JP2012139342A - Automatic blood pressure measuring apparatus - Google Patents

Automatic blood pressure measuring apparatus Download PDF

Info

Publication number
JP2012139342A
JP2012139342A JP2010293603A JP2010293603A JP2012139342A JP 2012139342 A JP2012139342 A JP 2012139342A JP 2010293603 A JP2010293603 A JP 2010293603A JP 2010293603 A JP2010293603 A JP 2010293603A JP 2012139342 A JP2012139342 A JP 2012139342A
Authority
JP
Japan
Prior art keywords
pulse wave
frequency component
related value
blood pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010293603A
Other languages
Japanese (ja)
Other versions
JP5584111B2 (en
Inventor
Shigehiro Ishizuka
繁廣 石塚
Nobuhiko Yasui
伸彦 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2010293603A priority Critical patent/JP5584111B2/en
Publication of JP2012139342A publication Critical patent/JP2012139342A/en
Application granted granted Critical
Publication of JP5584111B2 publication Critical patent/JP5584111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy-to-use automatic blood pressure measuring apparatus by which a state of activity of the autonomic nerve can be evaluated with comparatively high accuracy simultaneously with blood pressure measurement, and relation between the autonomic nerve activity state and blood pressure values can be acquired to enable training for controlling the autonomic nerve activity.SOLUTION: The automatic blood pressure measuring apparatus includes an output control means 60 to output: a ΔhbPWT which is a variation value of a pulse wave propagation time (pulse wave propagation velocity related value) hbPWT calculated by a pulse wave propagation velocity related value frequency analysis means 52 within a predetermined time section; and a variation value (dLF/HF)RRI of a frequency component ratio (LF/HF)RRI between a low-frequency component LF and a high-frequency component HF calculated by a heartbeat cycle related value frequency analysis means 58 within the predetermined time section. Thus, an autonomic nerve activity state can be evaluated by a small and simple apparatus when measuring the blood pressure of a person to be measured and the relation between the autonomic nerve activity state and the blood pressure value can be learned, to enable training for controlling the autonomic nerve activity.

Description

本発明は、生体の一部をカフを用いて圧迫したときに得られる脈拍同期波に基づいて該生体の血圧値を測定する自動血圧測定手段を備えた自動血圧測定装置に関し、特に、自律神経をトレーニングするための自律神経の活動状態を評価する機能を備えた自動血圧測定装置に関するものである。   The present invention relates to an automatic blood pressure measuring apparatus including an automatic blood pressure measuring unit that measures a blood pressure value of a living body based on a pulse synchronous wave obtained when a part of the living body is compressed using a cuff, and more particularly, an autonomic nerve. The present invention relates to an automatic blood pressure measurement apparatus having a function of evaluating an activity state of an autonomic nerve for training a baby.

一般に、生体の血圧値に対する自律神経による制御は、たとえば図10に示すように観念されている。すなわち、先ず血圧値を圧受容器或いは伸展受容器が検出し、たとえば血圧値が高い場合は交感神経の活動を抑制するために血管中枢から出されるノルアドレナリンを抑制すると同時にアセチルコリンを増加させて、心臓の心拍数を低下させ且つ心筋の収縮力を弱めて拍出圧を低く且つ拍出量を少なくし、容量血管(静脈)の収縮を弱めて拡張を行うことにより還流量を増加させ、同時に、抵抗血管(抹消血管)の収縮を弱めて抹消血管抵抗を低くして血圧値を低下させる。このような生体の血圧制御システムにおいて、心拍数による制御の方が応答性が高く、従来では、その心拍数のゆらぎが生体の自律神経の活動状態を示すパラメータであると評価されていたが、血圧値のゆらぎは生体の自律神経の活動状態を示すパラメータとしては、それほど評価されていなかった。   In general, the control by the autonomic nerve for the blood pressure value of a living body is considered as shown in FIG. 10, for example. That is, first the blood pressure value is detected by the baroreceptor or the stretch receptor. For example, when the blood pressure value is high, in order to suppress the activity of the sympathetic nerve, norepinephrine released from the blood vessel center is suppressed and at the same time acetylcholine is increased. Decrease heart rate and weaken myocardial contraction force to lower stroke pressure and decrease stroke volume, weaken contraction of volumetric blood vessels (veins) and dilate to increase reflux volume and at the same time resist It weakens the contraction of blood vessels (peripheral blood vessels) to lower peripheral blood vessel resistance and lower blood pressure. In such a blood pressure control system of a living body, control by the heart rate has higher responsiveness, and conventionally, fluctuation of the heart rate has been evaluated as a parameter indicating an active state of the autonomic nerve of the living body. The fluctuation of the blood pressure value has not been evaluated as much as a parameter indicating the activity state of the autonomic nerve of the living body.

しかし、本発明者等は、血圧値は自律神経系の支配を受けて制御されており、基礎血圧値などの評価にはそのときの自律神経系の活動を示すパラメータを用いる必要があるために同時に記録することが必要であると考えるとともに、脳、環状動脈疾患のリスクを下げるために、自律神経系の活動、特に血圧を上昇させている交感神経系をコントロールして血圧を下げる訓練をすることができる装置を案出しようと考えた。   However, since the present inventors have controlled the blood pressure value under the control of the autonomic nervous system, it is necessary to use a parameter indicating the autonomic nervous system activity at that time for evaluation of the basal blood pressure value, etc. In order to reduce the risk of brain and ring arterial disease, training to lower blood pressure by controlling autonomic nervous system activity, particularly the sympathetic nervous system that increases blood pressure, is considered to be necessary to record simultaneously I wanted to devise a device that could do that.

これらに関し、副交感神経、交感神経の自律神経活動を心拍数のゆらぎ(経時的変動)を周波数スペクトラム解析し、それにより得られる周波数成分の大きさに基づいて評価する装置が従来知られていた。また、血圧変動については、観血法により測定された血圧のゆらぎ(変動)を周波数スペクトラム解析し、評価することが行われていた。しかし、観血法による血圧測定は1拍毎の血圧値が直接的且つ連続的に得られるが、医療資格を有する術者を必要とし、外来や家庭において一般的に用いることができるものには成り得なかった。 With respect to these, there has been conventionally known an apparatus that evaluates the parasympathetic nerve and the autonomic nervous activity of the sympathetic nerve based on the magnitude of the frequency component obtained by frequency spectrum analysis of fluctuation (time-dependent fluctuation) of the heart rate. Regarding blood pressure fluctuations, fluctuations (fluctuations) in blood pressure measured by the open blood method have been evaluated by frequency spectrum analysis. However, blood pressure measurement by the open blood method can directly and continuously obtain the blood pressure value for each beat, but it requires an operator with medical qualifications and can be generally used in an outpatient or home. I couldn't.

これに対して、上記1拍毎の血圧値を非観血法による連続血圧測定装置を用いて測定することが考えられる。たとえば特許文献1に記載されたものがそれである。   On the other hand, it is conceivable to measure the blood pressure value for each beat using a continuous blood pressure measuring device by a non-invasive method. For example, it is described in Patent Document 1.

特開2002−272690号公報JP 2002-272690 A

しかしながら、上記のような連続血圧測定装置を用いて血圧値を連続的に得ようとする場合には、比較的抹消部位の血圧値であるために精度が比較的得られ難いことや、専用の複雑な測定系が必要となって自律神経評価装置が大型且つ高価となるなどの問題があった。   However, when trying to obtain a blood pressure value continuously using the continuous blood pressure measuring device as described above, it is relatively difficult to obtain accuracy because it is a blood pressure value of a peripheral region, There is a problem that a complicated measurement system is required and the autonomic nerve evaluation apparatus is large and expensive.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、血圧測定と同時に自律神経の活動状態を比較的高い精度で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練を可能とする簡便な自動血圧測定装置を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to be able to evaluate the activity state of the autonomic nerve with a relatively high accuracy simultaneously with the blood pressure measurement. It is to provide a simple automatic blood pressure measurement device that enables training to control the activity of the autonomic nerve by acquiring the relationship with the blood pressure.

本発明者等は、以上の事情を背景として種々の実験を行った結果、心電図誘導波形を起点とし、血管系末梢部位の脈波形を遠位点とした計測において、生体の1拍毎に得られる脈波伝播時間PWTから換算された脈波伝播速度PWV(=C・L/PWT、Cは血圧値換算定数)は、その生体1拍毎の血圧値と密接に相関して変動し、その脈波伝播時間の変動の周波数解析結果と生体1拍毎の血圧値変動の周波数解析結果とが同様の周波数スペクトラムをもたらすという点を見いだした。図11には、本発明者等による実験結果であって、カテーテル等を用いる直接法により生体から実測された1拍毎の最高血圧値SBPが破線にて示され、生体から1拍毎に得られる脈波伝播時間PWTから換算された上記脈波伝播速度PWVが実線にて示されている。それら破線と実線とが同様の変化を示していることから、脈波伝播速度PWVは生体の血圧値と密接に相関していることが明らかである。本実験によるPWTは、大動脈弁閉鎖から開放までの心室の収縮期の情報(心筋の収縮力)と脈波が伝播する動脈系の情報(末梢血管系の拡張、収縮)とを含んでおり、生体の血圧動揺と良く相関している。本発明はこの知見に基づいて為されたものである。   As a result of conducting various experiments on the background of the above circumstances, the present inventors have obtained for each beat of a living body in a measurement using an electrocardiogram-induced waveform as a starting point and a pulse waveform of a peripheral part of the vascular system as a distal point. The pulse wave velocity PWV converted from the pulse wave propagation time PWT (= C · L / PWT, C is a blood pressure value conversion constant) fluctuates in close correlation with the blood pressure value for each beat of the living body, It was found that the frequency analysis result of the fluctuation of the pulse wave propagation time and the frequency analysis result of the blood pressure value fluctuation for each beat of the living body give the same frequency spectrum. FIG. 11 shows experimental results by the present inventors, etc., in which the maximum blood pressure value SBP for each beat measured from the living body by a direct method using a catheter or the like is indicated by a broken line, and is obtained for each beat from the living body. The pulse wave velocity PWV converted from the measured pulse wave propagation time PWT is shown by a solid line. Since the broken line and the solid line indicate the same change, it is clear that the pulse wave velocity PWV is closely correlated with the blood pressure value of the living body. The PWT by this experiment includes information on the systole of the ventricle from the closing of the aortic valve to the opening (myocardial contraction force) and information on the arterial system through which the pulse wave propagates (dilation and contraction of the peripheral vasculature). Correlate well with blood pressure fluctuations in the body. The present invention has been made based on this finding.

すなわち、請求項1に係る発明の要旨とするところは、(a)生体の一部をカフを用いて圧迫したときに動脈から得られる心拍同期波に基づいて該生体の血圧値を測定する自動血圧測定手段を備えた自動血圧測定装置であって、(b)前記生体の脈波伝播時間に関連する脈波伝播速度関連値を逐次検出する脈波伝播速度関連値検出手段と、(c)前記生体の心拍周期に関連する心拍周期関連値を逐次検出する心拍周期関連値検出手段と、(d)その心拍周期関連値検出手段により検出された心拍周期関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する心拍周期関連値周波数解析手段と、(e)前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と、前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを出力する出力制御手段とを、含むことにある。   That is, the gist of the invention according to claim 1 is that (a) an automatic measurement of a blood pressure value of a living body based on a heartbeat synchronization wave obtained from an artery when a part of the living body is compressed with a cuff. An automatic blood pressure measurement device including a blood pressure measurement means, (b) a pulse wave velocity related value detection means for sequentially detecting a pulse wave velocity related value related to the pulse wave propagation time of the living body, and (c) A heartbeat cycle related value detecting means for sequentially detecting a heartbeat cycle related value related to the heartbeat cycle of the living body; and (d) a frequency analysis of fluctuation of the heartbeat cycle related value detected by the heartbeat cycle related value detecting means, (E) a predetermined time of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means; and (e) a pulse wave velocity related value frequency analyzing means for calculating a frequency component ratio between the low frequency component and the high frequency component of fluctuation. Within the section An output control means for outputting a change value and a change value within a predetermined time interval of the frequency component ratio of the low frequency component and the high frequency component of the heartbeat cycle related value calculated by the heartbeat cycle related value frequency analysis means; There is to include.

また、請求項2に係る発明の要旨とするところは、請求項1に係る発明において、(f)前記生体に装着する複数の電極を有し、該複数の電極に発生する信号に基づいて心電誘導波を出力する心電誘導装置と、前記生体の一部に装着されて該生体の動脈内を伝播する脈波を検出する脈波センサとを備え、(g)前記脈波伝播速度関連値検出手段は、該心電誘導波に含まれるR波の発生時点からその脈波センサにより脈波が検出された発生時点までの時間差に基づいて脈波伝播速度関連値を検出するものであることにある。   The gist of the invention according to claim 2 is that, in the invention according to claim 1, (f) a plurality of electrodes to be attached to the living body, and a heart based on signals generated at the plurality of electrodes. An electrocardiogram inducing device that outputs an electro-guided wave, and a pulse wave sensor that detects a pulse wave that is attached to a part of the living body and propagates through an artery of the living body, and (g) related to the pulse wave propagation speed The value detection means detects the pulse wave velocity related value based on the time difference from the generation time point of the R wave included in the electrocardiogram induced wave to the generation time point when the pulse wave is detected by the pulse wave sensor. There is.

