常、脱水汚泥の含水率は無機凝集剤再注入後の脱水時間(汚泥の滞留時間)が長いほど低下するが、分離液側へ無機凝集剤が残留し分離液に混入して流出すると、水面上の分離汚泥への無機凝集剤の再注入が不十分になり脱水汚泥の含水率が悪化するばかりか、分離液の水質が悪化する。   Since the dewatering performance varies depending on the re-injection position of the inorganic flocculant, the re-injection position of the inorganic flocculant is adjusted (changed) in consideration of the operating conditions and sludge properties. Normally, the moisture content of dewatered sludge decreases as the dewatering time (sludge retention time) after re-injection of the inorganic flocculant decreases, but if the inorganic flocculant remains on the separation liquid side and enters the separation liquid and flows out, Not only is the re-injection of the inorganic flocculant into the separated sludge above, the water content of the dewatered sludge is deteriorated, but the water quality of the separated liquid is also deteriorated.

そこで、例えば無機凝集剤としてポリ鉄を使用した場合は、ポリ鉄溶液のpHが低いことから、分離液のpHが低下する場合には、注入位置を分離物排出側へ変更する(分離液排出側の無機凝集剤吐出孔23aをボルトで塞ぐ)。なお、運転状況や汚泥性状等により、無機凝集剤を広範囲に再注入して脱水処理することが有効な場合には、無機凝集剤吐出孔23a,23bを塞がずに全開として遠心脱水機1を運転してもよい。   Therefore, for example, when polyiron is used as the inorganic flocculant, the pH of the polyiron solution is low, so when the pH of the separation liquid decreases, the injection position is changed to the separation discharge side (separation liquid discharge). The side inorganic flocculant discharge holes 23a are closed with bolts). If it is effective to re-inject the inorganic flocculant over a wide range depending on the operating conditions, sludge properties, etc., the centrifugal dehydrator 1 is fully opened without blocking the inorganic flocculant discharge holes 23a and 23b. You may drive.

また、この実施の形態2では、2つの仕切板8a,8bを配設し、該仕切板8a,8bの数、位置、形状は、無機凝集剤吐出孔23a,23bの数や位置、凝集剤流出口7b,7cの数や位置により調整するが、無機凝集剤吐出孔23a,23bより供給された無機凝集剤が、汚泥供給室7内で拡散するのを抑制・防止できれば、特に限定されるものではない。   In the second embodiment, two partition plates 8a and 8b are provided, and the number, position, and shape of the partition plates 8a and 8b are the number and position of the inorganic flocculant discharge holes 23a and 23b, and the flocculant. Although it adjusts with the number and position of the outflow ports 7b and 7c, if the inorganic flocculant supplied from the inorganic flocculent discharge holes 23a and 23b can suppress and prevent in the sludge supply chamber 7, it will be especially limited. It is not a thing.

さらに、この実施の形態2では、遠心分離機1の外胴ボウル3のテーパ部を1段テーパ3dに形成したが、これは脱水汚泥掻出部が一定角度の構造をなし、処理対象の汚泥により角度を使い分けて使用する。例えば、無機成分が多い汚泥ではスクリュウ羽根4cによる凝集汚泥の掻出しが難しいため角度を緩傾斜にし、逆に有機成分が多い汚泥では角度を急傾斜にすることが好ましい。   Further, in the second embodiment, the taper portion of the outer shell bowl 3 of the centrifuge 1 is formed into a one-stage taper 3d. This is because the dewatered sludge scraping portion has a fixed angle structure, and the sludge to be treated Depending on the angle, use it properly. For example, it is preferable that the sludge with a large amount of inorganic components is difficult to scrape the agglomerated sludge with the screw blades 4c, so that the angle is gently inclined.

なお、無機成分が多い汚泥の遠心脱水において、遠心分離機1本体の1段テーパ3dの角度を急傾斜にすると、凝集汚泥の掻出しが難しいばかりか、プール10水面上から脱水汚泥排出部までの距離や滞留時間が短くなってしまい、プール10水面上の分離汚泥の遠心効果による固液分離が十分に作用せず脱水性能が低下するため、通常緩傾斜にする。   In addition, in centrifugal dewatering of sludge containing a large amount of inorganic components, if the angle of the first stage taper 3d of the centrifugal separator 1 is steeply inclined, it is difficult to scrape the coagulated sludge, and from the surface of the pool 10 to the dewatered sludge discharge section. Since the distance and the residence time become shorter and the solid-liquid separation due to the centrifugal effect of the separated sludge on the water surface of the pool 10 does not sufficiently act and the dewatering performance is lowered, the slope is usually made gentle.

実施の形態3.
図3は本発明の実施の形態3による遠心分離装置を示す断面図であり、図1,2と同一構成要素には同一符号を付して重複説明を省略する。
この実施の形態3では、無機凝集剤注入管23の3ヶ所に無機凝集剤吐出孔23a,23b,23cとそれらに対応する3つの仕切板8a,8b,8cを配設した点、また給水管26における自動開閉弁27の下流側に給水ポンプ28を配設した点が、前記実施の形態1と異なる。
その用途や作用効果については、前記実施の形態1と同様であると共に、無機凝集剤のプール10内での再注入位置の調整および水面上の分離汚泥への無機凝集剤の広範な再注入等が可能となる。さらに給水管26に定量給水のための給水ポンプ28や流量計29を配設することにより、遠心分離機1の稼働中には確実に無機凝集剤を適正な濃度に希釈することができ、また遠心分離機1の運転を停止する際には確実に適切な水量で遠心分離機1内を、とくに無機凝集剤注入系統を十分に洗浄することができる。
Embodiment 3 FIG.
FIG. 3 is a cross-sectional view showing a centrifugal separator according to Embodiment 3 of the present invention. The same components as those in FIGS.
In the third embodiment, the inorganic flocculant discharge holes 23a, 23b, 23c and the three partition plates 8a, 8b, 8c corresponding to the inorganic flocculant discharge holes 23a, 23b, 23c are disposed at three locations of the inorganic flocculant injection pipe 23, and the water supply pipe 26 differs from the first embodiment in that a water supply pump 28 is disposed downstream of the automatic opening / closing valve 27 in FIG.
The use and effect are the same as those of the first embodiment, adjustment of the reinjection position of the inorganic flocculant in the pool 10, wide reinjection of the inorganic flocculant into the separated sludge on the water surface, and the like. Is possible. Further, by providing a water supply pump 28 and a flow meter 29 for metered water supply in the water supply pipe 26, the inorganic flocculant can be surely diluted to an appropriate concentration while the centrifuge 1 is in operation. When the operation of the centrifuge 1 is stopped, the inside of the centrifuge 1 can be reliably washed with an appropriate amount of water, particularly the inorganic flocculant injection system.

なお、通常図2(A)に示すようにプール10の水面WL上に掻き上げられた分離汚泥(遠心効果で固液分離が進んだ凝集汚泥)に無機凝集剤溶液を後段注入するが、汚泥性状や処理状況によっては、図3に示すように、分離液排出口2a寄りの水面WLに凝集剤流出口7bから無機凝集剤溶液を後段注入してもよく、これにより凝集汚泥の固液分離や分離液の水質を向上させることができる。   Normally, as shown in FIG. 2 (A), the inorganic flocculant solution is injected into the separated sludge (flocculated sludge whose solid-liquid separation has advanced by the centrifugal effect) that has been scraped up on the water surface WL of the pool 10, but the sludge Depending on the properties and processing conditions, as shown in FIG. 3, the inorganic flocculant solution may be injected later from the flocculant outlet 7b into the water surface WL near the separation liquid discharge port 2a. And the water quality of the separated liquid can be improved.

実施の形態4.
図4は本発明の実施の形態4による遠心分離装置を示す断面図であり、図1〜図3と同一構成要素には同一符号を付して重複説明を省略する。
この実施の形態4では、無機凝集剤の前段供給において、その注入位置を汚泥の汚泥供給ポンプ15の手前(汚泥吸込側)で行ったものである。すなわち、この実施の形態4では、無機凝集剤供給管20を汚泥供給ポンプ15の吸込側で汚泥供給管14に接続した点が前記実施の形態1〜3と大きく異なる。このような構成とすることにより、汚泥供給ポンプ15によって汚泥と無機凝集剤との混合が促進され、良好で効率的な脱水性能を得ることができる。
Embodiment 4 FIG.
FIG. 4 is a cross-sectional view showing a centrifugal separator according to Embodiment 4 of the present invention. The same components as those in FIGS.
In the fourth embodiment, in the pre-stage supply of the inorganic flocculant, the injection position is performed in front of the sludge sludge supply pump 15 (sludge suction side). That is, the fourth embodiment is greatly different from the first to third embodiments in that the inorganic flocculant supply pipe 20 is connected to the sludge supply pipe 14 on the suction side of the sludge supply pump 15. By setting it as such a structure, mixing of sludge and an inorganic flocculant is accelerated | stimulated by the sludge supply pump 15, and favorable and efficient dehydration performance can be obtained.

