JP2012132054A - Aluminum alloy casting and method of manufacturing the same - Google Patents

Aluminum alloy casting and method of manufacturing the same Download PDF

Info

Publication number
JP2012132054A
JP2012132054A JP2010284101A JP2010284101A JP2012132054A JP 2012132054 A JP2012132054 A JP 2012132054A JP 2010284101 A JP2010284101 A JP 2010284101A JP 2010284101 A JP2010284101 A JP 2010284101A JP 2012132054 A JP2012132054 A JP 2012132054A
Authority
JP
Japan
Prior art keywords
eutectic
mass
aluminum alloy
less
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010284101A
Other languages
Japanese (ja)
Other versions
JP5861254B2 (en
Inventor
Ichiro Aoi
一郎 青井
Yasushi Iwata
靖 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010284101A priority Critical patent/JP5861254B2/en
Publication of JP2012132054A publication Critical patent/JP2012132054A/en
Application granted granted Critical
Publication of JP5861254B2 publication Critical patent/JP5861254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy casting formed of a fine structure having little casting defect and having excellent mechanical properties.SOLUTION: The aluminum alloy casting includes, assuming the whole as 100 mass%, 9-13 mass% Si, 1-5 mass% Cu, and the balance being Al and inevitable impurities. The aluminum alloy casting is constituted by a complex eutectic structure in a reticular form including Al-Si eutectic grains consisting of binary eutectic of Al and Si and a multi-eutectic matrix surrounding the Al-Si eutectic grains and consisting of multi-eutectic including Al, Si, and Cu, wherein the particle size of the Al-Si eutectic grains is as small as 1.5 mm or less. The aluminum alloy casting is mechanically excellent, so that it is constituted by the complex eutectic structure solidified into a glue-like state while being consisting of the alloy composition which is normally solidified in a manner of forming a skin, thereby inhibiting the occurrence of a large casting defect.

Description

本発明は、Al−Si共晶組成からなるアルミニウム合金製鋳物およびその製造方法に関するものである。   The present invention relates to an aluminum alloy casting having an Al-Si eutectic composition and a method for producing the same.

軽量化の要請が益々強くなる昨今、多種多様な部材にアルミニウム合金製鋳物(適宜、単に「鋳物」という。)が利用されている。このような鋳物は、鋳巣、引け、割れ等の鋳造欠陥が少なく、機械的性質が安定していることが求められる。ちなみに、鋳造欠陥は、流動性の低下した溶湯が鋳型の細部まで回らなかったり、溶湯が液相から固相に変化する際の凝固収縮等によって生じる。また、鋳物の機械的性質(例えば、強度や靱性等)の低下は、鋳造欠陥による他、金属組成や組織等が部位によって偏在することによって生じる。   In recent years, the demand for weight reduction has become stronger, and aluminum alloy castings (hereinafter simply referred to as “castings”) are used for a wide variety of members. Such castings are required to have few casting defects such as cast holes, shrinkage, and cracks, and have stable mechanical properties. Incidentally, a casting defect is caused by a molten metal with reduced fluidity not turning to the details of the mold or by solidification shrinkage when the molten metal changes from a liquid phase to a solid phase. Moreover, the mechanical properties (for example, strength, toughness, etc.) of castings are reduced due to uneven distribution of metal composition, structure, and the like due to casting defects.

このような鋳造欠陥が少なく、機械的性質の安定した鋳物を得るための鋳造方法(アルミニウム合金製鋳物の製造方法)が、下記の特許文献等で提案されている。   A casting method (a method for producing an aluminum alloy casting) for obtaining a casting with few casting defects and stable mechanical properties has been proposed in the following patent documents.

特開2005−89827号公報JP 2005-89827 A 特開2007−216239号公報JP 2007-216239 A

大澤嘉昭, 佐藤彰: 鋳造工学, 72(2000),733-738.「超音波振動による凝固組織の微細化」Yoshiaki Osawa, Akira Sato: Foundry Engineering, 72 (2000), 733-738. "Refining of solidification structure by ultrasonic vibration"

特許文献1には、Al−Si共晶域組成からなり、二元(Al−Si)共晶粒が、共晶マトリックス中に分散した金属組織からなるアルミニウム合金製鋳物およびその製造方法が記載されている。もっとも、そのAl−Si共晶粒は、粒径が2〜3mm程度の比較的粗大なものである。   Patent Document 1 describes an aluminum alloy casting that has an Al—Si eutectic region composition and has a metal structure in which binary (Al—Si) eutectic grains are dispersed in a eutectic matrix, and a method for producing the same. ing. However, the Al—Si eutectic grains are relatively coarse with a grain size of about 2 to 3 mm.

特許文献2には、液相線温度以上のアルミニウム合金溶湯に超音波振動を付与して結晶核の芽であるエンブリオ数を増大させ、晶出物の微細化を図る鋳造方法に関する記載がある。もっとも特許文献2では、Si量が相当多い過共晶組成のアルミニウム合金製鋳物を対象としており、共晶組成のアルミニウム合金(例えば、JIS ADC12等)を対象としたものではない。また形成されている金属組織も粥状凝固したものではない。   Patent Document 2 describes a casting method in which ultrasonic vibration is applied to an aluminum alloy molten metal having a liquidus temperature or higher to increase the number of embryos that are buds of crystal nuclei and to refine crystallized materials. However, Patent Document 2 is directed to a hypereutectic aluminum alloy casting having a considerably large amount of Si, and not a eutectic aluminum alloy (for example, JIS ADC12). Further, the formed metal structure is not a solidified solid.

非特許文献1には、亜共晶組成(Al−6%Si)または過共晶組成(Al−18%Si)からなるアルミニウム合金溶湯へ超音波振動を印加して、初晶の微細化を図る旨の記載がある。この非特許文献1も、共晶組成のアルミニウム合金製鋳物を対象としたものではなく、形成されている金属組織も粥状凝固したものではない。   In Non-Patent Document 1, ultrasonic vibration is applied to a molten aluminum alloy having a hypoeutectic composition (Al-6% Si) or a hypereutectic composition (Al-18% Si) to refine the primary crystal. There is a statement to aim. This non-patent document 1 is not intended for an aluminum alloy casting having a eutectic composition, and the formed metal structure is not solidified in a saddle shape.

本発明は、このような事情に鑑みて為されたものある。つまり、Al−Si共晶付近の組成からなり、鋳造欠陥が少なく機械的性質に優れるアルミニウム合金製鋳物およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide an aluminum alloy casting that has a composition near the Al—Si eutectic and has few casting defects and excellent mechanical properties, and a method for producing the same.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、Al−Si共晶組成からなる溶湯へ、初晶Al(α−Al)の晶出前に、超音波振動を印加して、微細なAl−Si共晶粒が多元共晶マトリックス中に分散したネットワーク状の金属組織(複合共晶組織)からなるアルミニウム合金製鋳物を得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of extensive research and trial and error, the present inventor applied ultrasonic vibration to a molten metal having an Al—Si eutectic composition before crystallization of primary Al (α-Al). Thus, the present inventors succeeded in obtaining an aluminum alloy casting made of a network-like metal structure (composite eutectic structure) in which fine Al—Si eutectic grains are dispersed in a multi-element eutectic matrix. By developing this result, the present invention described below has been completed.

