JP2012129084A - Oxide superconductive thin film wire rod manufacturing method - Google Patents

Oxide superconductive thin film wire rod manufacturing method Download PDF

Info

Publication number
JP2012129084A
JP2012129084A JP2010280105A JP2010280105A JP2012129084A JP 2012129084 A JP2012129084 A JP 2012129084A JP 2010280105 A JP2010280105 A JP 2010280105A JP 2010280105 A JP2010280105 A JP 2010280105A JP 2012129084 A JP2012129084 A JP 2012129084A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
oxide superconducting
film wire
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010280105A
Other languages
Japanese (ja)
Inventor
Kei Hanafusa
慶 花房
Takeshi Nakanishi
毅 中西
Genki Honda
元気 本田
Tatsuoki Nagaishi
竜起 永石
Iwao Yamaguchi
巖 山口
Toshiya Kumagai
俊弥 熊谷
Takaaki Manabe
高明 真部
Junichi Shimoyama
淳一 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010280105A priority Critical patent/JP2012129084A/en
Publication of JP2012129084A publication Critical patent/JP2012129084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide superconductive thin film wire rod which, in manufacturing an oxide superconductive thin film wire rod by an MOD process, restrains a heterogeneous phase from being formed on an orientated metal substrate to ensure that an oxide superconductive thin film wire rod having desired superconducting characteristics will be manufactured.SOLUTION: A manufacturing method of an oxide superconductive thin film wire rod involves forming an oxide superconductive thin film from a metal organic compound by an application thermal decomposition process using an atmosphere furnace to manufacture an oxide superconductive thin film wire rod. The manufacturing method comprises a coated film making step in which a solution of a metal organic compound is applied to an orientated metal substrate having an intermediate layer formed therein to make a coated film, a temporary calcining step in which organic components contained in the metal organic compound of the coated film are removed by thermal decomposition to make a temporarily calcined film, and a formal calcining step in which the temporarily calcined film is crystallized to make an oxide superconductive thin film. The formal calcining step is a heat treatment step in which formal calcining is carried out under a low oxygen partial pressure and high temperature atmosphere, after which, in a region other than an oxide superconductor decomposition region, operation is performed to reduce oxygen partial pressure while the temperature is lowered to cool.

Description

本発明は、酸化物超電導薄膜線材の製造方法に関し、詳しくは、塗布熱分解法により、超電導特性に優れた酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法に関する。   The present invention relates to a method for producing an oxide superconducting thin film wire, and more particularly to a method for producing an oxide superconducting thin film wire for producing an oxide superconducting thin film wire excellent in superconducting properties by a coating pyrolysis method.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、酸化物超電導体を薄膜化した酸化物超電導薄膜線材が注目されている。   Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among them, an oxide superconducting thin film wire obtained by thinning an oxide superconductor has attracted attention.

酸化物超電導薄膜線材の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)がある(特許文献1)。この方法は、金属有機化合物溶液を基板に塗布して塗布膜を作製した後(塗布膜作製工程)、金属有機化合物を例えば500℃付近で熱処理(仮焼)して金属有機化合物の有機成分を熱分解させ(仮焼熱処理工程)、得られた熱分解物(MOD仮焼膜)をさらに高温(例えば800℃付近)で熱処理(本焼)すること(本焼熱処理工程)により、結晶化を行って、例えばREBaCu7−X(RE:希土類元素)で表される酸化物超電導体からなる酸化物超電導薄膜を製造するものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有している。 One method for producing an oxide superconducting thin film wire is a coating pyrolysis method (Metal Organic Deposition, abbreviated as MOD method) (Patent Document 1). In this method, a metal organic compound solution is applied to a substrate to prepare a coating film (coating film manufacturing process), and then the metal organic compound is heat-treated (calcined) at, for example, around 500 ° C. to remove the organic component of the metal organic compound. Crystallization is achieved by thermally decomposing (calcination heat treatment step) and heat-treating (main firing) the obtained pyrolyzate (MOD calcined film) at a higher temperature (for example, around 800 ° C.) (main heat treatment step). To produce an oxide superconducting thin film made of an oxide superconductor represented by, for example, REBa 2 Cu 3 O 7-X (RE: rare earth element), and is a vapor phase method mainly produced in vacuum Compared with (evaporation method, sputtering method, pulsed laser deposition method, etc.), the manufacturing facility is simple, and it is easy to cope with a large area and a complicated shape.