実施の形態5.
図5は本発明の実施の形態5による遠心分離装置を示す断面図であり、図1〜図4と同一構成要素には同一符号を付して重複説明を省略する。
この実施の形態5では、無機凝集剤を2種類併用する遠心分離装置としたものである。そのために、前記無機凝集剤貯留槽13とは異なる無機凝集剤溶液を貯留する前段無機凝集剤貯留槽13Aを新たに付加したものである。
Embodiment 5. FIG.
FIG. 5 is a cross-sectional view showing a centrifugal separator according to Embodiment 5 of the present invention. The same components as those in FIGS.
In the fifth embodiment, a centrifugal separator using two types of inorganic flocculants is used. Therefore, a pre-stage inorganic flocculant storage tank 13A for storing an inorganic flocculant solution different from the inorganic flocculant storage tank 13 is newly added.

無機凝集剤はその種類により特徴が異なる。例えば、ポリ硫酸第2鉄(ポリ鉄)は比重が大きく汚泥脱水処理等に非常に有効であるが、pHが低く緩衝能も大きいため、凝集汚泥のpHを低下させやすい。また、ポリ塩化アルミニウム(PAC)はポリ鉄に比べて比重が軽く脱水性能(低含水率化)はポリ鉄に劣るが、pHの緩衝能が小さく凝集汚泥のpHを低下させにくい。なお、リン除去の作用(汚泥に含まれるリンの不溶性塩化)は、ポリ鉄もPACも同等である。つまり、無機凝集剤の脱水に与える影響としては、例えばpHが低いポリ鉄を用いた場合、脱水汚泥含水率の低下には如何なく効力を発揮するが、汚泥のpHも低いと、pH低下を抑える必要があり、供給・注入量(率)を抑制しなければならない。一方、PACを用いた場合、凝集汚泥のpHはそれほど低下せず、十分に供給・注入できるが、脱水汚泥の含水率はポリ鉄を用いた場合に比べ低下しない。このようなことを踏まえると、無機凝集剤の2種類併用において、例えば、汚泥のpHが低い場合などは、前段供給する無機凝集剤としてPACを使用してpH低下を抑制しつつ、凝集効果やリン除去等の処理性能を確保し、後段注入する無機凝集剤としてポリ鉄を使用して、脱水汚泥の含水率を一層低下させ、以って安定して効率的な汚泥の脱水処理を可能とする。   Inorganic flocculants have different characteristics depending on their types. For example, ferric sulfate (polyiron) has a large specific gravity and is very effective for sludge dewatering treatment. However, since the pH is low and the buffering capacity is large, it is easy to lower the pH of the coagulated sludge. Polyaluminum chloride (PAC) is lighter in specific gravity than polyiron and inferior in dehydration performance (lower water content) to polyiron, but has a low pH buffering capacity and is difficult to lower the pH of the coagulated sludge. The action of removing phosphorus (insoluble chloride of phosphorus contained in the sludge) is the same for both polyiron and PAC. In other words, as an influence on the dehydration of the inorganic flocculant, for example, when polyiron having a low pH is used, it is effective to lower the moisture content of the dehydrated sludge. It is necessary to suppress the supply / injection amount (rate). On the other hand, when PAC is used, the pH of the coagulated sludge does not decrease so much and can be sufficiently supplied and injected, but the moisture content of the dewatered sludge does not decrease as compared with the case where polyiron is used. In consideration of such a situation, in the combined use of two types of inorganic flocculants, for example, when the sludge has a low pH, the flocculation effect or Ensures treatment performance such as phosphorus removal, and uses polyiron as an inorganic flocculant to be injected later, further reducing the moisture content of dewatered sludge, enabling stable and efficient dewatering of sludge To do.

このような実施の形態4による遠心分離装置では、無機凝集剤の持つそれぞれの特徴を活かし、汚泥性状や運転処理条件等にあわせ、2種類の無機凝集剤を使用することにより、優れた脱水性能、低含水率の脱水汚泥、良好な水質の分離液を得ることができる。また、遠心分離技術(装置面や凝集性など)から考慮すると、遠心分離機1本体、凝集汚泥、脱水汚泥、分離液のいずれも、pHは中性付近が望ましく、この点からも無機凝集剤の2種類併用は有効である。   In such a centrifugal separator according to Embodiment 4, by utilizing the respective characteristics of the inorganic flocculant, excellent dewatering performance is achieved by using two kinds of inorganic flocculants in accordance with the sludge properties and operation treatment conditions. In addition, a dehydrated sludge having a low water content and a separation liquid having a good water quality can be obtained. Moreover, considering the centrifugal separation technology (apparatus surface, cohesiveness, etc.), the pH of each of the main body of the centrifugal separator 1, the coagulated sludge, the dewatered sludge, and the separation liquid is preferably near neutral. The combination of these two is effective.

実施の形態6.
図6は本発明の実施の形態6による遠心分離装置を示す断面図、図7は図6の要部を拡大して示す断面図であり、図1〜図5と同一構成要素には同一符号を付して重複説明を省略する。
この実施の形態6では、無機凝集剤の前段供給を遠心分離機1の汚泥供給室7内で行うように構成し(無機機内前段供給)、また高分子凝集剤も同様に汚泥供給室7内で行うように構成した(高分子中段供給)。さらに、無機凝集剤は1種類を使用し、給水管26は分岐管26aと26bとに分岐させて無機凝集剤供給管20および無機凝集剤注入管23へ給水(洗浄および希釈)できるようにしてある。
Embodiment 6 FIG.
6 is a cross-sectional view showing a centrifugal separator according to Embodiment 6 of the present invention, FIG. 7 is an enlarged cross-sectional view showing the main part of FIG. 6, and the same components as those in FIGS. The duplicate explanation is omitted.
In the sixth embodiment, the inorganic flocculant is pre-supplied in the sludge supply chamber 7 of the centrifuge 1 (inorganic inorganic pre-stage supply), and the polymer flocculant is similarly supplied in the sludge supply chamber 7. (Polymer middle stage supply). Further, one kind of inorganic flocculant is used, and the water supply pipe 26 is branched into branch pipes 26a and 26b so that water can be supplied (washed and diluted) to the inorganic flocculant supply pipe 20 and the inorganic flocculant injection pipe 23. is there.

さらに詳述すると、この実施の形態6では、1つの無機凝集剤貯留槽13に無機凝集剤の前段供給用の無機凝集剤供給管20と後段注入用の無機凝集剤注入管23とが接続していて、無機凝集剤供給管20および無機凝集剤注入管23ならびに高分子凝集剤供給管16のそれぞれが汚泥供給管14内に延伸配設している。また、給水管26を自動開閉弁27の下流側で分岐管26aと26bに分岐し、一方の分岐管26aを無機凝集剤注入管23の流量計25よりも下流側に接続すると共に、他方の分岐管26bを無機凝集剤供給管20の無機凝集剤貯留槽13と無機凝集剤供給ポンプ21との間に接続する構造としている。なお、給水管26の分岐管26aには開閉弁37が,分岐管26bには開閉弁38が設けられている。また、無機凝集剤供給管20には無機凝集剤供給ポンプ21および流量計22が、無機凝集剤注入管23には無機凝集剤注入ポンプ24および流量計25が配設されている。   More specifically, in the sixth embodiment, an inorganic flocculant supply pipe 20 for supplying an inorganic flocculant upstream and an inorganic flocculant injection pipe 23 for subsequent injection are connected to one inorganic flocculant reservoir 13. In addition, each of the inorganic flocculant supply pipe 20, the inorganic flocculant injection pipe 23, and the polymer flocculant supply pipe 16 extends in the sludge supply pipe 14. Further, the water supply pipe 26 is branched into the branch pipes 26a and 26b on the downstream side of the automatic opening / closing valve 27, and one branch pipe 26a is connected to the downstream side of the flow meter 25 of the inorganic flocculant injection pipe 23 and the other The branch pipe 26 b is connected between the inorganic flocculant storage tank 13 of the inorganic flocculant supply pipe 20 and the inorganic flocculant supply pump 21. The branch pipe 26a of the water supply pipe 26 is provided with an open / close valve 37, and the branch pipe 26b is provided with an open / close valve 38. The inorganic flocculant supply pipe 20 is provided with an inorganic flocculant supply pump 21 and a flow meter 22, and the inorganic flocculant injection pipe 23 is provided with an inorganic flocculant injection pump 24 and a flow meter 25.