《アルミニウム合金製鋳物》
(1)本発明のアルミニウム合金製鋳物は、全体を100質量%としたときに、9〜13質量%のケイ素(Si)と、1〜5質量%の銅(Cu)と、残部であるアルミニウム(Al)と不可避不純物および/または改質元素とからなり、AlとSiの二元共晶からなるAl−Si共晶粒と該Al−Si共晶粒を囲繞しAl、SiおよびCuを含む多元共晶からなる多元共晶マトリックスとにより構成される網目状の複合共晶組織を有し、該Al−Si共晶粒は粒径が1.5mm以下であることを特徴とする。
《Aluminum alloy castings》
(1) The aluminum alloy casting of the present invention is 9 to 13% by mass of silicon (Si), 1 to 5% by mass of copper (Cu), and the balance of aluminum when the whole is 100% by mass. Al—Si eutectic grains composed of (Al) and inevitable impurities and / or modifying elements, and a binary eutectic of Al and Si, and surrounding the Al—Si eutectic grains, contain Al, Si, and Cu It has a network-like composite eutectic structure composed of a multi-element eutectic matrix composed of multi-element eutectic, and the Al—Si eutectic grains have a particle size of 1.5 mm or less.

(2)本発明のアルミニウム合金製鋳物(適宜、単に「鋳物」という。)は、Al−Si共晶近傍の組成(これを「共晶組成」という。)からなるにも関わらず、いわゆる表皮形成型の凝固した金属組織ではなく、粥状の凝固したような金属組織からなる。具体的には、Al−Si共晶粒が、網目状の多元共晶マトリックス中に分散した複合共晶組織からなる。しかも、この複合共晶組織中のAl−Si共晶粒は、粒径が1.5mm以下と非常に微細である。 (2) The aluminum alloy casting of the present invention (simply referred to as “casting” as appropriate) has a composition in the vicinity of an Al—Si eutectic (this is referred to as “eutectic composition”), so-called skin. It is not a formed solidified metal structure, but a cage-like solidified metal structure. Specifically, the Al—Si eutectic grains are composed of a complex eutectic structure dispersed in a network-like multi-element eutectic matrix. Moreover, the Al—Si eutectic grains in this composite eutectic structure are very fine with a particle diameter of 1.5 mm or less.

この複合共晶組織からなる本発明の鋳物は、大きな鋳造欠陥が殆どなく、機械的性質に優れる。これは次のような理由に依ると考えられる。本発明の鋳物の場合、仮に引け巣やガス巣等の鋳造欠陥が発生するとしても、それらの鋳造欠陥はAl−Si共晶粒界(つまり多元共晶マトリックス内またはその近傍)に分散して存在するようになる。このため、鋳造欠陥が三次元的に連なる大きな欠陥にまで成長しない。しかも、本発明の鋳物は、凝固組織が全体的に微細で均質的であって、組成的または組織的な偏在が少ないので、機械的性質にも優れる。勿論、本発明の鋳物は、共晶組成からなるため、亜共晶組成からなる鋳物よりも強度、耐摩耗性、耐熱性等の点でも優れる。   The casting of the present invention comprising this composite eutectic structure has few large casting defects and is excellent in mechanical properties. This is considered to be due to the following reasons. In the case of the casting of the present invention, even if casting defects such as shrinkage nests and gas nests occur, these casting defects are dispersed in the Al-Si eutectic grain boundaries (that is, in or near the multi-eutectic eutectic matrix). It comes to exist. For this reason, casting defects do not grow into large defects that are three-dimensionally connected. In addition, the casting of the present invention is excellent in mechanical properties because the solidified structure is fine and homogeneous as a whole and there is little compositional or structural uneven distribution. Of course, since the casting of the present invention has a eutectic composition, it is also superior in terms of strength, wear resistance, heat resistance, etc., compared to a casting having a hypoeutectic composition.

なお、本発明でいうAl−Si共晶粒は、明らかな針状または樹枝状等ではなく、粒状である限り、その詳細は形態は問わない。また多元共晶マトリックスは、少なくともAl、SiおよびCuを含むが、他の元素を含んでもよく、さらには共晶以外の化合物が晶出または析出していてもよい。   Note that the Al—Si eutectic grains referred to in the present invention are not apparent in the form of needles or dendrites, and the details thereof are not limited as long as they are granular. The multi-element eutectic matrix contains at least Al, Si, and Cu, but may contain other elements, and a compound other than the eutectic may be crystallized or precipitated.

《アルミニウム合金製鋳物の製造方法》
(1)本発明は、アルミニウム合金製鋳物としてのみならず、その製造方法としても把握し得る。すなわち本発明は、アルミニウム合金の溶湯を調製する溶湯調製工程と、該溶湯を鋳型に注入する注入工程と、該注入された溶湯を冷却して凝固させる凝固工程とを備えるアルミニウム合金製鋳物の製造方法であって、前記溶湯調製工程は、初晶の晶出前の前記溶湯へ超音波振動を加える加振工程を有し、上述の鋳物が得られることを特徴とするアルミニウム合金製鋳物の製造方法であってもよい。
<< Production Method of Aluminum Alloy Castings >>
(1) The present invention can be grasped not only as an aluminum alloy casting but also as a manufacturing method thereof. That is, the present invention provides a casting of an aluminum alloy comprising a melt preparation step of preparing a molten aluminum alloy, an injection step of injecting the molten metal into a mold, and a solidification step of cooling and solidifying the injected molten metal. A method for producing an aluminum alloy casting, characterized in that the molten metal preparation step includes a vibration step of applying ultrasonic vibration to the molten metal before crystallization of primary crystals, and the above-mentioned casting is obtained. It may be.

(2)この加振工程により、上述したような本発明の鋳物が得られるメカニズムは必ずしも定かではないが、現状では次のように考えられる。初晶が晶出する前の溶湯を超音波で加振すると、凝固核となる非常に微細なリン化アルミニウム(AlP)が溶湯中に均一に分散した状態になると考えられる。この状態の溶湯をさらに冷却すると、そのAlPが核となって微細なAl−Si共晶粒が粥状に晶出し始める。こうして、Al−Si共晶粒からなる固相と残余の液相とが混在した固液共存状態(半凝固状態または半溶融状態)が形成される。さらに冷却して、その状態の溶湯を凝固させると、微細なAl−Si共晶粒が網目状の多元共晶マトリックス中に分散した複合共晶組織が形成されて、本発明の鋳物が得られたと考えられる。 (2) The mechanism by which the casting of the present invention as described above is obtained by this vibration process is not necessarily clear, but at present, it is considered as follows. When the molten metal before crystallization of the primary crystal is vibrated with ultrasonic waves, it is considered that very fine aluminum phosphide (AlP) serving as a solidification nucleus is uniformly dispersed in the molten metal. When the molten metal in this state is further cooled, the AlP serves as a nucleus and fine Al—Si eutectic grains begin to crystallize in a bowl shape. Thus, a solid-liquid coexistence state (semi-solid state or semi-molten state) in which a solid phase composed of Al—Si eutectic grains and the remaining liquid phase are mixed is formed. When the molten metal in that state is further cooled and solidified, a composite eutectic structure in which fine Al-Si eutectic grains are dispersed in a network-like multi-eutectic matrix is formed, and the casting of the present invention is obtained. It is thought.

なお、AlPは、不可避不純物としてアルミニウム合金溶湯中に一般的に含まれる極微量なPがAlと結合したものであり、初晶(α−Al)の晶出前に、溶湯中から微量に晶出し得る。   AlP is an inevitable impurity that is a very small amount of P generally contained in molten aluminum alloy combined with Al, and crystallizes in a small amount from the molten metal before crystallization of the primary crystal (α-Al). obtain.

《その他》
(1)Al−Si共晶粒や多元共晶マトリックスに関して本発明でいう「共晶」は、いわゆる学術的に定義されるただ1点の組成からなる共晶を意味せず、当業者が組織観察によって一般的に共晶と判断し得るものであれば足る。このような意味での共晶が形成される組成を本明細書では「共晶組成」という。
<Others>
(1) With regard to Al—Si eutectic grains and multi-element eutectic matrix, “eutectic” as used in the present invention does not mean a so-called academically defined eutectic consisting of only one composition, and a person skilled in the art Any material that can be generally determined as eutectic by observation is sufficient. A composition in which a eutectic in this sense is formed is referred to as “eutectic composition” in this specification.

(2)Al−Si共晶粒の「粒径」は、鋳物の切断面から任意に抽出した20mm×20mmの測定領域内に存在するAl−Si共晶粒を光学顕微鏡により観察し、その粒径を画像解析により求めた平均粒径である。ここで平均粒径とは、測定領域に含まれる共晶粒各々の形状が円形と仮定して求めた直径の相加平均値である。具体的には、鏡面研磨した鋳物切断面の光学顕微鏡写真から、Al−Si共晶粒の部位を抽出し、測定領域内に含まれるAl−Si共晶粒の数と面積を求め、直径の相加平均値を算出することにより平均粒径が求まる。 (2) The “particle diameter” of the Al—Si eutectic grains is determined by observing Al—Si eutectic grains present in a 20 mm × 20 mm measurement region arbitrarily extracted from the cut surface of the casting with an optical microscope. It is an average particle diameter obtained by image analysis. Here, the average particle diameter is an arithmetic average value of diameters obtained by assuming that the shape of each eutectic grain included in the measurement region is circular. Specifically, from the optical micrograph of the mirror-polished casting cut surface, the part of Al-Si eutectic grains is extracted, the number and area of Al-Si eutectic grains contained in the measurement region are obtained, and the diameter The average particle diameter is obtained by calculating the arithmetic average value.

このAl−Si共晶粒の粒径は、1.5mm以下、1.4mm以下、1.3mm以下、1.2mm以下さらには1.1mm以下であると好ましい。   The particle diameter of the Al—Si eutectic grains is preferably 1.5 mm or less, 1.4 mm or less, 1.3 mm or less, 1.2 mm or less, or 1.1 mm or less.

(3)「不可避不純物」は、原料(母合金)中に含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去困難な元素である。例えば、マグネシウム(Mg)、亜鉛(Zn)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、スズ(Sn)、リン(P)等がある。 (3) “Inevitable impurities” are impurities contained in the raw material (mother alloy), impurities mixed in at each step, etc., and are elements that are difficult to remove due to cost or technical reasons. For example, there are magnesium (Mg), zinc (Zn), iron (Fe), manganese (Mn), nickel (Ni), tin (Sn), phosphorus (P), and the like.

これらの元素は、アルミニウム合金製鋳物全体を100質量%としたときに、例えば、Mg:0.5質量%以下さらには0.3質量%以下、Zn:1.2質量%以下さらには1質量%以下、Fe:1.5質量%以下さらには1.3質量%以下、Mn:0.7質量%以下さらには0.5質量%以下、Ni:0.7質量%以下さらには0.5質量%以下、Sn:0.5質量%以下さらには0.2質量%以下、P:0.1質量%以下さらには0.05質量%以下とすればよい。   These elements are, for example, Mg: 0.5% by mass or less, further 0.3% by mass or less, Zn: 1.2% by mass or less, or 1% by mass when the entire aluminum alloy casting is 100% by mass. % Or less, Fe: 1.5 mass% or less, further 1.3 mass% or less, Mn: 0.7 mass% or less, further 0.5 mass% or less, Ni: 0.7 mass% or less, further 0.5 What is necessary is just to set it as the mass% or less, Sn: 0.5 mass% or less further 0.2 mass% or less, P: 0.1 mass% or less further 0.05 mass% or less.

「改質元素」はアルミニウム合金製鋳物の特性改善に有効な元素である。改善される特性には、例えば、機械的性質(強度、靱性、耐摩耗性または耐熱性等)、鋳造性または組織微細化等がある。改質元素は、共晶粒や共晶マトリックス等に固溶した状態で存在しても良いし、AlやSi等と金属間化合物を形成して晶出または析出して存在しても良い。   “Modifying element” is an element effective for improving the characteristics of an aluminum alloy casting. Properties that are improved include, for example, mechanical properties (such as strength, toughness, wear resistance or heat resistance), castability or microstructure refinement. The modifying element may exist in a state of being dissolved in eutectic grains or a eutectic matrix, or may be present by crystallization or precipitation by forming an intermetallic compound with Al, Si, or the like.

改質元素としては、Fe、Mg、Mn、Cu等の他、鋳物の金属組織の晶出形態の改善や微細化に有効なストロンチウム(Sr)、リン(P)等が代表的である。また0.3%以下さらには0.15%以下のチタン(Ti)や0.02%以下さらには0.01%以下のナトリウム(Na)もある。   Typical examples of the modifying element include Fe, Mg, Mn, and Cu, as well as strontium (Sr) and phosphorus (P) that are effective in improving the crystallization form and refinement of the metal structure of the casting. Further, there are also titanium (Ti) of 0.3% or less, further 0.15% or less, and sodium (Na) of 0.02% or less, further 0.01% or less.

なお、改質元素と不可避不純物は一概に区別されるものではなく、例えば、Pのように、本来は不可避不純物であるが、複合共晶組織の微細化に寄与する元素もある。   The modifying element and the inevitable impurities are not generally distinguished. For example, there are elements such as P that are originally inevitable impurities but contribute to the refinement of the complex eutectic structure.

