JP2012132083A - Metallic porous body having high corrosion resistance, and method for manufacturing therefor - Google Patents

Metallic porous body having high corrosion resistance, and method for manufacturing therefor Download PDF

Info

Publication number
JP2012132083A
JP2012132083A JP2010287439A JP2010287439A JP2012132083A JP 2012132083 A JP2012132083 A JP 2012132083A JP 2010287439 A JP2010287439 A JP 2010287439A JP 2010287439 A JP2010287439 A JP 2010287439A JP 2012132083 A JP2012132083 A JP 2012132083A
Authority
JP
Japan
Prior art keywords
nickel
porous body
tin
porous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010287439A
Other languages
Japanese (ja)
Other versions
JP5759169B2 (en
Inventor
Kazuki Okuno
一樹 奥野
Masahiro Kato
真博 加藤
Masatoshi Mashima
正利 真嶋
Tomoyuki Awazu
知之 粟津
Hidetoshi Saito
英敏 斉藤
Junichi Nishimura
淳一 西村
Takashi Shiraishi
敬司 白石
Hitoshi Tsuchida
斉 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010287439A priority Critical patent/JP5759169B2/en
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Toyama Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to KR1020137013897A priority patent/KR101832251B1/en
Priority to EP13172477.5A priority patent/EP2644721B1/en
Priority to EP11846980.8A priority patent/EP2650393A4/en
Priority to KR1020177033247A priority patent/KR101818085B1/en
Priority to US13/992,266 priority patent/US20130266862A1/en
Priority to PCT/JP2011/077650 priority patent/WO2012077550A1/en
Priority to EP13172478.3A priority patent/EP2644722B1/en
Priority to CN201180059407.6A priority patent/CN103249850B/en
Publication of JP2012132083A publication Critical patent/JP2012132083A/en
Application granted granted Critical
Publication of JP5759169B2 publication Critical patent/JP5759169B2/en
Priority to US15/374,251 priority patent/US10164262B2/en
Priority to US16/171,725 priority patent/US20190067703A1/en
Priority to US16/990,733 priority patent/US20200373586A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metallic porous body excellent in an electrolytic resistance and a corrosion resistance suitable to a battery, such as lithium-ion battery, a capacitor and a power collection body for a fuel cell.SOLUTION: The metallic porous body is composed of an alloy containing at least a nickel and a tin. Such metallic porous body is obtained with a method for manufacturing the metallic porous body, composed of the alloy containing at least the nickel and the tin, the method having a step of coating the nickel porous body with a metal containing the tin at least, and a step of diffusing the tin into the nickel porous body by performing a heat-treatment following the former step.

Description

本発明はリチウムイオン電池等の電池やキャパシタ、燃料電池の集電体に用いられる金属多孔体に関する。   The present invention relates to a porous metal body used for a current collector of a battery such as a lithium ion battery, a capacitor, or a fuel cell.

リチウムイオン電池において、正極材料や負極材料を付着させる集電体(支持体)として、一般的にアルミ箔のような金属箔を用いている。しかしながら、金属箔は二次元構造であり活物質の担持や充填密度の点で多孔体に比べて劣っている。すなわち、金属箔は、活物質を包み込むように保持する事ができないため、活物質の膨張収縮を抑えることができず充填量を少なくしなければ寿命が持たない。また、集電体と活物質の距離が長くなるため、集電体から離れたところでの活物質の利用率が小さく、容量密度も小さくなる。また金属箔をパンチングメタル、スクリーン、エキスバンドメタル等の多孔体の形状で用いることが行われているが、これも実質的には二次元構造であり、大幅な容量密度の向上は期待できない。   In a lithium ion battery, a metal foil such as an aluminum foil is generally used as a current collector (support) to which a positive electrode material or a negative electrode material is attached. However, the metal foil has a two-dimensional structure and is inferior to the porous body in terms of loading of active material and packing density. In other words, since the metal foil cannot be held so as to enclose the active material, the expansion and shrinkage of the active material cannot be suppressed, and the lifetime is not provided unless the filling amount is reduced. Further, since the distance between the current collector and the active material becomes long, the utilization factor of the active material at a position away from the current collector is small and the capacity density is also small. Moreover, although metal foil is used in the shape of a porous body such as punching metal, screen, and extended metal, it is also a substantially two-dimensional structure, and a significant increase in capacity density cannot be expected.

また、高出力、高容量、長寿命化等を目的として、集電体を発泡体や不織布状などの三次元多孔質体等の形状として用いることが数多く提案されている(特許文献1〜4参照)。
例えば、特許文献1には、正極集電体として、表面がアルミニウム、合金又はステンレススチールからなる三次元網状多孔体が開示されている。特許文献2には、有孔性ポリマーが均一に活物質層間と活物質表面に備わった電極合剤と集電体としてのアルミニウム、銅、亜鉛、鉄などの金属、またはポリピロール、ポリアニリンなどの導電性ポリマー、あるいはこれらの混合物からなる三次元多孔体とを一体化して電極とすることが開示されている。
Many proposals have been made to use a current collector in the form of a three-dimensional porous body such as a foam or a nonwoven fabric for the purpose of high output, high capacity, long life, and the like (Patent Documents 1 to 4). reference).
For example, Patent Document 1 discloses a three-dimensional network porous body whose surface is made of aluminum, an alloy, or stainless steel as a positive electrode current collector. In Patent Document 2, an electrode mixture in which a porous polymer is uniformly provided on the active material layer and the active material surface and a current collector such as aluminum, copper, zinc, or iron, or a conductive material such as polypyrrole or polyaniline. It is disclosed that an electrode is formed by integrating a three-dimensional porous body made of a conductive polymer or a mixture thereof.

特許文歓3には、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンの単体若しくは合金、又はステンレス合金からなる多孔質集電体上に電極活物質薄膜層が形成されてなる電極が開示されている。特許文献4には、正極集電体として、発泡アルミニウム、発泡ニッケル等を用いることが開示されている。   In Patent Literature 3, an electrode active material thin film layer is formed on a porous current collector made of a simple substance or alloy of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, or stainless steel. An electrode is disclosed. Patent Document 4 discloses using foamed aluminum, foamed nickel, or the like as the positive electrode current collector.

ところで、二次電池全般として、高出力化及び高容量化させるために、集電体は、二次元構造体よりも多孔度が大きい三次元構造体を採用することが望まれている。特に正極集電体については、高い充放電電圧のもとでは電解質により酸化されやすくなるため、耐酸化性及び耐電解液性も求められている。   By the way, in order to increase the output and capacity of the secondary battery as a whole, it is desired that the current collector adopts a three-dimensional structure having a higher porosity than the two-dimensional structure. In particular, the positive electrode current collector is easily oxidized by the electrolyte under a high charge / discharge voltage, so that oxidation resistance and electrolyte resistance are also required.

一般に金属製の多孔度が大きい三次元構造体(以下「金属多孔体」という)は、電気導電性のない樹脂多孔体に導電化処理を施し、この上に電気めっきにより所定の金属量を付加し必要に応じて内部に残存する樹脂分を焼却除去することによって得られている。例えば、特許文献5には、ポリウレタンフォームの骨格表面にニッケルめっきを施し、その後、上記ポリウレタンフォームを除去することによって金属多孔体を得ることが記載されている。また、特許文献6には、多孔質ニッケル材料からなる基材の表面に、撥水性の大きいフッ素系樹脂からなる微粒子を含む金属メッキ層を形成し、加圧形成してなる燃料電池用集電体が記載されている。   Generally, a three-dimensional structure made of metal with a high porosity (hereinafter referred to as “metal porous body”) is made by conducting a conductive treatment on a resin porous body having no electrical conductivity, and adding a predetermined amount of metal thereon by electroplating. However, it is obtained by incinerating and removing the resin component remaining inside as needed. For example, Patent Document 5 describes that a metal porous body is obtained by performing nickel plating on the skeleton surface of a polyurethane foam and then removing the polyurethane foam. Patent Document 6 discloses a fuel cell current collector in which a metal plating layer containing fine water-repellent fluororesin is formed on the surface of a base material made of a porous nickel material, and press-formed. The body is listed.