そして、汚泥供給管14内に延伸配設した無機凝集剤供給管20および無機凝集剤注入管23ならびに高分子凝集剤供給管16において、無機凝集剤供給管20は先端が汚泥供給室7に開口して該汚泥供給室7内に供給される汚泥に無機凝集剤溶液を直接供給(無機機内前段供給)できる構成になっており、また無機凝集剤注入管23は無機凝集剤溶液を無機凝集剤吐出孔23aから凝集剤流出口7bを介してプール10(プール10の水面WL上にスクリュウ羽根4cで掻き上げられた分離汚泥)に再注入(無機後段注入)できる構成になっており、さらに高分子凝集剤供給管16は高分子凝集剤溶液を高分子凝集剤吐出口16bから凝集剤流出口7eを介してプール10(汚泥供給口7aからプール10に流出した凝集汚泥)に供給(高分子中段供給)できる構成になっている。なお、無機凝集剤供給管20および無機凝集剤注入管23は、分岐給水管26bからの給水により洗浄することができ、また無機凝集剤注入管23から注入される無機凝集剤溶液は給水分岐管26aからの給水で希釈することができる。   In the inorganic flocculant supply pipe 20, the inorganic flocculant injection pipe 23, and the polymer flocculant supply pipe 16 that are extended and disposed in the sludge supply pipe 14, the inorganic flocculant supply pipe 20 opens at the tip of the sludge supply chamber 7. Thus, the inorganic flocculant solution can be directly supplied to the sludge supplied into the sludge supply chamber 7 (pre-stage supply in the inorganic machine). It is configured to be reinjected (inorganic post-stage injection) into the pool 10 (separated sludge scraped up by the screw blade 4c on the water surface WL of the pool 10) from the discharge hole 23a through the flocculant outlet 7b. The molecular flocculant supply pipe 16 supplies the polymer flocculant solution from the polymer flocculant discharge port 16b to the pool 10 (flocculated sludge flowing out from the sludge supply port 7a to the pool 10) through the flocculant outlet 7e (high It has become the child the middle supply) can be configured. The inorganic flocculant supply pipe 20 and the inorganic flocculant injection pipe 23 can be washed with water supplied from the branch water supply pipe 26b, and the inorganic flocculant solution injected from the inorganic flocculant injection pipe 23 is supplied with the water supply branch pipe. It can be diluted with feed water from 26a.

以上説明した実施の形態6によれば、無機凝集剤の前段供給および高分子凝集剤の中段供給を遠心分離機1の汚泥供給室7内で行うことにより、急速回転している汚泥供給室7内で汚泥と前段供給された無機凝集剤とが混合し、生成した凝集汚泥が汚泥供給口7aを介してプール10に流出し、そこへ凝集剤流出口7eから流出してきた高分子凝集剤が供給され、固液分離性の高い強固な凝集汚泥となる。
これに対して汚泥供給管14へ無機凝集剤および高分子凝集剤を供給(ライン供給)すると、汚泥供給管14内で凝集フロック(凝集汚泥)が生成してしまうが、この凝集汚泥は汚泥供給室7への流入や汚泥供給口7aからの流出を通じて壁面等へ繰り返し衝突することになり、凝集フロックの解体(破壊)につながり固液分離性の低下を招きかねないが、汚泥供給室7内へ無機凝集剤および高分子凝集剤を供給(無機機内前段供給・高分子中段供給)することにより、凝集フロックの解体を確実に抑止することができる。
According to the sixth embodiment described above, the sludge supply chamber 7 rotating rapidly is performed by supplying the inorganic flocculant upstream and the polymer flocculant in the sludge supply chamber 7 of the centrifuge 1. The sludge and the inorganic flocculant supplied in the previous stage are mixed, and the generated flocculent sludge flows out to the pool 10 through the sludge supply port 7a, and the polymer flocculant flowing out from the flocculant outlet 7e there Supplied and becomes a solid agglomerated sludge with high solid-liquid separation.
On the other hand, when an inorganic flocculant and a polymer flocculant are supplied to the sludge supply pipe 14 (line supply), agglomeration flock (aggregated sludge) is generated in the sludge supply pipe 14, but this agglomerated sludge is supplied as sludge. It will repeatedly collide with the wall surface etc. through the inflow into the chamber 7 and the outflow from the sludge supply port 7a, which may cause the disintegration (destruction) of the flocs flocs and lead to a decrease in solid-liquid separation, but the sludge supply chamber 7 By supplying the inorganic flocculant and the polymer flocculant to the front (supplying the first stage of the inorganic machine / supplying the middle stage of the polymer), it is possible to reliably suppress the disassembly of the flocs.

このように無機機内前段供給・高分子中段供給・無機後段注入により、凝集汚泥の固液分離性が高まると共に、脱水分離液の清澄性が増し(SS回収率向上)、さらに無機凝集剤の前段供給により脱水分離液からリン(富栄養化物質)を確実に除去することができ、加えて無機凝集剤を後段で再注入(後段注入)することで、飛躍的に含水率の低下させることができる。さらには、前述のような構成としたことにより、付着固化しやすい無機凝集剤系統をすべて確実に洗浄できるため、遠心分離機1の安定した運転ができる。   In this way, the solid-liquid separability of the coagulated sludge is increased by the pre-stage supply in the inorganic machine, the middle stage supply of the polymer, and the inorganic post-stage injection, and the clarification of the dehydrated separation liquid is increased (SS recovery rate is improved). The supply can reliably remove phosphorus (eutrophication substance) from the dehydrated separation liquid, and in addition, the water content can be drastically reduced by re-injecting the inorganic flocculant in the latter stage (post-injection). it can. In addition, since the inorganic flocculant system that easily adheres and solidifies can be reliably washed with the above-described configuration, the centrifuge 1 can be stably operated.

ここで、図7に基づき更に詳述すると、汚泥供給室7内に延伸する汚泥供給管14の汚泥供給管開口14aから、汚泥供給口7aの近傍に汚泥が供給されると共に、汚泥供給管14内に延伸配設された無機凝集剤供給管20の無機凝集剤供給管開口20aから無機凝集剤が前段供給され、汚泥供給室7内で汚泥と無機凝集剤とがまず混合する。そして汚泥供給管14内に延伸配設された高分子凝集剤供給管16の側面に開口する高分子凝集剤吐出口16bから高分子凝集剤が、直胴部4aに設けられた仕切板8dの近傍で開口する凝集剤流出口7eを介してプール10(汚泥供給口7aからプール10に流出した凝集汚泥)へ中段供給され、凝集汚泥と高分子凝集剤とが混合する。次いで汚泥供給管14内に延伸配設された無機凝集剤注入管23の側面に開口する無機凝集剤吐出孔23aから無機凝集剤が、内胴テーパ4bに設けられた仕切板8の近傍で開口する凝集剤流出口7bを介してプール10(プール10の水面WL上にスクリュウ羽根4cで掻き上げられた分離汚泥)へ後段注入され、分離汚泥と無機凝集剤とが混合する。   Here, in more detail based on FIG. 7, sludge is supplied to the vicinity of the sludge supply port 7 a from the sludge supply pipe opening 14 a of the sludge supply pipe 14 extending into the sludge supply chamber 7, and the sludge supply pipe 14. The inorganic flocculant is supplied upstream from the inorganic flocculant supply pipe opening 20 a of the inorganic flocculant supply pipe 20 that is extended and disposed therein, and the sludge and the inorganic flocculant are first mixed in the sludge supply chamber 7. Then, the polymer flocculant is fed from the polymer flocculant discharge port 16b opened on the side surface of the polymer flocculant supply pipe 16 extended and disposed in the sludge supply pipe 14 to the partition plate 8d provided in the straight body portion 4a. The middle stage is supplied to the pool 10 (aggregated sludge flowing out from the sludge supply port 7a to the pool 10) through the coagulant outlet 7e opened in the vicinity, and the aggregated sludge and the polymer coagulant are mixed. Next, the inorganic flocculant is opened in the vicinity of the partition plate 8 provided in the inner body taper 4b from the inorganic flocculant discharge hole 23a opened in the side surface of the inorganic flocculant injection pipe 23 extended and disposed in the sludge supply pipe 14. Then, it is injected into the pool 10 (separated sludge scraped up by the screw blade 4c on the water surface WL of the pool 10) through the flocculant outlet 7b, and the separated sludge and the inorganic flocculant mix.

