JP2012138426A - Liquid cooling chassis - Google Patents

Liquid cooling chassis Download PDF

Info

Publication number
JP2012138426A
JP2012138426A JP2010288734A JP2010288734A JP2012138426A JP 2012138426 A JP2012138426 A JP 2012138426A JP 2010288734 A JP2010288734 A JP 2010288734A JP 2010288734 A JP2010288734 A JP 2010288734A JP 2012138426 A JP2012138426 A JP 2012138426A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid cooling
chassis
heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010288734A
Other languages
Japanese (ja)
Other versions
JP5537404B2 (en
Inventor
Kenji Okubo
健次 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010288734A priority Critical patent/JP5537404B2/en
Publication of JP2012138426A publication Critical patent/JP2012138426A/en
Application granted granted Critical
Publication of JP5537404B2 publication Critical patent/JP5537404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid cooling chassis including a small and lightweight liquid cooling system which achieves low power consumption.SOLUTION: A liquid cooling chassis integrally includes: bellows-like passages in which a refrigerant is circulated; a container housing the refrigerant; a pump circulating the refrigerant in the passages; and a blower cooling the refrigerant flowing the passages. The refrigerant flowing the passages takes heat from multiple circuit boards housed in the liquid cooling chassis, in other words, electronic components mounted in the circuit boards. The refrigerant flowing the passages is cooled by wind of the blower. The liquid cooling chassis is detachably mounted on a mobile object such as aircrafts.

Description

本発明の実施形態は、電子部品を実装した複数枚の回路基板を収容した液冷シャシーに関する。   Embodiments described herein relate generally to a liquid cooling chassis containing a plurality of circuit boards on which electronic components are mounted.

近年、航空機に搭載する電子機器は、小型・軽量化の要求に加えて、高機能化が進んでおり、信号処理の高速化に伴い、電子部品の発熱の問題が大きくなりつつある。特に、多数の電子部品を実装した回路基板を複数枚並べて収納したシャシーを航空機に搭載する場合、回路基板の高密度なレイアウトに起因して、電子部品を十分に冷却することが難しくなってきている。   In recent years, electronic devices mounted on aircraft have advanced in functionality in addition to demands for miniaturization and weight reduction, and the problem of heat generation of electronic components is increasing as signal processing speeds up. In particular, when mounting a chassis with multiple circuit boards mounted with a large number of electronic components mounted on an aircraft, it is difficult to sufficiently cool the electronic components due to the high-density layout of the circuit boards. Yes.

このため、シャシーに収容した回路基板の冷却には、空冷と比較してより冷却能力の高い液冷の冷却システムが主流となりつつある。この冷却システムは、シャシーに取り付けた蛇腹状の流路を通して循環させる冷媒を送り込む、シャシーとは別体の冷却装置を備えている。航空機には、通常、複数台のシャシーが搭載されるため、冷却装置は、複数本のパイプを介して複数のシャシーと接続している。   For this reason, a liquid cooling system having a higher cooling capacity than air cooling is becoming mainstream for cooling circuit boards accommodated in the chassis. This cooling system includes a cooling device that is separate from the chassis and that feeds refrigerant to be circulated through a bellows-shaped flow path attached to the chassis. Since an aircraft usually has a plurality of chassis mounted thereon, the cooling device is connected to the plurality of chassis via a plurality of pipes.

DAVES.STEINBERG著「最新電子装置の冷却技術実用マニュアル」ジャテック出版、平成元年11月25日、p.71、図4.3、p.292、図10.9、p.293、図10.10、図10.11DAVES. STEINBERG, “Practical Manual for Cooling Technology of Latest Electronic Devices” JATEC Publishing, November 25, 1989, p. 71, FIG. 4.3, p. 292, FIG. 10.9, p. 293, FIG. 10.10, FIG. 10.11

しかし、航空機には、上述したタイプのシャシーが多数搭載されていることに加えて、発熱する多数の電子部品を備えた他の電子機器が多数搭載されており、全ての電子機器およびシャシーに冷媒を送り込む役割を担う冷却装置には、比較的容量の大きなものが必要とされている。   However, in addition to a large number of chassis of the type described above being mounted on the aircraft, a large number of other electronic devices equipped with a large number of electronic components that generate heat are also mounted. A cooling device having a relatively large capacity is required for a cooling device that plays a role of feeding in water.

つまり、このような冷却装置は、必然的に重く、大型なものになり、消費電力も多く、使用する冷媒の量も多くなる。特に、この冷却装置は、電子機器やシャシーとの間を連絡する冷媒流通のための複数本のパイプを必要とし、冷媒を循環させるためのポンプも大型化し、装置自体の発熱の問題も生じる。   That is, such a cooling device is inevitably heavy and large, consumes a lot of power, and increases the amount of refrigerant used. In particular, this cooling device requires a plurality of pipes for circulation of the refrigerant that communicates with electronic equipment and the chassis, the pump for circulating the refrigerant is increased in size, and there is a problem of heat generation of the apparatus itself.

特に、冷媒は、環境温度に応じて適切な粘性のものを使用する必要があることが知られており、環境温度の低い航空機で使用する冷媒は比較的粘性の高い不凍液を使用する必要がある。このため、電子機器やシャシーと冷却装置をつなぐパイプが長くなると、冷媒を循環させるためのポンプにも液送圧力の大きなものが必要とされ、比較的大型でパワーのあるポンプを使用する必要がある。   In particular, it is known that a refrigerant having an appropriate viscosity according to the environmental temperature needs to be used, and a refrigerant used in an aircraft having a low environmental temperature needs to use an antifreeze liquid having a relatively high viscosity. . For this reason, when the pipe connecting the electronic device or the chassis and the cooling device becomes long, a pump for circulating the refrigerant is required to have a high liquid feed pressure, and it is necessary to use a relatively large and powerful pump. is there.