(4)「アルミニウム合金製鋳物」はその形態を問わず、最終製品、それに近い素材、棒材、管材または板材等の基本的な素材さらには鋳物原料となるインゴット等でも良い。 (4) The “aluminum alloy casting” may be a final product, a basic material such as a bar, a pipe, or a plate, or an ingot as a casting raw material, regardless of the form.

(5)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値および数値範囲内に含まれる任意の数値を組合わされて「a〜b」のような範囲を任意に構成し得る。 (5) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “ab” can be arbitrarily configured by combining various numerical values and arbitrary numerical values included in the numerical range described in the present specification.

試料No.1に係る鋳物の横断面を示すX線CT像写真である。Sample No. 2 is an X-ray CT image photograph showing a cross section of a casting according to 1. FIG. そのミクロ組織を示す金属顕微鏡写真である。It is a metal micrograph showing the microstructure. 試料No.C1に係る鋳物の横断面を示すX線CT像写真である。Sample No. It is a X-ray CT image photograph which shows the cross section of the casting concerning C1. 超音波による溶湯の加振終了時の温度(加振終了温度)とAl−Si共晶粒の粒径(共晶粒径)との関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between the temperature at the time of the completion | finish of the vibration of the molten metal by an ultrasonic wave (vibration completion temperature), and the particle size (eutectic particle size) of an Al-Si eutectic grain.

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含めて本明細書で説明する内容は、本発明に係るアルミニウム合金製鋳物のみならず、その製造方法にも該当し得る。従って上述した本発明の構成に、本明細書中の記載から選択した一つまたは二つ以上の構成を任意に付加し得る。この際、製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物(アルミニウム合金製鋳物)に関する構成ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. In addition, the content demonstrated by this specification including the following embodiment can correspond not only to the aluminum alloy casting which concerns on this invention but the manufacturing method. Therefore, one or more configurations selected from the description in the present specification can be arbitrarily added to the configuration of the present invention described above. Under the present circumstances, if the structure regarding a manufacturing method is understood as a product by process, it can also become a structure regarding a thing (aluminum alloy casting). Which embodiment is the best depends on the target, required performance, and the like.

《アルミニウム合金組成》
(1)Si
Siは、Al−Si共晶粒や多元共晶マトリックスの形成に必要な元素である。Siは鋳物全体を100質量%としたときに9〜13質量%さらには10〜12.5質量%含まれていると好ましい。Siが過少では亜共晶組成となり初晶Al(α−Al)が晶出し易くなる。Siが過多では過共晶組成となり初晶Siが晶出し易くなる。いずれも、本発明でいう複合共晶組織が形成され難くなる。但し、本発明でいう組成範囲は、厳密な共晶組成ではないので、多元共晶マトリックス中に初晶Al(α−Al)や初晶Siがわずかに点在してもよい。
<Aluminum alloy composition>
(1) Si
Si is an element necessary for forming an Al—Si eutectic grain or a multi-element eutectic matrix. Si is preferably contained in an amount of 9 to 13% by mass, more preferably 10 to 12.5% by mass, based on 100% by mass of the entire casting. When Si is too small, the composition becomes hypoeutectic and primary Al (α-Al) is easily crystallized. If Si is excessive, the composition becomes hypereutectic and primary Si is easily crystallized. In either case, the composite eutectic structure referred to in the present invention is hardly formed. However, since the composition range referred to in the present invention is not a strict eutectic composition, primary Al (α-Al) or primary Si may be slightly scattered in the multi-element eutectic matrix.

(2)Cu
Cuは、Al−Si共晶粒を微細に晶出させると共に、固溶強化により鋳物の機械的性質を向上させ得る。Cuは鋳物全体を100質量%としたときに1〜5質量%さらには1.5〜3.5質量%含まれていると好ましい。Cuが過少であるとその効果が乏しく、Cuが過多になると、Al−Si共晶粒の粒状化が阻害され得る。特にCuが過多になると、Sr等を加えた場合でも、粥状凝固にならず表皮形成型凝固が生じるので好ましくない。
(2) Cu
Cu can finely crystallize Al—Si eutectic grains and improve the mechanical properties of the casting by solid solution strengthening. Cu is preferably contained in an amount of 1 to 5% by mass, more preferably 1.5 to 3.5% by mass, based on 100% by mass of the entire casting. If the amount of Cu is too small, the effect is poor, and if the amount of Cu is excessive, granulation of the Al—Si eutectic grains can be hindered. In particular, when Cu is excessive, it is not preferable because even when Sr or the like is added, it does not cause saddle-like solidification but skin formation type solidification occurs.

(3)Sr
Srは、溶湯中からのAl−Si共晶粒の晶出を促進する。つまり、鋳物の凝固形態を表皮形成型からが粥状に変え、複合共晶組織の形成を容易にする。Srは、鋳物全体を100質量%としたときに0.003〜0.3質量%(30〜3000ppm)さらには0.01〜0.1質量%(100〜1000ppm)含まれるように、原料や溶湯に含ませると好ましい。Srが過少ではその効果が乏しく、Srが過多ではAl−Si共晶が粒状に晶出せず、粗い針状組織となり、鋳物の機械的性質を低下させ得る。
(3) Sr
Sr promotes crystallization of Al—Si eutectic grains from the molten metal. That is, the solidification form of the casting is changed from a skin-forming mold to a bowl shape, and the formation of a complex eutectic structure is facilitated. Sr is 0.003 to 0.3% by mass (30 to 3000 ppm) and further 0.01 to 0.1% by mass (100 to 1000 ppm) when the entire casting is 100% by mass. It is preferable to include it in the molten metal. If the amount of Sr is too small, the effect is poor. If the amount of Sr is too large, the Al—Si eutectic does not crystallize in a granular form, resulting in a rough needle-like structure, which can lower the mechanical properties of the casting.

《アルミニウム合金製鋳物の製造方法》
(1)溶湯調製工程
本発明の溶湯調製工程は、アルミニウム合金の溶湯を調製する際に、初晶の晶出前の溶湯へ超音波振動を加える加振工程を有する。これにより、初晶に先行して凝固核となる微細なAlPが溶湯中に均一に晶出するようになる。この結果、AlPを核としてAl−Si共晶粒が粥状に晶出し易くなる。
<< Production Method of Aluminum Alloy Castings >>
(1) Molten metal preparation process The molten metal preparation process of the present invention has an oscillating process of applying ultrasonic vibration to the molten metal before crystallization of the primary crystal when preparing a molten aluminum alloy. As a result, fine AlP that becomes solidification nuclei prior to the primary crystal is crystallized uniformly in the molten metal. As a result, Al—Si eutectic grains are easily crystallized in a bowl shape with AlP as a nucleus.