遠心分離機1の内部をこのように構成することにより、汚泥に対して的確に且つ効率よく無機凝集剤および高分子凝集剤を供給・注入でき、また凝集フロックの破壊を抑制でき、良好な固液分離性能が発揮されて脱水汚泥の含水率を一層低減することができ、さらに薬品使用量も低減(節約)できる。なお、実施の形態6では、無機凝集剤供給管20、高分子凝集剤供給管16および無機凝集剤注入管23を汚泥供給管14内に延伸配設(例えば、図11のように3本の細管を別途延伸させたり、図12のように二重管構造として外管を3つに仕切ったりする)させたが、これに限るものではなく、各管を別々に汚泥供給室7内へ延伸させるなど各凝集剤がスムーズに供給・注入できる構造であればよい。   By configuring the inside of the centrifuge 1 in this way, it is possible to supply and inject the inorganic flocculant and the polymer flocculent accurately and efficiently to the sludge, and to suppress the breakage of the flocculent flocs. Liquid separation performance is demonstrated, the water content of dehydrated sludge can be further reduced, and the amount of chemicals used can be reduced (saved). In the sixth embodiment, the inorganic flocculant supply pipe 20, the polymer flocculant supply pipe 16, and the inorganic flocculant injection pipe 23 are extended and disposed in the sludge supply pipe 14 (for example, as shown in FIG. However, the present invention is not limited to this, and each pipe is separately extended into the sludge supply chamber 7. Any structure can be used as long as each flocculant can be supplied and injected smoothly.

実施の形態7.
図8は本発明の実施の形態7による遠心分離装置を示す断面図であり、図6および図7と同一の構成要素には同一符号を付して重複説明を省略する。
図6および図7に示した実施の形態6では、無機凝集剤供給管20を汚泥供給室7に延伸させて無機凝集剤の前段供給を汚泥供給室7内で行う構成としたが、この実施の形態7では、汚泥と前段供給する無機凝集剤とを十分に反応させるため、無機凝集剤供給管20を汚泥供給管14に接続し、汚泥供給管14の汚泥に無機凝集剤を前段供給(ライン供給)する構成とした。このように構成することにより、汚泥と前段供給した無機凝集剤とが十分に混合され、確実に凝集フロックを生成することができると共に、汚泥に含まれるリンを不溶性塩にして分離液のリン濃度を低減することもできる。なお、無機凝集剤供給管20の汚泥供給管14への接続位置は、汚泥貯留槽11から遠心分離機1までの間のいずれの場所でもかまわない。
Embodiment 7 FIG.
FIG. 8 is a cross-sectional view showing a centrifugal separator according to Embodiment 7 of the present invention. The same components as those in FIGS.
In the sixth embodiment shown in FIGS. 6 and 7, the inorganic flocculant supply pipe 20 is extended to the sludge supply chamber 7, and the preceding supply of the inorganic flocculant is performed in the sludge supply chamber 7. In the form 7, the inorganic flocculant supply pipe 20 is connected to the sludge supply pipe 14 in order to sufficiently react the sludge and the inorganic flocculant supplied in the previous stage, and the inorganic flocculant is supplied to the sludge in the sludge supply pipe 14 in the previous stage ( Line supply). By configuring in this way, the sludge and the inorganic flocculant supplied in the previous stage are sufficiently mixed, and it is possible to reliably produce agglomeration flocs, and the phosphorus contained in the sludge is made into an insoluble salt, so that the phosphorus concentration of the separation liquid Can also be reduced. The connecting position of the inorganic flocculant supply pipe 20 to the sludge supply pipe 14 may be any place between the sludge storage tank 11 and the centrifuge 1.

実施の形態8.
図9は本発明の実施の形態8による遠心分離装置を示す断面図、図10は図9の要部を拡大して示す断面図であり、図1〜図8と同一構成要素には同一符号を付して重複説明を省略する。
この実施の形態8では、前記実施の形態6(図6)の遠心分離装置における汚泥供給室7の直胴部4aに設けられた仕切板8dおよび凝集剤流出口7eを省き、また汚泥供給管開口14aと汚泥供給口7aとの間隔を広げた構造となっているものである。また給水管26は、図2(A)と同様に分岐せず無機凝集剤注入管23に接続している。
このような構成とすることにより、図6に示した前記実施の形態6と同様の作用効果を得ながら、汚泥供給室7内の構造を簡略化することができ、また装置の製造を容易にし、さらに維持管理や保守点検の作業を軽減化できる。
Embodiment 8 FIG.
9 is a cross-sectional view showing a centrifugal separator according to an eighth embodiment of the present invention, FIG. 10 is an enlarged cross-sectional view showing the main part of FIG. 9, and the same components as those in FIGS. The duplicate explanation is omitted.
In the eighth embodiment, the partition plate 8d and the flocculant outlet 7e provided in the straight body portion 4a of the sludge supply chamber 7 in the centrifugal separator of the sixth embodiment (FIG. 6) are omitted, and the sludge supply pipe is omitted. In this structure, the gap between the opening 14a and the sludge supply port 7a is widened. Further, the water supply pipe 26 is not branched as in FIG. 2A and is connected to the inorganic flocculant injection pipe 23.
By adopting such a configuration, the structure in the sludge supply chamber 7 can be simplified while obtaining the same effects as those of the sixth embodiment shown in FIG. In addition, maintenance and maintenance work can be reduced.

図9および図10に基づき本発明の実施の形態8を詳述すると、汚泥供給室7内に延伸する汚泥供給管14の汚泥供給管開口14aから、汚泥供給口7aの方向へ汚泥が供給されると共に、汚泥供給管14内に延伸配設された無機凝集剤供給管20の無機凝集剤供給管開口20aから無機凝集剤も汚泥供給口7aの方向へ前段供給され、汚泥供給室7内で汚泥と無機凝集剤とがまず混合する。そして汚泥供給管14内に延伸配設された高分子凝集剤供給管16の側面に開口する高分子凝集剤吐出口16bから高分子凝集剤が、汚泥供給室7の内壁方向へ吐出(中段供給)され、主にこの内壁を伝わって汚泥供給口7aからプール10へ流出する。中段供給された高分子凝集剤は、汚泥供給室7内からプール10内において汚泥(凝集汚泥)と混合する。次いで、汚泥供給管14内に延伸配設された無機凝集剤注入管23の側面に開口する無機凝集剤吐出孔23aから無機凝集剤が、内胴テーパ4bに設けられた仕切板8の近傍で開口する凝集剤流出口7bを介してプール10(プール10の水面WL上にスクリュウ羽根4cで掻き上げられた分離汚泥)へ後段注入され、分離汚泥と無機凝集剤が混合する。   Referring to FIGS. 9 and 10, the eighth embodiment of the present invention will be described in detail. Sludge is supplied from the sludge supply pipe opening 14a of the sludge supply pipe 14 extending into the sludge supply chamber 7 toward the sludge supply port 7a. In addition, the inorganic flocculant is also supplied upstream from the inorganic flocculant supply pipe opening 20a of the inorganic flocculant supply pipe 20 extended in the sludge supply pipe 14 in the direction of the sludge supply port 7a. Sludge and inorganic flocculant are mixed first. Then, the polymer flocculant is discharged toward the inner wall of the sludge supply chamber 7 from the polymer flocculant discharge port 16b opened on the side surface of the polymer flocculant supply pipe 16 extended in the sludge supply pipe 14 (middle supply). ) And flows out from the sludge supply port 7a to the pool 10 mainly through this inner wall. The polymer flocculant supplied in the middle stage is mixed with sludge (flocculated sludge) in the pool 10 from the sludge supply chamber 7. Next, the inorganic flocculant from the inorganic flocculant discharge hole 23a opened on the side surface of the inorganic flocculant injection pipe 23 extended and disposed in the sludge supply pipe 14 is in the vicinity of the partition plate 8 provided in the inner trunk taper 4b. It is injected into the pool 10 (separated sludge scraped up by the screw blade 4c on the water surface WL of the pool 10) through the opening flocculant outlet 7b, and the separated sludge and the inorganic flocculant are mixed.

このように、汚泥と前段供給された無機凝集剤とが混合して生じた凝集汚泥に対して高分子凝集剤を混合することができるため、簡単な構造であるにもかかわらず速やかに且つ効率的に強固な凝集フロックを形成することができる。そして凝集汚泥はプール10で強い遠心力を受けて固液分離が進み、プール10の水面WL上にスクリュウ羽根4cで掻き上げられた分離汚泥に無機凝集剤が後段注入され、さらに固液分離が進む。   In this way, the polymer flocculant can be mixed with the agglomerated sludge produced by mixing the sludge and the inorganic flocculant supplied in the previous stage, so that it is quick and efficient despite the simple structure. Strong cohesive floc can be formed. The coagulated sludge is subjected to solid centrifugal separation by receiving a strong centrifugal force in the pool 10, and an inorganic coagulant is injected into the separated sludge scraped up by the screw blade 4 c on the water surface WL of the pool 10, and further the solid-liquid separation is performed. move on.