しかし、下記のような理由で、リチウム系非水電解質二次電池については、耐酸化性及び耐電解液性を有し、多孔度が大きく、さらには、工業的生産に適した正極集電体は提供されていない。
すなわち、集電体の多孔度を大きくするためには、一般的にニッケル多孔体に代表されるように、多孔質の有機樹脂表面にめっき処理し、必要に応じて有機樹脂を焼却除去することが行われる。しかしながら、ニッケル多孔体は、リチウム系非水電解質二次電池では、酸化されやすく、電解質液中に溶解してしまい、長期の充放電で十分な充電ができなくなる。
However, for the following reasons, the lithium-based non-aqueous electrolyte secondary battery has an oxidation resistance and an electrolyte resistance, a large porosity, and a positive electrode current collector suitable for industrial production. Is not provided.
That is, in order to increase the porosity of the current collector, the surface of the porous organic resin is generally plated, and the organic resin is incinerated and removed as necessary, as typically represented by a nickel porous body. Is done. However, the nickel porous body is easily oxidized in the lithium non-aqueous electrolyte secondary battery, and is dissolved in the electrolyte solution, so that sufficient charging cannot be performed by long-term charge / discharge.

一方、現在の正極集電体の主材料であるアルミニウムにおいては、めっき処理するには、非常に高温の溶融塩状態で処理する必要があるため、有機樹脂を被めっき体として使用することができず、有機樹脂表面にめっき処理することは困難である。よって、アルミニウムからなる多孔体集電体は現在提供されていない。   On the other hand, in aluminum, which is the main material of the current positive electrode current collector, it is necessary to process in a very high temperature molten salt state in order to perform the plating process, so an organic resin can be used as the object to be plated. However, it is difficult to plate the surface of the organic resin. Therefore, a porous current collector made of aluminum is not currently provided.

また、ステンレススチールも正極集電体の材料として広く使用されているが、このステンレススチールもアルミニウムと同様の理由から、有機樹脂表面にめっき処理することにより、多孔度の大きい集電体とすることは困難である。
なお、ステンレススチールについては、粉末状にして有機樹脂多孔体に塗着して焼結することにより、多孔体を得る方法が提供されている。
しかしながら、ステンレススチール粉末は非常に高価である。また、粉末が付着した有機樹脂多孔体は焼却除去されるため、強度が衰えてしまい使用に耐えないという問題がある。
したがって、耐酸化性及び耐電解液性を有し、多孔度が大きく、工業的生産に適した集電体、さらには、この集電体を用いて得られる正極の提供が望まれている。
Stainless steel is also widely used as a material for the positive electrode current collector. For the same reason as stainless steel, this stainless steel should be made a highly porous current collector by plating the surface of the organic resin. It is difficult.
As for stainless steel, there is provided a method for obtaining a porous body by making it into a powder form, applying it to an organic resin porous body and sintering it.
However, stainless steel powder is very expensive. Moreover, since the organic resin porous body to which the powder adheres is removed by incineration, there is a problem that the strength is reduced and it cannot be used.
Therefore, it is desired to provide a current collector that has oxidation resistance and electrolytic solution resistance, has a high porosity, and is suitable for industrial production, and further provides a positive electrode obtained by using this current collector.

特開平11−233151号公報JP-A-11-233151 特開2000−195522号公報JP 2000-195522 A 特開2005−078991号公報Japanese Patent Laying-Open No. 2005-078991 特開2006−032144号公報JP 2006-032144 A 特開平11−154517号公報Japanese Patent Laid-Open No. 11-154517 特許第4534033号公報Japanese Patent No. 4534033

本発明は、上記問題点に鑑みて、本発明はリチウムイオン電池等の電池やキャパシタ、燃料電池の集電体に適した耐電解性、耐食性に優れた金属多孔体を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above problems, the present invention aims to provide a porous metal body excellent in electrolytic resistance and corrosion resistance suitable for batteries and capacitors such as lithium ion batteries and current collectors of fuel cells. To do.

(1)少なくともニッケルとスズを含む合金からなることを特徴とする金属多孔体。
(2)上記金属多孔体のスズ含有量が1〜58wt%であることを特徴とする上記(1)に記載の金属多孔体。
(3)前記金属多孔体が、成分として、10wt%以下のリンを更に含むことを特徴とする上記(1)又は(2)に記載の金属多孔体。
(4)上記金属多孔体に、液中で電解酸化処理することにより耐食性を向上させたことを特徴とする上記(1)〜(3)のいずれかに記載の金属多孔体。
(5)ニッケル多孔体に、少なくともスズを含む金属を被覆する工程と、その後に熱処理を行ってスズを前記ニッケル多孔体中にまで拡散させる工程と、を有することを特徴とする、少なくともニッケルとスズを含む合金からなる金属多孔体の製造方法。
(6)前記ニッケル多孔体が、導電処理をした多孔体基材にニッケルを被覆し、該多孔体基材を除去した後にニッケルを還元することによって得られたものであることを特徴とする上記(5)に記載の金属多孔体の製造方法。
(1) A porous metal body comprising an alloy containing at least nickel and tin.
(2) The metal porous body according to (1) above, wherein the metal porous body has a tin content of 1 to 58 wt%.
(3) The porous metal body according to (1) or (2), wherein the porous metal body further contains 10 wt% or less of phosphorus as a component.
(4) The porous metal body according to any one of (1) to (3) above, wherein the corrosion resistance is improved by subjecting the porous metal body to electrolytic oxidation treatment in a liquid.
(5) At least nickel comprising: a step of coating a nickel porous body with a metal containing at least tin; and a step of subsequently performing a heat treatment to diffuse tin into the nickel porous body. A method for producing a porous metal body comprising an alloy containing tin.
(6) The nickel porous body is obtained by coating nickel on a porous base material subjected to a conductive treatment, and reducing the nickel after removing the porous base material. The manufacturing method of the metal porous body as described in (5).

本発明によれば、リチウムイオン電池等の電池やキャパシタ、燃料電池の集電体に適した耐電解性、耐食性に優れた金属多孔体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal porous body excellent in the electrolytic resistance and corrosion resistance suitable for batteries, capacitors, such as a lithium ion battery, and the collector of a fuel cell can be provided.

本発明に係る金属多孔体は、少なくともニッケルとスズとを含む合金からなることを特徴とする。金属多孔体が少なくともニッケルとスズとを含む合金であることにより、耐電解性、耐食性に優れるようになる。
上記金属多孔体において、スズの含有量は、1wt%以上、58wt%以下であることが好ましい。スズの含有量が1wt%以上であることにより耐電解性、耐食性の効果が十分に発揮される。一方、スズの含有量が58wt%を超えると、耐熱性が低下し、かつもろい金属間化合物を生成する可能性があるため好ましくない。
The porous metal body according to the present invention is made of an alloy containing at least nickel and tin. Since the metal porous body is an alloy containing at least nickel and tin, the electrolytic resistance and the corrosion resistance are improved.
In the metal porous body, the tin content is preferably 1 wt% or more and 58 wt% or less. When the tin content is 1 wt% or more, the effects of electrolytic resistance and corrosion resistance are sufficiently exhibited. On the other hand, if the tin content exceeds 58 wt%, the heat resistance is lowered and a brittle intermetallic compound may be generated, which is not preferable.

本発明の金属多孔体は、成分として10wt%以下のリンを更に含むことが好ましい。これにより、耐電解性、耐食性がより向上する。しかしながら、多量に含み過ぎると耐熱性が低下するため、リンの含有量は10wt%以下であることが好ましい。   The metal porous body of the present invention preferably further contains 10 wt% or less phosphorus as a component. Thereby, electrolysis resistance and corrosion resistance improve more. However, since heat resistance falls when it contains too much, it is preferable that content of phosphorus is 10 wt% or less.

また、本発明の金属多孔体は、液中で電解酸化処理することにより耐食性を向上させたものであることが好ましい。これにより更に耐電解性、耐食性を向上した金属多孔体が得られる。
例えば、リニアスイープボルタンメトリー法により、すなわち、サンプルに対して一度広い範囲で電位をかけて電流値が高い電位を調べ、その後、電流の高かった電位を電流が十分小さくなるまで印加していくことにより処理することができる。
Moreover, it is preferable that the metal porous body of this invention has improved corrosion resistance by carrying out the electrolytic oxidation process in a liquid. Thereby, the metal porous body which further improved the electrolysis resistance and the corrosion resistance is obtained.
For example, by linear sweep voltammetry, that is, by applying a potential to a sample once over a wide range to examine a potential with a high current value, and then applying a potential with a high current until the current becomes sufficiently small. Can be processed.

本発明の金属多孔体の製造方法は、ニッケル多孔体に、少なくともスズを含む合金を被覆する工程と、その後に熱処理を行ってスズを前記ニッケル多孔体中に拡散させる工程とを有することを特徴とする。また、不活性雰囲気下あるいは還元雰囲気下で熱処理をすることによりスズをニッケル多孔体中に拡散させることができる。   The method for producing a porous metal body of the present invention comprises a step of coating a nickel porous body with an alloy containing at least tin, and a step of subsequently performing a heat treatment to diffuse tin into the nickel porous body. And Moreover, tin can be diffused in the nickel porous body by heat treatment in an inert atmosphere or a reducing atmosphere.

また、前記ニッケル多孔体は、まず多孔体基材の表面を導電化処理して導電膜(以下「導電被覆層」という)を形成し、この導電被覆層に電気ニッケルめっきを施して多孔体基材の表面に電気めっき層を形成し、次いで多孔体基材を除去した後に、ニッケルを還元することにより得られたものであることが好ましい。   In the nickel porous body, first, the surface of the porous base material is subjected to a conductive treatment to form a conductive film (hereinafter referred to as “conductive coating layer”). It is preferable that the electroplating layer is formed on the surface of the material, and then the porous substrate is removed and then nickel is reduced.

(多孔体基材)
本発明における多孔体基材としては多孔性のものであればよく公知又は市販のものを使用でき、樹脂発泡体、不織布、フェルト、織布などが用いられるが必要に応じてこれらを組み合わせて用いることもできる。また、素材としては特に限定されるものではないが、金属をめっきした後焼却処理により除去できるものが好ましい。また、多孔体基材の取扱い上、特にシート状のものにおいては剛性が高いと折れるので柔軟性のある素材であることが好ましい。
(Porous substrate)
As the porous substrate in the present invention, any known or commercially available porous material may be used, and resin foams, nonwoven fabrics, felts, woven fabrics, etc. are used, but these are used in combination as necessary. You can also. Moreover, although it does not specifically limit as a raw material, The thing which can be removed by incineration after plating a metal is preferable. Further, in handling the porous substrate, a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.

本発明においては、多孔体基材として樹脂発泡体を用いることが好ましい。樹脂発泡体としては発泡ウレタン、発泡スチレン、発泡メラミン樹脂等が挙げられるが、これらの中でも、特に多孔度が大きい観点から、発泡ウレタンが好ましい。   In the present invention, it is preferable to use a resin foam as the porous substrate. Examples of the resin foam include urethane foam, foamed styrene, and foamed melamine resin. Among these, urethane foam is particularly preferable from the viewpoint of high porosity.

多孔体基材の多孔度は限定的でなく、通常60%以上、97%以下程度、好ましくは80%以上、96%以下程度である。多孔体基材の厚みは限定的でなく、用途等に応じて適宜決定されるが、通常300μm以上、5000μm以下程度、好ましくは400μm以上、2000μm以下程度とすればよい。
以下では、多孔体基材として発泡状樹脂を用いた場合を例にとって本発明を説明する。
The porosity of the porous substrate is not limited and is usually about 60% to 97%, preferably about 80% to 96%. The thickness of the porous substrate is not limited, and is appropriately determined depending on the application and the like. Usually, it is about 300 μm or more and 5000 μm or less, preferably 400 μm or more and 2000 μm or less.
Below, this invention is demonstrated taking the case where a foamed resin is used as a porous body base material as an example.

(導電処理)
導電処理は、発泡状樹脂の表面に導電性を有する層を設けることができる限り限定的でない。導電性を有する層(導電被覆層)を構成する材料としては、例えば、ニッケル、チタン、ステンレススチール等の金属の他、黒鉛等が挙げられる。
導電処理の具体例としては、例えば、ニッケルなどの金属を用いる場合は、無電解めっき処理、スパッタリングや蒸着・イオンプレーティングなどの気相処理等が好ましく挙げられる。また、ステンレススチール等の合金金属、黒鉛などの材料を用いる場合は、これら材料の微粉末にバインダを加えて得られる混合物を、発泡状樹脂の表面に塗着する処理が好ましく挙げられる。
(Conductive treatment)
The conductive treatment is not limited as long as a conductive layer can be provided on the surface of the foamed resin. Examples of the material constituting the conductive layer (conductive coating layer) include graphite, in addition to metals such as nickel, titanium, and stainless steel.
As specific examples of the conductive treatment, for example, when a metal such as nickel is used, electroless plating treatment, vapor phase treatment such as sputtering, vapor deposition / ion plating, and the like are preferably exemplified. Moreover, when using materials, such as alloy metals, such as stainless steel, and graphite, the process of apply | coating the mixture obtained by adding a binder to the fine powder of these materials on the surface of foamed resin is mentioned preferably.

ニッケルを用いた無電解めっき処理は、例えば、還元剤として次亜リン骸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に発泡状樹脂を浸漬することによって行うことができる。必要に応じて、めっき浴浸漬前に、発泡状樹脂を微量のパラジウムイオンを含む活性化液(カニゼン社製の洗浄液)等に浸漬してもよい。   The electroless plating treatment using nickel can be performed, for example, by immersing the foamed resin in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, the foamed resin may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.

ニッケルを用いたスパッタリング処理としては、例えば、基板ホルダーに発泡状樹脂を取り付けた後、不活性ガスを導入しながら、ホルダーとターゲット(ニッケル)との間に直流電圧を印加することにより、イオン化した不活性ガスをニッケルに衝突させて、吹き飛ばしたニッケル粒子を発泡状樹脂表面に堆積すればよい。   As a sputtering process using nickel, for example, after attaching a foamed resin to a substrate holder, ionization is performed by applying a DC voltage between the holder and a target (nickel) while introducing an inert gas. The nickel particles blown off may be deposited on the foamed resin surface by colliding the inert gas with nickel.

導電被覆層の目付量(付着量)は、後の工程のニッケルめっきやニッケル−スズ合金めっきの目付け量と合わせた最終的な金属組成がニッケルが42wt%以上、99wt%以下、スズが1wt%以上、58wt%以下になるように調整することが好ましい。
導電被覆層にニッケルを用いる場合は発泡状樹脂表面に連続的に形成されていればよく、目付量は限定的でないが、通常5g/m2以上、15g/m2以下程度、好ましくは7g/m2以上、10g/m2以下程度とすればよい。
The weight of the conductive coating layer (attachment amount) is 42 wt% or more and 99 wt% or less of nickel, and 1 wt% of tin in the final metal composition combined with the weight of nickel plating or nickel-tin alloy plating in the subsequent process. As mentioned above, it is preferable to adjust so that it may be 58 wt% or less.
When nickel is used for the conductive coating layer, it may be formed continuously on the surface of the foamed resin, and the basis weight is not limited, but is usually about 5 g / m 2 or more and 15 g / m 2 or less, preferably 7 g / m 2. m 2 or more, it may be set to the degree 10 g / m 2 or less.

(電解ニッケルめっき処理)
電解ニッケルめっき処理は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。
前記の無電解めっきやスパッタリングにより表面に導電層を形成された多孔体基材をメッキ浴に浸し、多孔体基材を陰極に、ニッケル対極板を陽極に接続して直流或いはパルス断続電流を通電させることにより、導電層上に、さらにニッケルの被覆を形成することができる。
電解ニッケルめっき層の目付量は、金属多孔体の最終的な金属組成が、ニッケルが42wt%以上、99wt%以下、スズが1wt%以上、58wt%以下の範囲になるように調整することが好ましい。
(Electrolytic nickel plating treatment)
What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method. As the plating bath used for the electrolytic nickel plating treatment, a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.
A porous substrate with a conductive layer formed on the surface by electroless plating or sputtering is immersed in a plating bath, and the porous substrate is connected to the cathode and the nickel counter electrode is connected to the anode to supply direct current or intermittent pulse current. As a result, a nickel coating can be further formed on the conductive layer.
The basis weight of the electrolytic nickel plating layer is preferably adjusted so that the final metal composition of the metal porous body is in the range of 42 wt% or more and 99 wt% or less of nickel and 1 wt% or more and 58 wt% or less of tin. .

(発泡状樹脂除去処理及び還元処理)
発泡状樹脂成分を除去する方法は限定的でないが、焼却により除去することが好ましい。具体的には、例えば600℃程度以上の大気等の酸化性雰囲気下で加熱すればよい。
得られた多孔体を還元性雰囲気下で加熱処理して金属を還元することにより、金属多孔体が得られる。
(Foamed resin removal treatment and reduction treatment)
The method for removing the foamed resin component is not limited, but it is preferably removed by incineration. Specifically, the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher.
The metal porous body is obtained by heat-treating the obtained porous body under a reducing atmosphere to reduce the metal.

上記のニッケル多孔体の製造方法については、たとえば特開平04−002795号公報や特開平08−069801号公報などに開示されている。
以下に、導電被覆を行った後に行う各工程の実施方法について説明する。
About the manufacturing method of said nickel porous body, Unexamined-Japanese-Patent No. 04-002795, Unexamined-Japanese-Patent No. 08-069801, etc. are disclosed, for example.
Below, the implementation method of each process performed after performing conductive coating is demonstrated.

(スズめっき工程)
ニッケル多孔体に少なくともスズを含む合金を被覆する工程は、例えば、次のようにして行うことができる。すなわち、硫酸浴としてを、硫酸第一スズ 55g/L、硫酸 100g/L、クレゾールスルホン酸 100g/L、ゼラチン 2g/L、βナフトール 1g/Lの組成のめっき浴を用意し、陰極電流密度を2A/dm2、陽極電流密度を1A/dm2以下とし、温度を20℃、攪拌(陰極揺動)を2m/分とすることでスズめっきを行うことができる。
(Tin plating process)
The step of coating the porous nickel body with an alloy containing at least tin can be performed, for example, as follows. That is, as a sulfuric acid bath, a plating bath having a composition of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, β naphthol 1 g / L is prepared, and the cathode current density is set. Tin plating can be performed at 2 A / dm 2 , an anode current density of 1 A / dm 2 or less, a temperature of 20 ° C., and stirring (cathode oscillation) of 2 m / min.

スズめっきの目付量は、金属多孔体の最終的な金属組成が、ニッケルが42wt%以上、99wt%以下、スズが1wt%以上、58wt%以下となるように調整することが好ましい。   The basis weight of tin plating is preferably adjusted so that the final metal composition of the metal porous body is 42 wt% or more and 99 wt% or less of nickel, and 1 wt% or more and 58 wt% or less of tin.

また、スズめっきの密着性を向上させるため、直前にストライクニッケルめっきを行って、金属多孔体を洗浄し、乾燥させずに濡れたままスズめっき液に投入することが望ましい。これによりめっき層の密着性を高めることができる。
ストライクニッケルめっきの条件は、例えば、次のようにすることができる。すなわち、ウッドストライクニッケル浴として、塩化ニッケル 240g/L、塩酸(比重1.18程度のもの) 125ml/Lの組成のものを用意し、温度を室温にして、陽極にニッケルまたはカーボンを用いることで行うことができる。
Further, in order to improve the adhesion of tin plating, it is desirable to perform strike nickel plating immediately before, wash the metal porous body, and put it into the tin plating solution without getting dried. Thereby, the adhesiveness of a plating layer can be improved.
The conditions for strike nickel plating can be as follows, for example. That is, a wood strike nickel bath having a composition of nickel chloride 240 g / L, hydrochloric acid (having a specific gravity of about 1.18) 125 ml / L is prepared, the temperature is set to room temperature, and nickel or carbon is used for the anode. It can be carried out.

以上のめっき手順をまとめると、エースクリーンによる脱脂(陰極電解脱脂5ASD×1分)、湯洗、水洗、酸活性(塩酸浸漬1分)、ウッドストライクニッケルめっき処理(5〜10ASD×1分)、洗浄して乾燥させずにスズめっきへ処理、水洗・乾燥、となる。   Summarizing the above plating procedures, degreasing by an A-screen (cathodic electrolytic degreasing 5 ASD × 1 minute), hot water washing, water washing, acid activity (hydrochloric acid immersion 1 minute), wood strike nickel plating treatment (5-10 ASD × 1 minute), It is processed to tin plating without washing and drying, washing with water and drying.

(めっき時のめっき液の循環)
発泡状樹脂のような多孔体基材へのめっきは、一般的に内部へ均一にめっきすることが難しい。内部の未着を防いだり、内部と外部のめっき付着量の差を低減したりするために、めっき液を循環させることが好ましい。循環の方法としては、ポンプを使用したり、めっき槽内部にファンを設置するなどの方法がある。また、これらの方法を用いて基材にめっき液を吹き付けたり、吸引口に基材を隣接させたりすると、基材内部にめっき液の流れができやすくなって効果的である。
(Plating solution circulation during plating)
In general, it is difficult to uniformly plate the inside of a porous substrate such as a foamed resin. It is preferable to circulate the plating solution in order to prevent non-attachment of the inside or to reduce the difference in the amount of plating adhesion between the inside and the outside. As a circulation method, there are methods such as using a pump and installing a fan inside the plating tank. Moreover, if a plating solution is sprayed on a base material using these methods, or a base material is made to adjoin a suction port, the plating solution can easily flow inside the base material, which is effective.

(熱処理)
めっき後そのままでは耐食性の低いニッケルが露出していることがあるため、熱処理を行ってスズ成分を拡散させることが必要である。スズの拡散は不活性雰囲気(減圧や、窒素・アルゴンなど)あるいは還元雰囲気(水素)で行うことができる。
この熱処理工程ではスズ成分をニッケルめっき層中に充分に拡散させて、金属多孔体骨格の表側と内側のスズの濃度比が、表側濃度/内側濃度が2/1以上、1/2以下の範囲になるようにすることが好ましい。より好ましくは3/2以上、2/3以下であり、更に好ましくは4/3以上、3/4以下であり、最も好ましくは均一に拡散させることである。
(Heat treatment)
Since nickel having low corrosion resistance may be exposed as it is after plating, it is necessary to diffuse the tin component by heat treatment. Tin can be diffused in an inert atmosphere (reduced pressure, nitrogen, argon, etc.) or in a reducing atmosphere (hydrogen).
In this heat treatment step, the tin component is sufficiently diffused in the nickel plating layer, and the concentration ratio between the front side and the inner side tin of the metal porous body skeleton is a range where the front side concentration / inner concentration is 2/1 or more and 1/2 or less It is preferable that More preferably, it is 3/2 or more and 2/3 or less, still more preferably 4/3 or more and 3/4 or less, and most preferably, it is uniformly diffused.

熱処理温度は、低すぎると拡散に時間がかかり、高すぎると軟化して自重で多孔体構造を損なう可能性があるため、300℃以上、1100℃以下の範囲で行うことが好ましい。但し、スズ濃度が40wt%以上のときは850℃を上限とする必要がある。より好ましくは400℃以上、800℃以下であり、更に好ましくは500℃以上、700℃以下である。   If the heat treatment temperature is too low, it takes time for diffusion, and if it is too high, the heat treatment temperature may soften and damage the porous structure by its own weight. However, when tin concentration is 40 wt% or more, it is necessary to make 850 degreeC into an upper limit. More preferably, it is 400 degreeC or more and 800 degrees C or less, More preferably, it is 500 degreeC or more and 700 degrees C or less.

(ニッケル−スズ合金めっき)
上記では多孔体基材にニッケルめっきを施し、その後にスズめっきをして熱処理により合金化する手法について説明したが、上記多孔体基材に導電化処理を施した後に、ニッケル−スズ合金めっきを施すことも可能である。この場合のニッケル−スズ合金めっき液の組成は、金属多孔体の最終的な金属組成が、ニッケルが42wt%以上、99wt%以下、スズが1wt%以上、58wt%以下となるように調整することが好ましい。そして、ニッケル−スズ合金めっきを形成した後に、多孔体基材の除去し、次いで還元性雰囲気下で加熱処理して金属を還元することにより、金属多孔体が得られる。
(Nickel-tin alloy plating)
In the above description, the method of performing nickel plating on the porous substrate, then tin-plating, and alloying by heat treatment has been described, but after conducting the conductive treatment on the porous substrate, the nickel-tin alloy plating is performed. It is also possible to apply. The composition of the nickel-tin alloy plating solution in this case is adjusted so that the final metal composition of the metal porous body is 42 wt% or more and 99 wt% or less of nickel, and 1 wt% or more and 58 wt% or less of tin. Is preferred. And after forming nickel-tin alloy plating, a porous metal base material is obtained by removing a porous body base material and then heat-processing in a reducing atmosphere and reducing a metal.

(金属目付量)
導電被覆層、ニッケル被覆層、合金皮膜層の金属目付量の合計量としては、好ましくは200g/m2以上、1000g/m2以下である。より好ましくは300g/m2以上、600g/m2以下であり、更に好ましくは400g/m2以上、500g/m2以下である。合計量が200g/m2を下回ると、集電体の強度が衰えるおそれがある。また、合計量が1000g/m2を上回ると、分極性材料の充填量が減少し、またコスト的にも不利となる。
(Metal weight)
The total amount of metal basis weight of the conductive coating layer, nickel coating layer, and alloy coating layer is preferably 200 g / m 2 or more and 1000 g / m 2 or less. More preferably, they are 300 g / m < 2 > or more and 600 g / m < 2 > or less, More preferably, they are 400 g / m < 2 > or more and 500 g / m < 2 > or less. If the total amount is less than 200 g / m 2 , the strength of the current collector may be reduced. On the other hand, if the total amount exceeds 1000 g / m 2 , the filling amount of the polarizable material is reduced, and the cost is disadvantageous.

(孔径)
金属多孔体を燃料電池の触媒層に用いる場合、平均孔径は1μm以上、50μm以下が好ましい。より好ましくは2μm以上、20μm以下であり、更に好ましくは2μm以上、5μm以下である。その他集電体として使用する場合は50μm以上、1000μm以下が好ましい。より好ましくは50μm以上、600μm以下であり、更に好ましくは80μm以上、300μm以下である。
(Pore diameter)
When using a metal porous body for the catalyst layer of a fuel cell, the average pore diameter is preferably 1 μm or more and 50 μm or less. More preferably, they are 2 micrometers or more and 20 micrometers or less, More preferably, they are 2 micrometers or more and 5 micrometers or less. In addition, when using as an electrical power collector, 50 micrometers or more and 1000 micrometers or less are preferable. More preferably, they are 50 micrometers or more and 600 micrometers or less, More preferably, they are 80 micrometers or more and 300 micrometers or less.

(金属多孔体の組成の確認)
誘導結合プラズマ(Inductively CoupledPlasma:ICP)を利用した定量測定を行い、含有元素の質量%を求めることができる。
(Confirmation of metal porous body composition)
Quantitative measurement using inductively coupled plasma (ICP) can be performed to determine the mass% of the contained element.

(スズの拡散確認)
金属多孔体について、断面からのエネルギー分散型X線分析(Energy DispersiveX-ray spectroscopy:EDX)測定を行い、骨格表側と骨格内側のスペクトルを比較することにより、スズの拡散状態を確認することができる。
(Diffusion confirmation of tin)
By conducting energy dispersive X-ray spectroscopy (EDX) measurement from a cross section of a porous metal body and comparing the spectrum of the skeleton front side and the skeleton inner side, the diffusion state of tin can be confirmed. .

(実施例1)
樹脂多孔体シートとして1.5mm厚のポリウレタンシートを用いて、これを三酸化クロム400g/Lと硫酸400g/Lの混合溶液中に60℃で1分浸漬することによって表面処理を施した。このような表面処理を行うことにより、次いで付着させる導電膜とアンカー効果を形成し、高い密着力が得られる。
次に、粒径0.01〜20μmのカーボン粉末20gを10%アクリルスチレン系合成樹脂水溶液80gに分散させ、カーボン塗料を作製した。
次いで、前記の表面処理を施した発泡ウレタンを前記塗料に連続的に漬け、ロールで絞った後乾燥させることにより導電化処理を施した。
Example 1
A polyurethane sheet having a thickness of 1.5 mm was used as the porous resin sheet, and this was subjected to surface treatment by immersing it in a mixed solution of 400 g / L of chromium trioxide and 400 g / L of sulfuric acid at 60 ° C. for 1 minute. By performing such surface treatment, a conductive film to be subsequently deposited and an anchor effect are formed, and high adhesion can be obtained.
Next, 20 g of carbon powder having a particle size of 0.01 to 20 μm was dispersed in 80 g of a 10% acrylic styrene-based synthetic resin aqueous solution to prepare a carbon paint.
Next, the foamed urethane subjected to the above surface treatment was continuously dipped in the paint, squeezed with a roll, and then dried to give a conductive treatment.

そして、該導電化処理を施した樹脂多孔体シートにニッケルめっきを施すことにより、目付が200g/m2のニッケル多孔体を作製した。
ニッケルめっきはスルファミン酸浴で行った。スルファミン酸浴は、スルファミン酸ニッケル450g/Lと硼酸30g/Lの濃度の水溶液で、pHを4に調製した。そして、温度を55℃とし、電流密度を20ASD(A/dm2)としてニッケルめっきを行った。
And the nickel porous body whose fabric weight is 200 g / m < 2 > was produced by giving nickel plating to the resin porous body sheet | seat which performed this electroconductivity process.
Nickel plating was performed in a sulfamic acid bath. The sulfamic acid bath was an aqueous solution having a concentration of 450 g / L nickel sulfamate and 30 g / L boric acid, and the pH was adjusted to 4. Nickel plating was performed at a temperature of 55 ° C. and a current density of 20 ASD (A / dm 2 ).

更に、大気中1000℃で15分間加熱することにより基材(樹脂多孔体シート)を燃焼除去した。このとき金属多孔体も一部酸化されるため、その後更に、還元(水素)雰囲気で、1000℃、20分の条件で還元処理を行った。   Furthermore, the base material (resin porous sheet) was burned and removed by heating at 1000 ° C. for 15 minutes in the atmosphere. At this time, since the metal porous body is also partially oxidized, reduction treatment was further performed in a reducing (hydrogen) atmosphere at 1000 ° C. for 20 minutes.

上記で作製した目付け200g/m2のニッケル多孔体に、目付け2g/m2のスズめっきを施し、熱処理によってスズを拡散させ、ニッケル99wt%、スズ1wt%の組成の金属多孔体を得た。
スズめっきのめっき液としては、水1000gに対し、硫酸第一スズ55g/L、硫酸100g/L、クレゾールスルホン酸100g/L、ゼラチン2g/L、βナフトール1g/Lの組成としたものを使用した。また、めっき浴の浴温は20℃とし、陽極電流密度は1A/dm2とした。めっき液は陰極揺動により2m/分となるように攪拌した。
熱処理工程では、還元(水素)雰囲気で、550℃、10分の熱処理を行った。
A nickel porous body having a basis weight of 200 g / m 2 prepared in the above was subjected to tin plating of basis weight 2 g / m 2, is diffused tin by heat treatment to obtain a nickel 99 wt%, the porous metal body of the tin 1 wt% of the composition.
As a plating solution for tin plating, a composition of 55 g / L of stannous sulfate, 100 g / L of sulfuric acid, 100 g / L of cresolsulfonic acid, 2 g / L of gelatin, and 1 g / L of β-naphthol is used for 1000 g of water. did. The bath temperature of the plating bath was 20 ° C., and the anode current density was 1 A / dm 2 . The plating solution was agitated so as to be 2 m / min by the cathode oscillation.
In the heat treatment step, heat treatment was performed at 550 ° C. for 10 minutes in a reducing (hydrogen) atmosphere.

EDXスペクトル比較では表側・内側に差異はなく、スズは満遍なく拡散していると考えられる。   In the EDX spectrum comparison, there is no difference between the front side and the inner side, and it is considered that tin diffuses evenly.

(実施例2)
ニッケル多孔体へのスズめっきの目付けを59.7g/m2となるようにした以外は実施例1と同様にして金属多孔体を作製した。これにより、Snの含有量が23wt%のニッケルスズ合金の多孔体が得られた。
EDXスペクトル比較では表側・内側に差異はなく、スズは満遍なく拡散していると考えられる。
(Example 2)
A metal porous body was produced in the same manner as in Example 1 except that the basis weight of tin plating on the nickel porous body was 59.7 g / m 2 . As a result, a nickel-tin alloy porous body having a Sn content of 23 wt% was obtained.
In the EDX spectrum comparison, there is no difference between the front side and the inner side, and it is considered that tin diffuses evenly.

(実施例3)
ニッケル多孔体へのスズめっきの目付けを216.7g/m2となるようにした以外は実施例1と同様にして金属多孔体を作製した。これにより、Snの含有量が52wt%のニッケルスズ合金の多孔体が得られた。
EDXスペクトル比較では表側・内側に差異はなく、スズは満遍なく拡散していると考えられる。
(Example 3)
A metal porous body was produced in the same manner as in Example 1 except that the basis weight of tin plating on the nickel porous body was 216.7 g / m 2 . As a result, a nickel-tin alloy porous body having a Sn content of 52 wt% was obtained.
In the EDX spectrum comparison, there is no difference between the front side and the inner side, and it is considered that tin diffuses evenly.

(実施例4)
実施例2と同様に、スズめっきの目付けを59.7g/m2となるようにして、Snの含有量が23wt%のニッケルスズ合金の多孔体を作製した。さらに、濃度1mol/Lの硫酸ナトリウム水溶液中で0.2V vs SHEの電位を15分間印加した。
EDXスペクトル比較では表側・内側に差異はなく、スズは満遍なく拡散していると考えられる。
Example 4
In the same manner as in Example 2, a nickel-tin alloy porous body having a Sn content of 23 wt% was prepared with a tin plating basis weight of 59.7 g / m 2 . Further, a potential of 0.2 V vs. SHE was applied for 15 minutes in an aqueous sodium sulfate solution having a concentration of 1 mol / L.
In the EDX spectrum comparison, there is no difference between the front side and the inner side, and it is considered that tin diffuses evenly.

(比較例1)
実施例1と同様に導電処理後の発泡ウレタンにニッケルめっきを施し、熱処理によってウレタンを除去して得たニッケル多孔体を用意した。
(Comparative Example 1)
In the same manner as in Example 1, a nickel porous body obtained by applying nickel plating to urethane foam after the conductive treatment and removing the urethane by heat treatment was prepared.

(比較例2)
実施例1と同様に導電処理後の発泡ウレタンにニッケル電気めっきを施し、熱処理によってウレタンを除去したのち、スズめっきを行った。実施例1とは異なり、スズめっき後の熱処理工程は行わなかった。
(Comparative Example 2)
In the same manner as in Example 1, the electrofoamed urethane foam was subjected to nickel electroplating, the urethane was removed by heat treatment, and then tin plating was performed. Unlike Example 1, the heat treatment step after tin plating was not performed.

<評価>
(耐電解性の評価)
耐電解性を確認するため、ASTM G5に準拠した方法で分極測定を行った。各金属多孔体を1cm幅×2cmに切断して用いた。参照極には銀/塩化銀電極を用い、対極は白金のメッシュを用いた。液は濃度1mol/Lの硫酸ナトリウムを用い、pHは5に調整し温度は60℃で測定した。水素バブリングを行って溶存酸素を水素置換した後、バブリングした状態で測定を行った。試料の面積は見かけ1cm2が液に浸かるようにし、標準水素電位に対し−0.3〜1Vの範囲で、5mV/sの速度で電位を掃引した。流れた電流の最大値を下記表1に示す。
<Evaluation>
(Evaluation of electrolysis resistance)
In order to confirm the electrolysis resistance, polarization measurement was performed by a method based on ASTM G5. Each porous metal body was cut into 1 cm width × 2 cm and used. A silver / silver chloride electrode was used for the reference electrode, and a platinum mesh was used for the counter electrode. The solution was sodium sulfate having a concentration of 1 mol / L, the pH was adjusted to 5, and the temperature was measured at 60 ° C. After performing hydrogen bubbling to replace the dissolved oxygen with hydrogen, the measurement was performed in the bubbled state. The area of the sample was apparently 1 cm 2 immersed in the liquid, and the potential was swept at a rate of 5 mV / s in the range of −0.3 to 1 V with respect to the standard hydrogen potential. The maximum value of the flowing current is shown in Table 1 below.

Figure 2012132083
Figure 2012132083

比較例1のニッケル多孔体が0.1A以上流れたのに対し、本発明のニッケルスズ多孔体は0.002A以下しか流れず、優れた耐電解性を示した。また、実施例4の結果から一定電位を印加する処理によって電流を減少させることが出来たことが分かる。これは、一定電位を印加することで表面に緻密な酸化膜を形成したためと考えられる。
一方、比較例2でも比較例1と同様の電流が流れたことから、熱処理によるスズの拡散は必須であることが分かる。
While the nickel porous body of Comparative Example 1 flowed 0.1 A or more, the nickel tin porous body of the present invention flowed only 0.002 A or less, and showed excellent electrolytic resistance. Further, it can be seen from the results of Example 4 that the current can be reduced by the process of applying a constant potential. This is thought to be because a dense oxide film was formed on the surface by applying a constant potential.
On the other hand, since the same current as in Comparative Example 1 also flowed in Comparative Example 2, it can be seen that tin diffusion by heat treatment is essential.

本発明の金属多孔体は、耐電解性、耐食性に優れているので、リチウムイオン電池等の電池やキャパシタ、燃料電池の集電体として好適に使用できる。   Since the metal porous body of the present invention is excellent in electrolytic resistance and corrosion resistance, it can be suitably used as a current collector for batteries such as lithium ion batteries, capacitors, and fuel cells.

Claims (6)

少なくともニッケルとスズを含む合金からなることを特徴とする金属多孔体。   A porous metal body comprising an alloy containing at least nickel and tin. 上記金属多孔体のスズ含有量が1〜58wt%であることを特徴とする請求項1に記載の金属多孔体。   The metal porous body according to claim 1, wherein the metal porous body has a tin content of 1 to 58 wt%. 前記金属多孔体が、成分として、10wt%以下のリンを更に含むことを特徴とする請求項1又は2に記載の金属多孔体。   The porous metal body according to claim 1 or 2, wherein the porous metal body further contains 10 wt% or less of phosphorus as a component. 上記金属多孔体に、液中で電解酸化処理することにより耐食性を向上させたことを特徴とする請求項1〜3のいずれかに記載の金属多孔体。   The metal porous body according to any one of claims 1 to 3, wherein the metal porous body is subjected to electrolytic oxidation treatment in a liquid to improve corrosion resistance. ニッケル多孔体に、少なくともスズを含む金属を被覆する工程と、その後に熱処理を行ってスズを前記ニッケル多孔体中にまで拡散させる工程と、を有することを特徴とする、少なくともニッケルとスズを含む合金からなる金属多孔体の製造方法。   A step of covering a porous nickel body with a metal containing at least tin, and a step of subsequently performing a heat treatment to diffuse the tin into the porous nickel body, comprising at least nickel and tin A method for producing a metal porous body made of an alloy. 前記ニッケル多孔体が、導電処理をした多孔体基材にニッケルを被覆し、該多孔体基材を除去した後にニッケルを還元することによって得られたものであることを特徴とする請求項5に記載の金属多孔体の製造方法。   6. The nickel porous body according to claim 5, wherein the nickel porous body is obtained by coating nickel on a porous base material subjected to a conductive treatment, and reducing the nickel after removing the porous base material. The manufacturing method of the metal porous body of description.
JP2010287439A 2010-12-08 2010-12-24 Metal porous body having high corrosion resistance and method for producing the same Active JP5759169B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2010287439A JP5759169B2 (en) 2010-12-24 2010-12-24 Metal porous body having high corrosion resistance and method for producing the same
CN201180059407.6A CN103249850B (en) 2010-12-08 2011-11-30 There is metal porous body and the manufacture method thereof of high corrosion resistance
EP11846980.8A EP2650393A4 (en) 2010-12-08 2011-11-30 Metallic porous body having high corrosion resistance and method for manufacturing same
KR1020177033247A KR101818085B1 (en) 2010-12-08 2011-11-30 Highly corrosion-resistant porous metal body and method for producing the same
US13/992,266 US20130266862A1 (en) 2010-12-08 2011-11-30 Highly corrosion-resistant porous metal body and method for producing the same
PCT/JP2011/077650 WO2012077550A1 (en) 2010-12-08 2011-11-30 Metallic porous body having high corrosion resistance and method for manufacturing same
KR1020137013897A KR101832251B1 (en) 2010-12-08 2011-11-30 Highly corrosion-resistant porous metal body and method for producing the same
EP13172477.5A EP2644721B1 (en) 2010-12-08 2011-11-30 Method for producing highly corrosion-resistant porous Ni-Sn body
EP13172478.3A EP2644722B1 (en) 2010-12-08 2011-11-30 Method for producing highly corrosion-resistant porous metal body
US15/374,251 US10164262B2 (en) 2010-12-08 2016-12-09 Method for producing a porous metal body
US16/171,725 US20190067703A1 (en) 2010-12-08 2018-10-26 Highly corrosion-resistant porous metal body and method for producing the same
US16/990,733 US20200373586A1 (en) 2010-12-08 2020-08-11 Highly corrosion-resistant porous metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287439A JP5759169B2 (en) 2010-12-24 2010-12-24 Metal porous body having high corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012132083A true JP2012132083A (en) 2012-07-12
JP5759169B2 JP5759169B2 (en) 2015-08-05

Family

ID=46648000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287439A Active JP5759169B2 (en) 2010-12-08 2010-12-24 Metal porous body having high corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5759169B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050536A1 (en) 2012-09-27 2014-04-03 住友電気工業株式会社 Metallic porous body, and method for producing same
WO2014203594A1 (en) 2013-06-19 2014-12-24 住友電気工業株式会社 Porous metal body and method for producing same
WO2014208176A1 (en) 2013-06-27 2014-12-31 住友電気工業株式会社 Metal porous body, method for manufacturing metal porous body, and fuel cell
JP2015071804A (en) * 2013-10-02 2015-04-16 住友電気工業株式会社 Metal porous body and process for producing metal porous body
JP2015074820A (en) * 2013-10-11 2015-04-20 住友電気工業株式会社 Metal porous body, filter and method of producing metal porous body
WO2015137102A1 (en) * 2014-03-12 2015-09-17 住友電気工業株式会社 Porous collector, fuel cell and method for producing porous collector
WO2015151645A1 (en) * 2014-03-31 2015-10-08 住友電気工業株式会社 Porous collector and fuel cell
WO2015151828A1 (en) * 2014-03-31 2015-10-08 住友電気工業株式会社 Collector for fuel cells, and fuel cell
KR20160130232A (en) 2014-03-06 2016-11-10 스미토모덴키고교가부시키가이샤 Porous metal body and method for producing porous metal body
KR20180037188A (en) 2015-08-07 2018-04-11 스미토모덴키고교가부시키가이샤 Porous metal body, fuel battery, and method for producing porous metal body
WO2019012948A1 (en) 2017-07-14 2019-01-17 住友電気工業株式会社 Metal porous body, solid oxide fuel cell and method for manufacturing said metal porous body
WO2019012947A1 (en) 2017-07-14 2019-01-17 住友電気工業株式会社 Metal porous body, solid oxide fuel cell and method for manufacturing said metal porous body
US10249885B2 (en) 2013-12-26 2019-04-02 Research Institute Of Industrial Science & Technology Cathode current collector for solid oxide fuel cell, and solid oxide fuel cell comprising same
WO2019244480A1 (en) 2018-06-21 2019-12-26 住友電気工業株式会社 Porous body, current collector including same, and fuel cell
WO2020049889A1 (en) * 2018-09-05 2020-03-12 住友電気工業株式会社 Chromium adsorbent and fuel cell
WO2020235265A1 (en) 2019-05-22 2020-11-26 住友電気工業株式会社 Porous body, fuel cell including same, and water-vapor electrolysis apparatus including same
CN112055905A (en) * 2018-05-01 2020-12-08 住友电气工业株式会社 Fuel cell
US10895015B1 (en) * 2014-12-16 2021-01-19 Hrl Laboratories, Llc Thin-walled high temperature alloy structures via multi-material additive manufacturing
WO2021130849A1 (en) 2019-12-24 2021-07-01 住友電気工業株式会社 Porous body and fuel cell comprising same
CN113328103A (en) * 2021-05-13 2021-08-31 深圳先进储能材料国家工程研究中心有限公司 Preparation method of base material for gas diffusion layer of fuel cell
KR20220115573A (en) 2019-12-24 2022-08-17 스미토모덴키고교가부시키가이샤 Porous body and fuel cell including same
CN115287720A (en) * 2022-08-23 2022-11-04 北京航空航天大学 Method and application of ionic liquid electrodeposition
WO2023181552A1 (en) * 2022-03-24 2023-09-28 住友電気工業株式会社 Metal porous body, nickel-zinc battery, and zinc air battery
US11996589B2 (en) 2018-09-05 2024-05-28 Sumitomo Electric Industries, Ltd. Fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104038A (en) * 1984-10-27 1986-05-22 Sumitomo Electric Ind Ltd Lightweight wear resistant member
JPH042795A (en) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd Continuous production of metallic porous body
JPH04280074A (en) * 1991-03-08 1992-10-06 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell
WO1999054076A1 (en) * 1998-04-23 1999-10-28 Toyo Kohan Co., Ltd. Porous sintered body having high porosity, secondary cell electrode base comprising porous sintered body, method of producing the same, and electrode and cell using them
JP2004039491A (en) * 2002-07-04 2004-02-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004143580A (en) * 2002-08-28 2004-05-20 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing obtained by using the same
JP2006260886A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous metal anode and lithium secondary battery using the same
JP2008539328A (en) * 2005-04-28 2008-11-13 黄 浩 Electrochemical method for producing and storing hydrogen by redox of zinc and water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104038A (en) * 1984-10-27 1986-05-22 Sumitomo Electric Ind Ltd Lightweight wear resistant member
JPH042795A (en) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd Continuous production of metallic porous body
JPH04280074A (en) * 1991-03-08 1992-10-06 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell
WO1999054076A1 (en) * 1998-04-23 1999-10-28 Toyo Kohan Co., Ltd. Porous sintered body having high porosity, secondary cell electrode base comprising porous sintered body, method of producing the same, and electrode and cell using them
JP2004039491A (en) * 2002-07-04 2004-02-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004143580A (en) * 2002-08-28 2004-05-20 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing obtained by using the same
JP2006260886A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous metal anode and lithium secondary battery using the same
JP2008539328A (en) * 2005-04-28 2008-11-13 黄 浩 Electrochemical method for producing and storing hydrogen by redox of zinc and water