ここで加振工程で印加する超音波の種類、特性等は問わない。例えば、溶湯に印加する超音波は縦波でも横波でもよい。また、溶湯全体に超音波振動が伝播される限り、その加振源の配置等は問わない。   Here, the type, characteristics, and the like of the ultrasonic wave applied in the vibration process are not limited. For example, the ultrasonic wave applied to the molten metal may be a longitudinal wave or a transverse wave. Further, as long as the ultrasonic vibration is propagated throughout the molten metal, the arrangement of the excitation source is not limited.

もっとも、超音波の周波数は60kHz以下さらには40kHz以下が好ましい。超音波の周波数が過大であると、その波長が短くなり、溶湯への加振が不十分となる。また、超音波の出力は100W以上さらには150W以上が望ましい。   However, the frequency of the ultrasonic wave is preferably 60 kHz or less, more preferably 40 kHz or less. When the frequency of the ultrasonic wave is excessive, the wavelength becomes short, and the vibration to the molten metal becomes insufficient. Further, the output of the ultrasonic wave is preferably 100 W or more, more preferably 150 W or more.

本発明の加振工程は、初晶が晶出し始める温度(初晶開始温度)よりも高い温度でなされるが、初晶開始温度よりもかなり高温で加振工程が終了すると、上述した効果があまり得られない。そこで加振工程は、超音波振動による加振を終了するときの溶湯の温度である加振終了温度を、初晶の晶出が開始する温度である初晶開始温度(Ts)から、この初晶開始温度よりも70℃さらには60℃高い温度(Ts+70℃さらにはTs+60℃)までの温度とする工程であると好ましい。より具体的には、加振終了温度が590〜640℃さらには600〜630℃であると好ましい。   The vibration process of the present invention is performed at a temperature higher than the temperature at which the primary crystal begins to crystallize (primary crystal start temperature), but when the vibration process ends at a temperature considerably higher than the primary crystal start temperature, the above-described effects are obtained. I don't get much. Therefore, in the vibration process, the vibration end temperature, which is the temperature of the molten metal at the end of vibration by ultrasonic vibration, is determined from the initial crystal start temperature (Ts), which is the temperature at which crystallization of the primary crystal starts. It is preferable that the temperature is 70 ° C. or even 60 ° C. higher than the crystal start temperature (Ts + 70 ° C. or Ts + 60 ° C.). More specifically, the excitation end temperature is preferably 590 to 640 ° C, more preferably 600 to 630 ° C.

(2)注入工程および凝固工程
溶湯を注入する鋳型は、金型でも砂型でも良く、溶湯の注入は加圧しても、しなくてもよい。また鋳型に注入された溶湯を冷却する方法は、自然冷却でも強制冷却でもよい。
(2) Injection process and solidification process The mold for injecting the molten metal may be a mold or a sand mold, and the injection of the molten metal may or may not be pressurized. The method of cooling the molten metal poured into the mold may be natural cooling or forced cooling.

従って本発明の製造方法は、金型鋳造、砂型鋳造、ダイカスト鋳造、低圧鋳造、重力鋳造等のいずれでもよい。もっとも、上述したアルミニウム合金組成は、ダイカスト鋳造に多用されるADC12合金(JIS)と類似した組成であるので、本発明の製造方法はダイカスト鋳造方法に特に好適である。   Accordingly, the production method of the present invention may be any of die casting, sand casting, die casting, low pressure casting, gravity casting and the like. However, since the aluminum alloy composition described above is similar to the ADC12 alloy (JIS) frequently used for die casting, the manufacturing method of the present invention is particularly suitable for the die casting method.

《用途》
(1)本発明の鋳物の用途は種々考えられる。例えば、自動車や二輪車の分野ではエンジンブロックやシリンダヘッド等のエンジン部材、ボディ構造用部材、シャシ部材、ホイール、スペースフレーム、ステアリングホイール(芯金)、シートフレーム、サスペンションメンバー、ミッションケース、プーリ、オイルパン、シフトレバー、インスツルメントパネル、ドアインパクトパネル、吸気用サージタンク、ペダルブラケット、フロントシュラウドパネル等がある。
<Application>
(1) Various uses of the casting of the present invention are conceivable. For example, in the field of automobiles and motorcycles, engine members such as engine blocks and cylinder heads, body structural members, chassis members, wheels, space frames, steering wheels (core bars), seat frames, suspension members, transmission cases, pulleys, oils Pan, shift lever, instrument panel, door impact panel, intake surge tank, pedal bracket, front shroud panel, etc.

(2)本発明の鋳物は、鋳造後に熱処理を施さない鋳放し状態でも、優れた強度、耐摩耗性、耐熱性等を発揮するが、鋳造後に熱処理を施しても良い。 (2) The casting of the present invention exhibits excellent strength, wear resistance, heat resistance, etc. even in an as-cast state in which heat treatment is not performed after casting, but heat treatment may be performed after casting.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
(1)溶湯調製工程
原料(母合金)として、JIS ADC12合金(福岡アルミ工業株式会社製/成分組成:Al−11.26%Si−1.85%Cu−0.28%Mg−0.31%Mn−0.84%Fe−0.85%Zn)を1.5kg用意した。成分組成の単位(%)は、対象合金全体を100質量%としたときの質量%である(以下同様)。
The present invention will be described more specifically with reference to examples.
<Production of sample>
(1) Molten metal preparation step JIS ADC12 alloy (manufactured by Fukuoka Aluminum Industry Co., Ltd./component composition: Al-11.26% Si-1.85% Cu-0.28% Mg-0.31 as a raw material (mother alloy) % Mn-0.84% Fe-0.85% Zn) was prepared. The unit (%) of the component composition is mass% when the entire target alloy is 100 mass% (the same applies hereinafter).

この原料を6番黒鉛るつぼ(日本ルツボ株式会社製/内径φ100mm×深さ140mm)に入れて、電気炉内で750℃で溶解した。このAl合金溶湯中に、Sr原料(成分組成:Al−10%Sr/有限会社フォセコジャパンリミテッド製)を添加した。この際、Al合金溶湯全体に対してSr量が0.03%となるように調製した。これを上記の電気炉内で750℃に10分間保持した。   This raw material was put in a No. 6 graphite crucible (manufactured by Nippon Crucible Co., Ltd./inner diameter φ100 mm × depth 140 mm) and melted at 750 ° C. in an electric furnace. Sr raw material (component composition: Al-10% Sr / manufactured by Foseco Japan Limited) was added to the molten Al alloy. Under the present circumstances, it prepared so that Sr amount might be 0.03% with respect to the whole Al alloy molten metal. This was held at 750 ° C. for 10 minutes in the electric furnace.