遠心分離機1の内部をこのように構成することにより、前記実施の形態6と同様に、汚泥に対して的確に且つ効率よく無機凝集剤および高分子凝集剤を供給・注入でき、また凝集フロックの破壊を抑制でき、良好な固液分離性能が発揮されて脱水汚泥の含水率を一層低減することができ、薬品使用量も低減化でき、さらに汚泥供給室7内の構造を簡略化することができる。なお、汚泥供給室7の形状は、全体的に分離物排出側に向かって傾斜を設ける(狭径化する)ことが好ましい。また、高分子凝集剤吐出口16bを高分子凝集剤供給管16の側面に開口させたが、これに限るものではなく、汚泥供給口7aの方向に吐出させてもよく、効率よく確実に凝集汚泥へ高分子凝集剤を中段供給できる構造であればよい。   By configuring the inside of the centrifuge 1 in this way, the inorganic flocculant and the polymer flocculant can be supplied and injected accurately and efficiently into the sludge, as in the sixth embodiment. Destruction can be suppressed, good solid-liquid separation performance can be demonstrated, the moisture content of dewatered sludge can be further reduced, the amount of chemicals used can be reduced, and the structure in the sludge supply chamber 7 can be simplified. Can do. In addition, it is preferable that the shape of the sludge supply chamber 7 is provided with an inclination (narrowed) toward the separated discharge side as a whole. Further, the polymer flocculant discharge port 16b is opened on the side surface of the polymer flocculant supply pipe 16, but the present invention is not limited to this, and the polymer flocculant discharge port 16b may be discharged in the direction of the sludge supply port 7a. Any structure that can supply the polymer flocculant to the sludge in the middle stage may be used.

実施の形態9.
図11は本発明の実施の形態9による遠心分離装置を示す断面図であり、図9および図10と同一の構成要素には同一符号を付して重複説明を省略する。
図9および図10に示した実施の形態8では、無機凝集剤供給管20を汚泥供給室7に延伸させて無機凝集剤の前段供給を汚泥供給室7内で行う構成としたが、汚泥と前段供給する無機凝集剤とを十分に反応させるため、無機凝集剤供給管20を汚泥供給管14に接続し、汚泥供給管14の汚泥に無機凝集剤を前段供給(ライン供給)する構成とした。このように構成することにより、汚泥と前段供給した無機凝集剤とが十分に混合され、確実に凝集フロックを生成することができると共に、汚泥に含まれるリンを不溶性塩にして分離液のリン濃度を低減することもできる。なお、無機凝集剤供給管20の汚泥供給管14への接続位置は、汚泥貯留槽11から遠心分離機1までの間のいずれの場所でもかまわない。このような構成とすることにより、図8に示した前記実施の形態7と同様の作用効果を得ながら、汚泥供給室7内の構造を簡略化することができ、また装置の製造を容易にし、さらに維持管理や保守点検の作業を軽減化できる。
Embodiment 9 FIG.
FIG. 11 is a cross-sectional view showing a centrifugal separator according to Embodiment 9 of the present invention. The same components as those in FIGS.
In Embodiment 8 shown in FIG. 9 and FIG. 10, the inorganic flocculant supply pipe 20 is extended to the sludge supply chamber 7 and the upstream supply of the inorganic flocculant is performed in the sludge supply chamber 7. In order to sufficiently react with the inorganic flocculant supplied in the previous stage, the inorganic flocculant supply pipe 20 is connected to the sludge supply pipe 14, and the inorganic flocculant is supplied to the sludge in the sludge supply pipe 14 in the previous stage (line supply). . By configuring in this way, the sludge and the inorganic flocculant supplied in the previous stage are sufficiently mixed, and it is possible to reliably produce agglomeration flocs, and the phosphorus contained in the sludge is made into an insoluble salt, so that the phosphorus concentration of the separation liquid Can also be reduced. The connecting position of the inorganic flocculant supply pipe 20 to the sludge supply pipe 14 may be any place between the sludge storage tank 11 and the centrifuge 1. By adopting such a configuration, the structure in the sludge supply chamber 7 can be simplified while obtaining the same effects as those of the seventh embodiment shown in FIG. 8, and the manufacture of the apparatus is facilitated. In addition, maintenance and maintenance work can be reduced.

実施の形態10.
図12は本発明の実施の形態10による遠心分離装置を示す断面図であり、図3と同一の構成要素には同一符号を付して重複説明を省略する。
この実施の形態10では、汚泥供給管4に接続された高分子凝集剤供給管16の分岐管16aを設け、この分岐管16aに開閉弁19aを設けることにより、高分子凝集剤供給管16がライン供給または/および機内供給に切り替えられる構造とした点が前記実施の形態3(図3)と大きく異なる。前記高分子凝集剤供給管16と分岐管16aとによる双方の高分子凝集剤供給方式には特徴があり、特に高分子凝集剤の使用種類と汚泥との反応性により、適宜選択される。基本的には、粘性が高い高分子凝集剤の場合、汚泥との反応時間が必要となるため、ライン供給が好ましく、薬注率を低く抑えたい(経済性優先時など)ときは、機内供給が好ましい。
Embodiment 10 FIG.
FIG. 12 is a sectional view showing a centrifugal separator according to Embodiment 10 of the present invention. The same components as those in FIG.
In the tenth embodiment, the polymer flocculant supply pipe 16 connected to the sludge supply pipe 4 is provided with a branch pipe 16a, and the branch pipe 16a is provided with an on-off valve 19a. The point that the structure is switched to line supply or / and in-machine supply is greatly different from that of the third embodiment (FIG. 3). Both polymer flocculant supply systems using the polymer flocculant supply pipe 16 and the branch pipe 16a have characteristics, and are selected as appropriate depending on the type of polymer flocculant used and the reactivity with sludge. Basically, in the case of a polymer coagulant with high viscosity, reaction time with sludge is required, so it is preferable to supply the line, and supply in the machine when you want to keep the chemical injection rate low (e.g. when economy is a priority). Is preferred.

高分子機内供給方式の場合、汚泥供給管14内に高分子凝集剤供給管16と無機凝集剤の無機凝集剤注入管23の2つの管を延伸させることが好ましい。構造例を図13および図14に示す。図13に示すようにパイプ状の汚泥供給管14に高分子凝集剤供給管16および無機凝集剤注入管23を挿入する構造でも良く、また図14に示すように2重管構造を採用して外管に仕切を付ける構造でもよく、汚泥と区分けして各凝集剤を供給・注入できればどのような構造でもかまわない。   In the case of the in-polymer supply system, it is preferable to extend two pipes, a polymer flocculant supply pipe 16 and an inorganic flocculant injection pipe 23, into the sludge supply pipe 14. Structural examples are shown in FIGS. As shown in FIG. 13, a structure in which the polymer flocculant supply pipe 16 and the inorganic flocculant injection pipe 23 are inserted into the pipe-shaped sludge supply pipe 14 may be adopted, and a double pipe structure is adopted as shown in FIG. A structure in which the outer pipe is partitioned may be used, and any structure may be used as long as it can be separated from sludge and supplied and injected with each coagulant.

このように遠心分離装置には必須である汚泥供給管14の内部に高分子凝集剤供給管16や無機凝集剤注入管23(実施の形態6および7では無機凝集剤供給管20も)を延伸配設することで、内胴スクリュウ4の軸受やシール等の構造を複雑化させずに済み、また汚泥供給管14の内部を仕切る2重管構造を採用することにより、汚泥供給管14内部に異物が存在しないため、管内が洗浄しやすく閉塞等の問題も回避できる。なお、高分子凝集剤を汚泥供給室7内で広範に供給したい場合には、前記2重管構造(図14)として、高分子凝集剤供給管16の先端を封じて、管先端付近の周囲に複数の高分子凝集剤吐出口16bを設けてもよく、これにより高分子凝集剤を多方向に供給することができる。   In this manner, the polymer flocculant supply pipe 16 and the inorganic flocculant injection pipe 23 (also the inorganic flocculant supply pipe 20 in the sixth and seventh embodiments) are extended inside the sludge supply pipe 14 that is essential for the centrifugal separator. By disposing, the structure of the bearings and seals of the inner cylinder screw 4 is not complicated, and by adopting a double pipe structure that partitions the inside of the sludge supply pipe 14, the sludge supply pipe 14 is provided inside. Since there is no foreign matter, the inside of the tube is easy to clean, and problems such as blockage can be avoided. When it is desired to supply the polymer flocculant extensively in the sludge supply chamber 7, the tip of the polymer flocculant supply pipe 16 is sealed as the double pipe structure (FIG. 14), and the vicinity of the vicinity of the pipe tip is used. A plurality of polymer flocculant discharge ports 16b may be provided at the same, whereby the polymer flocculant can be supplied in multiple directions.

