JP2012137183A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2012137183A5 JP2012137183A5 JP2012031050A JP2012031050A JP2012137183A5 JP 2012137183 A5 JP2012137183 A5 JP 2012137183A5 JP 2012031050 A JP2012031050 A JP 2012031050A JP 2012031050 A JP2012031050 A JP 2012031050A JP 2012137183 A5 JP2012137183 A5 JP 2012137183A5
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic
- circuit
- breakage
- stop valve
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Description
本発明は、水門、建設機械、産業機械などを駆動する油圧シリンダ、油圧モータ等の油圧駆動装置(以下、油圧シリンダと記載する場合もある。)の油圧回路、この油圧回路に用いられる止弁、および油圧回路の保守方法に関する。 The present invention relates to a hydraulic circuit of a hydraulic drive device (hereinafter sometimes referred to as a hydraulic cylinder) such as a hydraulic cylinder and a hydraulic motor for driving a sluice, a construction machine, an industrial machine, etc., and a stop valve used in the hydraulic circuit And a maintenance method of the hydraulic circuit.
従来から、上記の油圧シリンダに接続される給排管の途中に設けられた止弁を開閉して、シリンダの駆動や給排管およびシリンダ内の空気抜きや作動油の充填をする油圧回路が公知である。 2. Description of the Related Art Conventionally, a hydraulic circuit that opens and closes a stop valve provided in the middle of a supply / discharge pipe connected to the hydraulic cylinder and drives the cylinder, vents and discharges air from the cylinder and fills hydraulic oil is known. It is.
例えば、特許文献1に開示された流体圧回路は、油圧シリンダに一対の作動油の給排用のポートを設け、これらを一対のポートのうちの一方のポートと油圧ポンプの吐出口とを第1ポペット弁を介して接続するとともに、他方のポートとドレン回路とを第2ポペット弁を介して接続している。このような構成により、第1ポペット弁および第2ポペット弁を開閉して油圧シリンダの駆動や給排管およびシリンダ内の空気抜きや作動油の充填を実施する。 For example, in the fluid pressure circuit disclosed in Patent Document 1, a pair of hydraulic oil supply / discharge ports is provided in a hydraulic cylinder, and one of the pair of ports and a discharge port of the hydraulic pump are connected to each other. While connecting via a 1 poppet valve, the other port and a drain circuit are connected via a 2nd poppet valve. With such a configuration, the first poppet valve and the second poppet valve are opened and closed, and the hydraulic cylinder is driven, the air supply / discharge pipe, the air is discharged from the cylinder, and the hydraulic oil is filled.
しかしながら、特許文献1に開示された流体圧回路構造は、地震などの災害や老朽化などによって給排管に破損の疑いがあった場合でも、給排管の端から端まで全てを目視検査する必要があった。特に水門の駆動装置など大規模な用途に用いられる場合は、給排管も長距離に亘り、場合によっては埋設配管となる事もあるため、給排管全体を検査すると非常に手間や時間が掛かってしまう問題があった。また、給排管およびシリンダ内の空気抜きや作動油の充填をする際は、長い給排管に作動油を充填させているため、予め回路内に滞留していた空気が油に混入し、シリンダなどの作動に不具合を招く。また、油タンクに帰還した作動油に混入した空気によってキャビテーションの発生を防止するため、帰還させた作動油から空気を抜くことが必要となり、その分手間や時間が掛かってしまう問題があった。 However, the fluid pressure circuit structure disclosed in Patent Document 1 is visually inspected from end to end of the supply / exhaust pipe even when there is a suspicion of damage to the supply / exhaust pipe due to a disaster such as an earthquake or aging. There was a need. In particular, when used for large-scale applications such as sluice gates, the supply and discharge pipes can be long distances and in some cases buried pipes. There was a problem of hanging. Also, when venting the air in the supply / exhaust pipe and cylinder or filling the hydraulic oil, the hydraulic oil is filled in the long supply / exhaust pipe. Cause malfunctions. Further, in order to prevent the occurrence of cavitation due to the air mixed in the hydraulic oil returned to the oil tank, it is necessary to remove the air from the returned hydraulic oil.
本発明は、上記の問題を鑑みてされたものであり、給排管を複数の区間回路に区切ることによって、給排管に生じた異常の検査、および給排管の空気抜きや作動油の充填などの保守を手間無く短時間ですることができる油圧回路と、それに用いられる止弁と、油圧回路の破損個所特定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and by dividing the supply / exhaust pipe into a plurality of section circuits, it is possible to inspect abnormalities occurring in the supply / exhaust pipe, and to vent the supply / exhaust pipe and to fill hydraulic fluid. It is an object of the present invention to provide a hydraulic circuit capable of performing maintenance such as a trouble-free operation in a short time, a stop valve used therefor, and a method for identifying a damaged part of the hydraulic circuit.
本発明の第1の油圧回路の破損箇特定方法は、水門、産業機械などの被作動装置を駆動する油圧駆動装置と、前記油圧駆動装置に作動圧油を給排する給排管と、前記給排管に複数個設けてあり開閉機能を備えた止弁と、前記止弁で形成される区間回路と、より構成し、前記区間回路の下流側の止弁を閉弁して破損検査区域を構成する破損検査区域構成工程と、前記破損検査区域構成工程で構成した破損検査区域に作動圧油を供給し前記破損検査区域内を加圧保持する工程と、前記工程で圧力を保持した破損検査区域の上流側の止弁を閉鎖した後の破損検査区域の圧力降下度合いを測定し破損の有無を検出する破損箇所検出工程と、より構成したことを特徴とする。 Damage箇particular method of the first hydraulic circuit of the present invention, sluices, a hydraulic driving device for driving an object to be operated device, such as industrial machinery, and feed and discharge pipe that Hythe feeding the hydraulic pressure oil to the hydraulic drive system, a check valve provided with a Yes-off function provided plurality in the supply and discharge line, a section circuit formed by the check valve, and more constructed, broken and closes the lower stream side of the valve of the section circuit and damage examination zone configuration step of configuring the examination zone, and as engineering for the damage examination zone configuration Engineering enough to supply hydraulic oil to the damage test area configured by pressure holding the broken examination area, as before climate a damaged portion detecting step of detecting the presence or absence of the measured breakage eye pressure drop of the damage test area after closing the upstream side of the check valve failure test ku region to maintain the pressure in, the kite more configuration Features.
本発明の第2の油圧回路の破損箇特定方法は、水門、産業機械などの被作動装置を駆動する油圧駆動装置と、前記油圧駆動装置に作動圧油を給排する給排管と、前記給排管に複数個設けてあり開閉機能を備えた止弁と、前記止弁で形成される区間回路と、前記区間回路に連通する多目的ポートとより構成し、前記区間回路の最下流側の止弁を遮断して破損検査区域を構成する破損検査区域構成工程と、前記破損検査区域構成工程で構成した破損検査区域に作動圧油を供給し前記破損検査区域内を加圧保持する工程と、前記工程で圧力を保持した破損検査区域の上流側の止弁を閉鎖した後破損検査域内の圧力が一定時間後の圧力の降下度合を前記多目的ポートを介して測定し破損の有無を検出する破損箇所検出工程と、より構成したことを特徴とする。According to a second method of identifying a failure in a hydraulic circuit of the present invention, a hydraulic drive device that drives an actuated device such as a sluice or an industrial machine, a supply / discharge pipe that supplies / discharges hydraulic pressure oil to / from the hydraulic drive device, A plurality of stop valves provided on the supply and discharge pipes and having an opening / closing function, a section circuit formed by the stop valves, and a multi-purpose port communicating with the section circuit, on the most downstream side of the section circuit A breakage inspection area forming step for blocking a stop valve to form a breakage inspection area; and a step of supplying hydraulic pressure oil to the breakage inspection area configured in the breakage inspection area forming step to pressurize and hold the inside of the breakage inspection area; After closing the stop valve on the upstream side of the damage inspection area where the pressure is maintained in the above process, the pressure in the damage inspection area is measured through the multipurpose port to detect the degree of pressure drop after a certain time, and the presence or absence of damage is detected. It is composed of a damaged part detection process and more To.