電気炉から取り出したAl合金溶湯の上方中央へ、超音波振動加振装置(精電舎電子工業株式会社製、Sonopet 303S)に接続されたホーン(材質SUS304、φ20×L170)を浸漬した。このホーンは、先端面が平面状の円柱からなり、Al合金溶湯の表面からホーンの先端面までの距離(浸漬深さ)は10mmとした。   A horn (material SUS304, φ20 × L170) connected to an ultrasonic vibration excitation apparatus (Sonopet 303S manufactured by Seidensha Electronics Co., Ltd.) was immersed in the upper center of the molten Al alloy taken out from the electric furnace. This horn had a tip end surface made of a flat cylinder, and the distance (immersion depth) from the surface of the Al alloy molten metal to the tip end surface of the horn was 10 mm.

この溶湯温度を600℃まで室温大気中で自然冷却した。この冷却過程中に、上記のホーンからAl合金溶湯中へ超音波振動を加えた(加振工程)。このときの超音波振動の周波数は28.5kHz、出力250Wとした。また、超音波振動による加振を開始したときの溶湯温度(加振開始温度)はいずれの場合も約740℃とした。一方、その加振を終了したときの溶湯温度(加振終了温度)は、表1に示すように試料ごとに変更した。また、比較のため、超音波振動による加振を行わない溶湯も調製した(試料No.8)。   The molten metal was naturally cooled to 600 ° C. in the air at room temperature. During this cooling process, ultrasonic vibration was applied from the horn to the molten Al alloy (vibration process). The frequency of the ultrasonic vibration at this time was 28.5 kHz and the output was 250 W. In addition, the molten metal temperature (vibration start temperature) when the excitation by the ultrasonic vibration was started was set to about 740 ° C. in any case. On the other hand, as shown in Table 1, the molten metal temperature (excitation end temperature) when the excitation was finished was changed for each sample. For comparison, a molten metal that was not subjected to vibration by ultrasonic vibration was also prepared (Sample No. 8).

(2)注湯工程(注入工程)
上述のように調製したAl合金溶湯(溶湯温度:約600℃)を、鋳型である熱分析用シェルカップ(株式会社ナカヤマ製、SGカップ−A、内径φ30×深さ50mm)に注湯した。
(2) Pouring process (injection process)
The molten Al alloy (melt temperature: about 600 ° C.) prepared as described above was poured into a shell cup for thermal analysis (SG cup-A, manufactured by Nakayama Co., Ltd., inner diameter φ30 × depth 50 mm) as a mold.

(3)凝固工程
このシェルカップを大気雰囲気で冷却してAl合金溶湯を凝固させた。凝固はいずれの試料も570℃から始まり、490℃で凝固完了した。
(3) Solidification step The shell cup was cooled in an air atmosphere to solidify the molten Al alloy. Coagulation began at 570 ° C. for all samples and was completed at 490 ° C.

《観察》
(1)各試料の鋳物の横断面を、X線CT(Computed Tomography)像により観察した。その一例として試料No.1のX線CT像(写真)を図1に示した。図1中、セル状の灰色部分がAl−Siの二元共晶からなるAl−Si共晶粒であり、それを囲繞する白色部分が多元共晶からなる多元共晶マトリックスであり、点在する黒色部分が鋳造欠陥(鋳巣)である。なお、多元共晶マトリックスが白く見えるのは、その構成要素であるCuAl相がX線を透過しにくいためである。
<< Observation >>
(1) The cross section of the casting of each sample was observed by an X-ray CT (Computed Tomography) image. As an example, sample no. An X-ray CT image (photograph) of No. 1 is shown in FIG. In FIG. 1, the cell-like gray portion is an Al—Si eutectic grain made of Al—Si binary eutectic, and the white portion surrounding it is a multi-eutectic matrix made of multi-element eutectic. The black part to be performed is a casting defect (cast hole). The multi-element eutectic matrix appears white because the CuAl 2 phase, which is a component of the matrix, hardly transmits X-rays.

この鋳物の場合、鋳造欠陥(鋳巣)が小さく孤立して分散しており、連なった大きな鋳巣には発展していない。一方、上述した溶湯調製工程で、Al合金溶湯にSrを添加せずに製造した鋳物(試料No.C1)のX線CT像(写真)を図3に示した。この場合、上述した鋳物とは異なり、鋳巣が連なった大きな鋳造欠陥を生じており、網目状の金属組織(粥状凝固組織)にもならなかった。   In the case of this casting, casting defects (casting holes) are small, isolated and dispersed, and have not developed into a continuous large casting hole. On the other hand, FIG. 3 shows an X-ray CT image (photograph) of a casting (sample No. C1) manufactured without adding Sr to the molten Al alloy in the molten metal preparation step. In this case, unlike the above-described casting, a large casting defect with a continuous casting cavity was generated, and it did not become a network-like metal structure (slag-like solidified structure).

(2)試料No.1の鋳物の金属組織(ミクロ組織)を顕微鏡観察した写真を図2に示した。この写真からも明らかなように、Al−Si共晶粒が多元共晶マトリックスにより囲繞された網目状の複合共晶組織が形成されていることがわかる。なお、図2の写真中の黒色部分は金属間化合物のCuAlである。 (2) Sample No. A photograph obtained by microscopic observation of the metal structure (microstructure) of the casting of No. 1 is shown in FIG. As is apparent from this photograph, it can be seen that a network-like composite eutectic structure in which Al—Si eutectic grains are surrounded by a multi-element eutectic matrix is formed. Incidentally, the black portions in the photograph of FIG. 2 is a CuAl 2 intermetallic compound.

《測定》
上述した加振終了温度が異なる各試料について、試料縦断面中心部の20mm×20mmの測定部位について、鏡面研磨した後、光学顕微鏡写真を撮影した。この写真を画像解析して、測定部位に含まれるAl−Si共晶粒の数と総面積を計測することにより、平均粒径を特定した。なお、画像解析には、アメリカ国立衛生研究所(National Institute of Health)製のフリーソフト”ImageJ ”を用いた。
<Measurement>
About each sample from which the vibration end temperature mentioned above differs, the optical microscope photograph was image | photographed, after mirror-polishing about the measurement site | part of 20 mm x 20 mm of sample longitudinal cross-section center part. This photograph was subjected to image analysis, and the average particle size was identified by measuring the number and total area of Al—Si eutectic grains contained in the measurement site. For image analysis, free software “ImageJ” manufactured by the National Institute of Health was used.

《評価》
この結果から明らかなように、加振終了温度により、各鋳物中にできるAl−Si共晶粒の大きさは大きく変化することがわかった。具体的には、加振終了温度が650℃以上であると、超音波加振による効果は乏しく、共晶粒径の大きさは2.5mm前後であって、複合共晶組織の微細化は図れなかった。
<Evaluation>
As is apparent from this result, it has been found that the size of the Al—Si eutectic grains formed in each casting varies greatly depending on the end temperature of vibration. Specifically, when the excitation end temperature is 650 ° C. or more, the effect of ultrasonic excitation is poor, the size of the eutectic grain size is around 2.5 mm, and the refinement of the composite eutectic structure is I could n’t.

一方、加振終了温度が640℃以下、635℃以下さらには630℃以下になると、共晶粒径が2mm以下、1.5mm以下さらには1.2mm以下にまで急激に小さくなった。このことから、初晶が晶出し始める温度(初晶開始温度)に近い温度域で、Al合金溶湯へ超音波振動を加えると、Al−Si共晶粒ひいては複合共晶組織の微細化に効果的であることが確認できた。   On the other hand, when the vibration end temperature was 640 ° C. or less, 635 ° C. or less, and further 630 ° C. or less, the eutectic particle size was rapidly reduced to 2 mm or less, 1.5 mm or less, or 1.2 mm or less. For this reason, applying ultrasonic vibration to the molten Al alloy in the temperature range close to the temperature at which the primary crystal begins to crystallize (primary crystal start temperature) is effective in refining the Al-Si eutectic grains and thus the composite eutectic structure. It was confirmed that

なお、本実施例で用いたAl合金溶湯の初晶開始温度(Ts)は570℃であるので、加振終了温度がTs〜Ts+70(℃)の範囲内であると、複合共晶組織の微細化に超音波加振が有効であるといえる。   Since the primary crystal start temperature (Ts) of the Al alloy melt used in this example is 570 ° C., if the excitation end temperature is within the range of Ts to Ts + 70 (° C.), the composite eutectic structure is fine. It can be said that ultrasonic vibration is effective for the conversion.

Claims (7)

全体を100質量%としたときに、9〜13質量%のケイ素(Si)と、1〜5質量%の銅(Cu)と、残部であるアルミニウム(Al)と不可避不純物および/または改質元素とからなり、
AlとSiの二元共晶からなるAl−Si共晶粒と該Al−Si共晶粒を囲繞しAl、SiおよびCuを含む多元共晶からなる多元共晶マトリックスとにより構成される網目状の複合共晶組織を有し、
該Al−Si共晶粒は粒径が1.5mm以下であることを特徴とするアルミニウム合金製鋳物。
When the total is 100% by mass, 9 to 13% by mass of silicon (Si), 1 to 5% by mass of copper (Cu), the balance aluminum (Al), unavoidable impurities and / or modifying elements And consist of
A network comprising Al-Si eutectic grains composed of binary eutectic of Al and Si and a multi-eutectic matrix composed of multi-eutectics surrounding Al-Si eutectic grains containing Al, Si and Cu Having a composite eutectic structure of
The aluminum alloy casting, wherein the Al-Si eutectic grains have a particle size of 1.5 mm or less.
全体を100質量%としたときに、0.003〜0.3質量%のストロンチウム(Sr)を含む請求項1に記載のアルミニウム合金製鋳物。   The aluminum alloy casting according to claim 1, comprising 0.003 to 0.3% by mass of strontium (Sr) when the whole is 100% by mass. 前記不可避不純物または前記改質元素は、全体を100質量%としたときに、0.5質量%以下のマグネシウム(Mg)、1.2質量%以下の亜鉛(Zn)、1.5質量%以下の鉄(Fe)、0.7質量%以下のマンガン(Mn)、0.7質量%以下のニッケル(Ni)、0.5質量%以下のスズ(Sn)または0.1質量%以下のリン(P)のいずれか一種以上である請求項1または2に記載のアルミニウム合金製鋳物。   The inevitable impurities or the modifying element is 0.5% by mass or less of magnesium (Mg), 1.2% by mass or less of zinc (Zn), and 1.5% by mass or less when the total is 100% by mass. Iron (Fe), 0.7 mass% or less manganese (Mn), 0.7 mass% or less nickel (Ni), 0.5 mass% or less tin (Sn), or 0.1 mass% or less phosphorus The aluminum alloy casting according to claim 1, wherein the casting is one or more of (P). アルミニウム合金の溶湯を調製する溶湯調製工程と、
該溶湯を鋳型に注入する注入工程と、
該注入された溶湯を冷却して凝固させる凝固工程とを備えるアルミニウム合金製鋳物の製造方法であって、
前記溶湯調製工程は、初晶の晶出前の前記溶湯へ超音波振動を加える加振工程を有し、
請求項1〜3のいずれかに記載の鋳物が得られることを特徴とするアルミニウム合金製鋳物の製造方法。
A molten metal preparation step of preparing a molten aluminum alloy;
An injection step of injecting the molten metal into a mold;
A method for producing an aluminum alloy casting comprising a solidification step of cooling and solidifying the injected molten metal,
The molten metal preparation step has a vibration step of applying ultrasonic vibration to the molten metal before crystallization of primary crystals,
A method for producing an aluminum alloy casting, wherein the casting according to any one of claims 1 to 3 is obtained.
前記加振工程は、前記超音波振動による加振を終了するときの前記溶湯の温度である加振終了温度を、前記初晶の晶出が開始する温度である初晶開始温度(Ts)から、該初晶開始温度よりも70℃高い温度(Ts+70:℃)までの温度とする工程である請求項4に記載のアルミニウム合金製鋳物の製造方法。   In the excitation step, an excitation end temperature, which is a temperature of the molten metal when the excitation by the ultrasonic vibration is ended, is determined from an initial crystal start temperature (Ts), which is a temperature at which the crystallization of the primary crystal starts. The method for producing an aluminum alloy casting according to claim 4, wherein the temperature is a temperature up to a temperature (Ts + 70: ° C.) 70 ° C. higher than the primary crystal starting temperature. 前記加振終了温度は、590〜640℃である請求項5に記載のアルミニウム合金製鋳物の製造方法。   The method for producing an aluminum alloy casting according to claim 5, wherein the excitation end temperature is 590 to 640 ° C. 6. 前記加振工程で印加する超音波振動は、周波数が60kHz以下である請求項4〜6のいずれかに記載のアルミニウム合金製鋳物の製造方法。   The method for producing an aluminum alloy casting according to any one of claims 4 to 6, wherein the ultrasonic vibration applied in the vibration step has a frequency of 60 kHz or less.
JP2010284101A 2010-12-21 2010-12-21 Aluminum alloy casting and manufacturing method thereof Expired - Fee Related JP5861254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284101A JP5861254B2 (en) 2010-12-21 2010-12-21 Aluminum alloy casting and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284101A JP5861254B2 (en) 2010-12-21 2010-12-21 Aluminum alloy casting and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012132054A true JP2012132054A (en) 2012-07-12
JP5861254B2 JP5861254B2 (en) 2016-02-16