実施の形態11.
図15は本発明の実施の形態11による遠心分離装置を示す断面図であり、図1〜図10と同一または相当部分の構成要素には同一符号を付して重複説明を省略する。
この実施の形態11では、遠心脱水機1より排出される分離液のリン濃度を測定するリン濃度測定器31と、このリン濃度測定器31によるリン濃度測定値信号を入力して無機凝集剤供給ポンプ21および無機凝集剤注入ポンプ24を制御する制御器30とを備える構成とし、制御器30を利用して無機凝集剤供給ポンプ21(前段供給ポンプ)と無機凝集剤注入ポンプ24(後段注入ポンプ)の流量を制御するものである。
Embodiment 11 FIG.
FIG. 15 is a cross-sectional view showing a centrifugal separator according to an eleventh embodiment of the present invention. Components identical or corresponding to those in FIGS.
In the eleventh embodiment, a phosphorus concentration measuring device 31 that measures the phosphorus concentration of the separation liquid discharged from the centrifugal dehydrator 1 and a phosphorus concentration measurement value signal from the phosphorus concentration measuring device 31 are input to supply an inorganic flocculant. The controller 21 is configured to control the pump 21 and the inorganic flocculant injection pump 24. By using the controller 30, the inorganic flocculant supply pump 21 (front-stage supply pump) and the inorganic flocculant injection pump 24 (rear-stage injection pump) are used. ) To control the flow rate.

通常、分離液中のリン濃度は、汚泥濃度や脱水機の運転条件が同等の場合、無機凝集剤の供給・注入率(量)に比例し減少する。つまり、汚泥に含まれるリン成分を無機凝集剤と反応させ、不溶性塩にして分離物と共に排除できるため、分離液のリン濃度は低下する。このことから、分離液中のリン濃度を確認しながら無機凝集剤の供給・注入、とくに無機凝集剤供給ポンプ21での供給量を制御すれば、分離液中のリン濃度を的確に調整(安定して低減)することができる。   Usually, the phosphorus concentration in the separation liquid decreases in proportion to the supply / injection rate (amount) of the inorganic flocculant when the sludge concentration and the operating conditions of the dehydrator are the same. That is, the phosphorus component contained in the sludge can be reacted with the inorganic flocculant to be converted into an insoluble salt and removed together with the separated product, so that the phosphorus concentration of the separation liquid is lowered. From this, it is possible to accurately adjust the phosphorus concentration in the separation liquid by controlling the supply and injection of the inorganic flocculant while checking the phosphorus concentration in the separation liquid, in particular, the amount supplied by the inorganic flocculant supply pump 21 (stable Can be reduced).

リン濃度測定器31は、リン濃度自動測定器31や手分析による測定、またはパックテスト等による簡易分析でもよい。制御器30としては、リン濃度測定値(出力信号)に基づき、無機凝集剤供給ポンプ21等の出力を増減せるもの(インバーター)、またはリン濃度の分析結果から手動で無機凝集剤供給ポンプ21等の流量を増減可能なものであればよい。なお、実施の形態11では、確実に汚泥と無機凝集剤とを反応させるため、図5に示した実施の形態5と同様に前段無機凝集剤貯留槽13Aを設け、無機凝集剤供給管20を前段無機凝集剤貯留槽13Aから汚泥貯留槽11に延伸させ、無機凝集剤を汚泥貯留槽11に前段供給できるように構成したが、これに限るものではなく、汚泥と無機凝集剤とを十分に混合できる構造であればよい。   The phosphorus concentration measuring device 31 may be a phosphorus concentration automatic measuring device 31, measurement by manual analysis, or simple analysis by pack test or the like. The controller 30 can increase or decrease the output of the inorganic flocculant supply pump 21 or the like based on the measured phosphorus concentration value (output signal) (inverter), or can manually adjust the inorganic flocculant supply pump 21 or the like from the analysis result of the phosphorus concentration. Any flow rate can be used as long as the flow rate can be increased or decreased. In the eleventh embodiment, in order to reliably react the sludge and the inorganic flocculant, the pre-stage inorganic flocculant storage tank 13A is provided as in the fifth embodiment shown in FIG. The inorganic flocculant storage tank 13A is extended to the sludge storage tank 11 so that the inorganic flocculant can be supplied to the sludge storage tank 11, but is not limited thereto, and the sludge and the inorganic flocculant are sufficiently supplied. Any structure that can be mixed is acceptable.

また、無機凝集剤の供給・注入制御に関して、間接的な制御であるが、pH計を使用しても可能である。表1に示す消化汚泥を用いての実施例において、前段での無機凝集剤の供給率(ポリ鉄注入率)に対する分離液のリン濃度と分離液pHの関係を図19に示した。ポリ鉄注入率を増加させると分離液のリン濃度は低下すると共に、pHも低下する。この相関関係を定期的に確認しておき、分離液のpH値から分離液のリン濃度を推測し無機凝集剤供給ポンプ21等を制御してもよい。   Moreover, although it is an indirect control regarding supply / injection control of an inorganic flocculant, it is also possible to use a pH meter. In the example using the digested sludge shown in Table 1, the relationship between the phosphorus concentration of the separation liquid and the separation liquid pH with respect to the supply rate (polyiron injection rate) of the inorganic flocculant in the previous stage is shown in FIG. When the polyiron injection rate is increased, the phosphorus concentration of the separation liquid is lowered and the pH is also lowered. This correlation may be confirmed periodically, and the phosphorus concentration of the separation liquid may be estimated from the pH value of the separation liquid to control the inorganic flocculant supply pump 21 and the like.

以上説明した実施の形態11における前記リン濃度測定器31および制御器30は、前記実施の形態1〜10の遠心分離装置にも適用可能であり、その適用により前記実施の形態1〜10の遠心分離装置における無機凝集剤供給ポンプ21と無機凝集剤注入ポンプ24の流量を適切に制御することができる。   The phosphorus concentration measuring device 31 and the controller 30 in the eleventh embodiment described above can also be applied to the centrifuges in the first to tenth embodiments, and the application of the centrifuges in the first to tenth embodiments by application thereof. The flow rates of the inorganic flocculant supply pump 21 and the inorganic flocculant injection pump 24 in the separator can be appropriately controlled.

実施の形態12.
図16は本発明の実施の形態12による遠心分離装置を示す断面図である。
この実施の形態12では、制御器30Aにより、無機凝集剤の前段供給と後段注入の割合や流量を開閉弁32,33等により調整するものである。このような構成とすることにより、無機凝集剤供給ポンプと無機凝集剤注入ポンプを1台で兼用することができ、イニシャルコスト低減や省スペース化を計ることができる。制御器30Aとしては、分離液のリン除去を目的とする場合には、汚泥や分離液のリン濃度や上述したように分離液のpHを測定して、その出力信号により開閉弁32,33の開閉や開度を制御できるもの、また脱水汚泥の含水率低下を目的とする場合には、汚泥量(処理量)、脱水汚泥の含水率や粘性等を測定して、その出力信号により開閉弁32,33の開閉や開度を制御できるもの、さらにはSS回収率の向上を目的にする場合には、分離液のSS濃度、透明度、光透過性等を測定して、その出力信号により開閉弁32,33の開閉や開度を制御できるものを用いることができる。例えば、分離液のリン除去において、汚泥中のリン濃度が低い場合には、無機凝集剤の前段供給量を絞り、後段注入量を多くする。
Embodiment 12 FIG.
FIG. 16 is a sectional view showing a centrifugal separator according to a twelfth embodiment of the present invention.
In the twelfth embodiment, the controller 30A adjusts the ratio and flow rate of the inorganic flocculant before and after the injection by the on-off valves 32 and 33 and the like. By adopting such a configuration, the inorganic flocculant supply pump and the inorganic flocculant injection pump can be used together, and the initial cost can be reduced and the space can be saved. For the purpose of removing phosphorus from the separation liquid, the controller 30A measures the concentration of phosphorus in the sludge and the separation liquid and the pH of the separation liquid as described above, and outputs the on / off valves 32 and 33 according to the output signal. For the purpose of controlling the opening / closing and opening, and for the purpose of reducing the moisture content of dewatered sludge, measure the sludge amount (treatment amount), the moisture content and viscosity of the dewatered sludge, and use the output signal to open and close the valve. For control of opening and closing and opening of 32 and 33, and for the purpose of improving the SS recovery rate, measure the SS concentration, transparency, light transmittance, etc. of the separation liquid, and open / close by the output signal What can control the opening and closing and the opening degree of the valves 32 and 33 can be used. For example, when removing phosphorus from the separation liquid, if the phosphorus concentration in the sludge is low, the upstream supply amount of the inorganic flocculant is reduced and the subsequent injection amount is increased.