本発明の第3の油圧回路の破損箇特定方法は、水門、産業機械などの被作動装置を駆動する油圧駆動装置と、前記油圧駆動装置に作動圧油を給排する給排管と、前記給排管に複数個設けてあり開閉機能を備えた止弁と、前記止弁で形成される区間回路と、前記区間回路に連通する多目的ポートとより構成し、前記区間回路の下流側の止弁と上流側止弁を閉弁して破損検査区域を構成する破損検査区域構成工程と、前記破損検査区域構成工程で構成した破損検査区域に作動圧油を前記多目的ポートを介して供給し前記破損検査区域内を加圧して保持する工程と、前記工程で圧力を保持した破損検査区域の圧力の降下度合を測定し破損の有無を検出する破損箇所検出工程と、より構成したことを特徴とする。The third hydraulic circuit breakage identification method according to the present invention includes a hydraulic drive device that drives an actuated device such as a sluice, an industrial machine, a supply / discharge pipe that supplies and discharges hydraulic pressure oil to and from the hydraulic drive device, A plurality of stop valves provided on the supply and discharge pipes and having an opening / closing function, a section circuit formed by the stop valves, and a multipurpose port communicating with the section circuit, are provided on the downstream side of the section circuit. A breakage inspection area forming step for forming a breakage inspection area by closing the valve and the upstream stop valve, and supplying hydraulic pressure oil to the breakage inspection area configured in the breakage inspection area forming step via the multipurpose port. A process of pressurizing and holding the inside of the breakage inspection area, and a breakage point detection process for measuring the degree of pressure drop in the breakage inspection area where the pressure was held in the above process and detecting the presence or absence of breakage. To do.
本発明の油圧回路の破損箇特定方法は、給排管に破損検査区域構成工程で破損検査区域を構成してこの破損検査区域を加圧した状態に保持して検査可能とする圧力を保持する工程と、この工程で圧力が保持された破損検査区域の圧力の一定時間内の圧力降下を測定する破損個所検出工程を有するので、給排管の任意の場所に破損検査区域を構成して破損を認識でき、給排管の破損箇所を重点的に検査することが可能であり、破損箇所を早く特定できるので破損個所に対する修理や対応を早くすることができる。 According to the method for identifying a breakage of a hydraulic circuit according to the present invention , a breakage inspection area is formed in a supply / exhaust pipe in a breakage inspection area forming step, and the damage inspection area is maintained in a pressurized state to maintain a pressure enabling inspection. Since there is a failure location detection process that measures the pressure drop within a certain time of the pressure of the failure inspection area where the pressure is maintained in this process, the failure inspection area is configured at any place of the supply and exhaust pipe and damaged It is possible to recognize the damaged portion of the supply / exhaust pipe intensively, and the damaged portion can be identified quickly, so that repair and response to the damaged portion can be accelerated.
以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。尚、上流側とは作動油が供給される側であり、下流側は作動油が帰還する側とする。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The upstream side is a side to which hydraulic oil is supplied, and the downstream side is a side to which the hydraulic oil returns.
図1および図2に示すように、本実施形態に係る油圧回路1は、水門、産業機械の作動装置を駆動する油圧駆動装置50(以下、油圧シリンダ50と記載する。)と、油圧シリンダ50を作動させる作動油を吐出する油圧源34(以下ポンプ34と記載する。)と、このポンプ34の吐出側に接続した方向切替弁37と油圧シリンダ50を接続する給排管35と、油圧シリンダ50に接続して油圧シリンダ50の作動油が方向切替弁37を経て油タンク30に帰還する給排管36と、を備え前記方向切替弁37は、油圧シリンダ50への作動油の給排方向を操作してその作動方向を制御する。また、前記給排管35と給排管36、に設けた止弁10は、給排管35、36を複数の区間に分割して区間回路を構成する。尚、この区間回路は、給排管35側の区間回路を符号21にアルファベッドを添え字して示し、給排管36側の区間回路を符号22にアルファベッドを添え字して示す。
As shown in FIGS. 1 and 2, the hydraulic circuit 1 according to the present embodiment includes a hydraulic drive device 50 (hereinafter referred to as a hydraulic cylinder 50) that drives an operating device of a sluice or industrial machine, and a
また、本実施形態に係る油圧回路1の給排管35、36の区間回路21c22cを構成するホース35a、36aは、給排管35、36が地震などでずれたときそのずれを吸収して給排管35、36の破損を回避するために設けてある。前記給排管35に設けたホース35aの両端には止弁10cと止弁10dが設けてあり、この止弁10cと止弁10dを閉鎖することでホース35aが破損あるいは老朽化による交換を可能にしている。なお、前記給排管36に設けたホース36aも同様であるから説明を省き必要に応じて説明する。
Further, the
また、『保守』とは、地震などの災害時において油圧回路1の災害や老朽化による給排管35、36の破損など、油圧回路1に生じた異常を検査する異常検査と工事終了後の作動油を油圧回路1内に充満させる、あるいは汚れた油を入れ替えたりする給排管の空気抜き・作動油の充填とを少なくとも含んでおり、給排管、ポンプ34、油圧シリンダ50を正常に作動させるための全てを含むものである。
“Maintenance” refers to an abnormality inspection for inspecting an abnormality occurring in the hydraulic circuit 1 such as a disaster of the hydraulic circuit 1 or damage to the supply and
給排管35、36は、油タンク30の作動油を吸引し加圧して作動油として吐出するポンプ34と油タンク30に接続した方向切替弁37に接続しており、この方向切替弁37がポジション37aに操作されると、給排管35、36が作動油の供給回路と排出回路となり、ポジション37cに操作されると給排管36、35が作動油の排出回路と供給回路となる。さらに、ポジション37bに操作されると給排管35、36を閉鎖する。
Supply and
また、給排管35に設けた複数の止弁10で区画される区間回路21は、止弁10a〜10eで構成した区間回路21a〜21dと、止弁10eと多機能弁60で構成した区間回路21eとを備えている。同様に給排管36に複数の止弁10で区画した区間回路22は、止弁10k〜10fで構成した区間回路22a〜22dと、止弁10fと多機能弁60で構成した区間回路22eを備えている。なお、区間回路21c、22cは、説明の都合上ホース35a、36aと記載する場合もある。(なお、特定の区間回路を表示する場合は、区間回路21と22にアルファベッドを添え字して示すが、そうでない場合、区間回路21、22として説明する場合がある。)
The section circuit 21 defined by the plurality of stop valves 10 provided in the supply /
止弁10は、図2(a)に示すように、給排管35、36が接続され弁本体15内の弁座17に当接する弁体19を備えており、弁座17に弁体19を当接させることでポート18bとポート18bの間を遮断する。この弁体19がポート18bとポート18bの間を遮断すると給排管35、36が遮断されるので、給排管35、36に任意の区間回路21、22を構成する。弁体19がポート18aとポート18bを連通すると給排管35、36が給排管を構成する。(尚、止弁10の連通を「開弁」遮断を「閉弁」と記載する場合もある、また、止弁10は左右対称形であるから左右を特定する場合等では同一数字符号にアルファベッドを添えて表す場合がある。)
As shown in FIG. 2A, the stop valve 10 includes a valve body 19 that is connected to the supply /
また、図2(a)に示す止弁10の弁本体15の左右方向における一方の端部には、給排管35(または給排管36)が接続するポート18aとポート18bが形成されている。そして、弁本体15の中心部には、弁座17を備えポート18aとポート18bとを連通する流路16が設けてある。この流路16の弁座17には、流路16と同一軸線上であり、把持部11が固定され、この把持部11で回転させると上下動する回転軸12により上下する弁体19が当接可能に設けてあり、回転軸12を回転させて弁体19を弁座17に当接させるとポート18aとポート18bの間を遮断し、回転軸12により弁体19が弁座17から離されると、ポート18aとポート18bの間が連通する機能を有し、ポート18a、18bに連通する多目的ポート13a,13bを備えている。 Further, a port 18a and a port 18b to which the supply / exhaust pipe 35 (or supply / exhaust pipe 36) is connected are formed at one end in the left-right direction of the valve body 15 of the stop valve 10 shown in FIG. Yes. At the center of the valve main body 15, a flow path 16 that includes a valve seat 17 and communicates the port 18a and the port 18b is provided. The valve seat 17 of this flow path 16 is on the same axis as the flow path 16, and a gripping part 11 is fixed, and when rotated by this gripping part 11, a valve body 19 that moves up and down by a rotary shaft 12 that moves up and down is abutted. When the rotary shaft 12 is rotated to bring the valve body 19 into contact with the valve seat 17, the port 18 a and the port 18 b are disconnected, and the rotary shaft 12 separates the valve body 19 from the valve seat 17. The port 18a and the port 18b communicate with each other, and the multipurpose ports 13a and 13b communicate with the ports 18a and 18b.
