JP2012136408A - COLLOIDAL SOLUTION FOR PRODUCING β-ZEOLITE AND METHOD FOR PRODUCING β-ZEOLITE USING THE SAME - Google Patents

COLLOIDAL SOLUTION FOR PRODUCING β-ZEOLITE AND METHOD FOR PRODUCING β-ZEOLITE USING THE SAME Download PDF

Info

Publication number
JP2012136408A
JP2012136408A JP2010291319A JP2010291319A JP2012136408A JP 2012136408 A JP2012136408 A JP 2012136408A JP 2010291319 A JP2010291319 A JP 2010291319A JP 2010291319 A JP2010291319 A JP 2010291319A JP 2012136408 A JP2012136408 A JP 2012136408A
Authority
JP
Japan
Prior art keywords
colloidal solution
zeolite
type zeolite
particles
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010291319A
Other languages
Japanese (ja)
Other versions
JP5824805B2 (en
Inventor
Satoshi Yoshida
吉田  智
Ko Ariga
耕 有賀
Yasuyuki Takamitsu
泰之 高光
Yukio Ito
雪夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010291319A priority Critical patent/JP5824805B2/en
Publication of JP2012136408A publication Critical patent/JP2012136408A/en
Application granted granted Critical
Publication of JP5824805B2 publication Critical patent/JP5824805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a colloidal solution capable of crystallizing β-zeolite in a short of time, and a method for synthesizing β-zeolite using the same.SOLUTION: The colloidal solution containing Si and Al contains particles having a modal particle diameter of 0.01-0.2 μm, wherein the proportion of particles having ≥0.5 μm is ≤3%. The molar ratio of OH/Si is preferably 0.20 to 0.80. When such the colloidal solution is added to a reaction liquid containing Si, Al and tetraethylammonium for crystallization, β-zeolite can be crystallized in a short period of time.

Description

本発明は、極めて短時間に高純度のβ型ゼオライトを結晶化することができるコロイド溶液及びそれを用いたβ型ゼオライトの製造方法に関する。   The present invention relates to a colloidal solution capable of crystallizing high-purity β-type zeolite in an extremely short time and a method for producing β-type zeolite using the colloid solution.

β型ゼオライトは、特許文献1で初めて開示された12員環細孔を有するゼオライトであり、触媒、吸着剤として広く用いられている。また、イオン交換体、触媒用などの膜としても技術検討がなされている。   β-type zeolite is a zeolite having 12-membered ring pores first disclosed in Patent Document 1, and is widely used as a catalyst and an adsorbent. Also, technical studies have been made on membranes for ion exchangers and catalysts.

β型ゼオライトの結晶化を促進させる成分として、種結晶(種子結晶)を用いることが開示されている(特許文献2参照)。それによれば種結晶を加えたゲルを用いても良好な結晶化には66時間を要し、種結晶を加えていない場合には少量のβ結晶しか形成されていなかった。   The use of seed crystals (seed crystals) as a component for promoting crystallization of β-type zeolite is disclosed (see Patent Document 2). According to this, even if a gel to which a seed crystal was added was used, 66 hours were required for good crystallization, and when a seed crystal was not added, only a small amount of β crystal was formed.

また、特許文献3では、種結晶として、高シリカ性及び高純度のβ型ゼオライトが開示されている。   Patent Document 3 discloses β-type zeolite having high silica and high purity as a seed crystal.

米国特許3308069号U.S. Pat. No. 3,308,069 特開平5−254825号公報JP-A-5-254825 特開平5−201722号公報Japanese Patent Laid-Open No. 5-201722 特開平6−287015号公報JP-A-6-287015 特開2006−27964号公報JP 2006-27964 A

以上のように、β型ゼオライトの結晶化を促進させる成分として種結晶が報告されていた。しかしながら、β型ゼオライトの結晶化を促進させる効果は不十分なものであり、より効果の大きな成分が望まれていた。   As described above, seed crystals have been reported as a component for promoting crystallization of β-type zeolite. However, the effect of promoting crystallization of β-type zeolite is insufficient, and a component having a greater effect has been desired.