特開2007−165153号公報JP 2007-165153 A

しかしながら、従来のMOD法による酸化物超電導薄膜線材の製造においては、配向金属基板上に、超電導体であるREBaCu7−xの結晶以外に、非超電導体であるREBaCu等の異相が形成され、所望する超電導特性が発揮されない場合があった。 However, in the production of the oxide superconducting thin film wire by the conventional MOD method, RE 2 Ba which is a non-superconductor other than a crystal of RE 1 Ba 2 Cu 3 O 7-x which is a superconductor on an oriented metal substrate. In some cases, a different phase such as 1 Cu 1 O 5 is formed, and the desired superconducting characteristics may not be exhibited.

そこで、本発明は、MOD法による酸化物超電導薄膜線材の製造において、配向金属基板上に異相が形成されることを抑制して、所望する超電導特性の酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法を提供することを課題とする。   Thus, the present invention provides an oxide superconducting thin film wire having a desired superconducting characteristic by suppressing the formation of a heterogeneous phase on an oriented metal substrate in the production of an oxide superconducting thin film wire by the MOD method. It aims at providing the manufacturing method of a thin film wire.

本発明者は、鋭意検討の結果、以下に示す請求項の発明により上記課題が解決できることを見出し、本発明を完成するに至った。以下、各請求項の発明について説明する。   As a result of intensive studies, the present inventor has found that the above-mentioned problems can be solved by the inventions of the following claims, and has completed the present invention. Hereinafter, the invention of each claim will be described.

請求項1に記載の発明は、
金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により、酸化物超電導薄膜を形成して、酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法であって、
中間層が形成された配向金属基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、
前記塗布膜の金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を有しており、
前記本焼熱処理工程が、低酸素分圧、高温雰囲気下で本焼成を行い、その後、酸化物超電導体の分解領域外において、酸素分圧を下げる操作を行いながら降温して冷却を行う熱処理工程である
ことを特徴とする酸化物超電導薄膜線材の製造方法である。
The invention described in claim 1
Using a metal organic compound as a raw material, an oxide superconducting thin film wire is produced by forming an oxide superconducting thin film by a coating pyrolysis method using an atmospheric furnace, and a method for producing an oxide superconducting thin film wire,
A coating film preparation step of applying a solution of the metal organic compound on the oriented metal substrate on which the intermediate layer is formed to prepare a coating film;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing organic components contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The main heat treatment step is a heat treatment step in which the main firing is performed in a low oxygen partial pressure and high temperature atmosphere, and then the temperature is lowered and cooled outside the decomposition region of the oxide superconductor while performing an operation to lower the oxygen partial pressure. This is a method for producing an oxide superconducting thin film wire.

本発明者は、先ず、従来のMOD法における各工程について、詳しく分析、検討を行い、その結果、前記した異相の形成が本焼熱処理工程において発生しており、このときの処理雰囲気が異相の形成に大きく影響していることが分かった。   The present inventor first analyzed and examined each step in the conventional MOD method in detail, and as a result, the formation of the above-mentioned heterogeneous phase occurred in the main annealing process, and the treatment atmosphere at this time was heterogeneous. It was found that it greatly influenced the formation.

即ち、従来の本焼熱処理工程では、低酸素分圧、高温の雰囲気下で本焼熱処理を行った後、同じ酸素分圧下で炉冷を行っていたが、炉冷の過程において、異相が生成していることが分かった。この異相の形成により、超電導特性が低下していた。   That is, in the conventional heat treatment process of the main furnace, after the heat treatment of the main heat treatment is performed under a low oxygen partial pressure and high temperature atmosphere, the furnace cooling is performed under the same oxygen partial pressure. I found out that Due to the formation of this heterogeneous phase, the superconducting properties were degraded.

さらに、同じ酸素分圧下で炉冷を行った場合、配向金属基板が酸化され、この酸化が進むと、バッファ層として配向金属基板上に設けられた中間層が破壊されて、配向金属基板と超電導層とが直接接触する。この結果、金属原子の超電導層への移動が起こり、さらなる超電導特性の低下を招いていることが分かった。   Furthermore, when furnace cooling is performed under the same oxygen partial pressure, the alignment metal substrate is oxidized, and when this oxidation proceeds, the intermediate layer provided on the alignment metal substrate as a buffer layer is destroyed, and the alignment metal substrate and the superconductor are Direct contact with the layer. As a result, it was found that migration of metal atoms to the superconducting layer occurred, resulting in further deterioration of superconducting properties.

本発明者は、以上の知見に基づき、その対策につき鋭意検討を行った。その結果、低酸素分圧、高温の雰囲気下で本焼熱処理を行った後の炉冷過程を、従来のように同じ酸素分圧下で行うのではなく、酸素分圧を下げながら炉冷を行うことにより、異相の形成を抑制することができると共に、配向金属基板の酸化をも抑制することができて、所望する超電導特性の酸化物超電導薄膜線材を得ることができることを見出し、本発明に至った。   Based on the above knowledge, the present inventor has intensively studied the countermeasure. As a result, the furnace cooling process after performing the main annealing heat treatment under a low oxygen partial pressure and high temperature atmosphere is not performed under the same oxygen partial pressure as in the prior art, but the furnace cooling is performed while lowering the oxygen partial pressure. As a result, it has been found that the formation of heterogeneous phases can be suppressed, the oxidation of the oriented metal substrate can also be suppressed, and an oxide superconducting thin film wire having desired superconducting characteristics can be obtained, leading to the present invention. It was.

これを、図3を用いて詳しく説明する。図3は、超電導層として、YBCO(YBaCu7−x)を例として、YBCOの結晶生成と、温度および酸素分圧との関係を示す図である。なお、図3において、線a−a’は、YBCOの形成、分解の境界を示す線であり、a−a’より左側の領域では、YBCOが分解してしまうことを示している。また、線b−b’は、CuOとCuOの形成の境界を示す線であり、b−b’より右側の領域では、CuOが安定となり、また超電導転移温度が低いY124生成領域に近く、異相としてY124、Y211、CuOなどの異相が形成される。即ち、線a−a’と線b−b’に挟まれた領域が、YBCOが結晶化する領域と言うことができる。 This will be described in detail with reference to FIG. FIG. 3 is a diagram showing the relationship between YBCO crystal formation, temperature, and oxygen partial pressure, using YBCO (Y 1 Ba 2 Cu 3 O 7-x ) as an example of the superconducting layer. In FIG. 3, a line aa ′ is a line indicating the boundary between formation and decomposition of YBCO, and indicates that YBCO is decomposed in a region on the left side of aa ′. The line bb ′ is a line indicating the boundary between the formation of CuO and Cu 2 O. In the region on the right side of bb ′, CuO is stable and close to the Y124 generation region where the superconducting transition temperature is low. Thus, different phases such as Y124, Y211 and CuO are formed as the different phases. That is, it can be said that the region between the line aa ′ and the line bb ′ is a region where YBCO crystallizes.

従来のMOD法における本焼熱処理工程は、点線矢印で示すことができ、P→Q→Pの経路に沿って熱処理が行われる。この場合、昇温、降温は一定の酸素分圧(10Pa)下で行われているが、かなり高温の段階で線b−b’と交差する。しかし、降温時も線b−b’と交差する温度、即ち、CuOがCuOに変化する温度が高温かつある程度の高酸素分圧下である場合、異相が形成されやすい。 The main heat treatment process in the conventional MOD method can be indicated by a dotted arrow, and the heat treatment is performed along the path of P → Q → P. In this case, the temperature rise and fall are performed under a constant oxygen partial pressure (10 Pa), but intersect the line bb ′ at a considerably high temperature stage. However, when the temperature crosses the line bb ′, that is, the temperature at which Cu 2 O changes to CuO is high and the oxygen partial pressure is somewhat high, a heterogeneous phase is likely to be formed.

これに対して、本請求項の発明における本焼熱処理工程は、実線矢印で示すことができ、P→Q→R→Sの経路に沿って熱処理が行われる。このとき、Q→Rでは、線a−a’ と交差しないよう(YBCO分解領域に入らないよう)に制御しつつ、酸素分圧低下操作と降温を行い、その後R→Sで一定の酸素分圧下の降温を行っている。このため、線b−b’との交差はかなり低温で行われることになり、異相の形成が抑制される。また、酸素分圧を低くしているため、配向金属基板の酸化が抑制される。この結果、所望する超電導特性の酸化物超電導薄膜線材を得ることができる。   On the other hand, the main heat treatment step in the present invention can be indicated by a solid line arrow, and the heat treatment is performed along the path of P → Q → R → S. At this time, while Q → R is controlled so as not to intersect the line aa ′ (so as not to enter the YBCO decomposition region), the oxygen partial pressure lowering operation and the temperature lowering are performed. The temperature falls under pressure. For this reason, the intersection with the line b-b 'is performed at a considerably low temperature, and the formation of a different phase is suppressed. Moreover, since the oxygen partial pressure is lowered, oxidation of the oriented metal substrate is suppressed. As a result, an oxide superconducting thin film wire having desired superconducting characteristics can be obtained.

請求項2に記載の発明は、
前記本焼熱処理工程の降温過程における酸素分圧POが、降温時の温度をTとしたとき、700℃≦T≦720℃の範囲で1Pa≦PO≦3Pa、680℃≦T≦700℃の範囲で0.2Pa≦PO≦1Paであることを特徴とする請求項1に記載の酸化物超電導薄膜線材の製造方法である。
The invention described in claim 2
The oxygen partial pressure PO 2 in the temperature lowering process of the main annealing process is 1 Pa ≦ PO 2 ≦ 3 Pa, 680 ° C. ≦ T ≦ 700 ° C. in the range of 700 ° C. ≦ T ≦ 720 ° C. The manufacturing method of an oxide superconducting thin film wire according to claim 1, wherein 0.2 Pa ≦ PO 2 ≦ 1 Pa.

本焼熱処理工程の降温過程において、例えば、720℃で酸素分圧を10Paから1Paに低下させ、700℃で酸素分圧を1Paから0.3Paに低下するように、700〜720℃の温度範囲では酸素分圧を1〜3Paに、また、680〜700℃の温度範囲では酸素分圧を0.2〜1Paに制御することにより、図3に示す線a−a’と線b−b’に挟まれた領域に、確実に維持することができ、所望する超電導特性の酸化物超電導薄膜線材を得ることができる。   In the temperature lowering process of the main heat treatment step, for example, the temperature range of 700 to 720 ° C. so that the oxygen partial pressure is reduced from 10 Pa to 1 Pa at 720 ° C. and the oxygen partial pressure is reduced from 1 Pa to 0.3 Pa at 700 ° C. Then, the oxygen partial pressure is controlled to 1 to 3 Pa, and the oxygen partial pressure is controlled to 0.2 to 1 Pa in the temperature range of 680 to 700 ° C., whereby the line aa ′ and the line bb ′ shown in FIG. Thus, the oxide superconducting thin film wire having the desired superconducting characteristics can be obtained.

請求項3に記載の発明は、
前記酸化物超電導薄膜線材が、YBaCu7−X酸化物超電導薄膜線材であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜線材の製造方法である。
The invention according to claim 3
3. The method for producing an oxide superconducting thin film wire according to claim 1, wherein the oxide superconducting thin film wire is a YBa 2 Cu 3 O 7-X oxide superconducting thin film wire. 4.

YBaCu7−X酸化物超電導薄膜線材の製造において、上記した効果が顕著に発揮される。 In the production of a YBa 2 Cu 3 O 7-X oxide superconducting thin film wire, the above-described effects are remarkably exhibited.

本発明によれば、MOD法による酸化物超電導薄膜線材の製造において、配向金属基板上に異相が形成されることを抑制して、所望する超電導特性の酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法を提供することができる。   According to the present invention, in the production of an oxide superconducting thin film wire by the MOD method, an oxide superconducting material for producing an oxide superconducting thin film wire having desired superconducting characteristics by suppressing the formation of a heterogeneous phase on an oriented metal substrate. A method for producing a thin film wire can be provided.