前記多目的ポート13aは、弁本体15のポート18aの分岐流路14aに自封機能を有する継手40aを取り付けた構成である。この継手40aの自封機能は、図2(b)に示す接続金具70の接続金具本体71が接続された時のみ開封する構成である。この多目的ポート13aに接続金具本体71が接続されない状態では、キャップ55aにより保護されている。同様に多目的ポート13bは、弁本体15のポート18bの分岐流路14bに自封機能を有する継手40bを取り付けた構成である。この継手40bの自封機能は、接続金具70の接続金具本体71が接続されたときのみ開封する構成である。この多目的ポート13aに接続金具本体71が接続されない状態ではキャップ55bにより保護されている。尚、継手40a、40bおよびキャップ55は、図2(b)に示すような同一構成であるから、継手およびキャップを特定する場合は、継手40及びキャップ55の数字にアルファベッドを添え字して示すが、そうでない場合、数字のみにて説明する場合がある。 The multipurpose port 13a has a structure in which a joint 40a having a self-sealing function is attached to the branch flow path 14a of the port 18a of the valve body 15. This self-sealing function of the joint 40a is configured to open only when the connection fitting main body 71 of the connection fitting 70 shown in FIG. 2B is connected. In a state where the connection fitting main body 71 is not connected to the multipurpose port 13a, the multipurpose port 13a is protected by the cap 55a. Similarly, the multipurpose port 13b has a structure in which a joint 40b having a self-sealing function is attached to the branch flow path 14b of the port 18b of the valve body 15. The self-sealing function of the joint 40b is configured to open only when the connection fitting main body 71 of the connection fitting 70 is connected. When the connection fitting main body 71 is not connected to the multipurpose port 13a, the multipurpose port 13a is protected by the cap 55b. Since the joints 40a and 40b and the cap 55 have the same configuration as shown in FIG. 2B, when specifying the joint and the cap, an alpha bed is added to the numbers of the joint 40 and the cap 55. Although not shown, there may be cases where only numbers are used.
図2(b)に示す自封機能を有する継手40は、その本体43の下端に設けたネジ44で弁本体15の分岐流路14に取り付けられており、その内部に設けた流路49にバネ41で押し圧される球弁42(逆止弁であり自封機能を有する。)で分岐流路14に連通する流路49を閉鎖する。この継手40の内部に設けてあり、分岐流路14に接続する流路49は、上端が開放され接続金具70のロッド72が挿入される通路48を有している。継手40は、接続金具70が取付けられない状況では球弁42が流路49を封鎖している。したがって、止弁10が給排管35、または給排管36に設置されていても流路49を閉鎖したままであり油を放出しない。上記した自封機能の役割を果たす球弁42は、特に球弁42である必要性は無く例えば締切弁でも良い。(尚、継手40、接続金具70及びキャップ55は、左右の識別が必要な場合は符号にアルファベットを添えて表示する場合がある。)
A joint 40 having a self-sealing function shown in FIG. 2B is attached to the branch flow path 14 of the valve main body 15 with a screw 44 provided at the lower end of the main body 43, and a spring 49 is attached to the flow path 49 provided therein. A flow path 49 communicating with the branch flow path 14 is closed by a ball valve 42 (a check valve having a self-sealing function) pressed by 41. The flow path 49 provided inside the joint 40 and connected to the branch flow path 14 has a passage 48 in which the upper end is opened and the rod 72 of the connection fitting 70 is inserted. In the joint 40, the ball valve 42 blocks the flow path 49 in a situation where the connection fitting 70 is not attached. Therefore, even if the stop valve 10 is installed in the supply /
前記通路48の外周には、嵌合部47を設けてありこの嵌合部47の下方に連接してキャップ55または接続金具70を取り付けるためのネジ53を設けてあり、図2(a)はキャップ55が前記ネジ53に装着された状態である。 A fitting portion 47 is provided on the outer periphery of the passage 48, and a screw 53 for attaching the cap 55 or the connection fitting 70 is provided in a manner connected to the lower portion of the fitting portion 47, and FIG. The cap 55 is attached to the screw 53.
図2(b)に示す接続金具70は、接続金具本体71とこの接続金具本体71に固定されたホース75が固定される端体78を有しており、このホース75の通路74は、接続金具本体71に設けてあるロッド72の内部に設けてありその先端の山形凹部77に開放した通路76に接続しており、ロッド72の先端が球弁42を押し圧して開放した時流路49に連通する構成である。尚、接続金具本体71と端体78は、回転継手79により接続してあるので接続金具本体71を回転してもホース75が捩れない様に構成してある。 A connection fitting 70 shown in FIG. 2B has a connection fitting main body 71 and an end body 78 to which a hose 75 fixed to the connection fitting main body 71 is fixed. It is provided inside the rod 72 provided in the metal fitting body 71 and is connected to a passage 76 opened to the chevron-shaped recess 77 at the tip thereof. When the tip of the rod 72 presses the ball valve 42 and opens it, the channel 49 is opened. It is the structure which communicates. Since the connection fitting main body 71 and the end body 78 are connected by a rotary joint 79, the hose 75 is not twisted even if the connection fitting main body 71 is rotated.
接続金具本体71の内孔73は、本体43のネジ53に螺合する内ネジ81が設けてあると共に前記継手40の通路48に嵌合するロッド72が突設してあり、この内部孔73を本体43のネジ53にねじ込み接続すると球弁42が開かれ分岐流路14がホース75に接続される構成である。 The inner hole 73 of the connection fitting main body 71 is provided with an inner screw 81 that is screwed into the screw 53 of the main body 43 and a rod 72 that is fitted into the passage 48 of the joint 40. Is connected to the screw 53 of the main body 43 and the ball valve 42 is opened, and the branch flow path 14 is connected to the hose 75.