本発明は、極めて短時間にβ型ゼオライトの結晶化を促進させることができるβ型ゼオライト製造用のコロイド溶液、およびそれを用いたβ型ゼオライトの製造方法を提供するものである。   The present invention provides a colloidal solution for producing β-type zeolite capable of promoting crystallization of β-type zeolite in an extremely short time, and a method for producing β-type zeolite using the same.

本発明者らは、β型ゼオライトの結晶化を促進させる方法について鋭意検討を重ねた結果、粉末状の粒子を種結晶として用いるのではなく、特定のコロイド溶液を使用することで極めて短時間にβ型ゼオライト結晶化が進むことを見出し、本発明を完成するに至ったものである。   As a result of intensive investigations on the method for promoting the crystallization of β-type zeolite, the present inventors have used a specific colloid solution in a very short time rather than using powdery particles as seed crystals. The inventors have found that β-type zeolite crystallization proceeds and have completed the present invention.

すなわち、本発明は、最頻粒子径が0.01〜0.2μmの粒子を含み、且つ、0.5μm以上の粒子割合が3%以下であることを特徴とするSiとAlを含むコロイド溶液である。   That is, the present invention relates to a colloidal solution containing Si and Al, characterized in that it contains particles having a mode particle diameter of 0.01 to 0.2 μm and a ratio of particles of 0.5 μm or more is 3% or less. It is.

以下、本発明のコロイド溶液について説明する。   Hereinafter, the colloid solution of the present invention will be described.

本発明のコロイド溶液はSiとAlを含む。SiとAlはβ型ゼオライトの結晶化を促進させる成分として機能すると考えられる。コロイド溶液中のSiとAlは、Si、Alそれぞれ単独のモノマーイオンとして、あるいは、Si又はSiとAlからなるダイマー以上のポリイオンとして、コロイド溶液中に溶解して存在していることが好ましい。特に、β型ゼオライトの結晶化を促進させる効果が特に大きいため、コロイド溶液に含まれるSiとAlとしては、SiとAlからなる5員環を含むイオンであることが好ましい。   The colloidal solution of the present invention contains Si and Al. Si and Al are considered to function as components that promote crystallization of β-type zeolite. It is preferable that Si and Al in the colloidal solution are present in the colloidal solution dissolved as monomer ions of Si and Al, respectively, or as polyions of dimers or higher composed of Si or Si and Al. In particular, since the effect of promoting crystallization of β-type zeolite is particularly great, the Si and Al contained in the colloidal solution are preferably ions containing a 5-membered ring composed of Si and Al.

本発明のコロイド溶液は、最頻粒子径が0.01〜0.2μmの粒子を含む。即ち、粒子径の頻度が0.01〜0.2μmにピークを有する粒子は、SiとAlを含み、この粒子はβ型ゼオライトの結晶化を促進させる効果が特に大きい。   The colloidal solution of the present invention contains particles having a mode particle size of 0.01 to 0.2 μm. That is, particles having a peak in the particle diameter frequency of 0.01 to 0.2 μm contain Si and Al, and these particles have a particularly large effect of promoting crystallization of β-type zeolite.

なお、最頻粒子径は、動的光散乱式粒子測定において0.01〜0.2μmにピークを有する粒子として測定することができる。   The mode particle diameter can be measured as particles having a peak at 0.01 to 0.2 μm in the dynamic light scattering particle measurement.

本発明のコロイド溶液は、0.5μm以上の粒子割合が3%以下である。0.5μm以上の粒子は、β型ゼオライトの結晶化を促進させる効果が小さい。そのため、コロイド溶液にはこれらの粒子の含有量が少ないことが好ましい。   In the colloidal solution of the present invention, the proportion of particles of 0.5 μm or more is 3% or less. Particles of 0.5 μm or more have a small effect of promoting crystallization of β-type zeolite. Therefore, it is preferable that the content of these particles is small in the colloidal solution.

なお、0.5μm以上の粒子割合とは、コロイド溶液中の粒子成分の合計頻度に対する0.5μm以上の粒子の頻度の割合であり、動的光散乱式粒子測定などで求めることができる。   The particle ratio of 0.5 μm or more is the ratio of the frequency of particles of 0.5 μm or more with respect to the total frequency of the particle components in the colloid solution, and can be determined by dynamic light scattering particle measurement or the like.

本発明のコロイド溶液のSi/Al組成比は10〜500が好ましく、特に20〜60が好ましい。Si/Alが10より小さい、もしくは500より大きいとβ型ゼオライトの結晶化を促進させる効果が比較的小さくなりやすい。 The Si / Al 2 composition ratio of the colloidal solution of the present invention is preferably 10 to 500, and particularly preferably 20 to 60. When Si / Al 2 is smaller than 10 or larger than 500, the effect of promoting crystallization of β-type zeolite tends to be relatively small.

本発明のコロイド溶液は、さらにテトラエチルアンモニウムカチオン(以下、「TEA」)を含むことが好ましい。TEA/Siのモル比は、0.20〜0.80が例示でき、0.25〜0.45が好ましく、0.30〜0.40がより好ましい。TEA/Siが0.20より小さい、もしくは0.80より大きいとβ型ゼオライトの結晶化を促進させる効果が小さくなるだけでなく、高価なTEAの使用量も多くなるため、工業的に不利である。 The colloidal solution of the present invention preferably further contains a tetraethylammonium cation (hereinafter referred to as “TEA + ”). The molar ratio of TEA + / Si can be exemplified by 0.20 to 0.80, preferably 0.25 to 0.45, and more preferably 0.30 to 0.40. When TEA + / Si is smaller than 0.20 or larger than 0.80, not only the effect of promoting crystallization of β-type zeolite is reduced, but also the amount of expensive TEA + used is increased. It is disadvantageous.

本発明のコロイド溶液はアルカリ性であることが好ましく、OH/Siとして、0.20〜0.80が好ましく、0.25〜0.45がより好ましく、0.30〜0.40がさらに好ましい。OH/Siが0.20より小さい場合は、溶解したSiとAlの量が少なくなりやすく、且つコロイド溶液に含まれる粒子の粒子径が大きくなり易い。また、0.80より大きいと、TEA以外にNaOHなどの他のアルカリ源を加える必要となったり、高価なTEAの必要量が多くなるため、工業的に不利である。 The colloidal solution of the present invention is preferably alkaline, and OH / Si is preferably 0.20 to 0.80, more preferably 0.25 to 0.45, and further preferably 0.30 to 0.40. When OH / Si is smaller than 0.20, the amount of dissolved Si and Al tends to decrease, and the particle size of the particles contained in the colloid solution tends to increase. Further, 0.80 and greater, or a need to add another source of alkalinity such as NaOH in addition to TEA +, to become much required amount of expensive TEA +, which is industrially disadvantageous.

本発明のコロイド溶液のHO/Siは、例えば、5〜20が好ましく、6〜12がより好ましい。HO/Siが5より小さいと粘度が高いためハンドリングが困難となりやすく、20より大きいとSiとAlと溶解させるためのアルカリが多量に必要となりやすい。 The H 2 O / Si of the colloidal solution of the present invention is preferably, for example, 5-20, and more preferably 6-12. If H 2 O / Si is less than 5, the viscosity is high and handling is difficult, and if it is more than 20, a large amount of alkali for dissolving Si and Al is likely to be required.

本発明のコロイド溶液は、ナトリウム、カリウムなどのアルカリ金属カチオン、塩化物、臭化物などのハロゲンアニオンを含んでもよいが、含まない方がより好ましい。   The colloidal solution of the present invention may contain alkali metal cations such as sodium and potassium, and halogen anions such as chloride and bromide, but it is more preferable not to contain them.

本発明のコロイド溶液の製造方法は特に限定されないが、例えば、Si源、Al源、テトラエチルアンモニウムカチオン源、水を加えて、所定の時間・温度で保持することにより製造することができる。   Although the manufacturing method of the colloidal solution of this invention is not specifically limited, For example, it can manufacture by adding Si source, Al source, a tetraethylammonium cation source, and water, and hold | maintaining at predetermined time and temperature.

Si源としては、シリカゾル、ヒュームドシリカ、沈降法シリカ、シリカアルミナゲル、テトラエトキシランなどが例示できる。Al源としては、水酸化アルミニウム、擬ベーマイト、アルミナゾル、シリカアルミナゲル、アルミニウムイソプロポキシドなどが例示できる。   Examples of the Si source include silica sol, fumed silica, precipitated silica, silica alumina gel, and tetraethoxylane. Examples of the Al source include aluminum hydroxide, pseudoboehmite, alumina sol, silica alumina gel, aluminum isopropoxide and the like.

テトラエチルアンモニウムカチオン源としては、水酸化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、塩化テトラエチルアンモニウムなどが例示できる。ハロゲンアニオンは含まない、水酸化テトラエチルアンモニウムを用いることが好ましい。   Examples of the tetraethylammonium cation source include tetraethylammonium hydroxide, tetraethylammonium bromide, and tetraethylammonium chloride. It is preferable to use tetraethylammonium hydroxide which does not contain a halogen anion.

本発明のコロイド溶液は、これらの原料を均一混合後、40〜200℃で0.1〜240時間保持することにより製造することができる。さらに、120〜160℃で0.1〜24時間保持することが好ましく、120〜160℃で1〜6時間保持することがより好ましい。時間が短い、若しくは温度が低いとSiとAlが溶解しにくく、一方、時間が長い若しくは温度が高いと液の状態が平衡もしくは準平衡状態となり固形分、つまりコロイド溶液に含まれる粒子が多い状態となり、溶解したSiとAlが再析出しやすくなるため好ましくない。   The colloidal solution of this invention can be manufactured by hold | maintaining for 0.1 to 240 hours at 40-200 degreeC after mixing these raw materials uniformly. Furthermore, it is preferable to hold | maintain at 120-160 degreeC for 0.1 to 24 hours, and it is more preferable to hold | maintain at 120-160 degreeC for 1 to 6 hours. When the time is short or the temperature is low, Si and Al are difficult to dissolve. On the other hand, when the time is long or the temperature is high, the liquid state becomes an equilibrium or quasi-equilibrium state, and the solid content, that is, the state in which the colloidal solution contains many particles Therefore, the dissolved Si and Al are likely to reprecipitate, which is not preferable.

本発明のコロイド溶液は、Si、Al及びテトラエチルアンモニウムを含む反応液に添加して結晶化させることでβ型ゼオライトを製造することができる。   The colloidal solution of the present invention can be added to a reaction solution containing Si, Al and tetraethylammonium and crystallized to produce β-type zeolite.

本発明のコロイド溶液を結晶化を促進させる成分として用いた場合、極めて短時間にβ型ゼオライトを結晶化することができる。β型ゼオライトの結晶化の促進効果としては、β型ゼオライト以外の不純物の副生の抑制、テトラエチルアンモニウムカチオンなどの有機構造指向剤量の削減の効果も期待できる。   When the colloidal solution of the present invention is used as a component for promoting crystallization, β-type zeolite can be crystallized in a very short time. As an effect of promoting the crystallization of β-type zeolite, an effect of suppressing by-products of impurities other than β-type zeolite and reducing the amount of organic structure directing agent such as tetraethylammonium cation can be expected.

本発明のコロイド溶液を使用するβ型ゼオライトの製造方法では、極めて結晶性の高く不純物相の少ないβ型ゼオライトを20時間以下、さらに15時間以下の短時間で結晶化することが可能である。   In the method for producing β-type zeolite using the colloidal solution of the present invention, it is possible to crystallize β-type zeolite having extremely high crystallinity and little impurity phase in a short time of 20 hours or less and further 15 hours or less.

本発明の最頻粒子径が0.01〜0.2μmの粒子を含み、且つ、0.5μm以上の粒子割合が3%以下であることを特徴とするSiとAlを含むコロイド溶液を結晶化を促進させる成分として用いて結晶化することにより、従来にない短時間で高純度のβ型ゼオライトを製造することができる。   Crystallizing a colloidal solution containing Si and Al containing particles having a mode particle diameter of 0.01 to 0.2 μm and a proportion of particles of 0.5 μm or more being 3% or less. By using it as a component that promotes crystallization, it is possible to produce a high-purity β-type zeolite in an unprecedented short time.

以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、実施例、比較例における各測定方法は、以下の通りである。
(コロイド溶液の粒子径)
動的光散乱式粒子測定装置として、日機装製マイクロトラック9340UPAを用いて、コロイド溶液中の粒子を測定し、0.5μm以上の粒子割合を評価した。また、動的光散乱式粒子測定の結果の体積割合で50%の粒子径を最頻粒子径した。
(粉末X線回折)
マックサイエンス製MXP3システムを用いて、X線源CuKα、加速電圧40kV、管電流30mA、操作速度2θ=0.02deg/sec、サンプリング間隔0.02sec、発散スリット1deg、散乱スリット1deg、受光スリット0.3mm、モノクロメーター使用、ゴニオ半径185mmで評価した。
(結晶化終了時間)
水熱処理開始から1時間ごとに生成物の一部を採取し、これをろ過、乾燥した後、粉末X線回折測定により結晶相を同定した。採取した生成物の結晶相と、1時間前に採取した生成物の結晶相とを比較し、β型ゼオライトの結晶相が確認でき、かつ、1時間前の生成物の粉末X線回折ピークとの強度変化が5%以下となった時間を結晶化終了時間とした。
実施例1(コロイド溶液1の合成)
東ソーシリカ製沈降法シリカ、住友化学製水酸化アルミニウム、35重量%水酸化テトラエチルアンモニウム溶液、純水を用いて、Si/Al=50、HO/Si=6.5、TEAOH/Si=0.40の混合液を調製した。混合液をオートクレーブ中、150℃で5時間水熱処理し、室温まで放熱した。得られた液は、透明性の高い粘調で褐色の溶液であった。
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples. In addition, each measuring method in an Example and a comparative example is as follows.
(Particle size of colloidal solution)
Using a Nikkiso Microtrack 9340UPA as a dynamic light scattering particle measuring device, particles in the colloidal solution were measured, and the particle ratio of 0.5 μm or more was evaluated. Moreover, the particle diameter of 50% was made the mode particle diameter by the volume ratio of the result of dynamic light scattering type particle | grain measurement.
(Powder X-ray diffraction)
Using an MXP3 system manufactured by Mac Science, X-ray source CuKα, acceleration voltage 40 kV, tube current 30 mA, operation speed 2θ = 0.02 deg / sec, sampling interval 0.02 sec, divergence slit 1 deg, scattering slit 1 deg, light receiving slit 0. Evaluation was performed at 3 mm, using a monochromator, and a gonio radius of 185 mm.
(Crystal end time)
A part of the product was collected every hour from the start of the hydrothermal treatment, filtered and dried, and then the crystal phase was identified by powder X-ray diffraction measurement. The crystalline phase of the collected product is compared with the crystalline phase of the product collected 1 hour ago, the crystalline phase of β-type zeolite can be confirmed, and the powder X-ray diffraction peak of the product 1 hour ago The time when the intensity change of 5% or less was taken as the crystallization end time.
Example 1 (Synthesis of colloidal solution 1)
Using Tosoh silica precipitated silica, Sumitomo Chemical aluminum hydroxide, 35 wt% tetraethylammonium hydroxide solution, pure water, Si / Al 2 = 50, H 2 O / Si = 6.5, TEAOH / Si = A 0.40 mixture was prepared. The mixture was hydrothermally treated in an autoclave at 150 ° C. for 5 hours, and the heat was released to room temperature. The obtained liquid was a brown solution with a highly transparent viscosity.

動的光散乱式粒子測定装置で評価したところ、0.04〜0.50μmに分布があり0.09μmにピークを有する粒子を含んだコロイド溶液であった。また、0.5μm以上の粒子は検出されなかった。   When evaluated with a dynamic light scattering particle measuring apparatus, it was a colloidal solution containing particles having a distribution at 0.04 to 0.50 μm and a peak at 0.09 μm. In addition, particles of 0.5 μm or more were not detected.

実施例2(βゼオライトの合成)
東ソーシリカ製沈降法シリカ、住友化学製水酸化アルミニウム、35重量%水酸化テトラエチルアンモニウム溶液、48%水酸化ナトリウム溶液、純水を用いて、Si/Al=50、HO/Si=20、TEAOH/Si=0.30、NaOH/Si=0.06の混合液を調製した。
Example 2 (Synthesis of β zeolite)
Using Tosoh silica precipitated silica, Sumitomo Chemical aluminum hydroxide, 35 wt% tetraethylammonium hydroxide solution, 48% sodium hydroxide solution, pure water, Si / Al 2 = 50, H 2 O / Si = 20 , TEAOH / Si = 0.30 and NaOH / Si = 0.06 were prepared.

混合液に、実施例1で得られたコロイド溶液1を1重量%(混合液中のSiとAlの総量に対してコロイド1中の液のSiとAlの総量が1重量%)添加・混合し、水熱処理用液とした。   1% by weight of the colloid solution 1 obtained in Example 1 was added to the mixed solution (the total amount of Si and Al in the colloid 1 was 1% by weight with respect to the total amount of Si and Al in the mixed solution) and mixed. The liquid for hydrothermal treatment was used.

水熱処理用液をオートクレーブに分割し、それぞれ150℃で水熱処理した。水熱処理後、固液分離・洗浄を行い、110℃で乾燥した。得られた一連の乾燥粉末を粉末X線回折で評価した。結晶化終了時間は16時間であり短時間に結晶化した。   The hydrothermal treatment liquid was divided into autoclaves and hydrothermally treated at 150 ° C., respectively. After hydrothermal treatment, solid-liquid separation / washing was performed, and drying was performed at 110 ° C. The resulting series of dry powders was evaluated by powder X-ray diffraction. The crystallization end time was 16 hours, and crystallization occurred in a short time.

実施例3(βゼオライトの合成)
Si/Al=50のアモルファスのシリカアルミナゲル、35重量%水酸化テトラエチルアンモニウム溶液、48%水酸化ナトリウム溶液、純水、を用いて、Si/Al=50、HO/Si=10、TEAOH/Si=0.21、NaOH/Si=0.10の混合液を調製した。
Example 3 (Synthesis of β zeolite)
Using Si / Al 2 = 50 amorphous silica-alumina gel, 35 wt% tetraethylammonium hydroxide solution, 48% sodium hydroxide solution, pure water, Si / Al 2 = 50, H 2 O / Si = 10 , TEAOH / Si = 0.21 and NaOH / Si = 0.10 were prepared.

混合液に、実施例1で得られたコロイド溶液1を1重量%(混合液中のSiとAlの総量に対する液の調製実施例1の液のSiとAlの総量の割合)添加・混合し、水熱処理用液とした。   1% by weight of the colloidal solution 1 obtained in Example 1 (the ratio of the total amount of Si and Al in the liquid of Example 1 to the total amount of Si and Al in the mixed liquid) was added to and mixed with the mixed liquid. A liquid for hydrothermal treatment was used.

水熱処理用液をオートクレーブに分割し、それぞれ150℃で水熱処理した。水熱処理後、固液分離・洗浄を行い、110℃で乾燥した。得られた一連の乾燥粉末を粉末X線回折で評価した。結晶化終了時間は11時間であった。   The hydrothermal treatment liquid was divided into autoclaves and hydrothermally treated at 150 ° C., respectively. After hydrothermal treatment, solid-liquid separation / washing was performed, and drying was performed at 110 ° C. The resulting series of dry powders was evaluated by powder X-ray diffraction. The crystallization end time was 11 hours.

比較例1
β型ゼオライトの合成実施例1と同じ混合液に、東ソー製のβ型ゼオライトHSZ−940NHAを1重量%添加・混合し、水熱処理用液とした。
Comparative Example 1
Synthesis of β-type zeolite 1 wt% β-type zeolite HSZ-940NHA manufactured by Tosoh was added to and mixed with the same mixed solution as in Example 1 to obtain a hydrothermal treatment solution.

水熱処理用液をオートクレーブに分割し、それぞれ150℃で水熱処理した。水熱処理後、固液分離・洗浄を行い、110℃で乾燥した。得られた一連の乾燥粉末を粉末X線回折で評価した。結晶化終了時間は45時間であり長時間を要した。   The hydrothermal treatment liquid was divided into autoclaves and hydrothermally treated at 150 ° C., respectively. After hydrothermal treatment, solid-liquid separation / washing was performed, and drying was performed at 110 ° C. The resulting series of dry powders was evaluated by powder X-ray diffraction. The crystallization end time was 45 hours, which took a long time.

比較例2
β型ゼオライトの合成実施例2と同じ混合液をそのまま水熱処理用液をオートクレーブに分割し、それぞれ150℃で水熱処理した。水熱処理後、固液分離・洗浄を行い、110℃で乾燥した。得られた一連の乾燥粉末を粉末X線回折で評価した。結晶化終了時間は94時間であった。
Comparative Example 2
Synthesis of β-type zeolite The same liquid mixture as in Example 2 was divided into hydrothermally-treated liquids in autoclaves and hydrothermally treated at 150 ° C., respectively. After hydrothermal treatment, solid-liquid separation / washing was performed, and drying was performed at 110 ° C. The resulting series of dry powders was evaluated by powder X-ray diffraction. The crystallization end time was 94 hours.

比較例3
β型ゼオライトの合成実施例2と同じ混合液に、東ソー製のβ型ゼオライトHSZ−940NHAを1重量%添加・混合し、水熱処理用液とした。
Comparative Example 3
Synthesis of β-type zeolite 1 wt% of Tosoh β-type zeolite HSZ-940NHA was added to and mixed with the same mixed solution as in Example 2 to obtain a hydrothermal treatment solution.

水熱処理用液をオートクレーブに分割し、それぞれ150℃で水熱処理した。水熱処理後、固液分離・洗浄を行い、110℃で乾燥した。得られた一連の乾燥粉末を粉末X線回折で評価した。結晶化終了時間は42時間であった。   The hydrothermal treatment liquid was divided into autoclaves and hydrothermally treated at 150 ° C., respectively. After hydrothermal treatment, solid-liquid separation / washing was performed, and drying was performed at 110 ° C. The resulting series of dry powders was evaluated by powder X-ray diffraction. The crystallization end time was 42 hours.

最頻粒子径が0.01〜0.2μmの粒子を含み、且つ、0.5μm以上の粒子割合が3%以下であることを特徴とするSiとAlを含むコロイド溶液をβ型ゼオライト合成用種粒子として用い、これをSi、Al及びテトラエチルアンモニウムを含んでなる反応液に添加して結晶化させることにより極めて短時間に高純度のβ型ゼオライトを製造することができる。   A colloidal solution containing Si and Al is used for β-type zeolite synthesis, characterized in that it contains particles with a mode particle size of 0.01 to 0.2 μm and a proportion of particles of 0.5 μm or more is 3% or less. A high-purity β-type zeolite can be produced in a very short time by using it as seed particles and adding it to a reaction solution containing Si, Al and tetraethylammonium to cause crystallization.

Claims (3)

最頻粒子径が0.01〜0.2μmの粒子を含み、且つ、0.5μm以上の粒子割合が3%以下であることを特徴とするSiとAlを含むコロイド溶液。   A colloidal solution containing Si and Al containing particles having a mode particle diameter of 0.01 to 0.2 μm and a ratio of particles of 0.5 μm or more being 3% or less. OH/Siのモル比が0.20〜0.80の請求項1又は2に記載のコロイド溶液。   The colloidal solution according to claim 1 or 2, wherein the molar ratio of OH / Si is 0.20 to 0.80. 請求項1又は2に記載のコロイド溶液を、Si、Al及びテトラエチルアンモニウムを含む反応液に添加して結晶化させること特徴とする請求項3に記載のβ型ゼオライトの製造方法。   The method for producing a β-type zeolite according to claim 3, wherein the colloidal solution according to claim 1 or 2 is added to a reaction solution containing Si, Al and tetraethylammonium to cause crystallization.
JP2010291319A 2010-12-27 2010-12-27 Colloidal solution for producing β-type zeolite and method for producing β-type zeolite using the same Active JP5824805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291319A JP5824805B2 (en) 2010-12-27 2010-12-27 Colloidal solution for producing β-type zeolite and method for producing β-type zeolite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291319A JP5824805B2 (en) 2010-12-27 2010-12-27 Colloidal solution for producing β-type zeolite and method for producing β-type zeolite using the same

Publications (2)

Publication Number Publication Date
JP2012136408A true JP2012136408A (en) 2012-07-19
JP5824805B2 JP5824805B2 (en) 2015-12-02

Family

ID=46674168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291319A Active JP5824805B2 (en) 2010-12-27 2010-12-27 Colloidal solution for producing β-type zeolite and method for producing β-type zeolite using the same

Country Status (1)

Country Link
JP (1) JP5824805B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136409A (en) * 2010-12-27 2012-07-19 Tosoh Corp MICROCRYSTALLINE AND HIGHLY CRYSTALLINE β-ZEOLITE AND METHOD FOR PRODUCING THE SAME
CN103818919A (en) * 2013-12-08 2014-05-28 北京工业大学 Synthetic method for preparing Beta zeolite
WO2017217424A1 (en) * 2016-06-17 2017-12-21 ユニゼオ株式会社 Method for producing beta zeolite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136409A (en) * 2010-12-27 2012-07-19 Tosoh Corp MICROCRYSTALLINE AND HIGHLY CRYSTALLINE β-ZEOLITE AND METHOD FOR PRODUCING THE SAME
CN103818919A (en) * 2013-12-08 2014-05-28 北京工业大学 Synthetic method for preparing Beta zeolite
WO2017217424A1 (en) * 2016-06-17 2017-12-21 ユニゼオ株式会社 Method for producing beta zeolite
US10870582B2 (en) 2016-06-17 2020-12-22 Mitsui Mining & Smelting Co., Ltd. Method of producing beta zeolite

Also Published As

Publication number Publication date
JP5824805B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
EP2837596B1 (en) Beta zeolite and method for producing same
AU2007339946B2 (en) Preparation of molecular sieve SSZ-13
WO2015005369A1 (en) Aei zeolite containing phosphorus, and method for producing same
JP5417969B2 (en) Method for producing chabazite using N, N, N-trimethyl-benzylammonium ion
EP2589573A1 (en) Zeolite production method
WO2018110559A1 (en) Gis zeolite
JP6089678B2 (en) Strontium exchange clinoptilolite
US10501328B2 (en) Method for producing beta zeolite
JP3066430B2 (en) Method for producing zeolite X-shaped compact
JPS631244B2 (en)
JP5824805B2 (en) Colloidal solution for producing β-type zeolite and method for producing β-type zeolite using the same
JP6702759B2 (en) AEI-type zeolite containing titanium and method for producing the same
TWI797384B (en) Rho zeolites and method of making the same
JP2011105566A (en) Method for producing mtw-type zeolite
JP6059068B2 (en) Method for producing VET type zeolite
JP5124659B2 (en) Method for producing MTW-type zeolite
JP4882202B2 (en) Method for synthesizing high silica mordenite
JP4470003B2 (en) High silica mordenite and its synthesis method
CN109311685B (en) Process for producing beta-zeolite
JP2012240867A (en) Method for producing zeolite
JP2010030800A (en) beta-ZEOLITE HAVING LARGE CRYSTALLITE
EP2837597B1 (en) Method for producing pau zeolite
JP7438733B2 (en) STW type zeolite and its manufacturing method
JP2018065723A (en) Zeolite zts-5 and process for producing the same
JP4144221B2 (en) Cesium ion-containing aluminosilicate zeolite and synthesis method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5824805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151