また、請求項3に係る発明の要旨とするところは、請求項2に係る発明において、(h)前記心電誘導装置の前記複数の電極の一部は、前記カフの内周面に配置されており、(i)前記脈波センサは前記カフ内の圧力振動を用いて脈波を検出するものであることにある。   A gist of the invention according to claim 3 is that, in the invention according to claim 2, (h) a part of the plurality of electrodes of the electrocardiographic induction device is arranged on an inner peripheral surface of the cuff. (I) The pulse wave sensor is to detect a pulse wave using pressure vibration in the cuff.

また、請求項4に係る発明の要旨とするところは、請求項2または3に係る発明において、(j)前記心拍周期関連値検出手段は、前記心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期関連値を検出するものであることにある。   A gist of the invention according to claim 4 is that, in the invention according to claim 2 or 3, (j) the heartbeat period related value detecting means is a time point when the R wave included in the electrocardiogram induced wave is generated. The purpose is to detect a heartbeat period-related value based on the interval.

また、請求項5に係る発明の要旨とするところは、請求項1乃至4のいずれか1に係る発明において、(k)前記出力制御手段は、前記脈波伝播速度関連値の所定時間区間内における変化値を示す軸と、前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を示す軸とを含む二次元座標において、該脈波伝播速度関連値の所定時間区間内における変化値と該心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを示す点を繰り返し表示出力するものであることにある。   The gist of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 4, (k) the output control means is within a predetermined time interval of the pulse wave velocity related value. And an axis indicating a change value within a predetermined time interval of the frequency component ratio of the low frequency component and the high frequency component of the cardiac cycle related value calculated by the cardiac cycle related value frequency analyzing means. A point indicating a change value of the pulse wave velocity related value in a predetermined time interval and a change value of the frequency component ratio of the low frequency component and the high frequency component in the predetermined time interval in the two-dimensional coordinate. Is repeatedly displayed and output.

また、請求項6に係る発明の要旨とするところは、請求項1乃至5のいずれか1の発明において、(l)前記出力制御手段は、前記自動血圧測定手段による血圧測定時点からの、前記脈波伝播速度関連値の変化値、および、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の変化値とを示す点を算出し、所定の時間間隔で繰り返し表示出力するものであることを特徴とする。   The gist of the invention according to claim 6 is that, in the invention according to any one of claims 1 to 5, (l) the output control means is configured to provide the output from the time point of blood pressure measurement by the automatic blood pressure measurement means. A point indicating the change value of the pulse wave velocity related value and the change value of the frequency component ratio of the low frequency component and the high frequency component of the heartbeat cycle related value is calculated and repeatedly displayed at predetermined time intervals. It is characterized by being.

また、請求項7に係る発明の要旨とするところは、請求項1乃至6のいずれか1に係る発明において、(m)前記自動血圧測定手段による血圧測定が実行された後であって、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とが前記出力制御手段により予め設定された回数表示出力された後に、或いは予め設定された経過時間の経過後に、前記自動血圧測定手段による血圧測定を再度起動させる血圧測定再起動手段を、さらに含むことにある。   A gist of the invention according to claim 7 is that, in the invention according to any one of claims 1 to 6, (m) after blood pressure measurement is performed by the automatic blood pressure measurement means, A change value of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means within a predetermined time interval, and a low frequency component and a high frequency of the heart cycle related value calculated by the frequency analyzing means. The blood pressure measurement by the automatic blood pressure measurement means after the change value of the frequency component ratio of the components within the predetermined time interval is displayed and output by the output control means for a preset number of times, or after the preset elapsed time has elapsed. The blood pressure measurement restarting means for restarting is further included.

また、請求項8に係る発明の要旨とするとろは、請求項1乃至7のいずれか1に係る発明において、(n)前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する脈波伝播速度関連値周波数解析手段を、含み、(o)前記出力制御手段は、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値に代えて或いは加え、前記脈波伝播速度関連値周波数解析手段により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と共に出力するものであり、(p)前記脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることにある。   The gist of the invention according to claim 8 is that, in the invention according to any one of claims 1 to 7, (n) the pulse wave velocity related value detected by the pulse wave velocity related value detecting means. A pulse wave velocity related value frequency analysis unit that calculates a frequency component ratio of the low frequency component and the high frequency component of the fluctuation by frequency analysis of the fluctuation of the value, and (o) the output control unit includes the pulse wave The pulse wave velocity related value calculated by the pulse wave velocity related value frequency analyzing means instead of or in addition to the change value of the pulse wave velocity related value detected by the propagation velocity related value detecting means within a predetermined time interval. The change value of the frequency component ratio of the low frequency component and the high frequency component within a predetermined time interval is obtained by calculating the frequency of the low frequency component and the high frequency component calculated by the heartbeat cycle related value frequency analysis means. (P) the pulse wave velocity related value frequency analyzing means and the heartbeat cycle related value frequency analyzing means perform spectrum estimation through each of the intervals being measured. The order of the model is to be the same.

請求項1に係る発明の自動血圧測定装置によれば、(b)前記生体の脈波伝播時間に関連する脈波伝播速度関連値を逐次検出する脈波伝播速度関連値検出手段と、(c)前記生体の心拍周期に関連する心拍周期関連値を逐次検出する心拍周期関連値検出手段と、(d)その心拍周期関連値検出手段により検出された心拍周期関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する心拍周期関連値周波数解析手段と、(e)前記脈波伝播速度関連値検出手段により算出された脈波伝播速度関連値の所定時間区間内における変化値と、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを出力する出力制御手段とを、含むことから、心拍周期関連値のゆらぎの周波数解析からは心臓の心拍数制御に関わる自律神経系の活動状態と、脈波伝搬速度関連値のゆらぎの周波数解析からは、心臓の収縮力制御に関わる自律神経系の活動状態と、動脈血管系の拡張および収縮による末梢血管抵抗の制御に関わる自律神経系の活動状態とを別々に把握できる。前記心拍周期関連値周波数解析手段により算出された高周波数成分のスペクトラムは副交感神経系の活動を反映し、低周波数成分のスペクトラムは交感神経系、副交感神経系両方の活動が可能な領域であるが、その周波数成分比をもって交感神経系の活動を反映する指標とすることができる。一方、前記脈波伝播速度関連値周波数解析手段により算出された高周波数成分のスペクトラムは心臓の前負荷の変動に起因した心筋の収縮力の変動を反映していると考えられ、副交感神経系の心臓の収縮力を制御する活動を反映し、低周波数成分のスペクトラムは脈波伝播速度関連値との比較により、動脈血管系の収縮による末梢血管抵抗の制御に関わる交感神経系の活動を容易に把握できる。これにより、生体の血圧値の動揺に関連する脈波伝播速度関連値の所定時間区間内における変化値と、生体の交感神経の動揺に対応する周波数成分比の所定時間区間内における変化値とを見ることで自律神経の活動状態を容易に把握できるので、被測定者の血圧測定時において自律神経の活動状態を小型且つ簡単な装置で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練が可能となる。また、上記脈波伝播時間は、心臓から所定の部位までの中枢部位の情報を容易に得ることができることから、比較的高い精度で中枢の血圧値に対応する脈波伝播時間が得られる。   According to the automatic blood pressure measurement device of the invention of claim 1, (b) a pulse wave velocity related value detecting means for sequentially detecting a pulse wave velocity related value related to the pulse wave propagation time of the living body, ) Heart rate cycle related value detecting means for sequentially detecting a heart cycle related value related to the heart cycle of the living body; and (d) frequency analysis of fluctuation of the heart cycle related value detected by the heart cycle related value detecting means. (E) a predetermined value of the pulse wave velocity related value calculated by the pulse wave velocity related value detecting means; and (e) a pulse frequency related value frequency analyzing means for calculating a frequency component ratio between the low frequency component and the high frequency component of the fluctuation. Output control means for outputting a change value in a time interval and a change value in a predetermined time interval of the frequency component ratio of the low frequency component and the high frequency component calculated by the heartbeat cycle related value frequency analysis means Therefore, from the frequency analysis of fluctuations of heart rate related values, the activity state of the autonomic nervous system related to heart rate control of the heart and from the frequency analysis of fluctuations of pulse wave velocity related values, the contractile force of the heart The activity state of the autonomic nervous system related to the control and the activity state of the autonomic nervous system related to the control of the peripheral vascular resistance due to the expansion and contraction of the arterial vasculature can be grasped separately. The spectrum of the high frequency component calculated by the heartbeat cycle related value frequency analysis means reflects the activity of the parasympathetic nervous system, and the spectrum of the low frequency component is an area where both the sympathetic nervous system and the parasympathetic nervous system can be active. The frequency component ratio can be used as an index reflecting the activity of the sympathetic nervous system. On the other hand, the spectrum of the high frequency component calculated by the pulse wave velocity related value frequency analysis means is considered to reflect the fluctuation of the contraction force of the myocardium due to the fluctuation of the preload of the heart, and the parasympathetic nervous system Reflects the activity that controls the contractile force of the heart, and the spectrum of the low-frequency component facilitates the activity of the sympathetic nervous system related to the control of peripheral vascular resistance due to the contraction of the arterial vasculature by comparing with the pulse wave velocity related value I can grasp. Thereby, the change value in the predetermined time interval of the pulse wave velocity related value related to the fluctuation of the blood pressure value of the living body and the change value in the predetermined time interval of the frequency component ratio corresponding to the fluctuation of the sympathetic nerve of the living body. The activity of the autonomic nerve can be easily grasped by looking at it, so that the activity of the autonomic nerve can be evaluated with a small and simple device when measuring the blood pressure of the subject. Being able to acquire it enables training to control autonomic nerve activity. Further, since the pulse wave propagation time can easily obtain information on the central part from the heart to a predetermined part, the pulse wave propagation time corresponding to the central blood pressure value can be obtained with relatively high accuracy.

ここで、生体の交感神経系の制御系としての応答は0.15Hz以下であり、生体の副交感神経系は0.4Hzまでは応答が可能であることが知られている。心拍数制御には交感神経系と副交感神経系の両方が関与しているが、心拍変動の0.40Hz以上の高周波成分のスペクトラムは副交感神経系の活動に対応しているが0.15Hz以下の低周波数成分のスペクトラムは両方が関与している可能性があり交感神経系の活動を特定できない。一方、血圧変動の末梢血管抵抗による制御は交感神経系により専ら行われており、その0.15Hz以下の低周波数成分のスペクトラムは交感神経系の活動に対応している。従って、請求項1に係る発明では、心拍周期関連値で示される心拍数変動、脈波伝播速度関連値で示される血圧変動の両方を測定する事が自律神経系の客観的評価することが可能となっている。   Here, it is known that the response as a control system of the biological sympathetic nervous system is 0.15 Hz or less, and the biological parasympathetic nervous system can respond up to 0.4 Hz. Heart rate control involves both the sympathetic and parasympathetic nervous systems, but the spectrum of high frequency components of heart rate variability above 0.40 Hz corresponds to the activity of the parasympathetic nervous system, but low frequencies below 0.15 Hz The spectrum of components may involve both and cannot identify sympathetic nervous system activity. On the other hand, control of blood pressure fluctuation by peripheral vascular resistance is performed exclusively by the sympathetic nervous system, and its low frequency component spectrum of 0.15 Hz or less corresponds to the activity of the sympathetic nervous system. Therefore, in the invention according to claim 1, it is possible to objectively evaluate the autonomic nervous system by measuring both the heart rate fluctuation indicated by the heartbeat period related value and the blood pressure fluctuation indicated by the pulse wave velocity related value. It has become.

また、請求項2に係る発明の自動血圧測定装置によれば、(f)前記生体に装着する複数の電極を有し、該複数の電極に発生する信号に基づいて心電誘導波を出力する心電誘導装置と、前記生体の一部に装着されて該生体の動脈内を伝播する脈波を検出する脈波センサとを備え、(g)前記脈波伝播速度関連値検出手段は、該心電誘導波に含まれるR波の発生時点からその脈波センサにより脈波が検出された発生時点までの時間差に基づいて脈波伝播速度関連値を検出するものであるので、心筋の収縮時点から脈波が脈波センサに到達するまでの脈波伝播速度関連値が容易に検出される。   According to the automatic blood pressure measurement device of the invention of claim 2, (f) having a plurality of electrodes to be attached to the living body, and outputting an electrocardiogram induced wave based on signals generated at the plurality of electrodes. An electrocardiographic guidance device; and a pulse wave sensor that detects a pulse wave that is attached to a part of the living body and propagates through an artery of the living body, and (g) the pulse wave propagation velocity related value detecting means includes Since the pulse wave velocity related value is detected based on the time difference from the generation time point of the R wave included in the electrocardiogram induced wave to the generation time point when the pulse wave is detected by the pulse wave sensor, The pulse wave velocity related value from when the pulse wave reaches the pulse wave sensor is easily detected.

また、請求項3に係る発明の自動血圧測定装置によれば、(h)前記心電誘導装置の前記複数の電極の一部は、前記カフの内周面に配置されており、(i)前記脈波センサは前記カフ内の圧力振動を用いて脈波を検出するものであることから、生体にカフを装着することで同時に電極および脈波センサを装着することができ、装着作業が簡単となる。   According to the automatic blood pressure measurement device of the invention according to claim 3, (h) a part of the plurality of electrodes of the electrocardiographic induction device is disposed on an inner peripheral surface of the cuff, and (i) Since the pulse wave sensor detects the pulse wave using the pressure vibration in the cuff, it is possible to attach the electrode and the pulse wave sensor at the same time by attaching the cuff to the living body, and the wearing operation is simple. It becomes.