実施の形態13.
図17は本発明の実施の形態13による遠心分離装置を示す断面図である。
この実施の形態13では、遠心分離機1から排出される分離液の一部を、分離液循環配管34を介して給水管26へ供給し、分離液を再利用するものである。分離液循環配管34には、分離液を循環させる分離液循環ポンプ35および開閉弁36を設けた。
例えば、遠心分離機1の処理量5m3/hの場合、停止工程での洗浄において、通常洗浄水量は4m3/hで、洗浄時間は10〜15分程度かかるが、分離液を循環利用することにより、分離液循環量を3m3/hにすると、遠心分離機1への洗浄水の供給水量は合計7m3/hとなり、供給水量の増加によって遠心分離機1内等での通水量(通水速度)が上昇し、洗浄効率が向上して5分程度で洗浄することができた。
Embodiment 13 FIG.
FIG. 17 is a sectional view showing a centrifugal separator according to Embodiment 13 of the present invention.
In the thirteenth embodiment, a part of the separation liquid discharged from the centrifuge 1 is supplied to the water supply pipe 26 via the separation liquid circulation pipe 34 and the separation liquid is reused. The separation liquid circulation pipe 34 is provided with a separation liquid circulation pump 35 and an on-off valve 36 for circulating the separation liquid.
For example, when the throughput of the centrifuge 1 is 5 m 3 / h, the washing water amount is usually 4 m 3 / h and the washing time takes about 10 to 15 minutes in the stopping process, but the separated liquid is circulated and used. Therefore, if the separation liquid circulation rate is 3 m 3 / h, the total amount of wash water supplied to the centrifuge 1 is 7 m 3 / h, and the amount of water flow in the centrifuge 1 ( The water flow rate) was increased and the cleaning efficiency was improved, so that cleaning was possible in about 5 minutes.

また遠心分離機1の稼動中に分離液を循環させると、無機凝集剤の希釈にも利用することができ、無機凝集剤を後段注入する際、プール10内で希釈された無機凝集剤が速やかに満遍なく分離汚泥に行き渡って混合し、良好な脱水性能(脱水汚泥の低含水率化)が得られる。   Further, if the separation liquid is circulated during the operation of the centrifugal separator 1, it can be used for diluting the inorganic flocculant, and when the inorganic flocculant is injected later, the inorganic flocculant diluted in the pool 10 is quickly recovered. Evenly distributed to the separated sludge and mixed, and good dewatering performance (low water content of the dewatered sludge) can be obtained.

さらに、分離液を希釈に使用する利点としては、分離液は汚泥から分離したものであるため汚泥と性状が類似していて、後段注入する希釈された無機凝集剤のpHを適正な維持(酸性化抑制)することができることである。通常ポリ鉄等は凝集時の最適pHが5〜6程度であるが、例えば地下水(井水)等を使用した場合、通常地下水のpHは低く、ポリ鉄のpHも低いため、最適pH域から逸脱(低pH化)しかねなく、新たにpH調整の必要が出てくる。これに対して、分離液のpHは、例えば消化汚泥脱水の場合は8程度と高く、分離液を循環利用して無機凝集剤を希釈してもpHはほとんど変動せず、安定して脱水処理が行える。また、通常分離液は2000G以上の高い遠心効果で遠心分離したものであり、水質にも良好(SS低濃度)であるため、分離液を無機凝集剤の希釈に循環利用しても、分離液水質への影響はほとんど無い(微細粒子が多く混入するなど水質が好ましくない希釈水を用いると分離液の水質を悪化させかねない)。   Further, the advantage of using the separated liquid for dilution is that the separated liquid is separated from sludge and has similar properties to sludge, so that the pH of the diluted inorganic flocculant to be injected later is appropriately maintained (acidic Can be suppressed). Normally, the optimum pH of polyiron, etc. is about 5-6 at the time of aggregation. For example, when using groundwater (well water) etc., the pH of groundwater is usually low and the pH of polyiron is also low. Deviation (lower pH) may occur, and new pH adjustment is required. On the other hand, the pH of the separated liquid is as high as about 8 in the case of digested sludge dehydration, for example, and even if the inorganic flocculant is diluted by circulating the separated liquid, the pH hardly fluctuates and is stably dehydrated. Can be done. In addition, since the separation liquid is usually centrifuged with a high centrifugal effect of 2000G or higher, and the water quality is also good (SS low concentration), even if the separation liquid is recycled to dilute the inorganic flocculant, the separation liquid There is almost no influence on the water quality (the use of diluted water that does not have a favorable water quality, such as a mixture of many fine particles, may deteriorate the water quality of the separated liquid).

実施の形態14.
図18は本発明の実施の形態14による遠心分離装置を示す断面図である。
この実施の形態14では、実施の形態6(図6)と同様に、給水管を分岐し、その分岐管26a,26bを無機凝集剤供給管20と無機凝集剤注入管23に接続することにより、無機凝集剤の前段供給系統および後段注入系統の洗浄を可能としたものである。これにより、付着固化しやすい無機凝集剤系統を確実に洗浄されるため、遠心分離機の安定した運転ができ、また分離液を循環利用した場合には水道代などのランニングコストを削減できる。また図示しないが、給水管26等には長年の使用によりスケール(カルシウム系)が発生し、無機凝集剤注入管23、無機凝集剤吐出孔23a、23b、23c、凝集剤流出口7b、7c、7d、7e等の閉塞(狭窄)も起こりえるため、酸洗浄設備を設けることが好ましい。
Embodiment 14 FIG.
FIG. 18 is a cross-sectional view showing a centrifugal separator according to Embodiment 14 of the present invention.
In the fourteenth embodiment, as in the sixth embodiment (FIG. 6), the water supply pipe is branched and the branch pipes 26a and 26b are connected to the inorganic flocculant supply pipe 20 and the inorganic flocculant injection pipe 23. In addition, it is possible to wash the upstream supply system and the subsequent injection system of the inorganic flocculant. Thereby, since the inorganic flocculant system which is easy to adhere and solidify is reliably washed, the centrifuge can be operated stably, and when the separated liquid is circulated, running costs such as water bills can be reduced. Although not shown, scale (calcium) is generated in the water supply pipe 26 and the like due to long-term use, and the inorganic flocculant injection pipe 23, inorganic flocculant discharge holes 23a, 23b, 23c, flocculant outlets 7b, 7c, Since clogging (stenosis) such as 7d and 7e may occur, it is preferable to provide an acid cleaning facility.

本発明の実施の形態1による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 1 of this invention. 図1(A)の要部を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows the principal part of FIG. 本発明の実施の形態2による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 2 of this invention. 図2(A)の要部を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows the principal part of FIG. 本発明の実施の形態3による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 3 of this invention. 本発明の実施の形態4による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 4 of this invention. 本発明の実施の形態5による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 5 of this invention. 本発明の実施の形態6による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 6 of this invention. 図6の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 本発明の実施の形態7による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 7 of this invention. 本発明の実施の形態8による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 8 of this invention. 図9の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 本発明の実施の形態9による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 9 of this invention. 本発明の実施の形態10による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 10 of this invention. 図13(A)は汚泥供給管と高分子凝集剤供給管と無機凝集剤注入管の配管構造を示す説明図、図13(B)は図13(A)の端面図である。FIG. 13A is an explanatory view showing a piping structure of a sludge supply pipe, a polymer flocculant supply pipe, and an inorganic flocculant injection pipe, and FIG. 13B is an end view of FIG. 13A. 図13の変形例を示すもので、図14(A)は汚泥供給管と高分子凝集剤供給管と無機凝集剤注入管の配管構造を示す説明図、図14(B)は図14(A)の端面図である。FIG. 14A shows a modified example of FIG. 13, and FIG. 14A is an explanatory view showing the piping structure of a sludge supply pipe, a polymer flocculant supply pipe, and an inorganic flocculant injection pipe, and FIG. ) Is an end view of FIG. 本発明の実施の形態11による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 11 of this invention. 本発明の実施の形態12による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifugal separator by Embodiment 12 of this invention. 本発明の実施の形態13による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 13 of this invention. 本発明の実施の形態14による遠心分離装置を示す断面図である。It is sectional drawing which shows the centrifuge apparatus by Embodiment 14 of this invention. ポリ鉄注入率に対する分離液のリン濃度と分離液のpHの関係を示す図である。It is a figure which shows the relationship between the phosphorus concentration of a separation liquid with respect to a polyiron injection rate, and the pH of a separation liquid.