このため、このような冷却装置を必要としない、小型且つ軽量で消費電力の少ない液冷システムの開発が望まれている。   For this reason, development of the liquid cooling system which does not require such a cooling device, is small, lightweight, and consumes little power is desired.

実施形態に係る液冷シャシーは、冷媒を流通させる蛇腹状の流路、冷媒を収容した容器、流路に冷媒を流通させるポンプ、および流路を流れる冷媒を冷やす送風装置を一体に備えている。液冷シャシーに収容された複数枚の回路基板、すなわちこの回路基板に実装された電子部品は、流路を流れる冷媒によって熱を奪われ、送風装置の風によって流路を流れる冷媒が冷やされる。この液冷シャシーは、例えば、航空機などの移動体に着脱自在に搭載される。   The liquid cooling chassis according to the embodiment is integrally provided with a bellows-like flow path for circulating the refrigerant, a container containing the refrigerant, a pump for circulating the refrigerant through the flow path, and a blower for cooling the refrigerant flowing through the flow path. . The plurality of circuit boards housed in the liquid cooling chassis, that is, the electronic components mounted on the circuit boards, are deprived of heat by the refrigerant flowing through the flow path, and the refrigerant flowing through the flow path is cooled by the wind of the blower. This liquid cooling chassis is detachably mounted on a moving body such as an aircraft.

図1は、第1の実施形態に係る液冷シャシーを示す外観斜視図である。FIG. 1 is an external perspective view showing a liquid cooling chassis according to the first embodiment. 図2は、図1の液冷シャシーの要部を示す外観斜視図である。FIG. 2 is an external perspective view showing a main part of the liquid cooling chassis of FIG. 図3は、第2の実施形態に係る液冷シャシーを示す外観斜視図である。FIG. 3 is an external perspective view showing a liquid cooling chassis according to the second embodiment.

以下、図面を参照しながら実施形態について詳細に説明する。
図1には、第1の実施形態に係る液冷シャシー10の外観斜視図を示してある。また、図2には、この液冷シャシー10の要部の斜視図を示してある。以下の説明では、図示x軸方向を前後方向と称し、図示y軸方向を左右方向と称し、図示z軸方向を上下方向と称する場合もある。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is an external perspective view of a liquid cooling chassis 10 according to the first embodiment. FIG. 2 is a perspective view of the main part of the liquid cooling chassis 10. In the following description, the illustrated x-axis direction may be referred to as the front-rear direction, the illustrated y-axis direction may be referred to as the left-right direction, and the illustrated z-axis direction may be referred to as the up-down direction.

本実施形態の液冷シャシー10は、複数個の電子部品(図示せず)を実装した複数枚の回路基板2を互いに近接させて前後方向に隙間を空けて並べて立位で収容するためのものである。この液冷シャシー10は、例えば、飛行機、ヘリコプター、ジェット機、プロペラ機などの航空機に着脱自在に搭載され、或いは車両や船舶などの他の移動体にも搭載可能なユニットである。   The liquid cooling chassis 10 of the present embodiment is for accommodating a plurality of circuit boards 2 mounted with a plurality of electronic components (not shown) in close proximity to each other with a gap in the front-rear direction and standing upright. It is. The liquid-cooled chassis 10 is a unit that can be detachably mounted on an aircraft such as an airplane, helicopter, jet, or propeller, or can be mounted on another moving body such as a vehicle or a ship.

液冷シャシー10は、複数枚の回路基板2それぞれの一端辺(図示左端辺)を接触せしめたサイドパネル4(吸熱部材)、このサイドパネル4の反対側で複数枚の回路基板2それぞれの他端辺(図示右端辺)を接触せしめたサイドパネル6(吸熱部材)、これら2枚の互いに離間した平行なサイドパネル4、6の前端側をつないだフロントパネル8、およびこれら3枚のパネルの下端辺をつなぐとともに各回路基板2の下端辺を当接せしめたボトムパネル1を有する。   The liquid cooling chassis 10 includes a side panel 4 (heat absorbing member) in which one end side (the left end side in the figure) of each of the plurality of circuit boards 2 is in contact, A side panel 6 (heat absorbing member) with its end sides (the right end side in the drawing) in contact with each other, a front panel 8 connecting the front end sides of the two parallel side panels 4 and 6 spaced apart from each other, and the three panels A bottom panel 1 is provided that connects the lower end sides and abuts the lower end sides of each circuit board 2.

2枚のサイドパネル4、6には、それぞれ、冷媒を流通させるための蛇腹状の流路4a、6a(吸熱流路)が設けられている。これら流路4a、6aは、それぞれ、複数枚の前後方向に延びた仕切り板5を入れ子状に配置することで蛇腹状に一本につながった流路を構成している。つまり、2枚のサイドパネル4、6それぞれの外側の略全面を覆う図示しないカバーを貼設することで、複数枚の仕切り板5によって区画された蛇腹状の流路4a、6aが形成される。なお、ここでは、一方のサイドパネル4の流路4aを構成する複数枚の仕切り板5のみを図示したが、他方のサイドパネル6も同じ構造を有する。   The two side panels 4 and 6 are provided with bellows-like flow paths 4a and 6a (heat absorption flow paths) for circulating the refrigerant, respectively. Each of the flow paths 4a and 6a constitutes a flow path connected in a bellows shape by arranging a plurality of partition plates 5 extending in the front-rear direction in a nested manner. That is, by attaching a cover (not shown) that covers substantially the entire outer surfaces of the two side panels 4 and 6, bellows-like flow paths 4 a and 6 a that are partitioned by the plurality of partition plates 5 are formed. . Here, only the plurality of partition plates 5 constituting the flow path 4a of one side panel 4 are shown, but the other side panel 6 also has the same structure.