また、請求項4に係る発明の自動血圧測定装置によれば、(j)前記心拍周期関連値検出手段は、前記心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期関連値を検出するものであることから、脈波間隔からの場合に比較して、正確な心拍周期関連値が得られる。   According to the automatic blood pressure measurement device of the invention according to claim 4, (j) the heartbeat cycle related value detecting means is configured to detect a heartbeat cycle related value based on an R wave generation time interval included in the electrocardiogram induced wave. Therefore, an accurate value related to the cardiac cycle can be obtained as compared with the case from the pulse wave interval.

また、請求項5に係る発明の自動血圧測定装置によれば、(k)前記出力制御手段は、前記脈波伝播速度関連値の所定時間区間内における変化値を示す軸と、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を示す軸とを含む二次元座標において、その脈波伝播速度関連値の所定時間区間内における変化値とその心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを示す点を繰り返し表示出力するものであるので、数値表示や棒グラフ等の表示に比較して、自律神経の活動状態を正確に把握できる利点がある。   According to the automatic blood pressure measurement device of the invention according to claim 5, (k) the output control means includes an axis indicating a change value of the pulse wave velocity related value within a predetermined time interval, and the heart cycle related A two-dimensional coordinate including a value indicating a change value of a frequency component ratio of a low frequency component and a frequency component of a high frequency component within a predetermined time interval, Since the point indicating the change value of the frequency component ratio of the low frequency component and the high frequency component of the period related value within the predetermined time interval is repeatedly displayed and output, it is more autonomous than the numerical display or bar graph display. There is an advantage that the activity state of the nerve can be accurately grasped.

また、請求項6に係る発明の自動血圧測定装置によれば、請求項1乃至5のいずれか1の発明において、(l)前記出力制御手段は、前記自動血圧測定手段による血圧測定時点からの、前記脈波伝播速度関連値のゆらぎの主周波数成分の変化値、および、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の変化値とを示す点を算出し、所定の時間間隔で繰り返し表示出力するものであることから、前回の血圧測定以後の自律神経の活動状態を容易に把握することができる。   According to the automatic blood pressure measurement device of the invention according to claim 6, in the invention of any one of claims 1 to 5, (l) the output control means from the time point of blood pressure measurement by the automatic blood pressure measurement means. Calculating a change value of a main frequency component of fluctuation of the pulse wave velocity related value and a change value of a frequency component ratio of a low frequency component and a high frequency component of the heartbeat period related value, Since the display is repeatedly output at time intervals, the activity state of the autonomic nerve after the previous blood pressure measurement can be easily grasped.

また、請求項7に係る発明の自動血圧測定装置によれば、(m)前記自動血圧測定手段による血圧測定が実行された後であって、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とが前記出力制御手段により予め設定された回数以上表示出力された後に、或いは予め設定された経過時間の経過後に、前記自動血圧測定手段による血圧測定を再度起動させる血圧測定再起動手段が、さらに含まれることから、自律神経の活動状態と血圧値との関係を繰り返し体得できるので、自律神経の活動をコントロールする訓練が容易となる。   According to the automatic blood pressure measurement device of the invention according to claim 7, (m) after the blood pressure measurement by the automatic blood pressure measurement means is executed and detected by the pulse wave velocity related value detection means Changes in pulse wave velocity related values within a predetermined time interval and changes in the frequency component ratio of the low frequency component and high frequency component of the cardiac cycle related value calculated by the heart rate related value frequency analysis means within the predetermined time interval A blood pressure measurement restarting means for restarting blood pressure measurement by the automatic blood pressure measuring means after the value is displayed and output by the output control means for a preset number of times or after a preset elapsed time, In addition, since the relationship between the activity state of the autonomic nerve and the blood pressure value can be obtained repeatedly, training for controlling the activity of the autonomic nerve becomes easy.

また、請求項8に係る発明の自動血圧測定装置によれば、(n)前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する脈波伝播速度関連値周波数解析手段を、含み、(o)前記出力制御手段は、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値に代えて或いは加えて、前記脈波伝播速度関連値周波数解析手段により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と共に出力するものであり、(p)前記脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることから、脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段のスペクトラム推定の次数のとり方の相違による周波数解析スペクトラムでのパワーの大きさの相違が解消されるので、出力制御手段により出力される、脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値との対比が正確となる利点がある。ここで、一般に、スペクトラム解析において汎用されるフーリェ法で得られるスペクトラムは解析的であるがスペクトラムに多数のピークが現れ有効なピークの判断が困難である。AR法及びMEM法はピークの検出に優れており、心拍動揺解析に良く用いられる。AR法及びMEM法は時系列データに依存してスペクトラム推定のモデルの次数が決定される。しかし、モデルの次数の取り方によってはスペクトラムのパワーに影響が現れることが分かった。このため、スペクトラムの変化やトレンドの監視、異なる種類のスペクトラム比較の精度を高めるためにスペクトラム推定のモデルの次数を共通とすることで、上記脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値との対比が正確となるのである。   According to the automatic blood pressure measurement device of the invention according to claim 8, (n) the fluctuation of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means is frequency-analyzed to reduce the fluctuation. A pulse wave velocity related value frequency analyzing means for calculating a frequency component ratio between the frequency component and the high frequency component, and (o) the output control means is a pulse wave detected by the pulse wave velocity related value detecting means. Instead of or in addition to the change value of the propagation velocity related value within the predetermined time interval, the low frequency component and the high frequency component of the pulse wave propagation velocity related value calculated by the pulse wave propagation velocity related value frequency analysis means. The change value in the predetermined time interval is the change value in the predetermined time interval of the frequency component ratio of the low frequency component and the high frequency component calculated by the heartbeat cycle related value frequency analysis means. (P) The pulse wave velocity related value frequency analyzing means and the heartbeat cycle related value frequency analyzing means make the order of the models of the spectrum estimation the same throughout the respective sections being measured. Since the difference in the magnitude of power in the frequency analysis spectrum due to the difference in the order of spectrum estimation of the pulse wave velocity related value frequency analysis means and the heartbeat cycle related value frequency analysis means is eliminated, the output control means The change value of the frequency component ratio of the low-frequency component and the high-frequency component of the pulse wave velocity related value that is output within the predetermined time interval and the low-frequency component and high-frequency component calculated by the frequency analysis means There is an advantage that the comparison with the change value of the frequency component ratio within a predetermined time interval is accurate. Here, in general, a spectrum obtained by the Fourier method widely used in spectrum analysis is analytical, but many peaks appear in the spectrum, and it is difficult to determine an effective peak. The AR method and the MEM method are excellent in peak detection and are often used for heartbeat analysis. In the AR method and the MEM method, the order of a spectrum estimation model is determined depending on time series data. However, it was found that the power of the spectrum appears depending on how the model is ordered. For this reason, in order to improve the accuracy of spectrum changes and trends, and to compare different types of spectra, the order of the model of spectrum estimation is made common so that the low-frequency component and high-frequency component of the pulse wave velocity related value are The comparison between the change value of the frequency component ratio in the predetermined time interval and the change value of the frequency component ratio of the low frequency component and the high frequency component calculated by the frequency analysis means in the predetermined time interval becomes accurate. It is.

本発明の一実施例の自律神経評価機能付の自動血圧測定装置の全体的な構成を説明する斜視図である。It is a perspective view explaining the whole structure of the automatic blood pressure measuring apparatus with an autonomic nerve evaluation function of one Example of this invention. 図1の自動血圧測定装置の電気的な制御系の構成を説明するブロック図である。It is a block diagram explaining the structure of the electrical control system of the automatic blood pressure measuring device of FIG. 図2の電子制御装置の制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function of the electronic control apparatus of FIG. 図3の脈波伝播速度関連値周波数解析検出手段における周波数解析前の脈波伝播時間hbPWTの時間的変化(ゆらぎ)を示す図である。It is a figure which shows the time change (fluctuation) of the pulse wave propagation time hbPWT before the frequency analysis in the pulse wave velocity related value frequency analysis detection means of FIG. 図3の脈波伝播速度関連値周波数解析検出手段によって図4の脈波伝播時間hbPWTを周波数解析した結果である周波数スペクトラムを示す図である。FIG. 4 is a diagram showing a frequency spectrum that is a result of frequency analysis of the pulse wave propagation time hbPWT in FIG. 4 by the pulse wave propagation speed related value frequency analysis detection unit in FIG. 3. 図3の心拍周期関連値周波数解析検出手段における周波数解析前の心拍周期RRIの時間的変化(ゆらぎ)を示す図である。It is a figure which shows the time change (fluctuation) of the heartbeat period RRI before the frequency analysis in the heartbeat period related value frequency analysis detection means of FIG. 図3の心拍周期関連値周波数解析検出手段によって図6の心拍周期RRIを周波数解析した結果である周波数スペクトラムを示す図である。FIG. 7 is a diagram showing a frequency spectrum as a result of frequency analysis of the heartbeat cycle RRI of FIG. 6 by the heartbeat cycle related value frequency analysis detection means of FIG. 3. 図3の出力制御段によって脈波伝播時間hbPWTの所定区間の変化量ΔhbPWTを示す軸と心拍周期RRIの低周波成分LFおよび高周波成分HFの周波数成分比LF/HFの所定時間区間内における変化値dLF/HFを示す軸とから成る二次元座標内に、上記変化量ΔhbPWTおよび変化値dLF/HFを示す点を表示した例を示す図である。The axis indicating the change ΔhbPWT in the predetermined section of the pulse wave propagation time hbPWT and the change value of the low frequency component LF of the heartbeat period RRI and the frequency component ratio LF / HF of the high frequency component HF in the predetermined time section by the output control stage of FIG. It is a figure which shows the example which displayed the point which shows the said variation | change_quantity (DELTA) hbPWT and change value dLF / HF in the two-dimensional coordinate consisting of the axis | shaft which shows dLF / HF. 図2の電子制御装置の制御作動の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the control action of the electronic controller of FIG. 生体内において行われている血圧値制御の機序を説明する図である。It is a figure explaining the mechanism of the blood pressure value control currently performed in the living body. 本発明者等による実験結果であって、カテーテル等を用いる直接法により生体から実測された1拍毎の最高血圧値SBPを破線にて示し、生体から1拍毎に得られる脈波伝播時間PWTから換算された上記脈波伝播速度PWVを実線にて示す、時間的変化を示す図である。It is an experimental result by the present inventors, and the maximum blood pressure value SBP for each beat measured from the living body by a direct method using a catheter or the like is indicated by a broken line, and the pulse wave propagation time PWT obtained for each beat from the living body It is a figure which shows the time change which shows the said pulse wave propagation velocity PWV converted from (2) with a continuous line.

以下、本発明の好適な実施例を図面に基づいて詳細に説明する。なお、以下の実施例において説明に用いる図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Note that the drawings used for explanation in the following embodiments are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例である自律神経評価機能付の自動血圧測定装置10の全体的な構成を説明する斜視図である。この自動血圧測定装置10は、生体の一部たとえば上腕部に巻回されるカフ12と、ECG電極14a 、14b を含む複数のECG電極14と、本体16の上面に設けられた複数のキーを有する入力キーボード18と、本体16の前面に設けられた画像表示器20と、本体16の側面に設けられた出力プリンタ22とを備え、カフ12が巻回され且つ複数のECG電極14が装着された生体の血圧を測定して血圧測定値BPを画像表示器20に表示させる一方で、その生体の自律神経の活動度の評価値として、脈波伝播速度関連値の変化値たとえば脈波伝播速度PWVの所定時間区間での変化値ΔPWVと、心拍周期RRIのゆらぎを周波数解析したときに得られるたとえば0.75乃至2Hz程度の周波数帯の低周波数成分とたとえば0.25乃至0.35Hz程度の周波数帯の高周波数成分との周波数成分比(ピークの高さ比、信号電力比)(LF/HF)RRI の所定区間或いは単位時間あたりの変化値(ΔLF/HF)RRI とを示す点を、画像表示器20の2次元座標内に順次表示させるとともに、必要に応じて出力プリンタ22から出力させる。また、脈波伝播時間PWTのゆらぎを周波数解析したときに得られるたとえば0.75乃至2Hz程度の周波数帯の低周波数成分とたとえば0.25乃至0.35Hz程度の周波数帯の高周波数成分との周波数成分比(LF/HF)PWT の所定区間或いは単位時間あたりの変化値(ΔLF/HF)PWT と、上記変化値(ΔLF/HF)RRI とを示す点を、画像表示器20の2次元座標内に順次表示させるとともに、必要に応じて出力プリンタ22から出力させる。   FIG. 1 is a perspective view illustrating the overall configuration of an automatic blood pressure measurement device 10 with an autonomic nerve evaluation function according to an embodiment of the present invention. The automatic blood pressure measurement device 10 includes a cuff 12 wound around a part of a living body, for example, the upper arm, a plurality of ECG electrodes 14 including ECG electrodes 14a and 14b, and a plurality of keys provided on the upper surface of the main body 16. An input keyboard 18, an image display 20 provided on the front surface of the main body 16, and an output printer 22 provided on the side surface of the main body 16. The cuff 12 is wound and a plurality of ECG electrodes 14 are mounted. While the blood pressure of the living body is measured and the blood pressure measurement value BP is displayed on the image display 20, the change value of the pulse wave velocity related value, for example, the pulse wave velocity is used as the evaluation value of the activity of the autonomic nerve of the living body. A change value ΔPWV in a predetermined time interval of PWV and a low-frequency component in a frequency band of about 0.75 to 2 Hz, for example, obtained by frequency analysis of fluctuations in the heartbeat period RRI, for example, 0.2 A frequency component ratio (peak height ratio, signal power ratio) (LF / HF) RRI to a predetermined interval or a change value per unit time (ΔLF / HF) RRI with a high frequency component in a frequency band of about 0.35 Hz Are sequentially displayed in the two-dimensional coordinates of the image display 20, and are output from the output printer 22 as necessary. Further, a low frequency component in a frequency band of about 0.75 to 2 Hz and a high frequency component of a frequency band of about 0.25 to 0.35 Hz, for example, obtained when the fluctuation of the pulse wave propagation time PWT is frequency-analyzed. A point indicating a change value (ΔLF / HF) PWT per predetermined time or unit time of the frequency component ratio (LF / HF) PWT and the change value (ΔLF / HF) RRI is represented by a two-dimensional coordinate of the image display 20. Are sequentially displayed and output from the output printer 22 as necessary.