1 遠心分離機
2 ケーシング
2a 分離液排出口
2b 分離物排出口
3 外胴ボウル
3a 直胴部
3b,3c 2段テーパ
3d 1段テーパ
4 内胴スクリュウ
4a 直胴部
4b 内胴テーパ
4c スクリュウ羽根
5,6 回転駆動機
7 汚泥供給室
7a 汚泥供給口
7b,7c,7d,7e 凝集剤流出口
8,8a,8b,8c 仕切板
10 プール
11 汚泥貯留槽
12 高分子凝集剤貯留槽
13 無機凝集剤貯留槽
13A 前段無機凝集剤貯留槽
14 汚泥供給管
14a 汚泥供給管開口
15 汚泥供給ポンプ
16 高分子凝集剤供給管
16a 分岐管
16b 高分子凝集剤吐出口
17 高分子凝集剤供給ポンプ
18 流量計
19 開閉弁
20 無機凝集剤供給管
20a 無機凝集剤供給管開口
21 無機凝集剤供給ポンプ
22 流量計
23 無機凝集剤注入管
23a,23b,23c 無機凝集剤吐出孔
24 無機凝集剤注入ポンプ
25 流量計
26 給水管
26a,26b 分岐管
27 自動開閉弁
28 給水ポンプ
30,30A 制御器
31 リン濃度測定器
32,33 開閉弁
34 分離液循環配管
35 分離液循環ポンプ
36 開閉弁
DESCRIPTION OF SYMBOLS 1 Centrifugal machine 2 Casing 2a Separation liquid discharge port 2b Separation product discharge port 3 Outer body bowl 3a Straight body part 3b, 3c Two-stage taper 3d First-stage taper 4 Inner body screw 4a Straight body part 4b Inner body taper 4c Screw blade 5 , 6 Rotating drive 7 Sludge supply chamber 7a Sludge supply port 7b, 7c, 7d, 7e Coagulant outlet 8, 8a, 8b, 8c Partition plate 10 Pool 11 Sludge storage tank 12 Polymer flocculant storage tank 13 Inorganic flocculant Storage tank 13A Pre-stage inorganic flocculant storage tank 14 Sludge supply pipe 14a Sludge supply pipe opening 15 Sludge supply pump 16 Polymer flocculant supply pipe 16a Branch pipe 16b Polymer flocculant discharge port 17 Polymer flocculant supply pump 18 Flow meter 19 On-off valve 20 Inorganic flocculant supply pipe 20a Inorganic flocculant supply pipe opening 21 Inorganic flocculant supply pump 22 Flowmeter 23 Inorganic flocculant injection pipes 23a, 23b, 23c Inorganic flocculant discharge hole 24 Inorganic flocculant injection pump 25 Flow meter 26 Water supply pipe 26a, 26b Branch pipe 27 Automatic open / close valve 28 Water supply pump 30, 30A Controller 31 Phosphorus concentration measuring instrument 32, 33 Open / close valve 34 Separate liquid circulation pipe 35 Separating liquid circulation pump 36 On-off valve

Claims (4)

汚泥供給管で供給される汚泥を、
外胴ボウルおよび汚泥供給室が配設された内胴スクリュウを備えた遠心分離機で分離物と分離液に固液分離する
遠心分離装置において、
前記汚泥供給管へ無機凝集剤を供給し、
前記汚泥供給管および/または前記汚泥供給室へ高分子凝集剤を供給し、
さらに
給水管が接続すると共に汚泥供給室の内部へ無機凝集剤を注入する無機凝集剤注入管を前記内胴スクリュウに配設し、該無機凝集剤注入管から前記汚泥供給室に設けられた凝集剤流出口を介して、分離物排出側へ掻き上げられていく分離汚泥へ無機凝集剤を注入する
ことを特徴とする遠心分離装置。
Sludge supplied through the sludge supply pipe
In a centrifuge for solid-liquid separation into a separated product and a separated liquid by a centrifuge equipped with an inner cylinder screw provided with an outer cylinder bowl and a sludge supply chamber ,
Supplying an inorganic flocculant to the sludge supply pipe,
Supplying the polymer flocculant to the sludge supply pipe and / or the sludge supply chamber;
further
An inorganic flocculant injection pipe for connecting the water supply pipe and injecting an inorganic flocculant into the sludge supply chamber is disposed in the inner cylinder screw, and the flocculant provided in the sludge supply chamber from the inorganic flocculant injection pipe A centrifugal separator characterized by injecting an inorganic flocculant into separated sludge that is scraped up to the separated product discharge side through an outlet .
前記汚泥供給室内に仕切板を設けた
ことを特徴とする請求項1に記載の遠心分離装置。
The centrifuge according to claim 1, wherein a partition plate is provided in the sludge supply chamber.
前記分離液のリン濃度を測定するリン濃度測定器
を備えたことを特徴とする請求項1または請求項2に記載の遠心分離装置。
The centrifuge according to claim 1, further comprising a phosphorus concentration measuring device that measures a phosphorus concentration of the separation liquid.
前記給水管へ前記分離液を供給する分離液循環配管を備えた
ことを特徴とする請求項1から請求項3のいずれかに記載の遠心分離装置。
The centrifuge according to any one of claims 1 to 3, further comprising a separation liquid circulation pipe that supplies the separation liquid to the water supply pipe.
JP2013137947A 2013-07-01 2013-07-01 Centrifuge Active JP5619965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013137947A JP5619965B2 (en) 2013-07-01 2013-07-01 Centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137947A JP5619965B2 (en) 2013-07-01 2013-07-01 Centrifuge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009119899A Division JP5490442B2 (en) 2009-05-18 2009-05-18 Centrifuge

Publications (2)

Publication Number Publication Date
JP2013188751A JP2013188751A (en) 2013-09-26
JP5619965B2 true JP5619965B2 (en) 2014-11-05

Family

ID=49389581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137947A Active JP5619965B2 (en) 2013-07-01 2013-07-01 Centrifuge

Country Status (1)

Country Link
JP (1) JP5619965B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2618034C2 (en) * 2014-11-14 2017-05-02 Владимир Николаевич Горященко Installation of sludge screw dewatering
JP6271691B1 (en) * 2016-12-09 2018-01-31 日環特殊株式会社 Pressurized sludge solidification concentrator
JP6271782B1 (en) * 2017-02-17 2018-01-31 日環特殊株式会社 Method for reducing turbidity and BOD concentration of raw water, and pressurized sludge solidification concentrator used in the method
JP6271787B1 (en) * 2017-03-07 2018-01-31 日環特殊株式会社 Sludge treatment system that produces biogas
CN108892351A (en) * 2018-07-25 2018-11-27 芜湖鸣人热能设备有限公司 Sludge dewatering drying unit
CN109748365A (en) * 2019-03-16 2019-05-14 武汉轻工大学 A kind of Polyferric Sulfate PAC reaction tank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716630B2 (en) * 1985-05-09 1995-03-01 石川島播磨重工業株式会社 Screen-decanter centrifuge
JP2540198B2 (en) * 1988-12-08 1996-10-02 アルファーラバル エービー Sludge dewatering method and apparatus using decanter type centrifuge
JPH06296978A (en) * 1993-04-20 1994-10-25 Meidensha Corp Device for removing phosphorus from digested sludge dehydration filtrate
JPH0966299A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Two-stage chemical injection type centrifugal dehydrator
JP5239167B2 (en) * 2007-01-30 2013-07-17 ダイヤニトリックス株式会社 Concentration method of sludge

Also Published As

Publication number Publication date
JP2013188751A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5490442B2 (en) Centrifuge
JP5425523B2 (en) Centrifuge
JP5619965B2 (en) Centrifuge
US20100116753A1 (en) Dewatering system
CN102531229A (en) Comprehensive treatment process of desulfuration waste water
JP2014237122A (en) Coagulation sedimentation equipment and method
JP2013078715A (en) Flocculation and sedimentation apparatus
JP5611688B2 (en) Centrifugal separator and sludge treatment method
JP2009050754A (en) Sludge dehydration apparatus
JP2008073670A (en) Belt-type concentrator
JP5774392B2 (en) Centrifugal dehydration apparatus and centrifugal dehydration method using the same
JP2010247043A (en) Operation control method for screw press provided continuously to thickener
JP3769148B2 (en) Wastewater treatment equipment
JP6425900B2 (en) Sludge dewatering system and dewatering method of sludge
JP2012139628A (en) System and method for sludge treatment
JP2013119061A (en) Flocculating sedimentation apparatus
CN210736454U (en) Device for treating high-salt silica sol-containing wastewater
Horenstein et al. Successful dewatering experience at hyperion wastewater treatment plant
JP2012115800A (en) Sludge dehydrator and method for dehydrating sludge
JP4565371B2 (en) Waste water treatment method and waste water treatment equipment
JP3915245B2 (en) Aluminum recovery equipment from aluminum-containing sludge
JP3857155B2 (en) Centrifugal separator with VTS reduction function for raw sludge
JP2012115816A (en) Apparatus and method for treating sludge
CN213012314U (en) Dissolved air flotation machine for wastewater treatment
CN215327340U (en) Desulfurization wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250