実施例における、酸素分圧および温度と、経過時間との関係を示す図である。It is a figure which shows the relationship between oxygen partial pressure and temperature in an Example, and elapsed time. 比較例における、酸素分圧および温度と、経過時間との関係を示す図である。It is a figure which shows the relationship between oxygen partial pressure and temperature, and elapsed time in a comparative example. YBCOの結晶生成と、温度および酸素分圧との関係を示す図である。It is a figure which shows the relationship between the crystal production | generation of YBCO, temperature, and oxygen partial pressure.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

1.実施例
(1)MOD溶液の作製
まず、Y、Ba、Cuの各アセチルアセトナート塩から出発してY:Ba:Cu=1:2:3の比率(モル比)で合成し、アルコールを溶媒としたMOD溶液を作製した。なおMOD溶液のY3+、Ba2+、Cu2+を合わせた総カチオン濃度を1mol/Lとした。
1. Example (1) Preparation of MOD Solution First, starting from each acetylacetonate salt of Y, Ba, and Cu, synthesis was performed at a ratio (molar ratio) of Y: Ba: Cu = 1: 2: 3, and the alcohol was used as a solvent. A MOD solution was prepared. The total cation concentration of Y 3+ , Ba 2+ and Cu 2+ in the MOD solution was 1 mol / L.

(2)塗布膜の作製および仮焼熱処理
配向金属基板上に、Y、YSZ、CeOの中間層(総厚:1〜2μm)を設けたものを基板として用意した。
(2) Preparation of coating film and calcination heat treatment A substrate provided with an Y 2 O 3 , YSZ, CeO 2 intermediate layer (total thickness: 1 to 2 μm) on an oriented metal substrate was prepared.

この中間層付き配向金属基板の上に、前記MOD溶液をスピンコート法により塗布した後、乾燥させて、厚さ0.65μmの塗布膜を作製した。   On the oriented metal substrate with an intermediate layer, the MOD solution was applied by a spin coating method and then dried to prepare a coating film having a thickness of 0.65 μm.

その後、大気圧雰囲気下、500℃で120分間加熱し、仮焼膜を作製した。   Then, it heated at 500 degreeC under atmospheric pressure atmosphere for 120 minutes, and produced the calcined film.

(3)本焼熱処理
作製した仮焼膜について、図1に示す温度プロファイルおよび酸素分圧プロファイルに従って、本焼熱処理を行った。なお、図1において、実線は酸素分圧プロファイルを示し、点線は温度プロファイルを示す。
(3) Main baking heat treatment About the produced calcined film, a main baking heat treatment was performed according to the temperature profile and oxygen partial pressure profile shown in FIG. In FIG. 1, the solid line indicates the oxygen partial pressure profile, and the dotted line indicates the temperature profile.

具体的には、酸素分圧10Paのアルゴン/酸素混合ガス雰囲気下で、770℃まで30℃/分の昇温スピードで昇温後、そのまま60分間保持して本焼熱処理を実施した。   Specifically, in an argon / oxygen mixed gas atmosphere having an oxygen partial pressure of 10 Pa, the temperature was increased to 770 ° C. at a temperature increase rate of 30 ° C./min, and then held for 60 minutes to perform the main heat treatment.

本焼熱処理の後は、3℃/分の降温速度で720℃まで炉冷し、同温度で1Paまで酸素分圧を低下させた。さらに、700℃まで炉冷し、そこで0.3Paまで酸素分圧を低下させた。その後、同酸素分圧を保ったまま、室温まで炉冷し、厚さ0.15μmのYBCO超電導薄膜を作製した。   After the main heat treatment, the furnace was cooled to 720 ° C. at a temperature lowering rate of 3 ° C./min, and the oxygen partial pressure was reduced to 1 Pa at the same temperature. Furthermore, the furnace was cooled to 700 ° C., and the oxygen partial pressure was reduced to 0.3 Pa. Thereafter, while maintaining the same oxygen partial pressure, the furnace was cooled to room temperature to produce a YBCO superconducting thin film having a thickness of 0.15 μm.

2.比較例
実施例と同じ条件で仮焼膜を作製し、その後、図2に示す温度プロファイルおよび酸素分圧プロファイルに従って、本焼熱処理を行った。
2. Comparative Example A calcined film was produced under the same conditions as in the example, and then a heat treatment was performed according to the temperature profile and oxygen partial pressure profile shown in FIG.

具体的には、酸素分圧10Paのアルゴン/酸素混合ガス雰囲気下で、770℃まで30℃/分の昇温スピードで昇温後、そのまま60分間保持して本焼熱処理を実施した。   Specifically, in an argon / oxygen mixed gas atmosphere having an oxygen partial pressure of 10 Pa, the temperature was increased to 770 ° C. at a temperature increase rate of 30 ° C./min, and then held for 60 minutes to perform the main heat treatment.

本焼熱処理の後は、10Paの酸素分圧を保ったまま、3℃/分の降温速度で室温まで炉冷し、YBCO超電導薄膜を作製した。   After the main heat treatment, while maintaining the oxygen partial pressure of 10 Pa, the furnace was cooled to room temperature at a temperature drop rate of 3 ° C./min to produce a YBCO superconducting thin film.

3.YBCO超電導薄膜の評価
(1)配向金属基板及び本焼膜の観察
実施例および比較例で得られた各YBCO超電導薄膜の配向金属基板および超電導薄膜をS−TEMにより観察した。
3. Evaluation of YBCO Superconducting Thin Film (1) Observation of Oriented Metal Substrate and Fired Film The oriented metal substrate and superconducting thin film of each YBCO superconducting thin film obtained in Examples and Comparative Examples were observed by S-TEM.

その結果、実施例で得られたYBCO超電導薄膜では、膜全体に亘って異相の発生が無いことが確認された。また、配向金属基板上に形成された中間層にも異常が見られないことから、配向金属基板の酸化が抑制されていることが確認された。これに対して、比較例で得られたYBCO超電導薄膜では、膜の一部に異相が形成されていた。また、中間層の一部が破壊されていることから、配向金属基板に酸化が発生していることが確認された。この結果を表1に示す。   As a result, it was confirmed that in the YBCO superconducting thin film obtained in the example, no heterogeneous phase was generated over the entire film. Moreover, since no abnormality was observed in the intermediate layer formed on the oriented metal substrate, it was confirmed that oxidation of the oriented metal substrate was suppressed. On the other hand, in the YBCO superconducting thin film obtained in the comparative example, a different phase was formed in a part of the film. Moreover, since a part of intermediate | middle layer was destroyed, it was confirmed that oxidation has generate | occur | produced in the orientation metal substrate. The results are shown in Table 1.

(2)超電導特性の評価
次に、実施例および比較例で得られた各YBCO超電導薄膜につき、IcおよびX線回折(XRD)によるYBCO(005)ピーク強度の測定を行い、超電導特性の評価を行った。
(2) Evaluation of superconducting characteristics Next, for each YBCO superconducting thin film obtained in Examples and Comparative Examples, the YBCO (005) peak intensity was measured by Ic and X-ray diffraction (XRD) to evaluate the superconducting characteristics. went.

(a)Icの測定
実施例および比較例で得られた各YBCO超電導薄膜の超電導特性(Ic)を、77K、自己磁場下において測定し、単位幅(1cm)当たりのIc(A/cm)を求めた。測定結果を表1に示す。
(A) Measurement of Ic The superconducting property (Ic) of each YBCO superconducting thin film obtained in Examples and Comparative Examples was measured at 77K under a self-magnetic field, and Ic (A / cm) per unit width (1 cm) was measured. Asked. The measurement results are shown in Table 1.

(b)X線回折(XRD)によるYBCO(005)ピーク強度の測定
同様に、実施例および比較例で得られたYBCO超電導薄膜のX線回折(XRD)によるYBCO(005)ピーク強度を、77K、自己磁場下において測定した。測定結果を表1に示す。
(B) Measurement of YBCO (005) peak intensity by X-ray diffraction (XRD) Similarly, the YBCO (005) peak intensity by X-ray diffraction (XRD) of the YBCO superconducting thin films obtained in Examples and Comparative Examples is 77K. , Measured under self-magnetic field. The measurement results are shown in Table 1.

Figure 2012129084
Figure 2012129084

表1から分かるように、実施例の場合、配向金属基板の酸化が抑制されていると共に、結晶層に異相の発生が無く、Icも高い。そして、YBCO(005)ピーク強度が高いことから、YBCO結晶が充分にc軸成長していることが分かる。   As can be seen from Table 1, in the case of the examples, the oxidation of the oriented metal substrate is suppressed, no heterogeneous phase is generated in the crystal layer, and Ic is also high. Since the YBCO (005) peak intensity is high, it can be seen that the YBCO crystal is sufficiently c-axis grown.

これに対して、比較例の場合、配向金属基板に酸化が発生していると共に、結晶層に異相が発生しており、Icが低い。そして、YBCO(005)ピーク強度が低いことから、YBCO結晶が充分にc軸成長していないことが分かる。   On the other hand, in the case of the comparative example, oxidation occurs in the oriented metal substrate and a heterogeneous phase occurs in the crystal layer, and Ic is low. And since YBCO (005) peak intensity is low, it turns out that the YBCO crystal is not fully c-axis grown.

以上より、本実施例によれば、MOD法により、結晶に異相の発生が無く、YBCO結晶が充分にc軸成長した、高いIcを有する酸化物超電導薄膜線材を作製できることが分かる。   From the above, it can be seen that according to this example, an oxide superconducting thin film wire having a high Ic in which a heterogeneous phase is not generated in the crystal and the YBCO crystal is sufficiently c-axis grown can be produced by the MOD method.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

Claims (3)

金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により、酸化物超電導薄膜を形成して、酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法であって、
中間層が形成された配向金属基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、
前記塗布膜の金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を有しており、
前記本焼熱処理工程が、低酸素分圧、高温雰囲気下で本焼成を行い、その後、酸化物超電導体の分解領域外において、酸素分圧を下げる操作を行いながら降温して冷却を行う熱処理工程である
ことを特徴とする酸化物超電導薄膜線材の製造方法。
Using a metal organic compound as a raw material, an oxide superconducting thin film wire is produced by forming an oxide superconducting thin film by a coating pyrolysis method using an atmospheric furnace, and a method for producing an oxide superconducting thin film wire,
A coating film preparation step of applying a solution of the metal organic compound on the oriented metal substrate on which the intermediate layer is formed to prepare a coating film;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing organic components contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The main heat treatment step is a heat treatment step in which the main firing is performed in a low oxygen partial pressure and high temperature atmosphere, and then the temperature is lowered and cooled outside the decomposition region of the oxide superconductor while performing an operation to lower the oxygen partial pressure. A method for producing an oxide superconducting thin film wire, characterized in that:
前記本焼熱処理工程の降温過程における酸素分圧POが、降温時の温度をTとしたとき、700℃≦T≦720℃の範囲で1Pa≦PO≦3Pa、680℃≦T≦700℃の範囲で0.2Pa≦PO≦1Paであることを特徴とする請求項1に記載の酸化物超電導薄膜線材の製造方法。 The oxygen partial pressure PO 2 in the temperature lowering process of the main annealing process is 1 Pa ≦ PO 2 ≦ 3 Pa, 680 ° C. ≦ T ≦ 700 ° C. in the range of 700 ° C. ≦ T ≦ 720 ° C. The manufacturing method of the oxide superconducting thin film wire according to claim 1, wherein 0.2 Pa ≦ PO 2 ≦ 1 Pa in the range of 前記酸化物超電導薄膜線材が、YBaCu7−X酸化物超電導薄膜線材であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜線材の製造方法。 3. The method for producing an oxide superconducting thin film wire according to claim 1, wherein the oxide superconducting thin film wire is a YBa 2 Cu 3 O 7-X oxide superconducting thin film wire.
JP2010280105A 2010-12-16 2010-12-16 Oxide superconductive thin film wire rod manufacturing method Pending JP2012129084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280105A JP2012129084A (en) 2010-12-16 2010-12-16 Oxide superconductive thin film wire rod manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280105A JP2012129084A (en) 2010-12-16 2010-12-16 Oxide superconductive thin film wire rod manufacturing method

Publications (1)

Publication Number Publication Date
JP2012129084A true JP2012129084A (en) 2012-07-05

Family

ID=46645891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280105A Pending JP2012129084A (en) 2010-12-16 2010-12-16 Oxide superconductive thin film wire rod manufacturing method

Country Status (1)

Country Link
JP (1) JP2012129084A (en)

Similar Documents

Publication Publication Date Title
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2012129084A (en) Oxide superconductive thin film wire rod manufacturing method
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
WO2013179443A1 (en) Oxide superconducting thin film and method for manufacturing same
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP5688804B2 (en) Intermediate layer for forming oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire
JP2012174565A (en) Raw material solution for forming oxide superconductor
JP2012174564A (en) Oxide superconducting thin film and method for producing the same
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
JP2012129085A (en) Oxide superconductive thin film wire rod and manufacturing method thereof
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
JP5477395B2 (en) Oxide superconducting thin film, manufacturing method thereof, and oxide superconducting thin film wire
JP2012113860A (en) Superconducting oxide thin film wire rod, and method for manufacturing the same
US20150162518A1 (en) Source material solution for forming oxide superconductor
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire