JP2012130919A - Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2012130919A
JP2012130919A JP2012037256A JP2012037256A JP2012130919A JP 2012130919 A JP2012130919 A JP 2012130919A JP 2012037256 A JP2012037256 A JP 2012037256A JP 2012037256 A JP2012037256 A JP 2012037256A JP 2012130919 A JP2012130919 A JP 2012130919A
Authority
JP
Japan
Prior art keywords
catalyst
parts
mass
carboxylic acid
unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012037256A
Other languages
Japanese (ja)
Other versions
JP5462300B2 (en
Inventor
Kohei Yamada
耕平 山田
Ken Oyauchi
健 大谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012037256A priority Critical patent/JP5462300B2/en
Publication of JP2012130919A publication Critical patent/JP2012130919A/en
Application granted granted Critical
Publication of JP5462300B2 publication Critical patent/JP5462300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a catalyst with which unsaturated aldehyde and unsaturated carboxylic acid corresponding to propylene, isobutylene, tertiary butyl alcohol or methyl tertiary-butyl ether are produced in high yield, and which has excellent mechanical strength.SOLUTION: The method for producing the catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid is provided in which 0.1-3 parts mass of silica gel having an average particle diameter of 1-10 nm in terms of anhydrous silicic acid (SiO), an organic binder which has a viscosity at 20°C of ≥10,000 mPa-s when formed into a 2 mass% aqueous solution, and at least one selected from the group comprising water and alcohol is added to and kneaded with 100 parts mass of spherical particles having an average particle diameter of 40-150μm which is obtained by spray-drying a solution or slurry containing molybdenum, bismuth and iron at the least, then the obtained kneaded material is subjected to extrusion molding, and after that, the extrusion-molded material is dried and heat treated.

Description

本発明は、プロピレン、イソブチレン、第三級ブチルアルコール(以下、「TBA」ともいう)又はメチル第三級ブチルエーテル(以下、「MTBE」ともいう)を分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を合成する際に使用する機械的強度に優れ、且つ、反応性に優れた触媒の製造方法に関する。   In the present invention, propylene, isobutylene, tertiary butyl alcohol (hereinafter also referred to as “TBA”) or methyl tertiary butyl ether (hereinafter also referred to as “MTBE”) is vapor-phase catalytically oxidized using molecular oxygen. The present invention relates to a method for producing a catalyst having excellent mechanical strength and excellent reactivity used in synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to each.

従来、プロピレンを気相接触酸化してアクロレイン及びアクリル酸を製造する際に用いる触媒や、イソブチレン、TBA又はMTBEを気相接触酸化してメタクロレイン及びメタクリル酸を製造する際に用いる触媒及びその製造方法については数多くの提案がなされている。   Conventional catalysts used for producing acrolein and acrylic acid by vapor phase catalytic oxidation of propylene, and catalysts used for producing methacrolein and methacrylic acid by vapor phase catalytic oxidation of isobutylene, TBA or MTBE and production thereof Many proposals have been made for methods.

これらの提案の中で、触媒の機械的強度を付与する方法として、例えば、触媒成分にウィスカーを添加して賦形する方法(特許文献1)、触媒成分に平均粒子径が1〜10nmのシリカゾルを無水ケイ酸として1〜10重量%添加して賦形する方法(特許文献2)及びシリカゾルを無水ケイ酸として1〜6重量部及び長さが30〜300μmの無機繊維を添加して賦形する方法(特許文献3)が報告されている。   Among these proposals, as a method for imparting the mechanical strength of the catalyst, for example, a method of adding whisker to the catalyst component and shaping (Patent Document 1), a silica sol having an average particle diameter of 1 to 10 nm for the catalyst component Of 1 to 10% by weight of silica as anhydrous silicic acid (Patent Document 2) and 1 to 6 parts by weight of silica sol as anhydrous silicic acid and 30 to 300 μm in length are added for shaping. A method (Patent Document 3) has been reported.

しかしながら、上記方法で得られた触媒では機械的強度は改良されるが、目的とする不飽和アルデヒドや不飽和カルボン酸の収率はまだ十分ではなく、より高い機械的強度を有し、且つ、高収率で目的生成物を得ることができる触媒及びその製造方法の開発が望まれている。   However, although the mechanical strength of the catalyst obtained by the above method is improved, the yield of the target unsaturated aldehyde and unsaturated carboxylic acid is not yet sufficient, and it has higher mechanical strength, and Development of a catalyst capable of obtaining a target product in a high yield and a method for producing the same are desired.

一方、高収率で目的生成物を得ることができる触媒を得る方法として、例えば、触媒成分を含む水性スラリーを熱処理した後、この水性スラリーの粒子を0.5〜10μmに微粒化し、スプレー乾燥機を用いて平均粒子径10〜250μmの球状粒子にした後に焼成し成型する方法(特許文献4)や、少なくとも、粘度が5,000mPa・s以上25,000mPa・s以下の高粘度有機バインダー及び粘度が10mPa・s以上5,000mPa・s未満の低粘度有機バインダーを含む有機バインダーを使用して触媒成分を成形する方法(特許文献5)が提案されている。   On the other hand, as a method for obtaining a catalyst capable of obtaining a target product with a high yield, for example, after heat-treating an aqueous slurry containing a catalyst component, the particles of the aqueous slurry are atomized to 0.5 to 10 μm and spray dried. A method of firing and forming spherical particles having an average particle diameter of 10 to 250 μm using a machine (Patent Document 4), at least a high-viscosity organic binder having a viscosity of 5,000 mPa · s to 25,000 mPa · s, and A method for forming a catalyst component using an organic binder containing a low-viscosity organic binder having a viscosity of 10 mPa · s or more and less than 5,000 mPa · s has been proposed (Patent Document 5).

しかしながら、上記方法で得られた触媒では目的とする不飽和アルデヒドや不飽和カルボン酸の収率は改良されるが、触媒の機械的強度はまだ十分ではなく、より高い機械的強度を有し、且つ、高収率で目的生成物を得ることができる触媒ならびにその製造方法の開発が望まれている。   However, although the yield of the target unsaturated aldehyde and unsaturated carboxylic acid is improved in the catalyst obtained by the above method, the mechanical strength of the catalyst is not yet sufficient, and has higher mechanical strength, In addition, it is desired to develop a catalyst capable of obtaining a target product with high yield and a method for producing the catalyst.

特開昭59−183832号公報JP 59-183832 A 特開平7−16463号公報Japanese Patent Laid-Open No. 7-16463 特開平9−52053号公報JP-A-9-52053 特開平10−258233号公報JP 10-258233 A 国際出願公開WO2005/058497 A1International Application Publication WO2005 / 058497 A1

本発明は、プロピレン、イソブチレン、TBA又はMTBEからそれぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を高収率で製造でき、且つ、機械的強度が優れた触媒の製造方法の提供を目的としている。   An object of the present invention is to provide a method for producing a catalyst capable of producing an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to propylene, isobutylene, TBA or MTBE in high yield and having excellent mechanical strength. .

本発明はプロピレン、イソブチレン、TBA又はMTBE(以下、「反応原料」という)を分子状酸素を用いて気相接触酸化することにより、反応原料に対応する不飽和アルデヒド及び不飽和カルボン酸を合成する際に使用される、少なくともモリブデン、ビスマス及び鉄の触媒成分を含む不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法であって、前記触媒成分を含む溶液又はスラリーをスプレー乾燥した後に焼成して、得られる平均粒子径40〜150μmの球状粒子100質量部に、平均粒子径が1〜10nmのシリカゾルを無水ケイ酸(SiO)として0.1〜3質量部2質量%水溶液としたときの20℃における粘度が10,000mPa・s以上を与える有機結合剤、並びに水及びアルコールの群から選ばれる少なくとも一種を添加したものを混練して、押出成形した後に、乾燥及び熱処理することを特徴とする不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法である。 The present invention synthesizes an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to a reaction material by subjecting propylene, isobutylene, TBA or MTBE (hereinafter referred to as “reaction material”) to gas phase catalytic oxidation using molecular oxygen. A method for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst containing at least molybdenum, bismuth and iron catalyst components used in the process, wherein the solution or slurry containing the catalyst components is spray dried and calcined. Thus, 100 parts by mass of spherical particles having an average particle diameter of 40 to 150 μm are obtained by using silica sol having an average particle diameter of 1 to 10 nm as anhydrous silicic acid (SiO 2 ), 0.1 to 3 parts by mass , and a 2% by mass aqueous solution. Selected from the group of organic binders and water and alcohols that give a viscosity at 20 ° C. of 10,000 mPa · s or higher. By kneading a material obtained by adding at least one, after extrusion molding, drying and heat treatment unsaturated aldehyde and method for producing an unsaturated carboxylic acid catalyst for synthesizing, characterized by.

本発明によれば、反応原料から、反応原料に対応する不飽和アルデヒド及び不飽和カルボン酸を高収率で製造でき、且つ、機械的強度が優れた触媒を製造することができる。   According to the present invention, an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to the reaction raw material can be produced in high yield from the reaction raw material, and a catalyst having excellent mechanical strength can be produced.

本発明で製造される不飽和アルデヒド及び不飽和カルボン酸合成用触媒(以下、「触媒」という)は、反応原料を分子状酸素を用いて気相接触酸化し、反応原料に対応する不飽和アルデヒド及び不飽和カルボン酸、すなわち、プロピレンからアクロレインとアクリル酸、プロピレン以外からはメタクロレインとメタクリル酸を合成する際に用いられるもので、触媒成分として少なくともモリブデン、ビスマス及び鉄を含むものであって、下記一般式(1)で示される組成のものが好ましい。   The unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst produced in the present invention (hereinafter referred to as “catalyst”) is obtained by subjecting a reaction raw material to gas phase catalytic oxidation using molecular oxygen and corresponding to the reaction raw material. And an unsaturated carboxylic acid, that is, used when synthesizing acrolein and acrylic acid from propylene, methacrolein and methacrylic acid from other than propylene, and contains at least molybdenum, bismuth and iron as catalyst components, The thing of the composition shown by following General formula (1) is preferable.

MoBiFeSi ・・・・・(1)
一般式(1)において、Mo、Bi、Fe、Si及びOはそれぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルから選ばれる少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛から選ばれる少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンから選ばれる少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2及びh=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。
Mo a Bi b Fe c M d X e Y f Z g Si h O i ····· (1)
In the general formula (1), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents at least one element selected from cobalt and nickel. X represents at least one element selected from chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents at least one element selected from phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium. Z represents at least one element selected from lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element. When a = 12, b = 0.01-3, c = 0.01-5, d = 1. -12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, and h = 0 to 20, i is an oxygen atomic ratio necessary for satisfying the valence of each component. is there.

触媒成分の出発原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等が挙げられる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。ビスマス原料としては酸化ビスマス、硝酸ビスマス、炭酸ビスマス等が挙げられる。鉄原料としては硝酸第二鉄・九水塩等が挙げられる。   Examples of the starting material for the catalyst component include oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides and the like of each element. For example, examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. Examples of the bismuth raw material include bismuth oxide, bismuth nitrate, and bismuth carbonate. Examples of the iron raw material include ferric nitrate and nonahydrate.

触媒成分の出発原料は各元素について、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the starting material for the catalyst component, one kind of each element may be used alone, or two or more kinds may be used in combination.

本発明においては、触媒成分は、触媒成分を含む溶液又はスラリーをスプレー乾燥した後に焼成することにより平均粒子径40〜150μmの球状粒子とされる。   In the present invention, the catalyst component is made into spherical particles having an average particle diameter of 40 to 150 μm by firing after spray drying a solution or slurry containing the catalyst component.

触媒成分の出発原料を含むスラリーを調製する方法としては、触媒成分の著しい偏在を伴わない範囲で、沈殿法、酸化物混合法等の公知の方法を適用することができる。   As a method for preparing the slurry containing the starting material of the catalyst component, a known method such as a precipitation method or an oxide mixing method can be applied as long as the catalyst component is not significantly unevenly distributed.

触媒成分を含む溶液又はスラリーをスプレー乾燥する条件としては、スプレー乾燥機の入口温度は100〜500℃が好ましい。また、その出口温度は100℃以上が好ましく、105〜200℃がより好ましい。   As conditions for spray-drying the solution or slurry containing the catalyst component, the inlet temperature of the spray dryer is preferably 100 to 500 ° C. The outlet temperature is preferably 100 ° C. or higher, more preferably 105 to 200 ° C.

触媒成分を含む溶液又はスラリーをスプレー乾燥した後の球状の粒子は、触媒成分の出発原料に由来する硝酸塩等の塩を含んでいる場合がある。塩が残存していると触媒の機械的強度が低下する恐れがあるため、乾燥後、塩を分解するために焼成する。焼成条件としては、公知の焼成条件を適用でき、焼成温度は空気雰囲気下、約200〜600℃が好ましい。また、焼成時間は、目的とする触媒に応じて適宜選択される。   The spherical particles after spray-drying the solution or slurry containing the catalyst component may contain a salt such as nitrate derived from the starting material of the catalyst component. If the salt remains, the mechanical strength of the catalyst may be lowered. Therefore, after drying, calcination is performed to decompose the salt. As firing conditions, known firing conditions can be applied, and the firing temperature is preferably about 200 to 600 ° C. in an air atmosphere. Further, the calcination time is appropriately selected according to the target catalyst.

触媒成分を含む溶液又はスラリーをスプレー乾燥した後に焼成して得られる球状粒子(以下、「焼成球状粒子」という)の平均粒子径は上述したとおり40〜150μmであり、50μm以上が好ましい。焼成球状粒子の平均粒子径を大きくすることにより、焼成球状粒子間に大きな空隙、すなわち触媒に大きな細孔が形成されて目的とする不飽和アルデヒドや不飽和カルボン酸の選択率が向上する傾向がある。   As described above, the average particle size of spherical particles (hereinafter referred to as “fired spherical particles”) obtained by spray drying a solution or slurry containing a catalyst component and then firing is 40 to 150 μm, and preferably 50 μm or more. By increasing the average particle size of the calcined spherical particles, large voids between the calcined spherical particles, that is, large pores are formed in the catalyst, and the selectivity of the target unsaturated aldehyde or unsaturated carboxylic acid tends to be improved. is there.

焼成球状粒子の平均粒子径は100μm以下が好ましい。焼成球状粒子の平均粒子径を小さくすることにより、単位体積当たりの焼成球状粒子同士の接触点が増加するため、触媒の機械的強度が向上する傾向がある。   The average particle size of the fired spherical particles is preferably 100 μm or less. By reducing the average particle diameter of the calcined spherical particles, the contact point between the calcined spherical particles per unit volume increases, so the mechanical strength of the catalyst tends to be improved.

なお、焼成球状粒子の嵩比重は、取り扱い性の点から、0.5kg/L以上が好ましく、0.8kg/L以上がより好ましい。焼成球状粒子の嵩比重は、性能の点から、1.8kg/L以下が好ましく、1.2kg/L以下がより好ましい。   The bulk specific gravity of the fired spherical particles is preferably 0.5 kg / L or more, more preferably 0.8 kg / L or more from the viewpoint of handleability. The bulk specific gravity of the calcined spherical particles is preferably 1.8 kg / L or less, more preferably 1.2 kg / L or less from the viewpoint of performance.

本発明においては、上記焼成球状粒子は、その100質量部に、無水ケイ酸(SiO)として0.1〜3質量部のシリカゾル、2質量%水溶液としたときの20℃における粘度が10,000mPa・s以上を与える有機結合剤、及び少なくとも水及びアルコールの群から選ばれる1種が添加され、後述のように混練された後に、押出成形される。 In the present invention, the calcined spherical particles have a viscosity at 10 ° C. of 10 to 100 parts by mass of silica sol (SiO 2 ) of 0.1 to 3 parts by mass of silica sol and 2% by mass aqueous solution at 10, An organic binder giving 000 mPa · s or more and at least one selected from the group of water and alcohol are added, and after being kneaded as described later, extrusion molding is performed.

シリカゾルの添加量は焼成球状粒子100質量部に対して、無水ケイ酸(SiO)として0.1〜4質量部であり、0.5質量部以上が好ましい。またシリカゾルの添加量は3質量部以下が好ましい。添加量が0.1質量部以上で、触媒としたときに十分な機械的強度が得られ、4質量部以下で触媒の活性が低下し難い。シリカゾルの平均粒子径としては1〜10nmが好ましい。 The addition amount of the silica sol is 0.1 to 4 parts by mass as silicic anhydride (SiO 2 ) with respect to 100 parts by mass of the fired spherical particles, and preferably 0.5 parts by mass or more. The amount of silica sol added is preferably 3 parts by mass or less. When the addition amount is 0.1 parts by mass or more, sufficient mechanical strength is obtained when the catalyst is used, and when it is 4 parts by mass or less, the activity of the catalyst is hardly lowered. The average particle size of the silica sol is preferably 1 to 10 nm.

有機結合剤は、2質量%水溶液としたときの20℃における粘度が10,000mPa・s以上を与えるものを用いる。粘度が10,000mPa・s以上の場合、後述する押出成形時の成形性が良く触媒にしたときに十分な機械的強度が得られる。なお、粘度の測定は例えばB型粘度計等の粘度計を用いて測定することができる。   As the organic binder, those giving a viscosity at 20 ° C. of 10,000 mPa · s or more when used as a 2 mass% aqueous solution are used. When the viscosity is 10,000 mPa · s or more, the moldability at the time of extrusion molding described later is good and sufficient mechanical strength is obtained when the catalyst is used. The viscosity can be measured using, for example, a viscometer such as a B-type viscometer.

このような有機結合剤としては、例えば、微生物起源のβ−1,3−グルカンやセルロース誘導体であるメチルセルロース、エチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース及びヒドロキシプロピルセルロースが挙げられる。   Examples of such an organic binder include β-1,3-glucan derived from microorganisms and cellulose derivatives such as methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and hydroxyethyl. Mention may be made of methylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose and hydroxypropylcellulose.

これらの有機結合剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。   These organic binders may be used alone or in combination of two or more.

有機結合剤の添加量は、成形性改善の点から、焼成球状粒子100質量部に対して0.1質量部以上が好ましく、2質量部以上がより好ましい。また、成形後の熱処理等の後処理が簡単になる点から、有機結合剤の添加量は、焼成球状粒子100質量部に対して10質量部以下が好ましく、6質量部以下がより好ましい。   The amount of the organic binder added is preferably 0.1 parts by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of the fired spherical particles from the viewpoint of improving moldability. In addition, the amount of the organic binder added is preferably 10 parts by mass or less and more preferably 6 parts by mass or less with respect to 100 parts by mass of the fired spherical particles from the viewpoint that post-treatment such as heat treatment after molding becomes simple.

水又はアルコールが後述する混練及び押出成形に用いる液体(以下、「液体」という)として用いられる。アルコールとしては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール及びブチルアルコールが挙げられる。液体としては、経済性と取り扱い性の点から、水が好ましい。   Water or alcohol is used as a liquid (hereinafter referred to as “liquid”) used for kneading and extrusion molding described later. Examples of the alcohol include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol. As the liquid, water is preferable from the viewpoints of economy and handleability.

なお、液体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   In addition, a liquid may be used individually by 1 type and may be used in combination of 2 or more type.

液体の量は、焼成球状粒子の種類、大きさ、液体の種類等によって適宜選択されるが、焼成球状粒子100質量部に対して10〜70質量部が好ましい。この液体の量は焼成球状粒子100質量部に対して20質量部以上がより好ましく、30質量部以上が更に好ましく、35質量部以上が特に好ましい。液体の量が多くなると、得られる触媒に大きな空隙、又は大きな細孔が形成されて目的とする不飽和アルデヒドや不飽和カルボン酸の選択率が向上する傾向がある。また、液体の量は球状粒子100質量部に対して60質量部以下がより好ましく、50質量部以下が更に好ましく、45質量部以下が特に好ましい。液体の量が少なくなると、成形時の焼成球状粒子の付着性が低減して取り扱い性が向上し、且つ、得られる触媒がより密になるため触媒の機械的強度が向上する傾向がある。   The amount of the liquid is appropriately selected depending on the kind and size of the fired spherical particles, the kind of the liquid, and the like, but is preferably 10 to 70 parts by weight with respect to 100 parts by weight of the fired spherical particles. The amount of the liquid is more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more, and particularly preferably 35 parts by mass or more with respect to 100 parts by mass of the sintered spherical particles. When the amount of the liquid is increased, large voids or large pores are formed in the obtained catalyst, and the selectivity of the target unsaturated aldehyde or unsaturated carboxylic acid tends to be improved. The amount of the liquid is more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less, and particularly preferably 45 parts by mass or less with respect to 100 parts by mass of the spherical particles. When the amount of the liquid is reduced, the adhesion of the fired spherical particles at the time of molding is reduced, the handleability is improved, and the resulting catalyst becomes denser, and the mechanical strength of the catalyst tends to be improved.

焼成球状粒子とシリカゾル及び本発明で規定する有機結合剤、更には滑剤、可塑剤等の成形助剤を混練するために用いる混練機は特に限定されず、例えば、双腕型の攪拌羽根を使用するバッチ式の混練機又は軸回転往復式やセルフクリーニング型等の連続式の混練機を使用することができる。中でも、混練物の状態を確認しながら混練を行うことができる点から、バッチ式が好ましい。   The kneading machine used for kneading the calcined spherical particles, the silica sol, the organic binder defined in the present invention, and further the molding aid such as a lubricant and a plasticizer is not particularly limited. For example, a double-arm type stirring blade is used. A batch type kneading machine or a continuous kneading machine such as a shaft rotation reciprocating type or a self-cleaning type can be used. Among these, the batch type is preferable because kneading can be performed while checking the state of the kneaded product.

焼成球状粒子、シリカゾル、本発明で規定する有機結合剤、及び水及びアルコールよりなる群から選ばれる少なくとも1種を添加して押出成形する際、リング状、円柱状、星形状、ハニカム状などの任意の形状に成形できる。   When extruding by adding at least one selected from the group consisting of fired spherical particles, silica sol, the organic binder defined in the present invention, and water and alcohol, ring-shaped, cylindrical, star-shaped, honeycomb-shaped, etc. Can be shaped into any shape.

これら任意の形状に成形された成形体は次いで、通常、室温〜150℃で乾燥され、その後空気雰囲気下等で、約300〜600℃で熱処理され、触媒とされる。   The molded body formed into these arbitrary shapes is then usually dried at room temperature to 150 ° C., and then heat-treated at about 300 to 600 ° C. in an air atmosphere or the like to be used as a catalyst.

本発明の方法により製造された触媒の存在下、反応原料と分子状酸素を用いて気相接触酸化反応が行われる。このとき、反応原料と分子状酸素のモル比は1:0.5〜1:3が好ましい。反応原料のガスは不活性ガスで希釈して用いることが経済的である。分子状酸素としては空気を用いることが経済的であるが、必要に応じて純酸素で富化した空気も用いることができる。   In the presence of the catalyst produced by the method of the present invention, a gas phase catalytic oxidation reaction is performed using the reaction raw material and molecular oxygen. At this time, the molar ratio of the reaction raw material to molecular oxygen is preferably 1: 0.5 to 1: 3. It is economical to use the reaction raw material gas diluted with an inert gas. Although it is economical to use air as the molecular oxygen, air enriched with pure oxygen can also be used if necessary.

反応圧力としては大気圧から数気圧までが好ましい。反応温度としては200〜450℃が好ましく、250〜400℃がより好ましい。接触時間は1.5〜15秒が好ましい。   The reaction pressure is preferably from atmospheric pressure to several atmospheres. As reaction temperature, 200-450 degreeC is preferable and 250-400 degreeC is more preferable. The contact time is preferably 1.5 to 15 seconds.

反応器中の触媒はシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、セラミックボールやステンレス鋼等の不活性物質で希釈して使用することができる。   The catalyst in the reactor can be used by diluting with an inert substance such as silica, alumina, silica-alumina, silicon carbide, ceramic balls and stainless steel.

以下、本発明を実施例を用い説明する。以下において、「部」は質量部を示し、原料ガス及び生成物の分析はガスクロマトグラフィーより行った。   Hereinafter, the present invention will be described using examples. In the following, “parts” indicates parts by mass, and the raw material gas and the product were analyzed by gas chromatography.

また、実施例及び比較例中のオレフィン、TBA又はMTBEの反応率、生成する不飽和アルデヒド及び不飽和カルボン酸の選択率、生成する不飽和アルデヒド及び不飽和カルボン酸の合計収率(以下、「合計収率」という)は次式により算出した。   Moreover, the reaction rate of the olefin, TBA or MTBE in Examples and Comparative Examples, the selectivity of the unsaturated aldehyde and unsaturated carboxylic acid produced, the total yield of the unsaturated aldehyde and unsaturated carboxylic acid produced (hereinafter, “ The total yield was calculated by the following formula.

反応率(%)=(A/B)×100
不飽和アルデヒドの選択率(%)=(C/A)×100
不飽和カルボン酸の選択率(%)=(D/A)×100
合計収率(%)={(C+D)/B}×100
ここで、Aは反応した反応原料のモル数、Bは供給した反応原料のモル数、Cは生成した不飽和アルデヒドのモル数及びDは生成した不飽和カルボン酸のモル数である。
Reaction rate (%) = (A / B) × 100
Selectivity of unsaturated aldehyde (%) = (C / A) × 100
Selectivity of unsaturated carboxylic acid (%) = (D / A) × 100
Total yield (%) = {(C + D) / B} × 100
Here, A is the number of moles of the reacted reaction material, B is the number of moles of the supplied reaction material, C is the number of moles of the generated unsaturated aldehyde, and D is the number of moles of the generated unsaturated carboxylic acid.

また、触媒の充填粉化率は以下のように定義する。   Moreover, the packing powdering rate of the catalyst is defined as follows.

触媒a部を、水平方向に対して垂直に設置した内径30mmφ、長さ5mからなるステンレス鋼管に、ステンレス鋼管上部より充填し、充填後ステンレス鋼管下部より回収する。回収した触媒の内、8メッシュの篩を通過しない触媒がb部であったとき、充填粉化率は以下の式で表される。 The catalyst a part is filled from the upper part of the stainless steel pipe into a stainless steel pipe having an inner diameter of 30 mmφ and a length of 5 m installed vertically with respect to the horizontal direction, and is recovered from the lower part of the stainless steel pipe after filling. When the catalyst that does not pass through the 8-mesh sieve among the recovered catalysts is part b, the packing powdering rate is expressed by the following equation.

充填粉化率(%)={(a−b)/a}×100
また、圧壊強度は以下の方法により測定した。
Filling powder rate (%) = {(ab) / a} × 100
The crushing strength was measured by the following method.

圧壊強度:微小圧縮試験機((株)島津製作所製、MCTM−200)で測定し、平均圧壊強度は30個の粒子を測定した平均値である。 Crushing strength: Measured with a micro compression tester (manufactured by Shimadzu Corporation, MCTM-200), and the average crushing strength is an average value obtained by measuring 30 particles.

(実施例1)
純水2000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸セシウム23.0部、三酸化アンチモン27.4部及び三酸化ビスマス33.0部を加え、加熱、攪拌した。更に、硝酸第二鉄209.8部、硝酸ニッケル75.5部、硝酸コバルト453.3部、硝酸鉛31.3部及び85%リン酸5.6部を順次加え、加熱、攪拌し、水性のスラリーとした。この後、この水性のスラリーを回転円板型遠心アトマイザーを備えたスプレー乾燥機を用いて噴霧乾燥し、平均粒子径80μmの球状の乾燥粒子とした。このとき、スプレー乾燥機のアトマイザーの回転数は11,000rpm、スプレー乾燥機の入口温度は165℃、出口温度は125℃であった。次いで、この乾燥球状粒子を300℃で1時間、510℃で3時間焼成を行い、焼成球状粒子とした。このようにして得られた焼成球状粒子の圧壊強度は1.3×10−2Nであった。
Example 1
To 2000 parts of pure water, 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 27.4 parts of antimony trioxide and 33.0 parts of bismuth trioxide are added and heated and stirred. did. Further, 209.8 parts of ferric nitrate, 75.5 parts of nickel nitrate, 453.3 parts of cobalt nitrate, 31.3 parts of lead nitrate and 5.6 parts of 85% phosphoric acid were added in that order, and the mixture was heated and stirred. Slurry. Thereafter, the aqueous slurry was spray-dried using a spray dryer equipped with a rotating disk centrifugal atomizer to obtain spherical dry particles having an average particle diameter of 80 μm. At this time, the rotation speed of the atomizer of the spray dryer was 11,000 rpm, the inlet temperature of the spray dryer was 165 ° C., and the outlet temperature was 125 ° C. Next, the dried spherical particles were calcined at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to obtain calcined spherical particles. The crushing strength of the fired spherical particles thus obtained was 1.3 × 10 −2 N.

このようにして得られた焼成球状粒子100部に対して2質量%水溶液としたときの20℃における粘度が10,000mPa・sのヒドロキシプロピルメチルセルロース5部を加え、乾式混合した。この混合物に純水36部及び平均粒子径7〜9nmのシリカゾルを無水ケイ酸として0.8部添加して双腕型の攪拌羽根をもつバッチ式の混練機を用いて混練した後、押出成形機にて、外径5mm、内径2mm及び長さ5mmのリング状物を成形した。   5 parts of hydroxypropylmethylcellulose having a viscosity of 10,000 mPa · s at 20 ° C. when made into a 2% by mass aqueous solution was added to 100 parts of the calcined spherical particles thus obtained and dry-mixed. To this mixture, 36 parts of pure water and 0.8 part of silica sol having an average particle diameter of 7 to 9 nm as silica are added and kneaded using a batch type kneader having a double-arm type stirring blade, followed by extrusion molding. A ring-shaped product having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm was formed by a machine.

次いで、得られた成形物を熱風乾燥機を用いて110℃で乾燥し、更に400℃で3時間焼成を行い、触媒を得た。   Subsequently, the obtained molded product was dried at 110 ° C. using a hot air dryer, and further calcined at 400 ° C. for 3 hours to obtain a catalyst.

得られた触媒の酸素以外の元素の組成は、Mo120.2Bi0.6Fe2.2Sb0.8Ni1.1Co6.6Pb0.40.2Cs0.5であった。 The composition of elements other than oxygen in the obtained catalyst was Mo 12 W 0.2 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.6 Pb 0.4 P 0.2 Cs 0. It was 5 .

この触媒をステンレス鋼製反応管に充填し、イソブチレン5%、酸素12%、水蒸気10%及び窒素73%(各々、容量%)の混合ガスを用い、常圧下、接触時間3.6秒、反応温度340℃で反応させた。その反応結果は、イソブチレンの反応率が97.1%、メタクロレインの選択率が89.9%及びメタクリル酸の選択率が4.0%であった。その充填粉化率は0.04%であった。これらの結果を表1に示す。   This catalyst was filled in a stainless steel reaction tube, and a reaction time of 3.6 seconds under normal pressure and a contact time of 3.6 seconds using a mixed gas of 5% isobutylene, 12% oxygen, 10% water vapor and 73% nitrogen (volume% each). The reaction was performed at a temperature of 340 ° C. As a result of the reaction, the reaction rate of isobutylene was 97.1%, the selectivity of methacrolein was 89.9%, and the selectivity of methacrylic acid was 4.0%. The filling powdering rate was 0.04%. These results are shown in Table 1.

(実施例2)
実施例1において、リング状物を成形する際に平均粒子径7〜10nmのシリカゾルを無水ケイ酸として3部添加した。それ以外は実施例1と同様にして触媒を得、イソブチレンを反応させた。その結果、イソブチレンの反応率が96.5%、メタクロレインの選択率が90.0%、メタクリル酸の選択率が4.0%であった。その充填粉化率は0.02%であった。これらの結果を表1に示す。
(Example 2)
In Example 1, 3 parts of silica sol having an average particle diameter of 7 to 10 nm was added as silicic anhydride when the ring-shaped product was molded. Otherwise, the catalyst was obtained in the same manner as in Example 1 and reacted with isobutylene. As a result, the reaction rate of isobutylene was 96.5%, the selectivity of methacrolein was 90.0%, and the selectivity of methacrylic acid was 4.0%. The filling powdering rate was 0.02%. These results are shown in Table 1.

(実施例3)
実施例1において、リング状物を成形する際に2質量%水溶液としたときの20℃における粘度が30,000mPa・sのヒドロキシプロピルメチルセルロース5部を添加した。それ以外は実施例1と同様にして触媒を得、イソブチレンを反応させた。その結果、イソブチレンの反応率が97.2%、メタクロレインの選択率が89.7%、メタクリル酸の選択率が3.8%であった。その充填粉化率は0.04%であった。これらの結果を表1に示す。
Example 3
In Example 1, 5 parts of a hydroxypropyl methylcellulose having a viscosity of 30,000 mPa · s at 20 ° C. when a 2 mass% aqueous solution was formed when a ring-shaped product was formed was added. Otherwise, the catalyst was obtained in the same manner as in Example 1 and reacted with isobutylene. As a result, the reaction rate of isobutylene was 97.2%, the selectivity of methacrolein was 89.7%, and the selectivity of methacrylic acid was 3.8%. The filling powdering rate was 0.04%. These results are shown in Table 1.

(比較例1)
実施例1において、リング状物を成形する際にシリカゾルを添加しなかった。それ以外は実施例1と同様にして触媒を得、イソブチレンを反応させた。その結果、イソブチレンの反応率が96.1%、メタクロレインの選択率が89.9%、メタクリル酸の選択率が4.0%であった。その充填粉化率は0.87%であった。これらの結果を表1に示す。
(Comparative Example 1)
In Example 1, no silica sol was added when the ring-shaped product was molded. Otherwise, the catalyst was obtained in the same manner as in Example 1 and reacted with isobutylene. As a result, the reaction rate of isobutylene was 96.1%, the selectivity of methacrolein was 89.9%, and the selectivity of methacrylic acid was 4.0%. The filling powder ratio was 0.87%. These results are shown in Table 1.

(比較例2)
実施例1において、リング状物を成形する際に2質量%水溶液としたときの20℃における粘度が4,000mPa・sのヒドロキシプロピルメチルセルロース5部を添加し、シリカゾルを添加しなかった。それ以外は実施例1と同様にして触媒を得、イソブチレンを反応させた。その結果、イソブチレンの反応率が97.1%、メタクロレインの選択率が89.6%、メタクリル酸の選択率が3.5%であった。その充填粉化率は1.24%であった。これらの結果を表1に示す。
(Comparative Example 2)
In Example 1, 5 parts of hydroxypropylmethylcellulose having a viscosity of 4,000 mPa · s at 20 ° C. when a 2% by mass aqueous solution was formed when the ring-shaped product was formed was added, and no silica sol was added. Otherwise, the catalyst was obtained in the same manner as in Example 1 and reacted with isobutylene. As a result, the reaction rate of isobutylene was 97.1%, the selectivity of methacrolein was 89.6%, and the selectivity of methacrylic acid was 3.5%. The filling powdering rate was 1.24%. These results are shown in Table 1.

(比較例3)
実施例1において、リング状物を成形する際に平均粒子径7〜10nmのシリカゾルを無水ケイ酸として10部添加した。それ以外は実施例1と同様にして触媒を得、イソブチレンを反応させた。その結果、イソブチレンの反応率が95.4%、メタクロレインの選択率が86.5%、メタクリル酸の選択率が4.7%であった。その充填粉化率は0.04%であった。これらの結果を表1に示す。
(Comparative Example 3)
In Example 1, 10 parts of silica sol having an average particle diameter of 7 to 10 nm as silicic anhydride was added when the ring-shaped product was molded. Otherwise, the catalyst was obtained in the same manner as in Example 1 and reacted with isobutylene. As a result, the reaction rate of isobutylene was 95.4%, the selectivity of methacrolein was 86.5%, and the selectivity of methacrylic acid was 4.7%. The filling powdering rate was 0.04%. These results are shown in Table 1.

Claims (1)

プロピレン、イソブチレン、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を合成する際に使用される、少なくともモリブデン、ビスマス及び鉄の触媒成分を含む不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法であって、前記触媒成分を含む溶液又はスラリーをスプレー乾燥した後に焼成して得られる平均粒子径40〜150μmの球状粒子100質量部に、平均粒子径が1〜10nmのシリカゾルを無水ケイ酸(SiO)として0.1〜3質量部2質量%水溶液としたときの20℃における粘度が10,000mPa・s以上を与える有機結合剤、並びに水及びアルコールよりなる群から選ばれる少なくとも1種を添加したものを混練して、押出成形した後に、乾燥及び熱処理することを特徴とする不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法。 Used in the synthesis of unsaturated aldehydes and carboxylic acids corresponding to propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether by vapor phase catalytic oxidation with molecular oxygen. , A method for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst containing at least molybdenum, bismuth and iron catalyst components, wherein the average particles obtained by spray drying a solution or slurry containing the catalyst components Viscosity at 20 ° C. when 100 parts by mass of spherical particles having a diameter of 40 to 150 μm and silica sol having an average particle diameter of 1 to 10 nm as an anhydrous silicic acid (SiO 2 ) are 0.1 to 3 parts by mass and a 2% by mass aqueous solution. Selected from the group consisting of an organic binder that gives 10,000 mPa · s or more, and water and alcohol At least one by kneading a material obtained by adding, after the extrusion, drying and heat treatment unsaturated aldehyde and method for producing an unsaturated carboxylic acid catalyst for synthesizing, characterized by that.
JP2012037256A 2012-02-23 2012-02-23 Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid Active JP5462300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037256A JP5462300B2 (en) 2012-02-23 2012-02-23 Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037256A JP5462300B2 (en) 2012-02-23 2012-02-23 Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007262565A Division JP2009090200A (en) 2007-10-05 2007-10-05 Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2012130919A true JP2012130919A (en) 2012-07-12
JP5462300B2 JP5462300B2 (en) 2014-04-02

Family

ID=46647144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037256A Active JP5462300B2 (en) 2012-02-23 2012-02-23 Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP5462300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145985A1 (en) * 2016-02-24 2017-08-31 三菱ケミカル株式会社 Multi-hole extrusion die, method for producing metal compound extrusion-molded body, method for producing catalyst extrusion-molded body for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183832A (en) * 1983-04-01 1984-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Heteropolyacid base molded catalyst composition containing whisker
JPH0716463A (en) * 1993-06-30 1995-01-20 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0952053A (en) * 1995-08-17 1997-02-25 Sumitomo Chem Co Ltd Preparation of molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH10258233A (en) * 1997-03-19 1998-09-29 Mitsubishi Rayon Co Ltd Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
WO2005058497A1 (en) * 2003-12-18 2005-06-30 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2007105716A (en) * 2005-09-16 2007-04-26 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for synthesizing methacrolein and/or methacrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183832A (en) * 1983-04-01 1984-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Heteropolyacid base molded catalyst composition containing whisker
JPH0716463A (en) * 1993-06-30 1995-01-20 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0952053A (en) * 1995-08-17 1997-02-25 Sumitomo Chem Co Ltd Preparation of molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH10258233A (en) * 1997-03-19 1998-09-29 Mitsubishi Rayon Co Ltd Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
WO2005058497A1 (en) * 2003-12-18 2005-06-30 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2007105716A (en) * 2005-09-16 2007-04-26 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for synthesizing methacrolein and/or methacrylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145985A1 (en) * 2016-02-24 2017-08-31 三菱ケミカル株式会社 Multi-hole extrusion die, method for producing metal compound extrusion-molded body, method for producing catalyst extrusion-molded body for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2017145985A1 (en) * 2016-02-24 2018-03-08 三菱ケミカル株式会社 Multi-hole extrusion die, method for producing metal compound extrusion, method for producing catalyst extrusion for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
CN108602061A (en) * 2016-02-24 2018-09-28 三菱化学株式会社 Porous type extrusion die, the manufacturing method of metallic compound extrusion molding body, unsaturated aldehyde and/or the manufacturing method of unsaturated carboxylic acid catalyst for producing extrusion molding body and the manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP5462300B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2016136882A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2011246384A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4806259B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4179780B2 (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP5462300B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4846114B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
JP7156506B2 (en) Molded catalyst, molded catalyst for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP2009090200A (en) Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP2009213970A (en) Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP7070031B2 (en) Catalyst group
JP2010207803A (en) Compound oxide catalyst
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JP4464734B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid
JP5059701B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH10258233A (en) Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
JP5069151B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP5059702B2 (en) Method for producing catalyst for producing unsaturated carboxylic acid
JP4846117B2 (en) Method for preparing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst prepared by the preparation method
JP2008302313A (en) Catalyst for producing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2020163383A (en) Method of producing catalyst for synthesizing unsaturated carboxylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R151 Written notification of patent or utility model registration

Ref document number: 5462300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250