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050536A1 (en) 2012-09-27 2014-04-03 住友電気工業株式会社 Metallic porous body, and method for producing same
JP2014065955A (en) * 2012-09-27 2014-04-17 Sumitomo Electric Ind Ltd Metal porous body and method for manufacturing the same
KR20160021769A (en) 2013-06-19 2016-02-26 스미토모덴키고교가부시키가이샤 Porous metal body and method for producing same
US10287646B2 (en) 2013-06-19 2019-05-14 Sumitomo Electric Industries, Ltd. Porous metal body and method for producing same
JP2015004088A (en) * 2013-06-19 2015-01-08 住友電気工業株式会社 Metal porous body and method for producing the same
WO2014203594A1 (en) 2013-06-19 2014-12-24 住友電気工業株式会社 Porous metal body and method for producing same
JP2015011803A (en) * 2013-06-27 2015-01-19 住友電気工業株式会社 Metal porous body, method for manufacturing metal porous body, and fuel battery
WO2014208176A1 (en) 2013-06-27 2014-12-31 住友電気工業株式会社 Metal porous body, method for manufacturing metal porous body, and fuel cell
US10205177B2 (en) 2013-06-27 2019-02-12 Sumitomo Electric Industries, Ltd. Porous metal body, method for manufacturing porous metal body, and fuel cell
KR20160024867A (en) 2013-06-27 2016-03-07 스미토모덴키고교가부시키가이샤 Metal porous body, method for manufacturing metal porous body, and fuel cell
JP2015071804A (en) * 2013-10-02 2015-04-16 住友電気工業株式会社 Metal porous body and process for producing metal porous body
JP2015074820A (en) * 2013-10-11 2015-04-20 住友電気工業株式会社 Metal porous body, filter and method of producing metal porous body
US10249885B2 (en) 2013-12-26 2019-04-02 Research Institute Of Industrial Science & Technology Cathode current collector for solid oxide fuel cell, and solid oxide fuel cell comprising same
KR20160130232A (en) 2014-03-06 2016-11-10 스미토모덴키고교가부시키가이샤 Porous metal body and method for producing porous metal body
US10128513B2 (en) 2014-03-06 2018-11-13 Sumitomo Electric Industries, Ltd. Porous metal body and method for producing porous metal body
US20170025687A1 (en) * 2014-03-12 2017-01-26 Sumitomo Electric Industries, Ltd. Porous current collector, fuel cell, and method for producing porous current collector
WO2015137102A1 (en) * 2014-03-12 2015-09-17 住友電気工業株式会社 Porous collector, fuel cell and method for producing porous collector
JPWO2015137102A1 (en) * 2014-03-12 2017-04-06 住友電気工業株式会社 Porous current collector, fuel cell, and method for producing porous current collector
WO2015151828A1 (en) * 2014-03-31 2015-10-08 住友電気工業株式会社 Collector for fuel cells, and fuel cell
US10797323B2 (en) 2014-03-31 2020-10-06 Sumitomo Electric Industries, Ltd. Current collector for fuel cell, and fuel cell
US20170098841A1 (en) * 2014-03-31 2017-04-06 Sumitomo Electric Industries, Ltd. Porous current collector and fuel cell
JPWO2015151645A1 (en) * 2014-03-31 2017-04-13 住友電気工業株式会社 Porous current collector and fuel cell
KR20160140731A (en) 2014-03-31 2016-12-07 스미토모덴키고교가부시키가이샤 Collector for fuel cells, and fuel cell
CN106165170A (en) * 2014-03-31 2016-11-23 住友电气工业株式会社 Fuel cell collector and fuel cell
WO2015151645A1 (en) * 2014-03-31 2015-10-08 住友電気工業株式会社 Porous collector and fuel cell
US10374243B2 (en) 2014-03-31 2019-08-06 Sumitomo Electric Industries, Ltd. Porous current collector and fuel cell
CN106165171A (en) * 2014-03-31 2016-11-23 住友电气工业株式会社 Porous collector body and fuel cell
JP2015195115A (en) * 2014-03-31 2015-11-05 住友電気工業株式会社 Collector for fuel cell, and fuel cell
US12018394B1 (en) 2014-12-16 2024-06-25 Hrl Laboratories, Llc Thin-walled high temperature alloy structures via multi-material additive manufacturing
US11661664B1 (en) 2014-12-16 2023-05-30 Hrl Laboratories, Llc Thin-walled high temperature alloy structures via multi-material additive manufacturing
US10895015B1 (en) * 2014-12-16 2021-01-19 Hrl Laboratories, Llc Thin-walled high temperature alloy structures via multi-material additive manufacturing
KR20180037188A (en) 2015-08-07 2018-04-11 스미토모덴키고교가부시키가이샤 Porous metal body, fuel battery, and method for producing porous metal body
US11228043B2 (en) 2015-08-07 2022-01-18 Sumitomo Electric Industries, Ltd. Fuel battery
US10811696B2 (en) 2015-08-07 2020-10-20 Sumitomo Electric Industries, Ltd. Porous metal body, fuel battery, and method for producing porous metal body
KR20200029439A (en) 2017-07-14 2020-03-18 스미토모덴키고교가부시키가이샤 Metal porous body, solid oxide fuel cell, and method for manufacturing metal porous body
KR20200030533A (en) 2017-07-14 2020-03-20 스미토모덴키고교가부시키가이샤 Metal porous body, solid oxide fuel cell, and method for manufacturing metal porous body
WO2019012948A1 (en) 2017-07-14 2019-01-17 住友電気工業株式会社 Metal porous body, solid oxide fuel cell and method for manufacturing said metal porous body
WO2019012947A1 (en) 2017-07-14 2019-01-17 住友電気工業株式会社 Metal porous body, solid oxide fuel cell and method for manufacturing said metal porous body
US11888185B2 (en) 2018-05-01 2024-01-30 Sumitomo Electric Industries, Ltd. Fuel cell
CN112055905A (en) * 2018-05-01 2020-12-08 住友电气工业株式会社 Fuel cell
CN112055905B (en) * 2018-05-01 2023-09-12 住友电气工业株式会社 Fuel cell
EP3790087A4 (en) * 2018-05-01 2021-06-30 Sumitomo Electric Industries, Ltd. Fuel cell
WO2019244480A1 (en) 2018-06-21 2019-12-26 住友電気工業株式会社 Porous body, current collector including same, and fuel cell
KR20210021891A (en) 2018-06-21 2021-03-02 스미토모덴키고교가부시키가이샤 Porous body, current collector and fuel cell including the same
US11329295B2 (en) 2018-06-21 2022-05-10 Sumitomo Electric Industries, Ltd. Porous body, current collector including the same, and fuel cell
WO2020049889A1 (en) * 2018-09-05 2020-03-12 住友電気工業株式会社 Chromium adsorbent and fuel cell
US11996589B2 (en) 2018-09-05 2024-05-28 Sumitomo Electric Industries, Ltd. Fuel cell
US11984627B2 (en) 2018-09-05 2024-05-14 Sumitomo Electric Industries, Ltd. Chromium adsorption material and fuel cell
JP7243728B2 (en) 2018-09-05 2023-03-22 住友電気工業株式会社 Chromium adsorption materials and fuel cells
JPWO2020049889A1 (en) * 2018-09-05 2021-09-02 住友電気工業株式会社 Chromium adsorption material and fuel cell
KR20220012779A (en) 2019-05-22 2022-02-04 스미토모덴키고교가부시키가이샤 Porous body, fuel cell including same, and water vapor electrolysis device including same
WO2020235265A1 (en) 2019-05-22 2020-11-26 住友電気工業株式会社 Porous body, fuel cell including same, and water-vapor electrolysis apparatus including same
WO2021130849A1 (en) 2019-12-24 2021-07-01 住友電気工業株式会社 Porous body and fuel cell comprising same
US11757106B2 (en) 2019-12-24 2023-09-12 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same
KR20220115832A (en) 2019-12-24 2022-08-19 스미토모덴키고교가부시키가이샤 Porous body and fuel cell including same
KR20220115573A (en) 2019-12-24 2022-08-17 스미토모덴키고교가부시키가이샤 Porous body and fuel cell including same
CN113328103A (en) * 2021-05-13 2021-08-31 深圳先进储能材料国家工程研究中心有限公司 Preparation method of base material for gas diffusion layer of fuel cell
WO2023181552A1 (en) * 2022-03-24 2023-09-28 住友電気工業株式会社 Metal porous body, nickel-zinc battery, and zinc air battery
CN115287720B (en) * 2022-08-23 2023-12-26 北京航空航天大学 Method and application of ionic liquid electrodeposition
CN115287720A (en) * 2022-08-23 2022-11-04 北京航空航天大学 Method and application of ionic liquid electrodeposition

Also Published As

Publication number Publication date
JP5759169B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5759169B2 (en) Metal porous body having high corrosion resistance and method for producing the same
US20200373586A1 (en) Highly corrosion-resistant porous metal body
JP5369050B2 (en) Metal porous body with high corrosion resistance
JP5691107B2 (en) Metal porous body having high corrosion resistance and method for producing the same
EP3410520B1 (en) Fuel cell and method for producing metal porous body
JP6426147B2 (en) Metal porous body and method for producing metal porous body
JP6055379B2 (en) Porous metal body, method for producing porous metal body, and fuel cell
WO2017026291A1 (en) Metallic porous body, fuel cell, and method for manufacturing metallic porous body
JP2017054797A (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
JP2013008811A (en) Collector for capacitor, electrode using the same, and capacitor
US11519090B2 (en) Method and apparatus for producing electrolytic aluminum foil
JP5635382B2 (en) Method for producing porous metal body having high corrosion resistance
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP6148141B2 (en) Porous metal body and method for producing porous metal body
EP2644722A2 (en) Highly corrosion-resistant porous metal body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5759169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250