フロントパネル8は、当該液冷シャシー10を航空機などの機体に搭載する際に、作業員が把持する取っ手8aを備えている。この他に、フロントパネル8には、当該液冷シャシー10に収容した複数枚の回路基板2を周辺の他の電子機器(図示せず)に接続するための複数の外部コネクタ(図示せず)が設けられている。なお、この外部コネクタは、後述する液冷ユニット20のポンプ26やブロアー28に給電するための給電コネクタとしても機能する。   The front panel 8 includes a handle 8a that is gripped by an operator when the liquid-cooled chassis 10 is mounted on a body such as an aircraft. In addition, the front panel 8 includes a plurality of external connectors (not shown) for connecting the plurality of circuit boards 2 accommodated in the liquid cooling chassis 10 to other peripheral electronic devices (not shown). Is provided. The external connector also functions as a power supply connector for supplying power to a pump 26 and a blower 28 of the liquid cooling unit 20 described later.

ボトムパネル1の上面1a、すなわち液冷シャシー10の底面1a上には、各回路基板2の下端辺に設けられた図示しないコネクタを接続するための図示しない複数のコネクタが設けられている。また、ボトムパネル1には、図示しないマザーボードが設けられている。   On the upper surface 1 a of the bottom panel 1, that is, on the bottom surface 1 a of the liquid cooling chassis 10, a plurality of connectors (not shown) for connecting connectors (not shown) provided on the lower ends of the circuit boards 2 are provided. The bottom panel 1 is provided with a motherboard (not shown).

つまり、複数枚の回路基板2は、それぞれ、図示しないコネクタを介して、マザーボードに電気的に接続されている。また、ボトムパネル1のフロント側には、フロントパネル8の図示しない外部コネクタにマザーボードを接続するための図示しないコネクタが設けられている。   That is, each of the plurality of circuit boards 2 is electrically connected to the mother board via a connector (not shown). Further, a connector (not shown) for connecting a mother board to an external connector (not shown) of the front panel 8 is provided on the front side of the bottom panel 1.

複数枚の回路基板2は、それぞれ、その両端辺をサイドパネル4、6の内面に接触せしめた状態で液冷シャシー10の上面側(図1では解放されている)から挿入され、図示のように前後方向に等間隔で並べて液冷シャシー10内に収容配置される。このとき、各回路基板2の下端辺にある図示しないコネクタが図示しないマザーボードのコネクタに接続される。   Each of the plurality of circuit boards 2 is inserted from the upper surface side (released in FIG. 1) of the liquid cooling chassis 10 with both ends thereof in contact with the inner surfaces of the side panels 4 and 6, as shown in the figure. Are arranged at equal intervals in the front-rear direction and accommodated in the liquid cooling chassis 10. At this time, a connector (not shown) on the lower end side of each circuit board 2 is connected to a connector of a motherboard (not shown).

そして、2枚のサイドパネル4、6、およびフロントパネル8それぞれの上端辺を閉じるように図示しないアッパーパネルが取り付けられる。このアッパーパネルは、必ずしも発明に必須の構成ではない。   An upper panel (not shown) is attached so as to close the upper end sides of the two side panels 4 and 6 and the front panel 8. This upper panel is not necessarily an essential configuration for the invention.

液冷シャシー10のリア側には、上述したサイドパネル4、6の流路4a、6aに冷媒を循環させるための液冷ユニット20が設けられている。この液冷シャシー10で使用する冷媒は、例えば、自動車のラジエターに入っているクーラントのような不凍液であり、本実施形態では、環境温度に応じて濃度を比較的濃くしたエチレングリコール水溶液を用いた。   On the rear side of the liquid cooling chassis 10, a liquid cooling unit 20 is provided for circulating the refrigerant through the flow paths 4 a and 6 a of the side panels 4 and 6 described above. The refrigerant used in the liquid cooling chassis 10 is, for example, an antifreeze liquid such as a coolant contained in an automobile radiator. In this embodiment, an ethylene glycol aqueous solution having a relatively high concentration according to the environmental temperature is used. .

図2に示すように、この液冷ユニット20は、リザーバータンク22(容器)、ラジエター24(放熱部材)、ポンプ26、および複数(本実施形態では4つ)のブロアー28(送風装置)を有する。ラジエター24は、図示しない蛇腹状の放熱流路を備えている。この放熱流路は、サイドパネル4、6の流路4a、6aと同様に、左右方向に延びた複数本の流路を蛇腹状につなげて構成されている。   As shown in FIG. 2, the liquid cooling unit 20 includes a reservoir tank 22 (container), a radiator 24 (heat radiating member), a pump 26, and a plurality (four in the present embodiment) of blowers 28 (blowers). . The radiator 24 includes a bellows-shaped heat radiation channel (not shown). Similar to the flow paths 4a and 6a of the side panels 4 and 6, this heat radiation flow path is configured by connecting a plurality of flow paths extending in the left-right direction in a bellows shape.

一方のサイドパネル4の後端辺近くまで延びた流路4aの上端は、パイプ21aを介してリザーバータンク22に接続され、他方のサイドパネル6の後端辺近くまで延びた流路6aの上端も、パイプ21bを介してリザーバータンク22に接続されている。また、ラジエター24の図示しない放熱流路の一端(図示上側の端部)は、リザーバータンク22の底に接続されている。   The upper end of the flow path 4a extending to the vicinity of the rear end side of one side panel 4 is connected to the reservoir tank 22 via the pipe 21a, and the upper end of the flow path 6a extending to the vicinity of the rear end side of the other side panel 6 Is also connected to the reservoir tank 22 via a pipe 21b. Further, one end (the upper end portion in the drawing) of the radiator 24 (not shown) of the radiator 24 is connected to the bottom of the reservoir tank 22.