図2は、上記自動血圧測定装置10を構成する制御回路を説明するブロック線図である。図2において、自動血圧測定装置10には、カフ12へ空気を供給するための電動型の空気ポンプ26と、そのカフ12と空気ポンプ26との間の配管に設けられてそのカフ12内へ急速供給し、カフ12内の圧力を所定の低下速度で低下制御し、カフ12内の空気圧を急速排圧する圧力制御弁28と、カフ12内の圧迫圧力を検出するためにカフ12と圧力制御弁28との間の配管に設けられた圧力センサ30とが設けられている。圧力センサ30によって検出された圧力はA/D変換器32を介して電子制御装置34へ供給される。   FIG. 2 is a block diagram illustrating a control circuit constituting the automatic blood pressure measurement device 10. In FIG. 2, the automatic blood pressure measurement apparatus 10 is provided in an electric air pump 26 for supplying air to the cuff 12 and a pipe between the cuff 12 and the air pump 26 and into the cuff 12. A pressure control valve 28 for rapidly supplying and controlling the pressure in the cuff 12 to decrease at a predetermined rate, and quickly exhausting the air pressure in the cuff 12; and the cuff 12 and pressure control for detecting the compression pressure in the cuff 12 A pressure sensor 30 provided in a pipe between the valve 28 and the valve 28 is provided. The pressure detected by the pressure sensor 30 is supplied to the electronic control unit 34 via the A / D converter 32.

電子制御装置34は、良く知られたCPU、ROM、RAM、インターフェース、外部記憶装置等を有する所謂マイクロコンピュータであって、予めROM等に記憶されたプログラムに従って入力信号を処理し、演算結果を画像表示器20および出力プリンタ22に、カフ12から出力させる。入力キーボード18は、入力されたキーに対応する信号たとえば起動/停止キーの操作に応答して起動/停止信号を電子制御装置34へ供給する。心電誘導装置36は、生体の心臓を挟む部位に装着或いは貼着される複数のECG電極14を備え、その生体の心電誘導波信号をA/D変換器38を介して電子制御装置34へ供給する。この心電誘導装置36の前記複数のECG電極14の一部の電極14b は、カフ12の内周面に配置されているが、カフ12とは独立に手或いは足に装着されてもよい。電子制御装置34は、駆動制御回路40を介して空気ポンプ26を駆動するとともに圧力制御弁28を制御する。また、電子制御装置34は、駆動制御回路42を介して画像表示器20およびプリンタ22を制御する。   The electronic control unit 34 is a so-called microcomputer having a well-known CPU, ROM, RAM, interface, external storage device, etc., which processes input signals in accordance with a program stored in advance in the ROM and displays the calculation result as an image. The display 20 and the output printer 22 are caused to output from the cuff 12. The input keyboard 18 supplies a start / stop signal to the electronic control unit 34 in response to a signal corresponding to the input key, for example, an operation of the start / stop key. The electrocardiographic induction device 36 includes a plurality of ECG electrodes 14 that are attached to or stuck to a part sandwiching the heart of a living body, and the electrocardiographic wave signal of the living body is electronically controlled via an A / D converter 38. To supply. Some of the electrodes 14b of the plurality of ECG electrodes 14 of the electrocardiographic induction device 36 are disposed on the inner peripheral surface of the cuff 12, but may be attached to the hand or foot independently of the cuff 12. The electronic control unit 34 drives the air pump 26 via the drive control circuit 40 and controls the pressure control valve 28. The electronic control device 34 controls the image display 20 and the printer 22 via the drive control circuit 42.

図3は、上記電子制御装置34の制御機能の要部を説明する機能ブロック線図である。自動血圧測定手段50は、生体の一部たとえば上腕部に装着されたカフ12の圧力を最高血圧値よりも十分に高く予め設定された昇圧目標値まで急速昇圧させた後に所定の速度で徐速降圧させ、その徐速降圧の過程で圧力センサ30の出力信号からバンドパスフィルタを通して得られる交流成分である心拍同期波(カフ12内において心拍或いは脈拍に同期して発生する圧力振動信号:オシロメトリック信号)の大きさの変化に基づいてたとえばカフ12内の圧力振動を示すカフ脈波の大きさの差分の最大値に基づいて生体の最高血圧値SBPおよび最低血圧値DBPを決定し、その最低血圧値DBPが決定されると、カフ12の圧力を急速排圧させる。   FIG. 3 is a functional block diagram for explaining a main part of the control function of the electronic control unit 34. The automatic blood pressure measuring means 50 gradually increases the pressure of the cuff 12 attached to a part of the living body, for example, the upper arm, to a preset target pressure value that is sufficiently higher than the maximum blood pressure value and then gradually increases at a predetermined speed. A heartbeat synchronous wave (a pressure vibration signal generated in synchronization with the heartbeat or pulse in the cuff 12 in the cuff 12: oscillometric) that is an alternating current component obtained from the output signal of the pressure sensor 30 through the bandpass filter in the process of stepping down the pressure. For example, the maximum blood pressure value SBP and the minimum blood pressure value DBP of the living body are determined based on the maximum value of the difference in the size of the cuff pulse wave indicating the pressure oscillation in the cuff 12 based on the change in the magnitude of the signal). When the blood pressure value DBP is determined, the pressure of the cuff 12 is rapidly discharged.

脈波伝播速度関連値検出手段52は、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点から、生体の一部に装着された脈波センサによる脈波の検出時点たとえば上腕に巻回されたカフ12内の圧力振動の発生時点までの脈波伝播時間hbPWTを脈波伝播速度関連値として逐次検出たとえば1拍毎或いは数拍毎に繰り返し検出する。この脈波伝播速度関連値とは、脈波伝播速度PWVに1対1に密接に関連するパラメータであり、上記脈波伝播時間hbPWTのみならず脈波伝播速度(L/hbPWT、但しLは生体の心臓から生体の上腕に巻回されたカフ12までの伝播距離である)であってもよい。また、上記心臓から上腕までの脈波伝播時間hbPWTは、心音マイクロホンにより検出された心音の発生時点からカフ12内の圧力振動の発生時点までの時間差が計測されることによって検出されてもよい。また、上記カフ12内の圧力振動の発生時点に代えて、耳たぶに装着される光電脈波センサ、指先に装着される指尖脈波センサ、或いは手首に装着される圧脈波センサによる脈波発生時点が用いられてもよい。カフ12内の圧力振動の発生を検出する場合には、好適には、カフ12内を所定圧たとえば予め設定された最低血圧値DBPより低い値とした状態で検出される。   The pulse wave velocity related value detection means 52 detects, for example, a pulse wave detection time from a pulse wave sensor attached to a part of a living body from a generation time of an R wave of the electrocardiographic induction wave output from the electrocardiogram guidance device 36. For example, the pulse wave propagation time hbPWT until the time point of occurrence of pressure vibration in the cuff 12 wound around the upper arm is sequentially detected as a pulse wave velocity related value, for example, repeatedly detected every beat or every few beats. This pulse wave velocity related value is a parameter closely related to the pulse wave velocity PWV on a one-to-one basis, and not only the pulse wave propagation time hbPWT but also the pulse wave velocity (L / hbPWT, where L is a living body). Or the cuff 12 wound around the upper arm of the living body). Further, the pulse wave propagation time hbPWT from the heart to the upper arm may be detected by measuring a time difference from the time of occurrence of heart sound detected by the heart sound microphone to the time of occurrence of pressure vibration in the cuff 12. Further, instead of the time point of occurrence of pressure vibration in the cuff 12, the pulse wave by the photoelectric pulse wave sensor attached to the earlobe, the finger plethysmogram sensor attached to the fingertip, or the pressure pulse wave sensor attached to the wrist. The time of occurrence may be used. When detecting the occurrence of pressure vibration in the cuff 12, it is preferably detected in a state where the cuff 12 has a predetermined pressure, for example, a value lower than a preset minimum blood pressure value DBP.

脈波伝播速度関連値周波数解析手段54は、上記脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを、算出する。また、脈波伝播速度関連値周波数解析手段54は、上記脈波伝播速度関連値検出手段52により検出された脈波伝播速度関連値のゆらぎ(変動)をスペクトラム推定のモデルを用いて周波数解析し、スペクトラム上に表れた、そのゆらぎの主周波数成分MFおよびその大きさPmfを算出する。この主周波数成分MFの大きさとは、ピーク値の大きさであってもよいし、そのピークの面積に対応する信号電力(信号パワー)であってもよい。脈波伝播速度関連値周波数解析手段54は、上記脈波伝播速度関連値検出手段52により検出された生体の脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎを周波数解析してそのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT を算出する。この脈波伝播速度関連値周波数解析手段54による上記周波数解析手法について以下に説明する。   The pulse wave propagation speed related value frequency analysis means 54 calculates a change value ΔhbPWT within a predetermined time interval of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT detected by the pulse wave propagation speed related value detection means 52. calculate. The pulse wave velocity related value frequency analyzing means 54 analyzes the fluctuation (variation) of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means 52 using a spectrum estimation model. Then, the main frequency component MF of the fluctuation and its magnitude Pmf appearing on the spectrum are calculated. The magnitude of the main frequency component MF may be a peak value or a signal power (signal power) corresponding to the area of the peak. The pulse wave velocity related value frequency analyzing means 54 performs frequency analysis on the fluctuation of the body's pulse wave propagation time (pulse wave velocity related value) hbPWT detected by the pulse wave velocity related value detecting means 52, and the fluctuation. The frequency component ratio (LF / HF) PWT of the low frequency component LF and the high frequency component HF is calculated. The frequency analysis method by the pulse wave propagation velocity related value frequency analysis means 54 will be described below.

ここで、上記脈波伝播速度関連値は1拍毎の不等間隔の時系列データ{x:x(t0),x(t1),・・・, x(tn)}であるので、この時系列データを2Hzの等間隔データとしてLagrange法によりリサンプリングする{x(n):x(Δt),x(2*Δt),・・・,x(n*Δt);Δt=0.5[sec]}。AR法により仮定されるスペクトラム推定のモデルは下記の数式1で示される。下記数式1において、ωn は白色ノイズである。なお、MEM法ではガウス分布の白色ノイズが用いられる。 Here, since the pulse wave velocity related value is time-series data {x: x (t0), x (t1),..., X (tn)} for every beat, Resampling the series data as 2 Hz equidistant data by the Lagrange method {x (n): x (Δt), x (2 * Δt), ..., x (n * Δt); Δt = 0.5 [sec] }. The spectrum estimation model assumed by the AR method is expressed by the following Equation 1. In the following formula 1, ω n is white noise. In the MEM method, white noise with a Gaussian distribution is used.

Figure 2012139342
Figure 2012139342

即ちデータx(n)がp次の自己回帰過程に従って生成される。実際のデータと上記モデルのp次の打ち切り誤差を白色ノイズωn で補完する。上記モデルで次数pを決定すると、AR係数ak がユールウォーカ方程式から決定できる。この結果推定されるスペクトラムは下記の数式2で示される。下記数式2において、σp 2 は白色ノイズωn の分散を表す。 That is, data x (n) is generated according to a p-th order autoregressive process. The actual data and the p-th order truncation error of the above model are complemented with white noise ω n . When the order p is determined by the above model, the AR coefficient a k can be determined from the Yulewalker equation. The spectrum estimated as a result is expressed by the following formula 2. In Equation 2 below, σ p 2 represents the variance of the white noise ω n .

Figure 2012139342
Figure 2012139342

AR法におけるモデルの次数pは通常単調減少する2乗予測誤差σi2 が減少しなくなった時点の次数として時系列データ毎に最適に選定される。実際は時系列データ間で決定される次数がかなり異なり、スペクトラムが大きく異なることが多い。このため本法では時系列データの相関時間、得られるスペクトラムの最低周波数LF0はある程度予測されているので、あらかじめ決定しておく手法を採用した。p=(1/Δt)*(1/LF0)。Δt=0.5[sec]、LF0=0.06[Hz]のときp=32に決定される。これを、一連の周波数解析に適用した。 The order p of the model in the AR method is optimally selected for each time series data as the order at the time when the square prediction error σi 2 that normally decreases monotonously no longer decreases. Actually, the orders determined between the time series data are considerably different, and the spectrum is often greatly different. Therefore correlation time of the time series data with this method, since the lowest frequency LF 0 of the resulting spectrum is predicted to some extent, and employs a method determined in advance. p = (1 / Δt) * (1 / LF 0 ). When Δt = 0.5 [sec] and LF 0 = 0.06 [Hz], p = 32 is determined. This was applied to a series of frequency analysis.

図4は周波数解析される1乃至2分の所定区間内の伝播時間hbPWTのゆらぎを示し、図5はその所定区間内の伝播時間hbPWTが周波数解析された後の周波数解析スペクトラムを示している。図5の周波数解析スペクトラムにおいて、0.2乃至0.35Hzの周波数帯域において主周波数成分MFが示され、0.28Hz付近にピーク値が示されている。上記伝播時間hbPWTから算出される脈波伝播速度PWV(=C・L/hbPWT、Cは血圧値換算定数)も、上記図4および図5に示すものと同様の、ゆらぎおよび周波数スペクトラムを示す。   FIG. 4 shows fluctuations in the propagation time hbPWT within a predetermined interval of 1 to 2 minutes subjected to frequency analysis, and FIG. 5 shows a frequency analysis spectrum after the frequency analysis of the propagation time hbPWT within the predetermined interval. In the frequency analysis spectrum of FIG. 5, the main frequency component MF is shown in the frequency band of 0.2 to 0.35 Hz, and the peak value is shown in the vicinity of 0.28 Hz. The pulse wave velocity PWV (= C · L / hbPWT, where C is a blood pressure value conversion constant) calculated from the propagation time hbPWT also shows fluctuations and a frequency spectrum similar to those shown in FIGS.

心拍周期関連値検出手段56は、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点の間隔を求めることにより、生体の心拍周期RRIに関連する心拍周期関連値を逐次検出たとえば1拍毎或いは数拍毎に繰り返し検出する。この心拍周期関連値とは、心拍周期に1対1に密接に関連するパラメータであり、上記生体の心拍周期RRIのみならずカフ12内の圧力振動の発生周期や別途設けられる脈波センサにより検出される脈拍の検出周期であってもよい。   The heartbeat cycle related value detection means 56 sequentially obtains the heartbeat cycle related value related to the heartbeat cycle RRI of the living body, for example, by obtaining the interval between the generation times of the R wave of the electrocardiogram induced wave output from the electrocardiographic induction device 36. For example, detection is repeated every beat or every few beats. The heartbeat cycle-related value is a parameter closely related to the heartbeat cycle on a one-to-one basis, and is detected by not only the heartbeat cycle RRI of the living body but also the generation cycle of pressure vibration in the cuff 12 or a pulse wave sensor provided separately. It may be a pulse detection period.

心拍周期関連値周波数解析手段58は、上記心拍周期関連値検出手段56により検出された生体の心拍周期(心拍周期関連値)RRIのゆらぎを周波数解析してそのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI を算出する。図6は周波数解析される1分乃至2分程度の所定区間の生体の心拍周期RRIのゆらぎを示し、図7はその所定区間の生体の心拍周期RRIが周波数解析された後の周波数解析スペクトラムを示している。図7の0.4Hzまでの周波数帯域の周波数解析スペクトラムにおいては2つのピークが示され、0.05乃至0.2Hzの周波数帯域において低周波数成分LFが示され、0.23乃至0.35Hzの周波数帯域において高周波数成分HFが示されている。この心拍周期関連値周波数解析手段58は、上記脈波伝播速度関連値周波数解析手段54と同様のスペクトラム推定のモデル式と同様の次数とを用いて周波数解析を行う。   The heartbeat cycle related value frequency analysis means 58 performs frequency analysis on the fluctuation of the heartbeat cycle (heartbeat cycle related value) RRI of the living body detected by the heartbeat cycle related value detection means 56 and performs low frequency component LF and high frequency of the fluctuation. The frequency component ratio (LF / HF) RRI of the component HF is calculated. FIG. 6 shows the fluctuation of the heartbeat period RRI of the living body in a predetermined section of about 1 to 2 minutes subjected to frequency analysis, and FIG. 7 shows the frequency analysis spectrum after the frequency analysis of the heartbeat period RRI of the living body in the predetermined section. Show. In the frequency analysis spectrum of the frequency band up to 0.4 Hz in FIG. 7, two peaks are shown, a low frequency component LF is shown in the frequency band of 0.05 to 0.2 Hz, and 0.23 to 0.35 Hz. A high frequency component HF is shown in the frequency band. The heartbeat cycle related value frequency analyzing means 58 performs frequency analysis using the same model order of spectrum estimation as the pulse wave velocity related value frequency analyzing means 54 and the same order.

出力制御手段60は、上記脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、心拍周期関連値周波数解析手段58により算出された心拍周期(心拍周期関連値)RRIのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを、オペレータ或いは被測定者が同時に認識できるように、数値、グラフ、画像等の形態で画像表示器20および/またはプリンタ22へ共に出力する。出力制御手段60は、たとえば図8に示すように、上記脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを示す横軸63と、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)の所定時間区間内における変化値(dLF/HF)RRI を示す縦軸64とを含む直交二次元座標において、その脈波伝播時間hbPWTの所定時間区間内における変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す点(白丸印)Pn 、Pn+1 、Pn+2 を、1分乃至数分程度の周期で繰り返し表示出力する。上記所定時間区間は、たとえば自動血圧測定手段50による血圧測定時点からの経過時間区間であり、上記の脈波伝播時間hbPWTの変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の変化値(dLF/HF)RRI とは、自動血圧測定手段50による血圧測定時点からの変化値(変化量)である。その変化値は、一定周期毎の変化量をそれまでの変化値に加えたものである。   The output control means 60 includes a change value ΔhbPWT within a predetermined time interval of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT detected by the pulse wave velocity related value detection means 52, and a heartbeat cycle related value frequency analysis. Change value (dLF / HF) within a predetermined time interval of the frequency component ratio (LF / HF) RRI of the low frequency component LF and the high frequency component HF of fluctuation of the heart rate cycle (heart rate related value) RRI calculated by the means 58 The RRI is output together with the image display 20 and / or the printer 22 in the form of numerical values, graphs, images, etc. so that the operator or the person to be measured can recognize them simultaneously. For example, as shown in FIG. 8, the output control means 60 includes a horizontal axis 63 indicating a change value ΔhbPWT within a predetermined time interval of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT, and a heartbeat cycle related value frequency analysis. Orthogonal two-dimensional coordinates including a vertical axis 64 indicating a change value (dLF / HF) RRI within a predetermined time interval of the frequency component ratio (LF / HF) of the low frequency component LF and the high frequency component HF calculated by the means 58 , The change value ΔhbPWT of the pulse wave propagation time hbPWT and the change value (dLF / HF) of the frequency component ratio (LF / HF) RRI of the low frequency component LF and the high frequency component HF within the predetermined time interval (dLF / HF) Points (white circles) Pn, Pn + 1, and Pn + 2 indicating RRI are repeatedly displayed and output at a cycle of about 1 minute to several minutes. The predetermined time interval is, for example, an elapsed time interval from the time point of blood pressure measurement by the automatic blood pressure measurement means 50, and the change value ΔhbPWT of the pulse wave propagation time hbPWT, the frequency component ratio of the low frequency component LF and the high frequency component HF ( The change value (dLF / HF) RRI of (LF / HF) RRI is a change value (change amount) from the time of blood pressure measurement by the automatic blood pressure measuring means 50. The change value is obtained by adding the change amount for each fixed period to the change value so far.

また、上記出力制御手段60は、さらに、脈波伝播速度関連値52により算出された生体の脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、心拍周期関連値周波数解析手段58により算出された心拍周期RRIのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比LF/HFの所定時間区間内における変化値(dLF/HF)RRI とを、オペレータ或いは被測定者が同時に認識できるように、数値、グラフ、画像等の形態で画像表示器20および/またはプリンタ22へ共に出力する。出力制御手段60は、たとえば図8に示すように、上記脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内におけるゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT を示す横軸63と、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI を示す縦軸64とを含む直交二次元座標において、その脈波伝播時間hbPWTの所定時間区間内における変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT とを示す点(黒丸印)Pn 、Pn+1 、Pn+2 を、1分乃至数分程度の周期で繰り返し表示出力する。   Further, the output control means 60 further includes a low-frequency component LF and a high-frequency component HF of fluctuation of the pulse wave propagation time (pulse wave velocity related value) hbPWT calculated by the pulse wave velocity related value 52. A change value (dLF / HF) PWT within a predetermined time interval of the frequency component ratio (LF / HF) PWT, a low frequency component LF and a high frequency of fluctuation of the heartbeat cycle RRI calculated by the heartbeat cycle related value frequency analysis means 58 Image display in the form of numerical values, graphs, images, etc. so that the operator or the person to be measured can simultaneously recognize the change value (dLF / HF) RRI of the frequency component ratio LF / HF of the component HF within a predetermined time interval. 20 and / or printer 22 together. For example, as shown in FIG. 8, the output control means 60 has a frequency component ratio (the frequency component ratio between the low frequency component LF and the high frequency component HF of fluctuation within a predetermined time interval of the pulse wave propagation time (pulse wave propagation velocity related value) hbPWT. (LF / HF) PWT is a horizontal axis 63 indicating a change value (dLF / HF) PWT within a predetermined time interval, and frequency components of the low frequency component LF and the high frequency component HF calculated by the heartbeat period related value frequency analysis means 58. The change value ΔhbPWT of the pulse wave propagation time hbPWT in the predetermined time interval in the orthogonal two-dimensional coordinates including the vertical axis 64 indicating the change value (dLF / HF) RRI in the predetermined time interval of the ratio (LF / HF) RRI And a change value (dLF / HF) PWT within a predetermined time interval of the frequency component ratio (LF / HF) PWT of the low frequency component LF and the high frequency component HF (black) Mark) Pn, the Pn + 1, Pn + 2, repeatedly display output in a cycle of about 1 minute to several minutes.

血圧測定再起動手段62は、自動血圧測定手段50による血圧測定が実行された後であって、脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが、出力制御手段60によって予め設定された回数以上出力された後、或いは自動血圧測定手段50による血圧測定が実行されてからたとえば10分程度の予め設定された時間が経過後に、自動血圧測定手段50による血圧測定を再度起動させ、その血圧測定結果を、出力制御手段60によって画像表示器20或いはプリンタ22に表示出力させる。   The blood pressure measurement restarting means 62 is the pulse wave propagation time (pulse wave propagation speed related value) detected by the pulse wave velocity related value detecting means 52 after the blood pressure measurement by the automatic blood pressure measuring means 50 is executed. The change value ΔhbPWT in the predetermined time interval of hbPWT and the change in the frequency component ratio (LF / HF) RRI of the low frequency component LF and the high frequency component HF calculated by the heartbeat period related value frequency analysis means 58 in the predetermined time interval After the value (dLF / HF) RRI is output more than a preset number of times by the output control means 60 or after the blood pressure measurement by the automatic blood pressure measurement means 50 is executed, for example, a preset time of about 10 minutes After the elapse of time, blood pressure measurement by the automatic blood pressure measurement means 50 is started again, and the blood pressure measurement result is displayed by the output control means 60 on the image display 20 or To display output to the printer 22.

図9は、上記電子制御装置34の制御作動の要部を説明するためのフローチャートである。生体の上腕部にカフ12が装着され且つ複数個のECG電極14が生体の所定位置に装着された状態で図示しない起動入力キーの操作によって自動血圧測定装置10が起動されると、自動血圧測定手段50に対応するステップS1(以下、ステップを省略する)において、生体の血圧測定ルーチンが実行される。すなわち、空気ポンプ26の作動下で圧力制御弁28が制御されることにより、上腕部に装着されたカフ12の圧力が最高血圧値よりも十分に高く予め設定された昇圧目標値まで急速昇圧させられた後に所定の速度で徐速降圧させられる。この徐速降圧の過程で圧力センサ30の出力信号からバンドパスフィルタを通して得られる交流成分である心拍同期波(カフ12内において心拍或いは脈拍に同期して発生する圧力振動信号:オシロメトリック信号)の大きさの変化に基づいてたとえばカフ12内の圧力振動を示すカフ脈波の大きさの差分の最大値に基づいて生体の最高血圧値SBPおよび最低血圧値DBPが決定され、その最低血圧値DBPが決定されると、カフ12の圧力を急速排圧させられる。   FIG. 9 is a flowchart for explaining a main part of the control operation of the electronic control unit 34. When the automatic blood pressure measurement device 10 is activated by operating an activation input key (not shown) in a state where the cuff 12 is attached to the upper arm portion of the living body and the plurality of ECG electrodes 14 are attached to predetermined positions of the living body, automatic blood pressure measurement is performed. In step S1 (hereinafter, step is omitted) corresponding to the means 50, a living body blood pressure measurement routine is executed. That is, by controlling the pressure control valve 28 under the operation of the air pump 26, the pressure of the cuff 12 attached to the upper arm is rapidly increased to a preset target pressure value that is sufficiently higher than the maximum blood pressure value. Then, the pressure is gradually reduced at a predetermined speed. A heartbeat synchronization wave (a pressure oscillation signal generated in synchronization with the heartbeat or the pulse in the cuff 12: an oscillometric signal), which is an alternating current component obtained from the output signal of the pressure sensor 30 through the band-pass filter in the process of the slow pressure reduction Based on the maximum value of the difference in the magnitude of the cuff pulse wave indicating the pressure oscillation in the cuff 12, for example, the maximum blood pressure value SBP and the minimum blood pressure value DBP of the living body are determined based on the change in the size, and the minimum blood pressure value DBP Is determined, the pressure of the cuff 12 is rapidly exhausted.

次いで、脈波伝播速度関連値検出手段52および心拍周期関連値検出手段56に対応するS2では、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点から、生体の一部に装着された脈波センサによる脈波の検出時点たとえば上腕に巻回されたカフ12内の圧力振動の発生時点までの脈波伝播時間hbPWTが脈波伝播速度関連値としてたとえば1拍毎或いは数拍毎に繰り返し検出される。また、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点の間隔が求められることにより、生体の心拍周期RRIに関連する心拍周期関連値がたとえば1拍毎或いは数拍毎に繰り返し検出される。   Next, in S2 corresponding to the pulse wave velocity related value detection means 52 and the heartbeat cycle related value detection means 56, for example, from the generation time of the R wave of the electrocardiographic induction wave output from the electrocardiographic induction device 36, The pulse wave propagation time hbPWT up to the time of detection of the pulse wave by the pulse wave sensor mounted on the part, for example, the time of occurrence of pressure vibration in the cuff 12 wound around the upper arm is, for example, every pulse or It is repeatedly detected every few beats. Further, for example, by obtaining the interval between the generation times of the R waves of the electrocardiographic induction wave output from the electrocardiographic induction device 36, the heart cycle related value related to the heart cycle RRI of the living body is, for example, every beat or several beats. It is detected repeatedly every time.

続いて、脈波伝播速度関連値周波数解析手段54および心拍周期関連値周波数解析手段58に対応するS3では、上記S2により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎ(変動)が周波数解析されてたとえば0.2乃至0.35Hzの周波数帯域において発生するそのゆらぎの主周波数成分MFおよびその大きさPmfが算出される。また、上記S2により検出された生体の心拍周期(心拍周期関連値)RRIのゆらぎが周波数解析されてそのゆらぎのたとえば0.05乃至0.2Hz程度の周波数帯域の低周波数成分LFおよびたとえば0.23乃至0.35Hz程度の周波数帯域の高周波数成分HFの周波数成分比(LF/HF)RRI が、低周波数成分LFおよび高周波数成分HFのピーク値の比、或いは低周波数成分LFおよび高周波数成分HFの面積比などとして算出される。   Subsequently, in S3 corresponding to the pulse wave propagation speed related value frequency analysis means 54 and the heartbeat cycle related value frequency analysis means 58, the fluctuation of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT detected in S2 ( Fluctuation) is subjected to frequency analysis, and a fluctuation main frequency component MF generated in a frequency band of 0.2 to 0.35 Hz, for example, and its magnitude Pmf are calculated. Further, the fluctuation of the heartbeat period (heartbeat period-related value) RRI detected in S2 is subjected to frequency analysis, and the fluctuations of the low-frequency component LF in the frequency band of about 0.05 to 0.2 Hz, for example,. The frequency component ratio (LF / HF) RRI of the high frequency component HF in the frequency band of about 23 to 0.35 Hz is the ratio of the peak values of the low frequency component LF and the high frequency component HF, or the low frequency component LF and the high frequency component. It is calculated as an area ratio of HF.

次に、出力制御手段60に対応するS4では、上記S3により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが、オペレータ或いは被測定者が同時に認識できるように、数値、グラフ、画像等の形態で画像表示器20および/またはプリンタ22へ共に出力される。たとえば図8に示すように、上記脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを示す軸63と、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI を示す軸64とを含む直交二次元座標において、その脈波伝播時間hbPWTの所定時間区間内における変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す白丸表示の点Pn 、Pn+1 、Pn+2 が、1分乃至数分程度の周期で繰り返し表示されることにより出力される。同様に、脈波伝播時間hbPWTのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す黒丸表示の点Pn 、Pn+1 、Pn+2 が、1分乃至数分程度の周期で繰り返し表示されることにより出力される。   Next, in S4 corresponding to the output control means 60, the change value ΔhbPWT in the predetermined time interval of the pulse wave propagation time (pulse wave velocity related value) hbPWT detected in S3 and the heartbeat period related value frequency analysis means. The change value (dLF / HF) RRI within a predetermined time interval of the frequency component ratio (LF / HF) RRI between the low frequency component LF and the high frequency component HF calculated by 58 can be recognized simultaneously by the operator or the subject. As described above, the data is output to the image display 20 and / or the printer 22 in the form of numerical values, graphs, images, and the like. For example, as shown in FIG. 8, the pulse wave propagation time (pulse wave propagation velocity related value) hbPWT is represented by an axis 63 indicating a change value ΔhbPWT within a predetermined time interval, and a heartbeat cycle related value frequency analysis means 58 calculated by In an orthogonal two-dimensional coordinate system including an axis 64 indicating a change value (dLF / HF) RRI within a predetermined time interval of a frequency component ratio (LF / HF) RRI of the frequency component LF and the high frequency component HF, the pulse wave propagation time thereof A white circle indicating a change value ΔhbPWT in a predetermined time interval of hbPWT and a change value (dLF / HF) RRI in a predetermined time interval of the frequency component ratio (LF / HF) RRI of the low frequency component LF and the high frequency component HF The points Pn, Pn + 1, and Pn + 2 are output by being repeatedly displayed with a period of about 1 minute to several minutes. Similarly, the change value (dLF / HF) PWT of the frequency component ratio (LF / HF) PWT of the fluctuation of the pulse wave propagation time hbPWT in the predetermined time interval between the low frequency component LF and the high frequency component HF of the high frequency component HF, and the low frequency component LF In addition, black dots Pn, Pn + 1, and Pn + 2 indicating a change value (dLF / HF) RRI within a predetermined time interval of the frequency component ratio (LF / HF) RRI of the high frequency component HF are 1 minute to 1 minute. It is output by being repeatedly displayed with a period of several minutes.

S5では、S1における血圧測定時点以後において、S2(脈波伝播速度関連値検出手段52)により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWT、および、生体の脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、S3(心拍周期関連値周波数解析手段58)により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが、S4(出力制御手段60)によって予め設定された回数以上出力されたか否か、或いは自動血圧測定手段50による血圧測定が実行されてからたとえば10分程度の予め設定された時間が経過したか否かが判断される。このS5の判断が否定されるうちは上記S2以下が繰り返し実行される。   In S5, a change value ΔhbPWT within a predetermined time interval of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT detected by S2 (pulse wave propagation speed related value detecting means 52) after the blood pressure measurement time in S1. And a change value (dLF /) of the frequency component ratio (LF / HF) PWT of the low frequency component LF and the high frequency component HF of fluctuation of the pulse wave propagation time (pulse wave propagation velocity related value) hbPWT of the living body within a predetermined time interval HF) PWT and a change value (dLF /) within a predetermined time interval of the frequency component ratio (LF / HF) RRI of the low frequency component LF and the high frequency component HF calculated by S3 (heart rate related value frequency analysis means 58). HF) RRI is output for a predetermined number of times or more by S4 (output control means 60), or the blood pressure measurement by the automatic blood pressure measurement means 50 is performed. Whether preset time since the example of the order of 10 minutes to has elapsed. While the determination of S5 is negative, the above S2 and subsequent steps are repeatedly executed.

しかし、上記S5の判断が肯定されると、血圧測定再起動手段62に対応するS6において、自動血圧測定手段50による血圧測定を再度起動させ、その血圧測定結果を、出力制御手段60によって画像表示器20或いはプリンタ22に表示出力させる。   However, if the determination in S5 is affirmed, the blood pressure measurement by the automatic blood pressure measurement means 50 is reactivated in S6 corresponding to the blood pressure measurement restarting means 62, and the blood pressure measurement result is displayed as an image by the output control means 60. Display on the device 20 or the printer 22.

上述のように、本実施例の自動血圧測定装置10によれば、生体の脈波伝播時間(脈波伝播速度関連値)hbPWTを逐次検出する脈波伝播速度関連値検出手段52と、生体の心拍周期(心拍周期関連値)RRIを逐次検出する心拍周期関連値検出手段56と、その心拍周期関連値検出手段56により検出された心拍周期関連値RRIのゆらぎを周波数解析してそのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI を算出する心拍周期関連値周波数解析手段58と、脈波伝播速度関連値周波数解析手段54により算出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを出力する出力制御手段60とを、含むことから、生体の血圧値の動揺に関連する脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、生体の交感神経の動揺に対応する心拍周期(心拍周期関連値)RRIの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを見ることで自律神経の活動状態を容易に把握できるので、被測定者の血圧測定時において自律神経の活動状態を小型且つ簡単な装置で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練が可能となる。また、上記脈波伝播時間は、心臓から所定の部位までの中枢部位の情報を容易に得ることができることから、比較的高い精度で中枢の血圧値に対応する脈波伝播時間が得られる。ここで、心拍周期関連値のゆらぎの周波数解析からは心臓の心拍数制御に関わる自律神経系の活動状態と、脈波伝搬速度関連値のゆらぎの周波数解析からは、心臓の収縮力制御に関わる自律神経系の活動状態と、動脈血管系の拡張、収縮による末梢血管抵抗の制御に関わる自律神経系の活動状態とを別々に把握できる。前記心拍周期関連値周波数解析手段により算出された高周波数成分のスペクトラムは副交感神経系の活動を反映し、低周波数成分のスペクトラムは交感神経系、副交感神経系両方の活動が可能な領域であるが、その周波数成分比をもって交感神経系の活動を反映する指標とすることができる。一方、前記脈波伝播速度関連値周波数解析手段により算出された高周波数成分のスペクトラムは心臓の前負荷の変動に起因した心筋の収縮力の変動を反映していると考えられ、副交感神経系の心臓の収縮力を制御する活動を反映し、低周波数成分のスペクトラムは脈波伝播速度関連値との比較により、動脈血管系の収縮による末梢血管抵抗の制御に関わる交感神経系の活動を容易に把握できる。   As described above, according to the automatic blood pressure measurement device 10 of the present embodiment, the pulse wave propagation speed related value detection unit 52 that sequentially detects the pulse wave propagation time (pulse wave propagation speed related value) hbPWT of the living body, A heartbeat cycle-related value detection unit 56 that sequentially detects a heartbeat cycle (heartbeat cycle-related value) RRI, and a fluctuation of the heartbeat cycle-related value RRI detected by the heartbeat cycle-related value detection unit 56 is analyzed by frequency analysis. The pulse wave propagation time (which is calculated by the heartbeat period related value frequency analysis means 58 for calculating the frequency component ratio (LF / HF) RRI of the frequency component LF and the high frequency component HF and the pulse wave velocity related value frequency analysis means 54 ( Pulse wave velocity related values) hbPWT change value ΔhbPWT within a predetermined time interval and heartbeat period related value low frequency component LF and high frequency component H calculated by frequency analysis means 58 Output control means 60 for outputting a change value (dLF / HF) RRI within a predetermined time interval of the frequency component ratio (LF / HF) RRI of the pulse wave related to the fluctuation of the blood pressure value of the living body. Frequency component ratio (LF / HF) RRI of change time ΔhbPWT in a predetermined time interval of propagation time (pulse wave propagation velocity related value) hbPWT and heartbeat cycle (heartbeat cycle related value) RRI corresponding to the sympathetic nerve fluctuation of the living body Since the autonomic nerve activity state can be easily grasped by looking at the change value (dLF / HF) RRI within a predetermined time interval, the autonomic nerve activity state is small and simple when measuring the blood pressure of the subject. It is possible to perform training to control the activity of the autonomic nerve by acquiring the relationship between the activity state of the autonomic nerve and the blood pressure value. Further, since the pulse wave propagation time can easily obtain information on the central part from the heart to a predetermined part, the pulse wave propagation time corresponding to the central blood pressure value can be obtained with relatively high accuracy. Here, from the frequency analysis of fluctuation of heart rate related value, the activity state of the autonomic nervous system related to heart rate control of the heart and from the frequency analysis of fluctuation of pulse wave velocity related value are related to the control of the contractile force of the heart. The activity state of the autonomic nervous system and the activity state of the autonomic nervous system related to the control of peripheral vascular resistance by dilation and contraction of the arterial vasculature can be grasped separately. The spectrum of the high frequency component calculated by the heartbeat cycle related value frequency analysis means reflects the activity of the parasympathetic nervous system, and the spectrum of the low frequency component is an area where both the sympathetic nervous system and the parasympathetic nervous system can be active. The frequency component ratio can be used as an index reflecting the activity of the sympathetic nervous system. On the other hand, the spectrum of the high frequency component calculated by the pulse wave velocity related value frequency analysis means is considered to reflect the fluctuation of the contraction force of the myocardium due to the fluctuation of the preload of the heart, and the parasympathetic nervous system Reflects the activity that controls the contractile force of the heart, and the spectrum of the low-frequency component facilitates the activity of the sympathetic nervous system related to the control of peripheral vascular resistance due to the contraction of the arterial vasculature by comparing with the pulse wave velocity related value I can grasp.

また、本実施例の自動血圧測定装置10によれば、生体に装着する複数のECG電極14を有し、その複数のECG電極14に発生する信号に基づいて心電誘導波を出力する心電誘導装置36と、生体の一部に装着されてその生体の動脈内を伝播する脈波を検出する脈波センサ(たとえばカフ12)とを備え、脈波伝播速度関連値検出手段52は、その心電誘導波に含まれるR波の発生時点からその脈波センサにより脈波が検出された発生時点までの時間差に基づいて脈波伝播時間(脈波伝播速度関連値)hbPWTを検出するものであることから、心筋の収縮時点から脈波が脈波センサに到達するまでの脈波伝播速度関連値が容易に検出される。   Further, according to the automatic blood pressure measurement device 10 of the present embodiment, the electrocardiogram has a plurality of ECG electrodes 14 to be attached to a living body and outputs an electrocardiogram-induced wave based on signals generated at the plurality of ECG electrodes 14. The guidance device 36 and a pulse wave sensor (for example, the cuff 12) that detects a pulse wave that is attached to a part of a living body and propagates through an artery of the living body, and the pulse wave propagation velocity related value detection means 52 includes: It detects the pulse wave propagation time (pulse wave propagation speed related value) hbPWT based on the time difference from the generation time of the R wave included in the electrocardiogram induction wave to the generation time when the pulse wave is detected by the pulse wave sensor. Therefore, the pulse wave velocity related value from when the myocardium contracts until the pulse wave reaches the pulse wave sensor is easily detected.

また、本実施例の自動血圧測定装置10によれば、心電誘導装置36の複数のECG電極14の一部のECG電極14b は、カフ12の内周面に配置されており、脈波センサとしてはカフ12内の圧力振動を用いて脈波を検出するものであることから、生体にカフ12を装着することで同時にECG電極14b および脈波センサを装着することができ、装着作業が簡単となる。   Further, according to the automatic blood pressure measurement device 10 of the present embodiment, some of the ECG electrodes 14b of the plurality of ECG electrodes 14 of the electrocardiographic induction device 36 are disposed on the inner peripheral surface of the cuff 12, and the pulse wave sensor Since the pulse wave is detected using the pressure vibration in the cuff 12, the ECG electrode 14b and the pulse wave sensor can be simultaneously attached by attaching the cuff 12 to the living body, and the attaching operation is simple. It becomes.

また、本実施例の自動血圧測定装置10によれば、心拍周期関連値検出手段56は、心電誘導装置36から出力される心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期(心拍周期関連値)RRIを検出するものであることから、脈波間隔からの場合に比較して、正確な心拍周期(心拍周期関連値)RRIが得られる。   Further, according to the automatic blood pressure measurement device 10 of the present embodiment, the heartbeat cycle related value detecting means 56 is based on the R wave generation time interval included in the electrocardiographic induction wave output from the electrocardiographic induction device 36. Since the cycle (heart rate related value) RRI is detected, an accurate heart rate cycle (heart rate related value) RRI can be obtained as compared with the case of the pulse wave interval.

また、本実施例の自動血圧測定装置10によれば、出力制御手段60は、脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを示す軸63と、心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI を示す軸64とを含む直交二次元座標において、その脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTとその心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す点Pn を繰り返し表示出力するものであることから、数値表示や棒グラフ等の表示に比較して、自律神経の活動状態を正確に把握できる利点がある。   Moreover, according to the automatic blood pressure measurement device 10 of the present embodiment, the output control means 60 includes the axis 63 indicating the change value ΔhbPWT in the predetermined time section of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT, and the heartbeat An orthogonal including an axis 64 indicating a change value (dLF / HF) RRI within a predetermined time interval of a frequency component ratio (LF / HF) RRI of a low frequency component LF and a high frequency component HF of a cycle (heart rate related value) RRI In two-dimensional coordinates, a change value ΔhbPWT of a pulse wave propagation time (pulse wave propagation speed related value) hbPWT within a predetermined time interval and a low frequency component LF and a high frequency component HF of the heartbeat cycle (heartbeat cycle related value) RRI. Since the point Pn indicating the change value (dLF / HF) RRI within the predetermined time interval of the frequency component ratio (LF / HF) RRI is repeatedly displayed and output, a numerical display or bar In comparison to the display of the rough or the like, there is an advantage of being able to accurately grasp the activity state of the autonomic nervous.

また、本実施例の自動血圧測定装置10によれば、出力制御手段60は、自動血圧測定手段50による血圧測定時点からの脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWT、および、心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す点Pn を算出し、所定の時間間隔で繰り返し表示出力するものであることから、前回の血圧測定以後の自律神経の活動状態を容易に把握することができる。   Further, according to the automatic blood pressure measurement device 10 of the present embodiment, the output control means 60 is within a predetermined time interval of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT from the time point of blood pressure measurement by the automatic blood pressure measurement means 50. And a change value (dLF / HF) RRI within a predetermined time interval of a frequency component ratio (LF / HF) RRI of a low frequency component LF and a high frequency component HF of a heartbeat cycle (heartbeat cycle related value) RRI. Since the point Pn indicating the above is calculated and repeatedly displayed at a predetermined time interval, the activity state of the autonomic nerve after the previous blood pressure measurement can be easily grasped.

また、本実施例の自動血圧測定装置10によれば、自動血圧測定手段50による血圧測定が実行された後であって、脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが出力制御手段60により予め設定された回数以上表示出力された後に、或いは予め設定された経過時間を経過した後に、自動血圧測定手段50による血圧測定を再度起動させる血圧測定再起動手段62が、さらに含まれることから、自律神経の活動状態と血圧値との関係を繰り返し体得できるので、自律神経の活動をコントロールする訓練が容易となる。   Further, according to the automatic blood pressure measurement device 10 of the present embodiment, the pulse wave propagation time (after the blood pressure measurement by the automatic blood pressure measurement unit 50 is executed and detected by the pulse wave velocity related value detection unit 52 ( Pulse wave velocity related value) hbPWT change value ΔhbPWT in a predetermined time interval and heart cycle related value calculated by frequency analysis means 58 (heart cycle related value) RRI low frequency component LF and high frequency component HF A change value (dLF / HF) RRI within a predetermined time interval of the frequency component ratio (LF / HF) RRI is displayed and output by the output control means 60 for a preset number of times or after a preset elapsed time. Since the blood pressure measurement restarting means 62 for restarting the blood pressure measurement by the automatic blood pressure measuring means 50 after the elapse of time is further included, the activity state of the autonomic nerve and blood Since the repetition can be mastered the relationship between the value, it is easy to training to control the activity of the autonomic nervous.

また、本実施例の自動血圧測定装置10によれば、脈波伝播速度関連値検出手段52により検出された脈波伝播速度関連値のゆらぎを周波数解析してそのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT を算出する脈波伝播速度関連値周波数解析手段54を、含み、出力制御手段60は、その脈波伝播速度関連値周波数解析手段54により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、心拍周期関連値周波数解析手段58により算出された低周波数成分および高周波数成分の周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを共に出力するものであり、脈波伝播速度関連値周波数解析手段54および心拍周期関連値周波数解析手段58は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることから、脈波伝播速度関連値周波数解析手段54および心拍周期関連値周波数解析手段58のスペクトラム推定の次数のとり方の相違による周波数解析スペクトラムでのパワーの大きさの相違が解消されるので、出力制御手段60により出力される、脈波伝播時間(脈波伝播速度関連値)hbPWTの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と心拍周期関連値周波数解析手段58により算出された心拍周期RRIのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI との対比が正確となる利点がある。   Further, according to the automatic blood pressure measurement apparatus 10 of the present embodiment, the fluctuation of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means 52 is subjected to frequency analysis, and the low frequency component and high frequency of the fluctuation are analyzed. A pulse wave velocity related value frequency analyzing unit 54 for calculating a frequency component ratio (LF / HF) PWT of the components, and the output control unit 60 outputs the pulse wave velocity calculated by the pulse wave velocity related value frequency analyzing unit 54. A change value (dLF / HF) PWT within a predetermined time interval of the frequency component ratio (LF / HF) PWT of the low frequency component and the high frequency component of the wave propagation velocity related value and the heartbeat cycle related value frequency analysis means 58 are calculated. In addition, a change value (dLF / HF) RRI within a predetermined time interval of the frequency component ratio (LF / HF) RRI of the low frequency component and the high frequency component is output together, and the pulse wave propagation Since the degree-related value frequency analysis means 54 and the heartbeat period-related value frequency analysis means 58 make the order of the spectrum estimation model the same throughout each section being measured, the pulse wave velocity related value frequency analysis means 54 and the heart rate Since the difference in the magnitude of the power in the frequency analysis spectrum due to the difference in the order of spectrum estimation of the period related value frequency analysis means 58 is eliminated, the pulse wave propagation time (pulse wave) output by the output control means 60 is eliminated. Propagation speed related value) hbPWT low frequency component and high frequency component frequency component ratio (LF / HF) PWT change value (dLF / HF) PWT within a predetermined time interval and heartbeat cycle related value frequency analysis means 58 A predetermined time zone of the frequency component ratio (LF / HF) RRI of the low-frequency component and the high-frequency component of fluctuation of the heartbeat cycle RRI Change value in the inner comparison with (dLF / HF) RRI is an advantage to be accurate.

なお、本実施例の自動血圧測定装置10によれば、出力制御手段60は、図8の横軸を共通の軸として、脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT とを共に表示するものであったが、それら変化値ΔhbPWTおよび変化値(dLF/HF)PWT の一方を表示するものであってもよい。また、出力制御手段60は、図8に示す二次元図表を分離して、脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された心拍周期(心拍周期関連値)RRIのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す二次元図表と、脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と心拍周期RRIのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す二次元図表とを、別々の表示するものであってもよい。   According to the automatic blood pressure measurement device 10 of the present embodiment, the output control means 60 uses the horizontal axis in FIG. 8 as a common axis within a predetermined time interval of the pulse wave propagation time (pulse wave propagation speed related value) hbPWT. Change value ΔhbPWT and pulse wave propagation time (pulse wave propagation speed related value) hbPWT fluctuation of low frequency component and high frequency component frequency component ratio (LF / HF) change value (dLF / HF) within a predetermined time interval ) PWT is displayed together, but one of the change value ΔhbPWT and the change value (dLF / HF) PWT may be displayed. Further, the output control means 60 separates the two-dimensional chart shown in FIG. 8 to change the pulse wave propagation time (pulse wave propagation speed related value) hbPWT within a predetermined time interval ΔhbPWT and heartbeat cycle related value frequency analysis means. Fraction value (dLF / HF) RRI of the frequency component ratio (LF / HF) RRI of the low frequency component LF and the high frequency component HF of the heartbeat cycle (heart rate related value) RRI calculated by 58 And a change value of a frequency component ratio (LF / HF) PWT of a low frequency component and a high frequency component of fluctuation of a pulse wave propagation time (pulse wave velocity related value) hbPWT (LF / HF) PWT within a predetermined time interval ( dLF / HF) The change value (dLF / HF) RRI of the frequency component ratio (LF / HF) RRI of the low frequency component and the high frequency component of fluctuation of PWT and heartbeat period RRI within a predetermined time interval (dLF / HF) RRI A two-dimensional table showing, or may be separately displayed.

その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。   In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.

10:自動血圧測定装置
12:カフ(脈波センサ)
14:ECG電極(電極)
36:心電誘導装置
50:自動血圧測定手段
52:脈波伝播速度関連値検出手段
54:脈波伝播速度関連値周波数解析手段
56:心拍周期関連値検出手段
58:心拍周期関連値周波数解析手段
60:出力制御手段
62:血圧測定再起動手段
10: Automatic blood pressure measurement device 12: Cuff (pulse wave sensor)
14: ECG electrode (electrode)
36: ECG device 50: Automatic blood pressure measuring means 52: Pulse wave velocity related value detecting means 54: Pulse wave velocity related value frequency analyzing means 56: Heart cycle related value detecting means 58: Heart rate related value frequency analyzing means 60: Output control means 62: Blood pressure measurement restarting means

Claims (8)

生体の一部をカフを用いて圧迫したときに動脈から得られる心拍同期波に基づいて該生体の血圧値を測定する自動血圧測定手段を備えた自動血圧測定装置であって、
前記生体の脈波伝播速度に関連する脈波伝播速度関連値を逐次検出する脈波伝播速度関連値検出手段と、
前記生体の心拍周期に関連する心拍周期関連値を逐次検出する心拍周期関連値検出手段と、
該心拍周期関連値検出手段により検出された心拍周期関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する心拍周期関連値周波数解析手段と、
前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを共に出力する出力制御手段と
を、含むことを特徴とする自動血圧測定装置。
An automatic blood pressure measurement device comprising automatic blood pressure measurement means for measuring a blood pressure value of a living body based on a heartbeat synchronous wave obtained from an artery when a part of the living body is compressed using a cuff,
A pulse wave velocity related value detection means for sequentially detecting a pulse wave velocity related value related to the pulse wave velocity of the living body;
A cardiac cycle related value detecting means for sequentially detecting a cardiac cycle related value related to the cardiac cycle of the living body;
A heartbeat cycle-related value frequency analysis means for calculating a frequency component ratio of a low frequency component and a high frequency component of the fluctuation by frequency analysis of fluctuation of the heartbeat cycle related value detected by the heartbeat cycle related value detection means;
The change value of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means within a predetermined time interval, and the frequency of the low frequency component and the high frequency component calculated by the heartbeat cycle related value frequency analyzing means And an output control means for outputting together the change value of the component ratio within a predetermined time interval.
前記生体に装着する複数の電極を有し、該複数の電極に発生する信号に基づいて心電誘導波を出力する心電誘導装置と、前記生体の一部に装着されて該生体の動脈内を伝播する脈波を検出する脈波センサとを備え、
前記脈波伝播速度関連値検出手段は、該心電誘導波に含まれるR波の発生時点から前記脈波センサによる脈波の検出時点までの時間差に基づいて脈波伝播速度関連値を検出するものであることを特徴とする請求項1の自動血圧測定装置。
An electrocardiographic guidance device having a plurality of electrodes to be attached to the living body and outputting an electrocardiogram-induced wave based on a signal generated at the plurality of electrodes; and an intracardiac artery attached to a part of the living body A pulse wave sensor for detecting a pulse wave propagating through the
The pulse wave velocity related value detecting means detects the pulse wave velocity related value based on a time difference from the time when the R wave included in the electrocardiogram induced wave is generated to the time when the pulse wave is detected by the pulse wave sensor. The automatic blood pressure measuring device according to claim 1, wherein
前記心電誘導装置の前記複数の電極の少なくとも一部は、前記カフの内周面に配置されており、
前記脈波センサは前記カフ内の圧力振動を用いて脈波を検出するものであることを特徴とする請求項2の自動血圧測定装置。
At least a part of the plurality of electrodes of the electrocardiographic induction device is disposed on an inner peripheral surface of the cuff,
3. The automatic blood pressure measuring apparatus according to claim 2, wherein the pulse wave sensor detects a pulse wave using pressure vibration in the cuff.
前記心拍周期関連値検出手段は、前記心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期関連値を検出するものであることを特徴とする請求項2または3の自動血圧測定装置。   4. The automatic blood pressure measurement according to claim 2, wherein the heartbeat cycle related value detecting means detects a heartbeat cycle related value based on an R wave generation time interval included in the electrocardiogram induced wave. apparatus. 前記出力制御手段は、前記脈波伝播速度関連値の所定時間区間内における変化値を示す軸と、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を示す軸とを含む二次元座標において、該脈波伝播速度関連値の所定時間区間内における変化値と該心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを示す点を繰り返し表示出力するものであることを特徴とする請求項1乃至4のいずれか1の自動血圧測定装置。   The output control means includes an axis indicating a change value of the pulse wave velocity related value within a predetermined time interval, and a change of the frequency component ratio of the low frequency component and the high frequency component of the heartbeat cycle related value within the predetermined time interval. In two-dimensional coordinates including an axis indicating the value, the change value of the pulse wave velocity related value within a predetermined time interval and the frequency component ratio of the low frequency component and the high frequency component of the heartbeat cycle related value within the predetermined time interval 5. The automatic blood pressure measurement device according to claim 1, wherein a point indicating a change value in the is repeatedly displayed and output. 前記出力制御手段は、前記自動血圧測定手段による血圧測定時点からの、前記脈波伝播速度関連値の変化値、および、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の変化値とを示す点を算出し、所定の時間間隔で繰り返し表示出力するものであることを特徴とする請求項1乃至5のいずれか1の自動血圧測定装置。   The output control means includes a change value of the pulse wave velocity related value and a change of a frequency component ratio of a low frequency component and a high frequency component of the heartbeat cycle related value from a time point of blood pressure measurement by the automatic blood pressure measurement means. 6. The automatic blood pressure measuring apparatus according to claim 1, wherein a point indicating a value is calculated and repeatedly displayed and output at a predetermined time interval. 前記自動血圧測定手段による血圧測定が実行された後であって、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とが前記出力制御手段により予め設定された回数以上出力された後に或いは予め設定された経過時間の経過後に、前記自動血圧測定手段による血圧測定を再度起動させる血圧測定再起動手段を、さらに含むことを特徴とする請求項1乃至6のいずれか1の自動血圧測定装置。   After the blood pressure measurement by the automatic blood pressure measuring means is executed, the change value of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means within a predetermined time interval and the heart cycle related value After the change value in the predetermined time interval of the frequency component ratio of the low frequency component and the high frequency component of the heartbeat period-related value calculated by the frequency analysis means is output a predetermined number of times or in advance by the output control means The automatic blood pressure measurement device according to any one of claims 1 to 6, further comprising blood pressure measurement restarting means for restarting blood pressure measurement by the automatic blood pressure measurement means after a lapse of a set elapsed time. 前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する脈波伝播速度関連値周波数解析手段を、含み、
前記出力制御手段は、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値に代えて或いは加えて、前記脈波伝播速度関連値周波数解析手段により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と共に出力するものであり、
前記脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることを特徴とする請求項1乃至7のいずれか1の自動血圧測定装置。
The pulse wave velocity related value frequency for calculating the frequency component ratio of the low frequency component and the high frequency component of the fluctuation by frequency analysis of the fluctuation of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means Including analysis means,
The output control means, instead of or in addition to a change value of the pulse wave velocity related value detected by the pulse wave velocity related value detecting means within a predetermined time interval, the pulse wave velocity related value frequency analyzing means. The change value of the frequency component ratio of the low-frequency component and the high-frequency component of the pulse wave propagation velocity-related value calculated by the above in a predetermined time interval is obtained by using the low-frequency component and the high-frequency calculated by the heartbeat cycle-related value frequency analysis means. It is output together with the change value in the predetermined time interval of the frequency component ratio of the component,
8. The pulse wave propagation velocity related value frequency analysis means and the heartbeat cycle related value frequency analysis means make the order of the spectrum estimation model the same throughout each section being measured. 1 automatic blood pressure measuring device.
JP2010293603A 2010-12-28 2010-12-28 Automatic blood pressure measurement device Active JP5584111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293603A JP5584111B2 (en) 2010-12-28 2010-12-28 Automatic blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293603A JP5584111B2 (en) 2010-12-28 2010-12-28 Automatic blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2012139342A true JP2012139342A (en) 2012-07-26
JP5584111B2 JP5584111B2 (en) 2014-09-03

Family

ID=46676256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293603A Active JP5584111B2 (en) 2010-12-28 2010-12-28 Automatic blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP5584111B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208289A1 (en) * 2013-06-28 2014-12-31 株式会社村田製作所 Biological state-estimating device
JP2017176833A (en) * 2016-03-29 2017-10-05 豪展醫療科技股▲分▼有限公司 Measurement device and method for measuring both mental stress indicator and blood pressure
CN109069031A (en) * 2016-10-20 2018-12-21 京东方科技集团股份有限公司 For determining the device and method of object blood pressure
CN111386071A (en) * 2017-11-30 2020-07-07 国立大学法人东北大学 Biological information measurement device, biological information measurement program, and biological information measurement method
DE112018004492T5 (en) 2017-10-12 2020-07-30 Omron Corporation VITAL PARAMETER MEASURING DEVICE, BLOOD PRESSURE MEASURING DEVICE, DEVICE, VITAL PARAMETER MEASURING METHOD AND BLOOD PRESSURE MEASURING METHOD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110772242A (en) * 2018-07-31 2020-02-11 北京太阳升高科医药研究股份有限公司 Automatic blood pressure measuring device with autonomic nerve analysis function

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105354A (en) * 1989-01-23 1992-04-14 Nippon Kayaku Kabushiki Kaisha Method and apparatus for correlating respiration and heartbeat variability
JP3004615U (en) * 1994-05-25 1994-11-22 日本コーリン株式会社 ECG waveform display device
JP2001321347A (en) * 2000-05-16 2001-11-20 Nippon Koden Corp Blood pressure monitoring device
JP2002537911A (en) * 1999-03-02 2002-11-12 チルドレ,ドック・エル Method and apparatus for promoting physiological coherence and autonomic balance
JP2006034803A (en) * 2004-07-29 2006-02-09 Denso Corp Method and device for displaying biological information
JP2008086568A (en) * 2006-10-02 2008-04-17 Fukuda Denshi Co Ltd Blood pressure reflective function measuring apparatus
JP2008110086A (en) * 2006-10-31 2008-05-15 Crosswell:Kk Device and program for testing vascular function
US20090192399A1 (en) * 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. Apparatus and method to detect heart-rate and air conditioning system having the apparatus
JP4487015B1 (en) * 2009-12-08 2010-06-23 株式会社クロスウェル Autonomic nerve function evaluation apparatus and program
JP2010142593A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Device and method for diagnosing automatic nerve function for vehicle
JP2010172365A (en) * 2009-01-27 2010-08-12 Crosswell:Kk Apparatus and program for diagnosing autonomic nerve function

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105354A (en) * 1989-01-23 1992-04-14 Nippon Kayaku Kabushiki Kaisha Method and apparatus for correlating respiration and heartbeat variability
JP3004615U (en) * 1994-05-25 1994-11-22 日本コーリン株式会社 ECG waveform display device
JP2002537911A (en) * 1999-03-02 2002-11-12 チルドレ,ドック・エル Method and apparatus for promoting physiological coherence and autonomic balance
JP2001321347A (en) * 2000-05-16 2001-11-20 Nippon Koden Corp Blood pressure monitoring device
JP2006034803A (en) * 2004-07-29 2006-02-09 Denso Corp Method and device for displaying biological information
JP2008086568A (en) * 2006-10-02 2008-04-17 Fukuda Denshi Co Ltd Blood pressure reflective function measuring apparatus
JP2008110086A (en) * 2006-10-31 2008-05-15 Crosswell:Kk Device and program for testing vascular function
US20090192399A1 (en) * 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. Apparatus and method to detect heart-rate and air conditioning system having the apparatus
JP2010142593A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Device and method for diagnosing automatic nerve function for vehicle
JP2010172365A (en) * 2009-01-27 2010-08-12 Crosswell:Kk Apparatus and program for diagnosing autonomic nerve function
JP4487015B1 (en) * 2009-12-08 2010-06-23 株式会社クロスウェル Autonomic nerve function evaluation apparatus and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208289A1 (en) * 2013-06-28 2014-12-31 株式会社村田製作所 Biological state-estimating device
CN105377137A (en) * 2013-06-28 2016-03-02 株式会社村田制作所 Biological state-estimating device
JPWO2014208289A1 (en) * 2013-06-28 2017-02-23 株式会社村田製作所 Biological state estimation device
US10034612B2 (en) 2013-06-28 2018-07-31 Murata Manufacturing Co., Ltd. Biological state eliminating apparatus and method
JP2017176833A (en) * 2016-03-29 2017-10-05 豪展醫療科技股▲分▼有限公司 Measurement device and method for measuring both mental stress indicator and blood pressure
CN109069031A (en) * 2016-10-20 2018-12-21 京东方科技集团股份有限公司 For determining the device and method of object blood pressure
CN109069031B (en) * 2016-10-20 2021-12-24 京东方科技集团股份有限公司 Device and method for determining blood pressure of a subject
DE112018004492T5 (en) 2017-10-12 2020-07-30 Omron Corporation VITAL PARAMETER MEASURING DEVICE, BLOOD PRESSURE MEASURING DEVICE, DEVICE, VITAL PARAMETER MEASURING METHOD AND BLOOD PRESSURE MEASURING METHOD
CN111386071A (en) * 2017-11-30 2020-07-07 国立大学法人东北大学 Biological information measurement device, biological information measurement program, and biological information measurement method
CN111386071B (en) * 2017-11-30 2023-06-27 国立大学法人东北大学 Biological information measuring device and recording medium

Also Published As

Publication number Publication date
JP5584111B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP6659830B2 (en) Biological information analyzer, system, and program
JP6513005B2 (en) Fatigue meter
US8668649B2 (en) System for cardiac status determination
JP6789280B2 (en) Systems and methods for assessing endothelial function
JP6579890B2 (en) Fatigue meter
JP5584111B2 (en) Automatic blood pressure measurement device
JP6282887B2 (en) Blood pressure measuring device and blood pressure measuring method
JP6602248B2 (en) Electronic blood pressure monitor
JP6766710B2 (en) Blood pressure measuring device, method and program
JP2022512449A (en) Control unit for deriving a measure of arterial compliance
JP7327816B2 (en) Pulse wave signal analysis device, pulse wave signal analysis method, and computer program
WO2016006250A1 (en) Biological information measurement device
CN111386071B (en) Biological information measuring device and recording medium
WO2018168808A1 (en) Blood pressure data processing device, blood pressure data processing method, and program
JP2020110443A (en) Blood circulation information calculation apparatus, blood circulation information calculation method, and program
EP4088653A1 (en) Pulse wave analysis device, pulse wave analysis method, and pulse wave analysis program
JP6109514B2 (en) Biological information processing device
JP7087267B2 (en) Blood pressure data processor, blood pressure data processing method, and program
JP6013111B2 (en) Biological information processing device
JP2022178053A (en) Circulating blood amount determination device, circulating blood amount determination program, and circulating blood amount determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5584111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250