上述した接続金具本体71は、そのホース75の先端に圧力計、真空ポンプ、接続金具本体を接続して他の止弁10の継手40の多目的ポート13に接続して区間回路の迂回回路にする等、その目的に対応した機器を接続することで多彩な用途に使用することが出来る。尚、図2(a)において、多目的ポート13a、13bをポート18a、18bに連通するように弁体19の両側に設けた実施例を示したが、必要に応じて多目的ポート13a、13bのいずれか片方でも良い。
The connecting fitting main body 71 described above is connected to the
図1に示してあり、油タンク30にその吸引側が接続するポンプ34は、2つの歯車が噛み合うことによって回転し、油タンク30に収容された油を吸入し、方向切替弁37によって給排管35又は36へ吐出する。なお、ポンプ34は、歯車式ポンプに限らず、他種類のポンプを用いていてもよい。
The
水門、産業機械の被駆動装置を駆動する油圧シリンダ50は、シリンダ本体52内を長手方向に摺動自在に勘合されたピストンとこのビストンに固定してあるロッド51とで構成してあり、前記ピストンはシリンダ本体52内にヘッド側圧力室とロッド側圧力室を構成する。そして、このヘッド側圧力室に作動油が供給されるとロッド51は矢印Aの方向に作動し、ヘッド側圧力室に作動油が供給されると矢印Bの方向に作動する。尚、矢印A方向を伸張と記載し、矢印B方向を縮小と記載する場合もある。
A
また、油圧シリンダ50に設けてある多機能弁60は、給排管35、36と油圧シリンダ50との間を開閉する止弁62・63と、給排管35、36との間をバイパスする回路に向けた止弁61とを有する構成であり、止弁62、63の双方を閉弁すると、油圧シリンダ50をその位置に保持し、止弁62,63の一方を閉鎖して他方から作動油の圧力を作用させると閉弁した止弁の方の漏れを検出できる。また止弁61を連通することでバイパス回路を構成して給排管35、36のフラッシングを行うことが出来る機能を有する。これらの機能は、出願人が保有する特許第3696850号に詳細に記載してあるので詳細説明は省く。尚、本願発明の多機能弁60の止弁62、63および止弁61は、止弁10と同様の構成であり開閉機能を有する。
The
図1に示すように、油タンク30とポンプ34の吐出側および給排管35,36が接続する方向切替弁37は、3つのポジションを備えており、ポジション37bに操作すると給排管35をポンプ34の吐出側に接続し、給排管36を油タンク30に接続するので油圧シリンダ50が矢印A方向に作動する。また、ポジション37cに操作すると給排管36をポンプ34の吐出側に接続し、給排管35を油タンク30に接続するので油圧シリンダ50がB方向に作動する。さらに、ポジション37bに操作すると給排管35とポンプ34の吐出側および給排管36と油タンク30の間が閉鎖されるので、油圧シリンダ50が停止位置を保つ3つのポジションに操作することで油圧シリンダ50の作動を制御する。すなわち、ポジション37bに操作すると油圧シリンダ50のロッド51がA方向に作動し、ポジション37cに操作すると油圧シリンダ50のロッド51がB方向に作動し、ポジション37aに操作すると油圧シリンダ50のロッド51その位置で停止する。
As shown in FIG. 1, the
次に、本実施形態に係る油圧回路1の給排管35、36へ作動油を充填する作動油充填方法について説明する。
Next, a hydraulic fluid filling method for filling hydraulic fluid into the supply /
工事が終了した状態の油圧回路では、油圧回路1の給排管35、36に作動油が供給されていない状態であり、この状態で給排管の空気を排除しながら作動油を充填する順次作動油充填方法を有する油圧回路の保守方法について述べる。
In the hydraulic circuit in a state where the construction has been completed, the hydraulic oil is not supplied to the supply /
この順次作動油充填方法は図3(a)に示すように、まず前記複数の区間回路21a〜22a(尚、区間回路は、区間回路21a〜21eと区間回路22a〜22eを表す場合に短縮して区間回路21a〜22aと記載する場合もある。)の内区間回路の最上流側止弁10aと最下流側の止弁10kを閉じ他の全ての止弁10を開放して区間回路21a〜22aを作動油充填区域として構成する(作動油充填区域構成工程)。次に、方向切替弁37をポジション37bに操作して前記作動油充填区域構成工程で構成された作動油充填区域の上流側止弁10aの上流側にポンプ34の吐出作動油を供給した状態に保持し前記作動油充填区画に作動油を充填可能とする(充填作動油保持工程)。次に、前記区間回路21a〜22aで構成された作動油充填区域を最下流側の区間回路の止弁10kの多目的ポート13bに接続した真空ポンプ20により前記作動油充填区域の空気を吸引して作動油充填区域を真空に保持する充填準備が行われる(真空保持工程)。尚、前記した充填準備では前記の工程において「充填作動油保持工程」と「真空保持工程」とは入れ替わっても良い。また、「充填作動油保持工程」と「真空保持工程」は充填が終了するまで持続されるものである。
As shown in FIG. 3A, the sequential hydraulic oil filling method is first shortened to the plurality of
上述したように充填準備が完了した状態において、作動油充填区域の最上流側の作動油充填区間である区間回路21aへの作動油の充填についてのべる。図3(b)に示すように、区間回路21aの下流側の止弁10b閉じて充填区間を構成した後、給排管35の止弁10aを開くと、止弁10aの上流側に到達していた作動油が供給されて、区間回路21aで構成される充填区間への作動油の充填が、完了する。
In the state where the preparation for filling is completed as described above, the filling of the working oil into the
次に図4(a)に示すように次の作動油充填区間である区間回路21bへの作動油の充填する場合について述べる。止弁10bの上流側で充填作動油が保持されるので、区間回路21bの下流側の止弁10cを閉じた後その上流側の止弁10bを開くと区間回路21bへの充填が終了する。
Next, as shown in FIG. 4A, a case where hydraulic fluid is charged into the
図4(b)に示すように次の作動油充填区間である区間回路21cへの作動油の充填する場合について述べる、前記の充填により止弁10cの上流側で充填作動油が保持されるので、区間回路21cの下流側の止弁10dを閉じ区間回路21cを充填区間とした後止弁10cを開くと区間回路21cに作動油が充填される。
As shown in FIG. 4 (b), the case where the hydraulic circuit is filled into the
図5(a)に示すように次の作動油充填区間である区間回路21dへの作動油の充填する場合ついて述べる、前記の充填により止弁10dの上流側で充填作動油が保持されるので、区間回路21dの下流側の止弁10eを閉じ区間回路21dを充填区間とした後止弁10dを開くと区間回路21dに作動油が充填される。
As shown in FIG. 5 (a), the case where the hydraulic oil is filled into the
図5(b)に示すよう次の作動油充填区間である区間回路21eと油圧シリンダ50のヘッド側油圧室へ作動油の充填する場合ついて述べる。前記の充填により止弁10eの上流側で充填作動油が保持されるので、区間回路21eの下流側に設けてある多機能弁60の止弁61を閉じることで多機能弁60のバイパス回路を閉じ、多機能弁60の止弁62を開き区間回路21dと油圧シリンダ50のヘッド側圧力室を充填区間とした後、止弁10eを開くと区間回路21eと油圧シリンダ50のヘッド側圧力室に作動油が充填される。
As shown in FIG. 5B, the case where the hydraulic oil is filled into the
図6(a)に示すように次の作動油充填区間である区間回路22eとロッド側油圧室へ作動油の充填する場合ついて述べる。前記の充填により多機能弁60のバイパス回路の止弁61の上流側で充填作動油が保持されるので、区間回路22eの下流側の止弁10fを閉じ多機能弁60の止弁63を開き油圧シリンダ50のロッド側圧力室を充填区間とした後止弁10eを開くと区間回路21eと油圧シリンダ50のロッド側圧力室に作動油が充填される。
As shown in FIG. 6A, a case where the hydraulic oil is filled into the section circuit 22e, which is the next hydraulic oil filling section, and the rod side hydraulic chamber will be described. Since the filling hydraulic fluid is held on the upstream side of the
上述したように、作動油を充填した区間回路の次の区間回路の下流側の止弁を閉じた後作動油を充填した区間回路の下流側の止弁を開くことで区間回路に順次作動油を充填して、図6(b)に示すように作動油充填区間を区間回路21a〜22aとして構成して順次作動油を充填して区間回路22aの充填を終了した後最下流の止弁10kを連通させると、区間回路22a内の作動油が方向切替弁37を介して油タンク30に帰還することで図60(b)に示すように油圧回路1への作動油の充填が完了する。
As described above, after closing the stop valve on the downstream side of the section circuit next to the section circuit filled with hydraulic oil, the stop valve on the downstream side of the section circuit filled with hydraulic oil is opened to sequentially apply the hydraulic oil to the section circuit. As shown in FIG. 6B, the hydraulic oil filling section is configured as
上記の油圧回路1への作動油充填の保守方法によれば、給排管35、36内を真空ポンプ20で常に真空に保ちながら、作動油を充填させる区間回路を複数個の止弁によって順次進捗していくことにより、作動油を充填する際に作動油への空気の混入を非常に少なくすることができる。
According to the maintenance method for filling the hydraulic circuit 1 with hydraulic oil, the section circuit for filling the hydraulic oil is sequentially provided by a plurality of stop valves while the supply and
尚、上記の説明では、区間回路をその上流側から順次作動油を充填する方法を説明したが、区間回路を複数個まとめて充填するようにしてもよい。すなわち、図2(a)に示すように比較的単純な通路である区間回路21a〜22aを作動油充填区域として構成した後、区間回路21a〜21dを作動油充填区間として構成し、区間回路21aの上流側の止弁10aを開くと区間回路21a〜21dに作動油を供給することが出来る。
In the above description, the method of sequentially filling the section circuit from the upstream side with the hydraulic oil has been described. However, a plurality of section circuits may be filled together. That is, as shown in FIG. 2A, after
次に、油圧回路の破損箇特定方法について述べる。
図7(a)に示すように、油圧回路1における給排管35に破損部が発生した場合の破損部分検出方法について説明する。このような破損部は、例えば地震などの災害や老朽化などによって生じる。この場合、給排管35を流れる作動油は、この破損部から外部に流出し、油圧シリンダ50の動作不良(出力不足、作動停止、停止位置保持不良等)が発生する。そのため、どの部分が破損したかを早急に把握し、修理することが必要不可欠となってくる。そこで、本実施形態に係る油圧回路の破損箇特定方法の場合、先ず図7(b)に示すように、全ての止弁10を閉弁し、破損検査区域を構成する。次に方向切替弁37をポジション37bに操作して区間回路21aの上流側(止弁10aの上流側)にポンプ34の吐出する作動油を供給する。
Next, we describe the damaged箇particular method of a hydraulic circuit.
As shown in FIG. 7 (a), broken portion supplying and discharging
次に、図8(a)に示すように、区間回路21aの上流側の止弁10aのみを開弁し、破損検査区域の区間回路21aに方向切替弁37をポジション37bに操作することでポンプ34が吐出する作動油を作用させる。次に止弁10aを閉弁し区間回路21a内に圧力を保持する。次に止弁10aを閉弁した後から区間回路21aの圧力を止弁10aの多目的ポート13bに設けた圧力計45で測定した結果、一定時間経過の後の圧力降下が一定の値を超えなかったので、区間回路21aは、破損していないと判断する。
Next, as shown in FIG. 8 (a), it opens only upstream of the
次に、図8(b)に示すように、区間回路21a、21bの上流側の止弁10a、10bを開弁し、区間回路21a、21bを破損検査区域とし、方向切替弁37をポジション37bに操作することでポンプ34が吐出する作動油を区間回路21a、21bに作用さる。次に止弁10aを閉弁し区間回路21a、21b内に圧力を保持する。次に止弁10aを閉弁した直後から区間回路21aの圧力を止弁10aの多目的ポート13bに設けた圧力計45で測定した結果、一定時間経過の後の圧力降下が一定の値を超えなかったので、破区間回路21a、21bは破損していないと判断する。なお、圧力計45は、止弁10cの多目的ポート13aに設置した圧力計45に設置しても良い。
Next, as shown in FIG. 8B, the
次に、図9(a)に示すように、区間回路21a〜21cの上流側の止弁10a〜10cを開弁し、区間回路21a〜21cを破損検査区域とし、方向切替弁37をポジション37bに操作することでポンプ34が吐出する作動油を区間回路21a〜21cに作用させ、破損検査区域に圧力を保持する。次に止弁10aを閉弁し、その直後から区間回路21aの圧力を止弁10aの多目的ポート13bに設けた圧力計45で測定した結果、一定時間経過の後の圧力降下が一定の値を超えなかったので、破区間回路21a、21cは破損していないと判断する。なお、圧力計45は、止弁10cの多目的ポート13aに設置した圧力計45に設置しても良い。
Next, as shown in FIG. 9A, the
次に、図9(b)に示すように、区間回路21a〜21dの上流側の止弁10a〜10dを開弁し、区間回路21a〜21dを破損検査区域とし、方向切替弁37をポジション37bに操作することでポンプ34の吐出する作動油を区間回路21a〜21dに作用させ、破損検査区域に圧力を保持する。次に止弁10aを閉弁し、その直後から区間回路21aの圧力を止弁10aの多目的ポート13bに設けた圧力計45で測定する。その結果、一定時間経過の後の圧力降下が一定の値を超えたので区間回路21a〜21dに破損箇所があると判断する。しかし区間回路21a〜21cが破損していないと判断されているので区間回路21dに破損箇所があると特定できる。したがって、区間回路21dを精査して、破損箇所80が区間回路21に存在することが判明する。
Next, as shown in FIG. 9B, the
上記の油圧回路の破損箇特定方法によれば、方向切替弁37と油圧シリンダ50を接続する給排管35、36を複数の止弁10によって区間回路にする。そして、複数の止弁10によってつくられた区間ごとにポンプ34が吐出する作動油を順供給し封入して止弁10の多目的ポート13aに設けられた圧力計45によって給排管35、36内の圧力変化を順次計測していくことにより、各区間に生じた異常を検査することができる。つまり、圧力計45によって計測され圧力降下が一定時間の後の値が一定の値以内の場合は、その区間内には異常がなく、一方、圧力計45によって計測され圧力降下が一定の値以上の場合は、その区間内に異常が生じていることが分かる。この様に、短い区間ごとに異常を検査することができるため、例えば地震などの災害や老朽化などによって発生した排管35、36の破損を長い給排管全体を検査する必要がなく、その分の手間や時間を省くことができる。
According to the above-described method for identifying the breakage of the hydraulic circuit, the supply /
以上区間回路を順次破損を測定する方法の実施例を記載したが、破損が発生している可能性が大きいこと等が想定できる場合に特定の区間回路を優先して測定したい場合、例えば、区間回路21dの検査を優先する場合は、その最下流の止弁10eを閉弁し、区間回路21a〜21d破損検査区域にして、方向切替弁37をポジション37bに操作することでポンプ34が吐出する作動油を区間回路21a〜21dに充填する圧力保持工程で圧力を保持する。次に止弁10dを遮断の直後から区間回路21dの圧力を止弁10eの多目的ポート13aに設けた圧力計45で、一定時間経過の圧力降下が一定の値を超えるか否かを測定する破損検出工程で破損の有無を検出する、この方法によると区間回路21dを優先して検査することが出来る。
Although the embodiment of the method for measuring breakage of the section circuit sequentially has been described above, when it is possible to assume that there is a high possibility that the breakage has occurred, etc. When priority is given to the inspection of the
上述の説明の他に、給排管35、36の任意の連続した区間回路(例えば、区間回路21cと区間回路21d)の上流側の止弁10cと下流側の止弁10eを閉弁し、区間回路21dと区間回路21cを破損検査区域とし、前記止弁10cの多目的ポート13bに過般式油圧源などのポンプ34とは別の油圧源から圧力を作用させる圧力保持工程により検査可能にし、検査可能となった前記破損検査区域の一定時間内の圧力降下を測定しこの降下の値が一定の値に達したとき破損とする破損検知工程で破損を検出する方法がある。なお、この方法において、複数の区間回路を破損検査区域としたが、単数の区間回路を破損検査区域としても良い。
In addition to the above description, the
上述のようにして、油圧回路1の区間回路21dに破損が発見された場所を修理するときは、止弁10dの上流側の多目的ポート13aと止弁10e下流側の多目的ポート13bを接続することで区間回路21dを迂回する回路が構成できる。したがって、油圧シリンダ50にこの迂回回路81を介して作動油を供給できるので、油圧シリンダ50の作動を確保しながら修理を可能とする。さらに、止弁10の多目的ポート13bは、両サイドに一つ設ける構成としたが、2つ設ける構成として、その一方に圧力計を設置し他方に過般式の油圧源を接続すると、加圧しながら圧力測定が出来る。
As described above, when repairing a place where the
止弁10の多目的ポート13aは、区間回路内の圧力降下を測定する圧力計45の設置、区間回路に圧力を作用させるための可般式油圧源の設置、区間回路を迂回する迂回回路の設置、及び区間回路を修理する場合などにおいて区間回路に封入された圧力を解除するための装置の設置等が設置されるものであり、止弁10が区間回路を構成してその区間回路を部分的に検査、修理を行うために必要な機器を接続しえる効果をそなえている。 The multi-purpose port 13a of the stop valve 10 is provided with a pressure gauge 45 for measuring a pressure drop in the section circuit, a general hydraulic source for applying pressure to the section circuit, and a bypass circuit for bypassing the section circuit. In addition, in the case of repairing the section circuit, etc., installation of a device for releasing the pressure enclosed in the section circuit is installed, and the stop valve 10 constitutes the section circuit so that the section circuit is partially It has the effect of connecting equipment necessary for inspection and repair.
例えば、図10(a)に示すように、本発明の別の実施形態に係る止弁100は、ボール弁タイプの止弁である。具体的に、止弁100は、主体となる凸型の弁本体115と、弁本体115の上側から挿通された回転軸112と、弁本体115の両端に夫々設けられた一対の圧力検出ポート40と、を備えている。 For example, as shown in FIG. 10A, a stop valve 100 according to another embodiment of the present invention is a ball valve type stop valve. Specifically, the stop valve 100 includes a convex valve body 115 as a main body, a rotating shaft 112 inserted from above the valve body 115, and a pair of pressure detection ports 40 provided at both ends of the valve body 115, respectively. And.
弁本体115の左右方向における一方の端部には、油が流入するポート118aが形成されており、他方の端部には、油が流出するポート118bが形成されている。そして、弁本体115の中心内部には、通路116が形成された球弁119が設けられている。回転軸112の下端部は、球弁119と連結されており、回転軸112の上端部には、長尺状の把持部111がナット113によって固定設置されている。そして、把持部111が左右方向に回転することで回転軸112、球弁119も回転し、通路116がポート118aとポート118bとの間が開放、若しくは遮断する。 A port 118a through which oil flows is formed at one end in the left-right direction of the valve body 115, and a port 118b through which oil flows out is formed at the other end. A ball valve 119 in which a passage 116 is formed is provided in the center of the valve body 115. A lower end portion of the rotating shaft 112 is connected to a ball valve 119, and a long grip portion 111 is fixedly installed on the upper end portion of the rotating shaft 112 by a nut 113. Then, as the gripper 111 rotates in the left-right direction, the rotary shaft 112 and the ball valve 119 also rotate, and the passage 116 opens or blocks between the port 118a and the port 118b.
上記の構成を有する止弁100は、作業者によって手動で把持部111が右回りに回転されることによって、回転軸112と共に球弁119が右方向に回転し、ポート118aおよびート118bと、通路116と、が90度の角度で交差するようになる。これにより、流入ポート118aとポート118bとの間が遮断される。一方、作業者によって手動で把持部111が左回りに回転されることによって、回転軸112と共に球弁119が左方向に回転し、ポート118aおよびポート118bと、通路116と、が連通される。これにより、ポート118aとポート118bとの間が開放される。なお、多目的ポートの継手40は、図2(b)に示すものと同じであるため説明を割愛する。 In the stop valve 100 having the above-described configuration, when the grip portion 111 is manually rotated clockwise by the operator, the ball valve 119 is rotated clockwise together with the rotation shaft 112, and the port 118a and the port 118b are , The passage 116 intersects at an angle of 90 degrees. Thereby, between the inflow port 118a and the port 118b is interrupted | blocked. On the other hand, when the gripper 111 is manually rotated counterclockwise by the operator, the ball valve 119 is rotated in the left direction together with the rotating shaft 112, and the port 118a and the port 118b are communicated with the passage 116. Thereby, the space between the port 118a and the port 118b is opened. The multipurpose port joint 40 is the same as that shown in FIG.
また、図10(b)に示すように、本発明の別の実施形態に係る止弁150は、ボール弁タイプでモータ151の駆動によって外部から制御される止弁である。具体的に、止弁150は、主体となる凸型の弁本体165と、弁本体165の両端に夫々設けられた一対の多目的ポート13a、13bを備えている。 As shown in FIG. 10B, a stop valve 150 according to another embodiment of the present invention is a ball valve type and is a stop valve controlled from the outside by driving of a motor 151. Specifically, the stop valve 150 includes a convex valve body 165 as a main body and a pair of multipurpose ports 13a and 13b provided at both ends of the valve body 165, respectively.
また、凸型の弁本体165の上部には、支持部164によって固定設置されたコの字型のケース161が嵌め込まれており、ケース161の上面の中心部には、孔が形成されている。さらに、ケース161の上面には、外部からの遠隔操作で駆動するモータ151が設けられており、形成された孔からモータ151の回転軸153が挿通されている。なお、モータ151は、予め内部に油が密閉されている。そのため、油圧回路1が水門などの用途で、モータ151が水中に浸かった場合でも、モータ151の内部に水が入り込むことがなく、正常に駆動することができるようになっている。 In addition, a U-shaped case 161 fixedly installed by a support portion 164 is fitted into the upper portion of the convex valve body 165, and a hole is formed at the center of the upper surface of the case 161. . Furthermore, a motor 151 that is driven by a remote operation from the outside is provided on the upper surface of the case 161, and a rotating shaft 153 of the motor 151 is inserted through the formed hole. The motor 151 is previously sealed with oil. Therefore, even when the hydraulic circuit 1 is used for a water gate or the like and the motor 151 is immersed in water, water does not enter the motor 151 and can be driven normally.
モータ151の回転軸153は、連結解除部162を介して軸152と連結されており、モータ151の駆動によって回転軸153が回転し、軸152も回転する。なお、連結解除部162は、スパナなどの工具を用いて回転軸153と軸152の連結部を解除することができる。そのため、モータ151に異常があった場合などは、回転軸153と軸152の連結部を解除し、軸152を手動で回転させることができるようになっている。また、軸152は、バネ154によって付勢されており、回転軸153と軸152との連結部の外周には、円筒状のカバー163が被せられている。 The rotation shaft 153 of the motor 151 is connected to the shaft 152 via the connection release unit 162, and the rotation shaft 153 is rotated by the driving of the motor 151, and the shaft 152 is also rotated. In addition, the connection cancellation | release part 162 can cancel | release the connection part of the rotating shaft 153 and the axis | shaft 152 using tools, such as a spanner. For this reason, when there is an abnormality in the motor 151, the connecting portion between the rotating shaft 153 and the shaft 152 is released, and the shaft 152 can be manually rotated. The shaft 152 is urged by a spring 154, and a cylindrical cover 163 is covered on the outer periphery of the connecting portion between the rotating shaft 153 and the shaft 152.
弁本体165の左右方向における一方の端部には、ポート118aが形成されており、他方の端部には、ポート118bが形成されている。そして、弁本体165の中心内部には、通路156が形成された球弁159が設けられており、軸152の下端部は、球弁159と連結されている。モータ151が遠隔操作によって左右方向に回転することで回転軸153、軸152、球弁159が、左右方向に回転するようになっている。これらの回転によって、通路156がポート118aとポート118bとの間が開放、若しくは遮断されるようになっている。 A port 118a is formed at one end of the valve body 165 in the left-right direction, and a port 118b is formed at the other end. A ball valve 159 having a passage 156 is provided inside the center of the valve main body 165, and the lower end portion of the shaft 152 is connected to the ball valve 159. When the motor 151 is rotated in the left-right direction by remote operation, the rotating shaft 153, the shaft 152, and the ball valve 159 are rotated in the left-right direction. By these rotations, the passage 156 opens or blocks between the port 118a and the port 118b.
上記の構成を有する止弁150は、モータ151の駆動によって回転軸153および軸152が回転されることによって、軸152と共に球弁159が回転し、ポート118aおよびポート118bと、通路156と、が90度の角度で交差するようになる。これにより、ポート118aとポート118bとの間が遮断される。一方、モータ151の駆動によって回転軸153および軸152が回転されることによって、軸152と共に球弁159が回転し、ポート158aおよびポート158bと通路156とが連通される。これの継手40は、図2(b)に示すものと同じであるため説明を割愛する。 In the stop valve 150 having the above-described configuration, when the rotation shaft 153 and the shaft 152 are rotated by driving the motor 151, the ball valve 159 rotates together with the shaft 152, and the port 118a and the port 118b and the passage 156 are connected. It intersects at an angle of 90 degrees. Thereby, the port 118a and the port 118b are blocked. On the other hand, the rotating shaft 153 and the shaft 152 are rotated by driving the motor 151, whereby the ball valve 159 is rotated together with the shaft 152, and the port 158a and the port 158b and the passage 156 are communicated. Since this joint 40 is the same as that shown in FIG. 2B, the description thereof is omitted.
以上、本発明の実施例を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施形態に記載された、作用および効果は、本発明から生じる最も好適な作用および効果を列挙したに過ぎず、本発明による作用および効果は、本発明の実施形態に記載されたものに限定されるものではない。 The embodiments of the present invention have been described above, but only specific examples have been illustrated, and the present invention is not particularly limited. Specific configurations and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the present invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to things.
本発明は、水門の駆動装置や建設機械、産業機械などに使用される油圧回路について利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for hydraulic circuits used in sluice drive devices, construction machinery, industrial machinery, and the like.
1 油圧回路
10a〜10k 止弁
21a〜21e 区間回路
22a〜22e 区間回路
30 油タンク
34 ポンプ
35 給排管
35a ホース
36 給排管
36a ホース
37 方向切替弁
37a ポジション
37b ポジション
37c ポジション
50 油圧駆動装置(油圧シリンダ)
51 ロッド
52 シリンダ本体
60 多機能弁
61 止弁
62 止弁
63 止弁
1
51
Claims (3)
前記油圧駆動装置に作動圧油を給排する給排管と、
前記給排管に複数個設けてあり開閉機能を備えた止弁と、
前記止弁で形成される区間回路と、
より構成し、
前記区間回路の下流側の止弁を閉弁して破損検査区域を構成する破損検査区域構成工程と、
前記破損検査区域構成工程で構成した破損検査区域に作動圧油を供給し前記破損検査区域内に圧力を保持する工程と
前記工程で圧力を保持した破損検査区域の上流側の止弁を閉鎖した後の破損検査区域の圧力降下度合いを測定し破損の有無を検出する破損箇所検出工程と、
より構成したことを特徴とする油圧回路の破損個所特定方法。 A hydraulic drive that drives actuated devices such as sluices and industrial machinery;
A feed and discharge pipe that Hythe feeding the hydraulic pressure oil to the hydraulic drive system,
A plurality of stop valves provided on the supply and discharge pipes and having an opening and closing function ;
A section circuit formed by the check valve,
Comprising
And damage examination zone configuration steps constituting damage examination zone by closing the lower stream side of the stop valve before Symbol interval circuit,
Upstream of breakage test ku region to maintain the pressure in the pressure enough as before and climate engineering that holds the supply before SL hydraulic oil corruption examination zone configured in about corruption examination zone configuration Engineering the damage inspection zone a damaged portion detecting step of detecting the presence or absence of the measured breakage eye pressure drop of the damage test area after closing the side of the stop valve,
Damaged position identification method of a hydraulic circuit, characterized in that more configurations.
前記油圧駆動装置に作動圧油を給排する給排管と、A supply and discharge pipe for supplying and discharging hydraulic pressure oil to and from the hydraulic drive device;
前記給排管に複数個設けてあり開閉機能を備えた止弁と、A plurality of stop valves provided on the supply and discharge pipes and having an opening and closing function;
前記止弁で形成される区間回路と、A section circuit formed by the stop valve;
前記区間回路に連通する多目的ポートとA multi-purpose port communicating with the section circuit;
より構成し、Comprising
前記区間回路の下流側の止弁を閉弁して破損検査区域を構成する破損検査区域構成工程と、A damage inspection area constituting step of closing a stop valve on the downstream side of the section circuit to constitute a damage inspection area;
前記破損検査区域構成工程で構成した破損検査区域に作動圧油を供給し前記破損検査区域内を加圧保持する工程と、Supplying hydraulic pressure oil to the breakage inspection area configured in the breakage inspection area constituting step and pressurizing and holding the inside of the breakage inspection area; and
前記工程で圧力を保持した破損検査区域の上流側の止弁を閉鎖した後の破損検査域内の圧力の降下度合いを前記多目的ポートを介して測定し破損の有無を検出する破損箇所検出工程と、A breakage point detection step of measuring the degree of pressure drop in the breakage inspection area after closing the stop valve upstream of the breakage inspection area holding the pressure in the step, and detecting the presence or absence of breakage, and
より構成したことを特徴とする油圧回路の破損個所特定方法。A method for identifying a damaged part of a hydraulic circuit, characterized by comprising:
前記油圧駆動装置に作動圧油を給排する給排管と、A supply and discharge pipe for supplying and discharging hydraulic pressure oil to and from the hydraulic drive device;
前記給排管に複数個設けてあり開閉機能を備えた止弁と、A plurality of stop valves provided on the supply and discharge pipes and having an opening and closing function;
前記止弁で形成される区間回路と、A section circuit formed by the stop valve;
前記区間回路に連通する多目的ポートとA multi-purpose port communicating with the section circuit;
より構成し、Comprising
前記区間回路の下流側の止弁と上流側止弁を閉弁して破損検査区域を構成する破損検査区域構成工程と、A damage inspection area configuration step of closing a stop valve and an upstream stop valve on the downstream side of the section circuit to configure a damage inspection area;
前記破損検査区域構成工程で構成した破損検査区域に作動圧油を前記多目的ポートを介して供給し前記破損検査区域内を加圧して保持する工程とSupplying hydraulic pressure oil to the breakage inspection area configured in the breakage inspection area forming step through the multi-purpose port and pressurizing and holding the inside of the breakage inspection area;
前記工程で圧力を保持した破損検査区域の圧力の降下度合を測定し破損の有無を検出する破損箇所検出工程と、A breakage point detection step of measuring the pressure drop in the breakage inspection area holding the pressure in the step and detecting the presence or absence of breakage;
より構成したことを特徴とする油圧回路の破損個所特定方法。A method for identifying a damaged part of a hydraulic circuit, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012031050A JP5550666B2 (en) | 2010-04-06 | 2012-02-15 | How to identify damaged parts of hydraulic circuit |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010088066 | 2010-04-06 | ||
JP2010088066 | 2010-04-06 | ||
JP2012031050A JP5550666B2 (en) | 2010-04-06 | 2012-02-15 | How to identify damaged parts of hydraulic circuit |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011082897A Division JP5002715B2 (en) | 2010-04-06 | 2011-04-04 | Stop valve for hydraulic circuit |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012137183A JP2012137183A (en) | 2012-07-19 |
JP2012137183A5 true JP2012137183A5 (en) | 2014-05-08 |
JP5550666B2 JP5550666B2 (en) | 2014-07-16 |
Family
ID=45321435
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011082897A Active JP5002715B2 (en) | 2010-04-06 | 2011-04-04 | Stop valve for hydraulic circuit |
JP2012031051A Expired - Fee Related JP5619047B2 (en) | 2010-04-06 | 2012-02-15 | Hydraulic circuit filling method for hydraulic circuit |
JP2012031050A Expired - Fee Related JP5550666B2 (en) | 2010-04-06 | 2012-02-15 | How to identify damaged parts of hydraulic circuit |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011082897A Active JP5002715B2 (en) | 2010-04-06 | 2011-04-04 | Stop valve for hydraulic circuit |
JP2012031051A Expired - Fee Related JP5619047B2 (en) | 2010-04-06 | 2012-02-15 | Hydraulic circuit filling method for hydraulic circuit |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP5002715B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6077901B2 (en) | 2012-04-05 | 2017-02-08 | 株式会社ユーテック | Hydraulic circuit and composite valve used in the hydraulic circuit |
CN103557194B (en) * | 2013-11-01 | 2015-10-28 | 中国重汽集团济南动力有限公司 | Hydraulic transmission pipeline of clutch exhaust valve complement |
CN104121253B (en) * | 2014-06-27 | 2016-03-16 | 河海大学常州校区 | A kind of hydraulic hoist assisted detection system |
CN104074842B (en) * | 2014-07-16 | 2016-04-13 | 上海豪高机电科技有限公司 | Digital valve pilot system |
JP2016109210A (en) | 2014-12-05 | 2016-06-20 | 株式会社ユーテック | Joint device |
CN105179354B (en) * | 2015-10-28 | 2017-06-30 | 广州东塑石油钻采专用设备有限公司 | The explosion-proof oil return apparatus in oil field |
CN109185281A (en) * | 2018-11-12 | 2019-01-11 | 广西柳工机械股份有限公司 | Hydraulic system and maintenance oil-leakage-prevention method |
JP6922956B2 (en) | 2019-09-17 | 2021-08-18 | ダイキン工業株式会社 | hydraulic unit |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150682U (en) * | 1982-04-03 | 1983-10-08 | 宮岸 敏允 | Water leak detection valve |
JPH05240215A (en) * | 1992-02-25 | 1993-09-17 | Fujitsu Ltd | Standby redundant type pump module |
JPH0720015A (en) * | 1993-06-30 | 1995-01-24 | Ishikawajima Harima Heavy Ind Co Ltd | Gas sampling device |
JPH11230118A (en) * | 1998-02-12 | 1999-08-27 | Ibiden Co Ltd | Wear and leakage detecting device for atmospheric pressure actuator system and abnormal wear and leakage detecting method therefor |
JP3657169B2 (en) * | 2000-03-15 | 2005-06-08 | 日本車輌製造株式会社 | Hydraulic circuit of sluice door direct suspension type hydraulic cylinder |
JP4616507B2 (en) * | 2001-04-27 | 2011-01-19 | 住友精密工業株式会社 | Foot oiling device |
JP3696850B2 (en) * | 2001-10-15 | 2005-09-21 | 株式会社ユーテック | Check system and cylinder with check system |
JP2003194009A (en) * | 2001-12-27 | 2003-07-09 | Yuutekku:Kk | Fluid pressure circuit structure |
-
2011
- 2011-04-04 JP JP2011082897A patent/JP5002715B2/en active Active
-
2012
- 2012-02-15 JP JP2012031051A patent/JP5619047B2/en not_active Expired - Fee Related
- 2012-02-15 JP JP2012031050A patent/JP5550666B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5550666B2 (en) | How to identify damaged parts of hydraulic circuit | |
JP2012137183A5 (en) | ||
JP2012137184A5 (en) | ||
JP2011231924A5 (en) | ||
JP5507571B2 (en) | Improved double block and fluid discharge plug | |
TWI601945B (en) | Leak detection system and its use of the leak detection method | |
CN102966641B (en) | Hydraulic system high-low pressure is combined online circulation flushing and pressure testing device | |
NO338712B1 (en) | Device and method for protecting a wellhead | |
JP2011021672A (en) | Ball valve, and method of inspecting leakage in the same | |
KR20140004740U (en) | Leak test device and method for close torque control moter operated parallel gate valve | |
KR20080101297A (en) | Leakage detection equipment for seal ring on steel ring of oil pump | |
CA2880849A1 (en) | An auto cycle pump and method of operation | |
US20140230425A1 (en) | Hydraulic circuit for ram cylinder | |
JP2012041953A (en) | Hydraulic fluid replacement method of hydraulic cylinder drive circuit | |
JP2012159199A (en) | Control valve for hydraulic cylinder | |
JP4776029B2 (en) | Power test oil circulation system for cold test bench | |
JP3935040B2 (en) | Leak inspection method for gas piping and leak inspection apparatus used therefor | |
KR101171540B1 (en) | Apparatus for treating nozzle | |
CN203869828U (en) | Hydraulic control valve testing stand | |
KR20210147580A (en) | aircraft hydraulic pump test device | |
JP7081535B2 (en) | Failure diagnosis method for air clamp device | |
JP4254961B2 (en) | Overflow check valve operation inspection method | |
KR102135449B1 (en) | Valve for check device and valve system of brake hose check apparatus equipped with check valve | |
JP5070913B2 (en) | Fuel shutoff device and fuel shutoff method for combustion equipment | |
WO2016088764A1 (en) | Joint device |