一方、ラジエター24の図示しない放熱流路の他端(図示下側の端部)は、ポンプ26の入力端に接続されている。さらに、ポンプ26の出力端は、2方向に分岐され、一方の出力端がパイプ27aを介してサイドパネル4の後端辺近くまで延びた流路4aの下端に接続されているとともに、他方の出力端がパイプ27bを介してサイドパネル6の後端辺近くまで延びた流路6aの下端に接続されている。   On the other hand, the other end (lower end portion in the drawing) of the radiator 24 (not shown) of the radiator 24 is connected to the input end of the pump 26. Further, the output end of the pump 26 is branched in two directions, and one output end is connected to the lower end of the flow path 4a extending to the vicinity of the rear end side of the side panel 4 through the pipe 27a, and the other end The output end is connected to the lower end of the flow path 6a extending to the vicinity of the rear end side of the side panel 6 through the pipe 27b.

しかして、ポンプ26を作動させると、リザーバータンク22内に貯蔵された冷媒がラジエター24の放熱流路に流れ込み、放熱流路から出た冷媒がポンプ26の入力端に流入する。このとき、ラジエター24の蛇腹状の放熱流路を流れる冷媒は、重力方向に沿って下方に流れるため、冷媒をその自重によって流すことができ、ラジエター24の放熱流路の上流側にはポンプを設ける必要がない。   Thus, when the pump 26 is operated, the refrigerant stored in the reservoir tank 22 flows into the heat dissipation flow path of the radiator 24, and the refrigerant discharged from the heat dissipation flow path flows into the input end of the pump 26. At this time, since the refrigerant flowing through the bellows-like heat radiation flow path of the radiator 24 flows downward along the direction of gravity, the refrigerant can be flowed by its own weight, and a pump is installed on the upstream side of the heat radiation flow path of the radiator 24. There is no need to provide it.

そして、ポンプ26から送り出された冷媒は、それぞれ、パイプ27a、27bを介して、サイドパネル4、6の流路4a、6aに流入し、各流路4a、6a内を重力に逆らって上方に流通する。このとき、冷媒は、流路を前後方向に行き来しながら重力に逆らう方向(図示上方)に流れるが、各流路4a、6aがポンプ26の直ぐ下流に接続されているため、冷媒を上昇させるに十分な液圧を生じさせることができる。   Then, the refrigerant sent out from the pump 26 flows into the flow paths 4a and 6a of the side panels 4 and 6 through the pipes 27a and 27b, respectively, and moves upward in the flow paths 4a and 6a against gravity. Circulate. At this time, the refrigerant flows in the direction against the gravity (upward in the drawing) while going back and forth in the flow path, but the flow paths 4a and 6a are connected immediately downstream of the pump 26, so the refrigerant is raised. It is possible to generate a sufficient hydraulic pressure.

さらに、サイドパネル4、6の流路4a、6aを流れて上昇した冷媒は、各流路4a、6aの上端から、パイプ21a、21bを介してリザーバータンク22へ戻される。このようにしてリザーバータンク22へ戻される冷媒は、サイドパネル4、6の流路4a、6aを流れる際に加熱され、その温度が上昇している。つまり、複数枚の回路基板2に接触した2枚のサイドパネル4、6に伝達された熱が、サイドパネル4、6の流路4a、6aを流れる冷媒によって吸熱され、冷媒の温度が上昇する。   Furthermore, the refrigerant that has flowed up through the flow paths 4a and 6a of the side panels 4 and 6 is returned to the reservoir tank 22 from the upper ends of the flow paths 4a and 6a through the pipes 21a and 21b. The refrigerant returned to the reservoir tank 22 in this way is heated when flowing through the flow paths 4a and 6a of the side panels 4 and 6, and the temperature thereof rises. That is, the heat transmitted to the two side panels 4 and 6 in contact with the plurality of circuit boards 2 is absorbed by the refrigerant flowing through the flow paths 4a and 6a of the side panels 4 and 6, and the temperature of the refrigerant rises. .

このように温度が上昇された冷媒は、リザーバータンク22から送り出されてラジエター24の放熱流路を流れるとき、ラジエター24の放熱流路に複数のブロアー28を介して風を当てることで、放熱流路を流れる間に徐々に冷却される。望ましくは、冷媒は、ラジエター24の放熱流路から流出するとき、雰囲気温度まで冷却される。   The refrigerant whose temperature has been increased in this way is sent out from the reservoir tank 22 and flows through the heat dissipation flow path of the radiator 24, by applying wind to the heat dissipation flow path of the radiator 24 through the plurality of blowers 28, It is gradually cooled while flowing through the road. Desirably, the refrigerant is cooled to the ambient temperature when it flows out of the heat dissipation flow path of the radiator 24.

航空機に当該液冷シャシー10を搭載する場合、人がいるスペースに液冷シャシー10を配置するのが一般的であり、この場合の雰囲気温度は、20度前後となる。つまり、当該液冷シャシー10では、加熱された冷媒を20度前後の温度まで冷却できることになる。   When the liquid-cooled chassis 10 is mounted on an aircraft, the liquid-cooled chassis 10 is generally arranged in a space where people are present, and the ambient temperature in this case is about 20 degrees. That is, in the liquid cooling chassis 10, the heated refrigerant can be cooled to a temperature of about 20 degrees.

なお、冷媒を冷やすための冷却風は、各ブロアー28によって吸引されて液冷シャシー10のリア側へ排気されるが、冷却風が各ブロアー28へ向かう流入経路は、各サイドパネル4、6のリア側に設けられた窓部4b、6bとなる。これら窓部4b、6bは、複数台の液冷シャシー10を左右に並べて取り付けた状態で、両側の液冷シャシー10の窓部とつながり、冷却風を効果的に取り入れることができる。   The cooling air for cooling the refrigerant is sucked by each of the blowers 28 and exhausted to the rear side of the liquid cooling chassis 10, but the inflow path of the cooling air toward each of the blowers 28 is in each side panel 4, 6. It becomes the window parts 4b and 6b provided in the rear side. These window portions 4b and 6b are connected to the window portions of the liquid cooling chassis 10 on both sides in a state where a plurality of liquid cooling chassis 10 are mounted side by side, and can effectively take in cooling air.

以上のように、本実施形態によると、航空機などの移動体の機体側に冷媒を冷却するためのシャシーとは別体の冷却装置を設ける必要がなくなり、当該液冷シャシー10単体で、自己完結型の液冷システムを提供できる。これにより、比較的大型でスペースをとる冷却装置が不要となり、その分、機体の内部空間を有効に活用することができる。また、比較的重い冷却装置が不要となるため、その分、機体重量を軽くすることができる。その上、比較的大型の冷却装置が不要となることから、システム全体としての消費電力も低く抑えることができる。   As described above, according to the present embodiment, it is not necessary to provide a cooling device separate from the chassis for cooling the refrigerant on the airframe side of a moving body such as an aircraft, and the liquid cooling chassis 10 alone is self-contained. A mold liquid cooling system can be provided. This eliminates the need for a relatively large and space-saving cooling device, and can effectively utilize the internal space of the aircraft. Further, since a relatively heavy cooling device is not required, the weight of the body can be reduced accordingly. In addition, since a relatively large cooling device is not required, the power consumption of the entire system can be kept low.

また、本実施形態によると、従来のようにシャシーと別体の冷却装置と複数のシャシーをつなぐパイプも不要となり、その分、配管スペースを削減できるとともに、パイプ重量の分だけ機体を軽くできる。特に、航空機で使用する冷媒(不凍液)の粘度は比較的高いことが知られており、冷却装置とシャシーをつなぐパイプが長くなるとポンプの容量も大型化するが、本実施形態のようにパイプが不要になると、大型のポンプも不要となり、その分、消費電力およびスペースの点で有利となる。   In addition, according to the present embodiment, a pipe that connects a plurality of chassis and a separate cooling device from the chassis is not required as in the prior art, and accordingly, the piping space can be reduced and the body can be lightened by the pipe weight. In particular, it is known that the viscosity of the refrigerant (antifreeze) used in aircraft is relatively high, and the capacity of the pump increases as the pipe connecting the cooling device and the chassis becomes longer. When it becomes unnecessary, a large pump is also unnecessary, which is advantageous in terms of power consumption and space.

また、本実施形態の液冷シャシー10は、従来の冷却装置を持たないシャシーの代りに取り付けできるため、シャシーと別体に冷却装置を持たない機体にも搭載可能である。言い換えると、冷却装置を搭載するスペースの無い機体であっても、本実施形態の液冷シャシー10なら搭載可能であり、冷却システムを自由に設計できるばかりか、機体側のシステムレイアウトの設計の自由度も高めることができる。   In addition, since the liquid cooling chassis 10 of the present embodiment can be attached in place of the conventional chassis that does not have a cooling device, it can be mounted on a body that does not have a cooling device separately from the chassis. In other words, even an airframe that does not have space for mounting a cooling device can be mounted with the liquid cooling chassis 10 of this embodiment, so that the cooling system can be freely designed and the system layout design freedom on the airframe side can be freely designed. It can also be increased.

さらに、本実施形態のように自己完結型の液冷シャシー10を使用すれば、他の電子機器の冷却システムとの関連性を持つ必要がなくなり、液冷シャシー10の取り付けおよび取り外しも容易にできる。   Furthermore, if the self-contained liquid cooling chassis 10 is used as in this embodiment, it is not necessary to have a relationship with the cooling system of other electronic devices, and the liquid cooling chassis 10 can be easily attached and detached. .

次に、第2の実施形態に係る液冷シャシー30について、図3を参照して説明する。なお、この液冷シャシー30は、互いに独立した2組の液冷ユニット30a、30bを備えている以外、上述した第1の実施形態の液冷シャシー10と略同じ構造を有するため、ここでは、同様に機能する構成要素には同一符号を付してその詳細な説明を省略する。   Next, the liquid cooling chassis 30 according to the second embodiment will be described with reference to FIG. The liquid cooling chassis 30 has substantially the same structure as the liquid cooling chassis 10 of the first embodiment described above except that it includes two sets of liquid cooling units 30a and 30b that are independent of each other. Constituent elements that function in the same manner are denoted by the same reference numerals, and detailed description thereof is omitted.

この液冷シャシー30は、一方の液冷ユニット30aとして、一方のサイドパネル4(第1の吸熱部材)の蛇腹状の流路4a(第1の吸熱流路)の一端に接続された冷媒(第1の冷媒)を収容するリザーバータンク31a(第1の容器)、このリザーバータンク31aの底に接続されたラジエター32a(放熱部材)、このラジエター32aの出口側に入力端を接続され且つ流路4aの他端に出力端を接続されたポンプ33a(第1のポンプ)、およびラジエター32aの図示しない蛇腹状の放熱流路(第1の放熱流路)に風を当てるように対向して配置された複数(本実施形態では2つ)のブロアー34a(第1の送風装置)を有する。   This liquid cooling chassis 30 is a refrigerant (as a liquid cooling unit 30a) connected to one end of a bellows-like channel 4a (first heat absorption channel) of one side panel 4 (first heat absorption member) ( A reservoir tank 31a (first container) for storing a first refrigerant), a radiator 32a (heat radiating member) connected to the bottom of the reservoir tank 31a, an input end connected to the outlet side of the radiator 32a, and a flow path The pump 33a (first pump) whose output end is connected to the other end of 4a and the bellows-like heat radiation channel (first heat radiation channel) (not shown) of the radiator 32a are arranged to face each other. A plurality (two in the present embodiment) of blowers 34a (first air blower) are provided.

また、この液冷シャシー30は、他方の液冷ユニット30bとして、他方のサイドパネル6(第2の吸熱部材)の蛇腹状の流路6a(第2の吸熱流路)の一端に接続された冷媒(第2の冷媒)を収容するリザーバータンク31b(第2の容器)、このリザーバータンク31bの底に接続されたラジエター32b(放熱部材)、このラジエター32bの出口側に入力端を接続され且つ流路6aの他端に出力端を接続されたポンプ33b(第2のポンプ)、およびラジエター32bの図示しない蛇腹状の放熱流路(第2の放熱流路)に風を当てるように対向して配置された複数(本実施形態では2つ)のブロアー34b(第2の送風装置)を有する。   The liquid cooling chassis 30 is connected to one end of a bellows-shaped flow path 6a (second heat absorption flow path) of the other side panel 6 (second heat absorption member) as the other liquid cooling unit 30b. A reservoir tank 31b (second container) for storing the refrigerant (second refrigerant), a radiator 32b (heat radiating member) connected to the bottom of the reservoir tank 31b, an input end connected to the outlet side of the radiator 32b, and The pump 33b (second pump), whose output end is connected to the other end of the flow path 6a, and the bellows-shaped heat radiation flow path (second heat radiation flow path) (not shown) of the radiator 32b face each other so as to apply wind. A plurality of (two in this embodiment) blowers 34b (second blower).

一方の液冷ユニット30aのポンプ33aを作動すると、リザーバータンク31a内に収容された冷媒がラジエター32aの図示しない放熱流路に流れ込み、放熱流路から出た冷媒がポンプ33aの入力端に流入する。そして、ポンプ33aから送り出された冷媒は、サイドパネル4の流路4aの下端側から流入し、流路4a内を重力に逆らって上方に流通する。さらに、サイドパネル4の流路4aを流れて上昇した冷媒は、流路4aの上端からリザーバータンク31aへ戻される。このように、冷媒は液冷ユニット30a内を循環する。   When the pump 33a of one liquid cooling unit 30a is operated, the refrigerant accommodated in the reservoir tank 31a flows into a heat radiation channel (not shown) of the radiator 32a, and the refrigerant discharged from the heat radiation channel flows into the input end of the pump 33a. . The refrigerant sent out from the pump 33a flows in from the lower end side of the flow path 4a of the side panel 4, and flows upward in the flow path 4a against gravity. Further, the refrigerant that has flowed up through the flow path 4a of the side panel 4 is returned to the reservoir tank 31a from the upper end of the flow path 4a. Thus, the refrigerant circulates in the liquid cooling unit 30a.

なお、このようにしてリザーバータンク31aへ戻される冷媒は、サイドパネル4の流路4aを流れる際に加熱され、その温度が上昇している。つまり、複数枚の回路基板2に接触したサイドパネル4に伝達された熱が、サイドパネル4の流路4aを流れる冷媒によって吸熱され、冷媒の温度が上昇する。このように温度が上昇された冷媒は、リザーバータンク31aから送り出されてラジエター32aの放熱流路を流れるとき、ラジエター32aの放熱流路に複数のブロアー34aを介して風を当てることで、放熱流路を流れる間に徐々に冷却される。   In addition, the refrigerant returned to the reservoir tank 31a in this way is heated when flowing through the flow path 4a of the side panel 4, and its temperature rises. That is, the heat transmitted to the side panel 4 in contact with the plurality of circuit boards 2 is absorbed by the refrigerant flowing through the flow path 4a of the side panel 4, and the temperature of the refrigerant rises. The refrigerant whose temperature has been increased in this way is sent out from the reservoir tank 31a and flows through the heat dissipation flow path of the radiator 32a, by applying wind to the heat dissipation flow path of the radiator 32a via the plurality of blowers 34a, thereby It is gradually cooled while flowing through the road.

また、他方の液冷ユニット30bのポンプ33bを作動すると、リザーバータンク31b内に収容された冷媒がラジエター32bの図示しない放熱流路に流れ込み、放熱流路から出た冷媒がポンプ33bの入力端に流入する。そして、ポンプ33bから送り出された冷媒は、サイドパネル6の流路6aの下端側から流入し、流路6a内を重力に逆らって上方に流通する。さらに、サイドパネル6の流路6aを流れて上昇した冷媒は、流路6aの上端からリザーバータンク31bへ戻される。このように、冷媒は液冷ユニット30b内を循環する。   Further, when the pump 33b of the other liquid cooling unit 30b is operated, the refrigerant accommodated in the reservoir tank 31b flows into a heat radiation channel (not shown) of the radiator 32b, and the refrigerant discharged from the heat radiation channel reaches the input end of the pump 33b. Inflow. The refrigerant sent out from the pump 33b flows in from the lower end side of the flow path 6a of the side panel 6, and flows upward in the flow path 6a against gravity. Furthermore, the refrigerant that has flowed up through the flow path 6a of the side panel 6 is returned to the reservoir tank 31b from the upper end of the flow path 6a. Thus, the refrigerant circulates in the liquid cooling unit 30b.

なお、このようにしてリザーバータンク31bへ戻される冷媒は、サイドパネル6の流路6aを流れる際に加熱され、その温度が上昇している。つまり、複数枚の回路基板2に接触したサイドパネル6に伝達された熱が、サイドパネル6の流路6aを流れる冷媒によって吸熱され、冷媒の温度が上昇する。このように温度が上昇された冷媒は、リザーバータンク31bから送り出されてラジエター32bの放熱流路を流れるとき、ラジエター32bの放熱流路に複数のブロアー34bを介して風を当てることで、放熱流路を流れる間に徐々に冷却される。   In addition, the refrigerant returned to the reservoir tank 31b in this way is heated when flowing through the flow path 6a of the side panel 6, and its temperature rises. That is, the heat transmitted to the side panel 6 in contact with the plurality of circuit boards 2 is absorbed by the refrigerant flowing through the flow path 6a of the side panel 6, and the temperature of the refrigerant rises. The refrigerant whose temperature has been increased in this way is sent out from the reservoir tank 31b and flows through the heat dissipation flow path of the radiator 32b, so that air is applied to the heat dissipation flow path of the radiator 32b through the plurality of blowers 34b. It is gradually cooled while flowing through the road.

以上のように、本実施形態によると、上述した第1の実施形態と同様の効果を奏することができることに加えて、2系統の独立した液冷ユニット30a、30bを設けたため、上述した第1の実施形態と比較して、動作の信頼性を高めることができる。つまり、一方の液冷ユニットがダウンした場合であっても、他方の液冷ユニットで回路基板2を冷やすことができ、電子部品が故障するような重大な不具合を防止することができる。   As described above, according to the present embodiment, in addition to being able to achieve the same effects as those of the first embodiment described above, two independent liquid cooling units 30a and 30b are provided. Compared with the embodiment, the operation reliability can be improved. That is, even when one of the liquid cooling units is down, the circuit board 2 can be cooled by the other liquid cooling unit, and a serious problem that an electronic component breaks down can be prevented.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、上述した実施形態では、冷媒を流通させる流路をサイドパネルに設けた場合について説明したが、これに限らず、各回路基板2に蛇腹状の流路を設けて冷媒を流通させるようにしても良い。   For example, in the above-described embodiment, the case where the flow path for circulating the refrigerant is provided in the side panel has been described. However, the present invention is not limited to this. May be.

2…回路基板、4、6…サイドパネル、4a、6a…流路、8…フロントパネル、10…液冷シャシー、20、30a、30b…液冷ユニット、22、31a、31b…リザーバータンク、24、32a、32b…ラジエター、26、33a、33b…ポンプ、28、34a、34b…ブロアー。   2 ... Circuit board, 4, 6 ... Side panel, 4a, 6a ... Flow path, 8 ... Front panel, 10 ... Liquid cooling chassis, 20, 30a, 30b ... Liquid cooling unit, 22, 31a, 31b ... Reservoir tank, 24 32a, 32b ... radiator, 26, 33a, 33b ... pump, 28, 34a, 34b ... blower.

Claims (4)

それぞれ電子部品を実装した複数枚の回路基板を並べて取り付けた液冷シャシーであって、
冷媒を流通させるための少なくとも一部が蛇腹状の流路と、
この流路に流通させる冷媒を収容した容器と、
この容器内の冷媒を上記流路を通して流すためのポンプと、
上記流路の少なくとも一部に風を当てて当該流路を流れる冷媒を冷やす送風装置と、
を一体に備えた液冷シャシー。
A liquid-cooled chassis in which a plurality of circuit boards each mounted with electronic components are mounted side by side,
At least a portion of the bellows-shaped flow path for circulating the refrigerant;
A container containing a refrigerant to be circulated through the flow path;
A pump for flowing the refrigerant in the container through the flow path;
A blower that cools the refrigerant flowing through the flow path by applying wind to at least a part of the flow path;
A liquid-cooled chassis with an integrated body.
上記蛇腹状の流路は、少なくとも、上記複数枚の回路基板が接触した当該液冷シャシーの吸熱部材に沿って配置されている請求項1の液冷シャシー。   The liquid cooling chassis according to claim 1, wherein the bellows-shaped flow path is disposed along at least a heat absorbing member of the liquid cooling chassis in contact with the plurality of circuit boards. 上記流路は、上記複数枚の回路基板が接触した当該液冷シャシーの吸熱部材に沿って蛇腹状に配置された吸熱流路と、当該液冷シャシーの放熱部材に沿って蛇腹状に配置された放熱流路と、を含み、
上記送風装置は、上記放熱流路に対向して配置されている請求項1の液冷シャシー。
The flow path is arranged in an accordion shape along the heat absorption member of the liquid cooling chassis in contact with the plurality of circuit boards, and is arranged in an accordion shape along the heat dissipation member of the liquid cooling chassis. A heat dissipation channel,
The liquid cooling chassis according to claim 1, wherein the air blower is disposed to face the heat radiating channel.
それぞれ電子部品を実装した複数枚の回路基板を並べて取り付けた液冷シャシーであって、
上記複数枚の回路基板の一端辺が接触した当該液冷シャシーの第1の吸熱部材に沿って蛇腹状に配置された第1の吸熱流路と、
この第1の吸熱流路に連絡して上記第1の吸熱部材に隣接する当該液冷シャシーの放熱部材に沿って蛇腹状に配置された第1の放熱流路と、
上記第1の吸熱流路および上記第1の放熱流路に流通させる第1の冷媒を収容した第1の容器と、
この第1の容器内の上記第1の冷媒を上記第1の吸熱流路および上記第1の放熱流路を通して流すための第1のポンプと、
上記第1の放熱流路の少なくとも一部に風を当てて当該第1の放熱流路を流れる上記第1の冷媒を冷やす第1の送風装置と、
上記第1の吸熱部材と反対側で上記複数枚の回路基板の他端辺が接触した当該液冷シャシーの第2の吸熱部材に沿って蛇腹状に配置された第2の吸熱流路と、
この第2の吸熱流路に連絡して上記放熱部材に沿って蛇腹状に配置された第2の放熱流路と、
上記第2の吸熱流路および上記第2の放熱流路に流通させる第2の冷媒を収容した第2の容器と、
この第2の容器内の上記第2の冷媒を上記第2の吸熱流路および上記第2の放熱流路を通して流すための第2のポンプと、
上記第2の放熱流路の少なくとも一部に風を当てて当該第2の放熱流路を流れる上記第2の冷媒を冷やす第2の送風装置と、
を一体に備えた液冷シャシー。
A liquid-cooled chassis in which a plurality of circuit boards each mounted with electronic components are mounted side by side,
A first endothermic flow path disposed in a bellows shape along the first endothermic member of the liquid cooling chassis with which one end sides of the plurality of circuit boards are in contact;
A first heat dissipating channel disposed in a bellows shape along the heat dissipating member of the liquid cooling chassis adjacent to the first heat absorbing member in communication with the first heat absorbing channel;
A first container containing a first refrigerant to be circulated through the first heat absorption channel and the first heat radiation channel;
A first pump for flowing the first refrigerant in the first container through the first heat absorption channel and the first heat dissipation channel;
A first blower that cools the first refrigerant flowing through the first heat radiation channel by applying wind to at least a part of the first heat radiation channel;
A second endothermic flow path disposed in a bellows shape along the second endothermic member of the liquid-cooled chassis in which the other end sides of the plurality of circuit boards are in contact with each other on the side opposite to the first endothermic member;
A second heat dissipating channel arranged in a bellows shape along the heat dissipating member in communication with the second heat absorbing channel;
A second container containing a second refrigerant to be circulated through the second heat absorption channel and the second heat radiation channel;
A second pump for flowing the second refrigerant in the second container through the second heat absorption channel and the second heat dissipation channel;
A second blower that cools the second refrigerant flowing through the second heat radiation channel by applying air to at least a part of the second heat radiation channel;
A liquid-cooled chassis with an integrated body.
JP2010288734A 2010-12-24 2010-12-24 Liquid cooling chassis Active JP5537404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288734A JP5537404B2 (en) 2010-12-24 2010-12-24 Liquid cooling chassis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288734A JP5537404B2 (en) 2010-12-24 2010-12-24 Liquid cooling chassis

Publications (2)

Publication Number Publication Date
JP2012138426A true JP2012138426A (en) 2012-07-19
JP5537404B2 JP5537404B2 (en) 2014-07-02

Family

ID=46675626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288734A Active JP5537404B2 (en) 2010-12-24 2010-12-24 Liquid cooling chassis

Country Status (1)

Country Link
JP (1) JP5537404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793676A (en) * 2016-11-24 2017-05-31 新乡航空工业(集团)有限公司 A kind of liquid cooling system integrated liquid feed device bellows-type liquid reserve tank
CN112616301A (en) * 2020-12-28 2021-04-06 关红霞 Frequency converter capable of preventing high-temperature damage and using method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245892U (en) * 1985-08-16 1987-03-19
FR2624684A1 (en) * 1987-12-11 1989-06-16 Spie Batignolles Method and device for cooling electrical panels
US5057968A (en) * 1989-10-16 1991-10-15 Lockheed Corporation Cooling system for electronic modules
JP2000323910A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Cooling structure for antenna device
JP2003218571A (en) * 2002-01-18 2003-07-31 Sumitomo Precision Prod Co Ltd Cooling device and manufacturing method therefor
US20030147214A1 (en) * 2002-02-05 2003-08-07 Patel Chandrakant D. Method and apparatus for cooling heat generating components
JP2004247574A (en) * 2003-02-14 2004-09-02 Denso Corp Substrate cooling device
DE102009001723A1 (en) * 2009-03-20 2010-09-23 Glasemann Systems Gmbh Cooling system for electronic device in motor vehicle i.e. high-speed aircraft, has air-guiding system guiding ambient air via cold side of heat exchanger, where cooling fluid passes through warmer side of heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245892U (en) * 1985-08-16 1987-03-19
FR2624684A1 (en) * 1987-12-11 1989-06-16 Spie Batignolles Method and device for cooling electrical panels
US5057968A (en) * 1989-10-16 1991-10-15 Lockheed Corporation Cooling system for electronic modules
JP2000323910A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Cooling structure for antenna device
JP2003218571A (en) * 2002-01-18 2003-07-31 Sumitomo Precision Prod Co Ltd Cooling device and manufacturing method therefor
US20030147214A1 (en) * 2002-02-05 2003-08-07 Patel Chandrakant D. Method and apparatus for cooling heat generating components
JP2004247574A (en) * 2003-02-14 2004-09-02 Denso Corp Substrate cooling device
DE102009001723A1 (en) * 2009-03-20 2010-09-23 Glasemann Systems Gmbh Cooling system for electronic device in motor vehicle i.e. high-speed aircraft, has air-guiding system guiding ambient air via cold side of heat exchanger, where cooling fluid passes through warmer side of heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793676A (en) * 2016-11-24 2017-05-31 新乡航空工业(集团)有限公司 A kind of liquid cooling system integrated liquid feed device bellows-type liquid reserve tank
CN112616301A (en) * 2020-12-28 2021-04-06 关红霞 Frequency converter capable of preventing high-temperature damage and using method thereof
CN112616301B (en) * 2020-12-28 2022-12-06 厦门巨创科技有限公司 Frequency converter capable of preventing high-temperature damage and using method thereof

Also Published As

Publication number Publication date
JP5537404B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US7826217B2 (en) Cooling device and electronic apparatus using the same
US8081463B2 (en) Water-cooled communication chassis
US11116110B2 (en) Computer server
US7940524B2 (en) Remote cooling of a phased array antenna
US9696094B2 (en) Cooling unit
JP6369004B2 (en) Electronics
US9357676B2 (en) Cooling device and electronic apparatus
JP6308207B2 (en) Electronic device and cooling device
JPWO2015107899A1 (en) Cooling device and electronic device
JP2009512218A (en) Cross-flow surplus air cooling method for highly reliable electronic equipment
JP5537404B2 (en) Liquid cooling chassis
US20200128690A1 (en) Electronic device
US20130020058A1 (en) Cooling unit
KR20190131073A (en) Cooling structures, cooling systems, heating devices and structures
CN105073504A (en) Electronic device for vehicle
US20160360641A1 (en) Electronic device
US20100139891A1 (en) Radiator and cooling unit
CA2734925A1 (en) Aircraft signal computer system having a plurality of modular signal computer units
JP2014192229A (en) Electronic controller for vehicle
CN107949236B (en) A kind of synthesis heat-exchanger rig based on conduction
CN211617603U (en) Vehicle-mounted computing device and automatic driving vehicle
KR20180108109A (en) Temperature regulating moduleincluding thin heat pipe and mobile terminal using the same
US20130020057A1 (en) Cooling unit
CN114138082A (en) Heat dissipation system and server system
KR20210134766A (en) Cooling of electrical components using electrohydrodynamic flow units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R151 Written notification of patent or utility model registration

Ref document number: 5537404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151