Family

ID=46647976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284101A Expired - Fee Related JP5861254B2 (en) 2010-12-21 2010-12-21 Aluminum alloy casting and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5861254B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509979A (en) * 2013-09-29 2014-01-15 宁波东浩铸业有限公司 Lubrication oil tank for excavating machine and manufacturing method thereof
JP2014050869A (en) * 2012-09-07 2014-03-20 Toyota Motor Corp METHOD OF PRODUCING Al-Cu CAST ALLOY
CN103924097A (en) * 2013-10-31 2014-07-16 中南大学 Ultrasonic/inert gas combined degassing technology
CN104674070A (en) * 2015-02-11 2015-06-03 安徽华通铸业有限公司 Automobile aluminum alloy cylinder body based on casting
KR101788156B1 (en) 2016-07-28 2017-10-23 한국기계연구원 Aluminum alloy with excellent compression strengths and manufacturing method thereof
CN107747012A (en) * 2017-10-31 2018-03-02 张家港市德发内燃机配件有限公司 A kind of cylinder head for improving intensity
WO2018084103A1 (en) * 2016-11-01 2018-05-11 株式会社Uacj Aluminum alloy for low-pressure casting
JP2018163995A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof
CN109033726A (en) * 2018-09-19 2018-12-18 江铃汽车股份有限公司 The durable analysis method of intensity and rack of chassis suspension based on FInite Element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2556176B1 (en) 2010-04-09 2020-03-11 Southwire Company, LLC Ultrasonic degassing of molten metals
PT3071718T (en) 2013-11-18 2019-09-20 Southwire Co Llc Ultrasonic probes with gas outlets for degassing of molten metals
CA2976215C (en) 2015-02-09 2021-05-25 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
CN114871418A (en) 2015-09-10 2022-08-09 南线有限责任公司 Ultrasonic grain refinement and degassing procedure and system for metal casting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335767A (en) * 1998-05-26 1999-12-07 Yamaha Motor Co Ltd Aluminum alloy for forging, and its production
JP2000073128A (en) * 1998-08-25 2000-03-07 Totsuka Tenryu Seisakusho:Kk Method for pulvelizing primary crystal silicon in molten metal of aluminum-silicon alloy
JP2005089827A (en) * 2003-09-17 2005-04-07 Toyota Central Res & Dev Lab Inc Al-Si EUTECTIC ALLOY, Al ALLOY CAST PRODUCT, Al ALLOY FOR CASTING AND ITS MANUFACTURING METHOD
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure
JP2008001954A (en) * 2006-06-23 2008-01-10 Toyota Central Res & Dev Lab Inc Aluminum alloy for use in semisolid casting and manufacturing method of aluminum alloy casting
JP2008274403A (en) * 2007-03-30 2008-11-13 Toyota Central R&D Labs Inc Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting
JP2010207842A (en) * 2009-03-09 2010-09-24 Honda Motor Co Ltd Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335767A (en) * 1998-05-26 1999-12-07 Yamaha Motor Co Ltd Aluminum alloy for forging, and its production
JP2000073128A (en) * 1998-08-25 2000-03-07 Totsuka Tenryu Seisakusho:Kk Method for pulvelizing primary crystal silicon in molten metal of aluminum-silicon alloy
JP2005089827A (en) * 2003-09-17 2005-04-07 Toyota Central Res & Dev Lab Inc Al-Si EUTECTIC ALLOY, Al ALLOY CAST PRODUCT, Al ALLOY FOR CASTING AND ITS MANUFACTURING METHOD
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure
JP2008001954A (en) * 2006-06-23 2008-01-10 Toyota Central Res & Dev Lab Inc Aluminum alloy for use in semisolid casting and manufacturing method of aluminum alloy casting
JP2008274403A (en) * 2007-03-30 2008-11-13 Toyota Central R&D Labs Inc Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting
JP2010207842A (en) * 2009-03-09 2010-09-24 Honda Motor Co Ltd Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050869A (en) * 2012-09-07 2014-03-20 Toyota Motor Corp METHOD OF PRODUCING Al-Cu CAST ALLOY
CN103509979A (en) * 2013-09-29 2014-01-15 宁波东浩铸业有限公司 Lubrication oil tank for excavating machine and manufacturing method thereof
CN103924097A (en) * 2013-10-31 2014-07-16 中南大学 Ultrasonic/inert gas combined degassing technology
CN104674070A (en) * 2015-02-11 2015-06-03 安徽华通铸业有限公司 Automobile aluminum alloy cylinder body based on casting
KR101788156B1 (en) 2016-07-28 2017-10-23 한국기계연구원 Aluminum alloy with excellent compression strengths and manufacturing method thereof
WO2018084103A1 (en) * 2016-11-01 2018-05-11 株式会社Uacj Aluminum alloy for low-pressure casting
JPWO2018084103A1 (en) * 2016-11-01 2019-02-14 株式会社Uacj Aluminum alloy for low pressure casting
US11008640B2 (en) 2016-11-01 2021-05-18 Uacj Corporation Aluminum alloy for low-pressure casting
JP2018163995A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof
CN107747012A (en) * 2017-10-31 2018-03-02 张家港市德发内燃机配件有限公司 A kind of cylinder head for improving intensity
CN109033726A (en) * 2018-09-19 2018-12-18 江铃汽车股份有限公司 The durable analysis method of intensity and rack of chassis suspension based on FInite Element
CN109033726B (en) * 2018-09-19 2022-11-29 江铃汽车股份有限公司 Finite element method-based chassis suspension system strength and rack durability analysis method

Also Published As

Publication number Publication date
JP5861254B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5861254B2 (en) Aluminum alloy casting and manufacturing method thereof
JP4765400B2 (en) Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof
Birol Impact of grain size on mechanical properties of AlSi7Mg0. 3 alloy
AU2005269483B2 (en) An Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings
US9771635B2 (en) Cast aluminum alloy for structural components
JP5831344B2 (en) Aluminum alloy having excellent rigidity and manufacturing method thereof
US20050199318A1 (en) Castable aluminum alloy
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JP5923117B2 (en) Metal alloy refinement method
JP2008274403A (en) Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting
CN105525158A (en) Semi-solid die-casting aluminum alloy material and die-casting molding method using same
JP6229130B2 (en) Cast aluminum alloy and casting using the same
JP2009108409A (en) Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF
JP6617065B2 (en) Aluminum alloys for casting and aluminum alloy castings
JP2008001954A (en) Aluminum alloy for use in semisolid casting and manufacturing method of aluminum alloy casting
JP7152977B2 (en) aluminum alloy
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP6577449B2 (en) Nickel-containing hypereutectic aluminum-silicon sand casting alloy
ES2753168T3 (en) Aluminum alloy for casting
JP2010000514A (en) Method for producing magnesium alloy member
JP7096690B2 (en) Aluminum alloys for die casting and aluminum alloy castings
JP5862406B2 (en) Aluminum alloy member and manufacturing method thereof
JP4155509B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing the same
JP4544507B2 (en) Al-Si eutectic alloy, casting made of Al alloy, Al alloy for casting, and production method thereof
CN108779521B (en) Aluminum alloy for low-pressure casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R150 Certificate of patent or registration of utility model

Ref document number: 5861254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees