JP2012123135A - 能動騒音低減装置 - Google Patents

能動騒音低減装置 Download PDF

Info

Publication number
JP2012123135A
JP2012123135A JP2010273160A JP2010273160A JP2012123135A JP 2012123135 A JP2012123135 A JP 2012123135A JP 2010273160 A JP2010273160 A JP 2010273160A JP 2010273160 A JP2010273160 A JP 2010273160A JP 2012123135 A JP2012123135 A JP 2012123135A
Authority
JP
Japan
Prior art keywords
reference signal
step size
noise reduction
size parameter
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010273160A
Other languages
English (en)
Inventor
Kazuhisa Kotegawa
和久 小手川
Masahide Onishi
将秀 大西
Fumiyasu Konno
文靖 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010273160A priority Critical patent/JP2012123135A/ja
Publication of JP2012123135A publication Critical patent/JP2012123135A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

【課題】フィルタードX−LMSアルゴリズムを用いた能動騒音低減装置において、音響伝達特性と参照信号のレベルが変動する場合に、適応フィルタが発散するまでの利得余裕と位相余裕を把握してステップサイズパラメータの値を決定することは困難であった。
【解決手段】フィルタードX−LMSアルゴリズムを用いた能動騒音低減装置において、ステップサイズパラメータを逐次決定する決定部9を備え、参照信号と模擬音響伝達特性を基に常に最適なステップサイズパラメータを算出する構成とした。
【選択図】図1

Description

本発明は、不快な騒音に対し、逆位相且つ等振幅の信号を干渉させることでこの騒音を低減する能動騒音低減装置に関するものである。
従来の能動騒音低減装置は、適応フィルタの係数更新アルゴリズムとしてフィルタードX−LMSアルゴリズムを用いるものが最も一般的である(例えば、非特許文献1または非特許文献2参照)。図13は、一般的なフィルタードX−LMSアルゴリズムを用いた能動騒音低減装置の構成を示すものである。図中、nは離散時間処理で動作し、騒音低減のための信号(2次騒音信号y)を発生するディジタル信号処理装置であるDSP(Digital Signal Processor)8のサンプリング周期Ts(sec)ごとのサンプリングナンバーを表している。フィルタードX−LMSアルゴリズムによりTs(sec)ごとに値が更新されるN個のフィルタ係数w(k),(k=1,2,3,・・・,N)からなるFIR(Finite Impulse Response)型の適応フィルタ2に入力される信号xは参照信号と呼ばれ、その出力源である参照信号源1は、例えば本能動騒音低減装置を自動車の車室内騒音の低減に適用する場合、車両のシャーシに設置された加速度ピックアップ等である。尚、この参照信号xは、制御対象となる騒音noと高いコヒーレンスが必要であり、コヒーレンスが低い帯域の騒音は騒音低減効果が期待できない。適応フィルタ2でフィルタリング演算(畳み込み演算)された参照信号xは,2次騒音信号yとして2次騒音発生手段としての電力増幅器3を経由してスピーカ4に送られ、騒音noを低減させる2次騒音として空間中に放射される。空間中で2次騒音と騒音noとが干渉した結果は、マイクロフォン5で残留音eとして検出され、適応フィルタ2のフィルタ係数w(k)を更新するLMSアルゴリズム演算部7に入力される。ここで、電力増幅器3の入力からマイクロフォン5の出力までの間の周波数領域での音響伝達特性をCとする。模擬音響伝達特性演算部6は、音響伝達特性Cを模擬した周波数領域での特性C^を有している。この模擬音響伝達特性演算部6は、一般的に適応フィルタ2と同様にNc個のフィルタ係数c^(m),(m=1,2,・・・,Nc)からなるFIR型のフィルタで構成される。LMSアルゴリズム演算部7には、前述の残留音eに加え、さらに参照信号xを模擬音響伝達特性演算部6でフィルタリング演算した信号rが入力される。この信号rは濾波参照信号と呼ばれ、フィルタードXの名称はこのことに由来する。さて、今、時刻nTs(sec)における各信号を考えることにする。適応フィルタ2のN個のフィルタ係数w(k)をベクトルで表現すると、
Figure 2012123135
となる。ここで、Tは転置を意味する。同じく、周波数領域での音響伝達特性Cを模擬した特性C^を有する模擬音響伝達特性演算部6のNc個のフィルタ係数c^(m)と、現時刻から(Nc−1)サンプル過去までのNc個の参照信号xをベクトルで表現すると、
Figure 2012123135
Figure 2012123135
となる。模擬音響伝達特性演算部6のフィルタ係数c^(m)は固定値であり、時不変である。この時、現時刻での濾波参照信号rは、
Figure 2012123135
のように、(数4)で表現されたフィルタ係数c^(m)のベクトルと(数5)で表現された参照信号xのベクトルの行列演算で求めることができる。(数6)で求めた現時刻での濾波参照信号rと同様に、現時刻から(N−1)サンプル過去までのN個の濾波参照信号をベクトルで表現すると、
Figure 2012123135
となる。この濾波参照信号rのベクトルと現時刻の残留音eを用いて、(数8)のフィルタードX−LMSアルゴリズム
Figure 2012123135
に基づき適応フィルタ2のフィルタ係数w(k)を更新していく。ここで、μはステップサイズパラメータと呼ばれる係数である。このステップサイズパラメータμは適応フィルタの1回あたりの更新量(つまり、収束速度)を調整するパラメータであるとともに、適応動作の安定性を決定付ける重要なパラメータである。能動騒音低減装置は、(数7)に基づいてTs(sec)ごとに再帰的に適応フィルタ2のフィルタ係数w(k)を更新することで、マイクロフォン5の位置で騒音noと逆位相且つ等振幅となる最適な2次騒音を求めることができ、騒音を低減することが可能となる。
ここで、従来技術におけるステップサイズパラメータμの決定方法について述べる。適応フィルタw(k)が収束するための必要条件として、ステップサイズパラメータμの値は、
Figure 2012123135
(但し、λmaxは濾波参照信号rの自己相関行列の最大固有値である。尚、(数9)は平均において収束する条件となる)の範囲で設定される必要があることが下記非特許文献4で述べられている。フィルタードX−LMSアルゴリズムを用いた一般的な能動騒音低減装置において、ステップサイズパラメータμの値は、(数9)を基に参照信号と騒音のレベル変動を考慮して決定される。尚、適応フィルタw(k)が最適値に収束する時間は、主に濾波参照信号rの自己相関行列の最小固有値によって決まる。また、前記非特許文献2では、適応フィルタw(k)の収束する必要条件として、実際の音響伝達特性Cとそれを模擬した模擬音響伝達特性との間の位相誤差が±90(deg)以内という条件があることが述べられており、これは能動騒音低減装置を設計する際の一般的な条件として周知である。特に、参照信号がシヌソイダル(周期正弦波)信号の場合について、下記非特許文献3でこの条件が導き出されている。
また従来において、ステップサイズパラメータμを逐次決定する技術としては、例えば特許文献1のような構成が知られている。これは、2次騒音信号yとマイクロフォンで検出される残留音eを用いてフィルタードX−LMSアルゴリズムのステップサイズパラメータμを逐次決定していく方法である。図14は、前記特許文献1に記載された従来の能動騒音低減装置の構成を示すものである。尚、図13において示した一般的な能動騒音低減装置と同一の構成要素には同一の符号を付して、説明の省略を行う。図14に示した能動騒音低減装置は、2次騒音信号yが模擬音響伝達特性演算部6でフィルタリング演算(畳み込み演算)された信号zと、マイクロフォン5で検出される残留音eが決定部9に入力される。図14に示した決定部9の内部では、
Figure 2012123135
に基づき比率演算部9aaで比率ηを算出し、ステップサイズパラメータ決定部9bbで比率η−ステップサイズパラメータμ対応テーブルに基づいてステップサイズパラメータμを決定してLMSアルゴリズム演算部7に出力している。このようにすることで、騒音の低減量に応じてステップサイズパラメータμを逐次変更しながら安定的に適応信号処理を実行することができる。即ち、騒音の低減量が少ない(残留音eが大きい)ときはステップサイズパラメータμの値を大きくして収束時間を短縮し、短時間で適応フィルタのフィルタ係数w(k)を最適値に近づけることができる。さらに騒音が低減されるに伴いステップサイズパラメータμを徐々に小さくすることにより、安定性を向上させている。
Barnard Widrow & Samuel D. Stearns 著、"ADAPTIVE SIGNAL PROCESSING"、Prentice Hall、1985年(P. 288) P. A. Nelson & S. J. Elliott 著、"Active Control of Sound"、Academic Press、1992年(P. 196) C. C. Baucher、S. J. Elliott & P. A. Nelson 著、"Effect of errors in the plant model on the performance of algorithms for adaptive feedforward control"、IEEE、PROCEEDINGS-F、vol.138、No.4、AUGUST、1991年 Scott D. Snyder & Colin H. Hansen 著、"The Effect of Transfer Function Estimation Errors on the Filtered-X LMS Algorithm"、IEEE、TRANSACTIONS ON SIGNAL PROCESSING、vol.42、No.4、APRIL、1994年
特許第3380571号公報
しかしながら、前述した従来の一般的なフィルタードX−LMSアルゴリズムを用いた能動騒音低減装置では、適応フィルタw(k)が収束するための条件式である(数9)に基づいてステップサイズパラメータμを決定すると、騒音のレベル変動が大きい場合、濾波参照信号の最大固有値と最小固有値の差が大きくなってしまい、収束時間が増大してしまうという課題を有していた。また、ステップサイズパラメータμを決定する際に想定していた参照信号より大きなレベルの参照信号と騒音が生じた場合、適応フィルタw(k)は(数9)を満足せず、最悪の場合、発散に至るという課題も有していた。例えば能動騒音低減装置を自動車の車室内騒音の低減に適用する場合、参照信号である加速度ピックアップの信号と騒音は走行路の状態により頻繁に変動し、またその変動幅も大きくなるため、前述した課題を解決する必要がある。
一方、特許文献1で述べられている技術では、図15で設定されているステップサイズパラメータμの値自体の最適設計手法については記載されておらず、どのような指標に基づいてステップサイズパラメータ決定部9bbの比率η−ステップサイズパラメータμ対応テーブルを決定すればよいかが明確ではない。実際においては、ステップサイズパラメータ決定部9bbの比率η−ステップサイズパラメータμ対応テーブルは実験や過去の経験により設定されることになる。このようにして決定されたテーブルが最適に設計できていれば動作するが、そうでなければ安定性と収束速度の両方を満足させることができなくなってしまうという課題を有していた。また、得られたステップサイズパラメータ決定部9bbの比率η−ステップサイズパラメータμ対応テーブルが最適に設計されているか否かの判断は、実際の環境での動作試験もしくはシミュレーションによる検証を必要とするといった課題も有していた。
更に、前記従来技術であるフィルタードX−LMSアルゴリズムと、特許文献1で述べられている技術の両方が共通で抱える課題として、ステップサイズパラメータμを決定する際に、音響伝達特性と模擬音響伝達特性の誤差が考慮されていないことが挙げられる。通常、フィルタードX−LMSアルゴリズムで使用される模擬音響伝達特性は、能動騒音低減装置の動作をする前に、音響伝達特性を同定することによって求められる。しかしながら、音響伝達特性は、同定を実行した初期状態と比較して、様々な環境の変化によって変動してしまうことは周知の事実である。例えば、自動車のような環境においては、乗員数の増減、荷物の有無、及びシートの角度等によって、音響伝達特性が初期状態から変動してしまうことが知られている。前述したように、従来の技術においては、これら音響伝達特性と模擬音響伝達特性の誤差が考慮されていないため、音響伝達特性の変動に際して、音響伝達特性間と模擬音響伝達特性間の利得と位相に誤差が生じてしまい、適応フィルタが発散してしまう可能性が生じてしまうといった課題を有していた。
本発明は前記従来の課題を解決するもので、使用される環境が変化し、音響伝達特性が変動した場合でも、利得と位相の誤差が所定の範囲内であれば安定動作を保証しつつ、ステップサイズパラメータμの値を逐次決定して適応フィルタの収束速度を向上させる能動騒音低減装置を提供することを目的とするものである。
前記従来の課題を解決するために、本発明の能動騒音低減装置は下式に基づいてステップサイズパラメータμを決定する構成を有する。
Figure 2012123135
(但し、
μ:ステップサイズパラメータ、
X=[X1 X2 … XMT:参照信号をフーリエ変換した値(ここでTは転置を意味する)、
|X|2:Xの実部の2乗と虚部の2乗の和、
Rc^=[Rc^1 Rc^2 … Rc^MT:模擬音響伝達特性の周波数毎の利得ベクトル、
Rc’=[Rc’1 Rc’2 … Rc’MT:初期状態から変動した音響伝達関数の周波数毎の利得ベクトル、
θc^=[θc^1 θc^2 … θc^MT:模擬音響伝達特性の周波数毎の位相ベクトル、
θc’=[θc’1 θc’2 … θc’MT:初期状態から変動した音響伝達関数の周波数毎の位相ベクトル、
M:フーリエ変換のタップ長/2+1)
本構成によって、使用される環境が変化し、音響伝達特性が変動した場合でも、利得と位相の誤差が所定の範囲内であれば安定動作を保証しつつ、ステップサイズパラメータμの値を逐次決定して適応フィルタの収束速度を向上させることができる。
本発明の能動騒音低減装置によれば、音響伝達特性が初期状態から変動しても、所定値以内であれば安定な動作を保証しつつ、適応フィルタの収束速度を向上させることが可能であり、騒音が変動した場合でも優れた追従性を保証できる能動騒音低減装置を提供することができる。
本発明の実施の形態1乃至2における能動騒音低減装置の図 本発明の実施の形態1における決定部の図 本発明の実施の形態2における決定部の図 本発明の実施の形態3における能動騒音低減装置の図 周波数領域におけるフィルタードX−LMSアルゴリズムの図 模擬音響伝達特性のインパルス応答の図 変動後の音響伝達特性のインパルス応答の図 変動後の音響伝達特性と模擬音響伝達特性の利得差の図 変動後の音響伝達特性と模擬音響伝達特性の位相差の図 本発明の実施の形態1におけるシミュレーションで用いた参照信号の振幅を表す図 本発明の実施の形態1におけるシミュレーションで用いたマイクロフォン位置の騒音の振幅を表す図 本発明の実施の形態1におけるシミュレーションで得られた本発明を用いた場合の能動騒音低減効果を表すマイクロフォン位置の残余騒音の振幅を表す図 実施の形態1におけるシミュレーションで得られた従来のフィルタードX−LMSアルゴリズムを用いた場合の能動騒音低減効果を表すマイクロフォン位置の残余騒音の振幅を表す図 本発明の実施の形態2におけるシミュレーションで用いた参照信号と騒音の振幅2乗コヒーレンスを表す図 本発明の実施の形態2におけるシミュレーションで用いた参照信号の振幅を表す図 本発明の実施の形態2におけるシミュレーションで用いたマイクロフォン位置の騒音の振幅を表す図 本発明の実施の形態2におけるシミュレーションで得られた本発明を用いた場合の能動騒音低減効果を表すマイクロフォン位置の残余騒音の振幅を表す図 実施の形態2におけるシミュレーションで得られた従来のフィルタードX−LMSアルゴリズムを用いた場合の能動騒音低減効果を表すマイクロフォン位置の残余騒音の振幅を表す図 フィルタードX−LMSアルゴリズムを用いた従来の能動騒音低減装置の図 特許文献1を用いた従来の能動騒音低減装置の図 図14で表される特許文献1を用いた従来の能動騒音低減装置における決定部の図
以下本発明を実施するための最良の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における能動騒音低減装置の図である。尚、図1において、背景技術において示した特許文献1の能動騒音低減装置(図14)と同一の構成要素には同一の符号を付して、説明の省略を行う。図1に示した能動騒音低減装置は、参照信号xと、模擬音響伝達特性C^が決定部9に入力される。決定部9は、フィルタードX−LMSアルゴリズム演算部7が用いるステップサイズパラメータμを従来技術とは異なり、(数1)に基づき、最適な収束速度と音響伝達特性と擬似音響伝達特性の利得及び位相の誤差を考慮に入れた上で安定性を保証できるステップサイズパラメータμを決定する。尚、最高の収束速度を得るためには、音響伝達特性と模擬音響伝達特性の誤差を0(dB)、0(deg)に設定した上で、μを(数1)で得られた値に設定すればよい。ただし、音響伝達特性にわずかな変動が生じても、適応フィルタの収束速度の低下、及び発散の危険性が生じることとなるため、能動騒音低減装置の安定な動作を保証できなくなる可能性がある。よって、実際の音響伝達特性がどの程度変動するかを考慮した上でパラメータを設定することが重要となる。
図2は本発明実施の形態1における決定部9の詳細である。決定部9には、模擬音響伝達特性C^と、参照信号xが入力される。模擬音響伝達特性C^は、Z変換を算出するZ変換部9aに入力される。Z変換部の出力は絶対値算出部9bと位相角算出部9cに入力され、それぞれの算出部において、模擬音響伝達特性の利得Rc^と模擬音響伝達特性θc^が算出される。また利得変動係数部9dには所定の利得Rc’を、位相変動係数部9eには所定の位相θc’をそれぞれ格納しておく。尚、前記所定の利得及び位相の決定基準としては、実環境での使用を加味して、音響伝達特性の初期状態からの変動予測値を入力すると効果的である。例えば自動車の車室内環境においては、利得は音響伝達特性の初期状態の利得から±3(dB)から±6(dB)、位相は音響伝達特性の初期状態の位相から±30(deg)から±45(deg)の範囲に設定することが多い。尚、利得変動において、減少方向は安定性を向上するため検討する必要が無く、また位相変動もcos(ψ)=cos(−ψ)であるため、共に正の値だけの設定で良いことを追記しておく。|FFT|2部9fでは、入力された参照信号xをフーリエ変換して実部の2乗と虚部の2乗の和|X|2を出力する。演算部9gでは前段のブロックで算出されたRc^、Rc’、θc’、θc^、|X|2を基に、μの候補となるベクトルを算出し、最終段であるmin部9hにおいて演算部9gで得られたベクトルの最小値を選択し、ステップサイズパラメータμとして出力する。
以下に本発明のシミュレーションによる検証結果を説明する。図2の決定部を用いた図1の能動騒音低減装置において、模擬音響伝達特性は図6を、変動後の音響伝達特性は図7を用いる。模擬音響伝達特性と変動後の音響伝達特性の利得は図8に、模擬音響伝達特性と変動後の音響伝達特性の位相は図9に表されるように、ほぼ+3(dB)、+30(deg)となっている。ここで、図2におけるRc’は+3(dB)、θc’は+30(deg)と安定動作を保証する上で最も厳しい条件を設定してシミュレーションを実行した。図10Aが参照信号x、図10Bがマイクロフォン位置での騒音の振幅、図10Cが本発明でのアルゴリズムを用いた場合の残留音eの振幅となる。また、図10Dは従来のフィルタードX―LMSアルゴリズムを用いた場合の残留音eの振幅である。図10Dを見ると、従来のFX−LMSアルゴリズムでは、ステップサイズパラメータμが固定値のため、参照信号の振幅が小さいときは適応フィルタの収束時間が長いため、騒音を低減するまでの時間が長いことが分かる。また、参照信号の振幅が許容範囲を超えてしまうと、マイクロフォン位置の騒音よりも残留音eのほうが、振幅が大きい、即ち発散状態に陥ってしまうことが分かる。これに対して、図10Cを見ると、本発明で提案されているアルゴリズムを用いることにより、参照信号の振幅に追従して、常に最適な騒音低減を実現しており、音響伝達特性の変動と、参照信号、及びマイクロフォン位置の騒音が変動しても、常に安定且つ最良な騒音低減効果を提供できていることが分かる。
(実施の形態2)
図3は本発明の実施の形態2における決定部9の詳細である。図3において、図2と同じ構成要素については同じ符号を用い、説明を省略する。演算部9gにおいて、実施の形態1では(数1)を用いていたが、実施の形態2では(数2)を用いて演算を行う。重み付け係数部9iでは、各周波数領域における重み付けベクトルKを格納しておく。尚、重み付けベクトルKとしては、参照信号xと騒音noの振幅2乗コヒーレンスを用いると効果的である。以下、重み付け係数部の有効性を述べる。
Figure 2012123135
(但し、
K=[K12 … KnT:周波数毎の重み付け係数ベクトル)
通常、ダクトの騒音低減等に用いられる能動騒音低減装置においては、参照信号xと騒音noのコヒーレンスが1に近いため、前記本発明の実施の形態1において説明した形態が最も有効となる。しかしながら、例えば車載向けの能動騒音低減装置においては、加速度ピックアップからの出力信号を参照信号として用いるため、すべての周波数領域において、高いコヒーレンスを得ることは非常に困難である。このように参照信号と騒音の相関が低い状況に置いては、何らかの重み付けを設定せずにステップサイズパラメータμを決定してしまうと、適応フィルタは発散状態に陥ってしまう。
Figure 2012123135
(但し、γ(k):振幅2乗コヒーレンス、Pxy(k):xとyのクロスパワースペクトル密度、Pxx(k):xのパワースペクトル密度、Pyy(k):yのパワースペクトル密度、k:周波数を表すインデックス)
ここで(数11)によって算出される振幅2乗コヒーレンスとは、出力系の中で、入力系に基づく成分のパワー比率を表している。そのため、図5で示される参照信号源が1次経路を経由して騒音となる際に、騒音の中で参照信号源に基づく成分のパワー比率を算出できることを示唆しており、この比率を重み付け係数として用いることによって、すべての周波数領域に置いて参照信号と騒音の相関が取れていない場合でも、常に安定且つ最良な騒音低減効果を提供することができる。
以下に本発明のシミュレーションによる検証結果を説明する。図3の決定部を用いた図1の能動騒音低減装置において、模擬音響伝達特性は図6を、変動後の音響伝達特性は図7を用いる。模擬音響伝達特性と変動後の音響伝達特性の利得は図8に、模擬音響伝達特性と変動後の音響伝達特性の位相は図9に表されるように、ほぼ+3(dB)、+30(deg)となっている。ここで、図2におけるRc’は+3(dB)、θc’は+30(deg)と安定動作を保証する上で最も厳しい条件を設定してシミュレーションを実行した。図11は参照信号と騒音の振幅2乗コヒーレンスを示す。図12Aが参照信号x、図12Bがマイクロフォン位置での騒音の振幅、図12Cが本発明でのアルゴリズムを用いた場合の残留音eの振幅となる。また、図12Dは従来のフィルタードX―LMSアルゴリズムを用いた場合の残留音eの振幅である。図12Dを見ると、従来のFX−LMSアルゴリズムでは、ステップサイズパラメータμが固定値のため、ところどころ適応フィルタの発散状態による騒音の増大が認められる。これに対して、図12Cを見ると、本発明で提案されているアルゴリズムを用いた場合では、参照信号の振幅に追従して常に最適な騒音低減を実現しており、騒音のコヒーレンスを考慮して、音響伝達特性の変動、参照信号のレベルの変動、騒音の変動、及び参照信号が生じても常に安定な騒音低減効果を提供できていることが分かる。
尚、本発明における実施の形態2で説明したアルゴリズムの重み付けとしては、振幅2乗コヒーレンスの他に、制御帯域を加味した重み付けや、1つの騒音系の低減のために複数の適応フィルタを用いるマルチプルエラーフィルタードX−LMSにおける適応フィルタの個数を加味した重み付け等が効果的であるといえる。
(実施の形態3)
図4は本発明実施の形態3における能動騒音低減装置の図である。図4において、図1と同じ構成要素については同じ符号を用い、説明を省略する。判定部10は、決定部9から出力されるステップサイズパラメータμの値が所定値以上の時は、参照信号に何らかの異常が生じていると判断して出力を停止する。尚、図4では適応フィルタの出力後に停止用のスイッチを入れる構成としているが、適応フィルタの入力後にスイッチを入れる構成としても同様の効果が得られる。また、電力増幅器を停止させることによっても同様の効果が得られる。尚、判定部が異常と判定した後に復帰する場合、復帰前に予め適応フィルタの係数をゼロもしくは所定の値に一旦リセットすることにより、より安定的な動作に寄与できることを追記しておく。
本発明の能動騒音低減装置によれば、音響伝達特性が変動しても所定値以内であれば安定動作を保証できると共に、従来の能動騒音低減装置と比較して適応フィルタの収束速度を飛躍的に向上させることができ、参照信号のレベルの変動に追従して自然な騒音低減を実現することができる。また参照信号のレベルが変動しても発散状態に陥らない能動騒音低減装置を実現することができる。
1 参照信号源
2 適応フィルタ
3 電力増幅器
4 スピーカ
5 マイクロフォン
6 模擬音響伝達特性演算部
7 LMSアルゴリズム演算部
8 DSP
9 決定部
9a Z変換部
9b 絶対値算出部
9c 位相角算出部
9d 利得変動係数部
9e 位相変動係数部
9f |FFT|2
9g 演算部
9h min部
9i 重み付け係数部
9aa 比率演算部
9bb ステップサイズパラメータ決定部
10 判定部

Claims (4)

  1. 課題となる騒音と相関のある信号を出力する参照信号源と、この参照信号源からの出力信号である参照信号が入力され前記課題となる騒音を打ち消すための2次騒音信号を出力する適応フィルタと、前記2次騒音信号を2次騒音として発生させる2次騒音発生手段と、前記2次騒音と前記課題となる騒音との干渉による残留音を検出するマイクロフォンと、前記参照信号を前記2次騒音発生手段から前記マイクロフォンまでの間の音響伝達特性の初期状態を模擬した模擬音響伝達特性で補正した濾波参照信号と前記残留音と係数であるステップサイズパラメータを用いてフィルタードX−LMSアルゴリズムに基づいて前記適応フィルタのフィルタ係数を更新するLMSアルゴリズム演算部を有する能動騒音低減装置において、(数1)から求まるように、前記模擬音響伝達特性の利得と位相、前記音響伝達特性の初期状態から変動した利得と位相、及び参照信号をフーリエ変換して得られた値の実部と虚部の2乗の和に基づいてステップサイズパラメータを逐次決定する決定部を有し、前記LMSアルゴリズム演算部は前記決定部が決定した前記ステップサイズパラメータを用いることを特徴とする能動騒音低減装置。
    Figure 2012123135
    (但し、
    μ:ステップサイズパラメータ、
    X=[X1 X2 … XMT:参照信号をフーリエ変換した値(ここでTは転置を意味する)、
    |X|2:Xの実部の2乗と虚部の2乗の和、
    Rc^=[Rc^1 Rc^2 … Rc^MT:模擬音響伝達特性の周波数毎の利得ベクトル、
    Rc’=[Rc’1 Rc’2 … Rc’MT:初期状態から変動した音響伝達関数の周波数毎の利得ベクトル、
    θc^=[θc^1 θc^2 … θc^MT:模擬音響伝達特性の周波数毎の位相ベクトル、
    θc’=[θc’1 θc’2 … θc’MT:初期状態から変動した音響伝達関数の周波数毎の位相ベクトル、
    M:フーリエ変換のタップ長/2+1)
  2. 前記決定部は(数2)から求まるように重み付けしてステップサイズパラメータを逐次決定することを特徴とする請求項1に記載の能動騒音低減装置。
    Figure 2012123135
    (但し、
    K=[K12 … KnT:周波数毎の重み付け係数ベクトル)
  3. 決定部は、適応フィルタの更新周期毎にステップサイズパラメータを決定することを特徴とする請求項1乃至2に記載の能動騒音低減装置。
  4. 決定部が出力したステップサイズパラメータが所定値以上のときには騒音低減動作を停止する判定部を有することを特徴とする請求項1乃至3に記載の能動騒音低減装置。
JP2010273160A 2010-12-08 2010-12-08 能動騒音低減装置 Pending JP2012123135A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273160A JP2012123135A (ja) 2010-12-08 2010-12-08 能動騒音低減装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273160A JP2012123135A (ja) 2010-12-08 2010-12-08 能動騒音低減装置

Publications (1)

Publication Number Publication Date
JP2012123135A true JP2012123135A (ja) 2012-06-28

Family

ID=46504657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273160A Pending JP2012123135A (ja) 2010-12-08 2010-12-08 能動騒音低減装置

Country Status (1)

Country Link
JP (1) JP2012123135A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471638A (zh) * 2012-07-02 2015-03-25 松下知识产权经营株式会社 有源降噪装置以及有源降噪方法
CN104956435A (zh) * 2013-01-28 2015-09-30 松下知识产权经营株式会社 有源降噪装置和利用其的设备、以及有源型降噪方法
WO2016021114A1 (ja) * 2014-08-05 2016-02-11 パナソニックIpマネジメント株式会社 信号処理装置、プログラム、レンジフード装置
CN105788604A (zh) * 2016-04-07 2016-07-20 虞安波 一种基于fxlms的优化主动降噪方法
JP2016526696A (ja) * 2013-06-14 2016-09-05 シラス ロジック、インコーポレイテッド 狭帯域ノイズの検出及び消去のためのシステム及び方法
JP2018530772A (ja) * 2015-08-20 2018-10-18 ドリームウェル リミテッドDreamwell, Ltd. いびき音消去を備えた枕セット
CN112151002A (zh) * 2019-06-27 2020-12-29 株洲中车时代电气股份有限公司 一种降噪座椅和降噪方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869297A4 (en) * 2012-07-02 2016-02-17 Panasonic Ip Man Co Ltd ACTIVE NOISE REDUCTION DEVICE AND ACTIVE NOISE REDUCTION METHOD
CN104471638A (zh) * 2012-07-02 2015-03-25 松下知识产权经营株式会社 有源降噪装置以及有源降噪方法
US9596540B2 (en) 2012-07-02 2017-03-14 Panasonic Intellectual Property Management Co., Ltd. Active noise reduction device and active noise reduction method
US9646596B2 (en) 2013-01-28 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Active noise reduction device, instrument using same, and active noise reduction method
EP2950305A4 (en) * 2013-01-28 2016-06-22 Panasonic Ip Man Co Ltd ACTIVE NOISE REDUCTION DEVICE, INSTRUMENT USING SAME, AND ACTIVE NOISE REDUCTION METHOD
CN104956435A (zh) * 2013-01-28 2015-09-30 松下知识产权经营株式会社 有源降噪装置和利用其的设备、以及有源型降噪方法
JP2016526696A (ja) * 2013-06-14 2016-09-05 シラス ロジック、インコーポレイテッド 狭帯域ノイズの検出及び消去のためのシステム及び方法
JP2016038416A (ja) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 信号処理装置、プログラム、レンジフード装置
WO2016021114A1 (ja) * 2014-08-05 2016-02-11 パナソニックIpマネジメント株式会社 信号処理装置、プログラム、レンジフード装置
US10229666B2 (en) 2014-08-05 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Signal processing device, program, and range hood device
JP2018530772A (ja) * 2015-08-20 2018-10-18 ドリームウェル リミテッドDreamwell, Ltd. いびき音消去を備えた枕セット
JP6993320B2 (ja) 2015-08-20 2022-02-04 ドリームウェル リミテッド いびき防止システム
CN105788604A (zh) * 2016-04-07 2016-07-20 虞安波 一种基于fxlms的优化主动降噪方法
CN112151002A (zh) * 2019-06-27 2020-12-29 株洲中车时代电气股份有限公司 一种降噪座椅和降噪方法
CN112151002B (zh) * 2019-06-27 2024-02-23 株洲中车时代电气股份有限公司 一种降噪座椅和降噪方法

Similar Documents

Publication Publication Date Title
JP6664471B2 (ja) アクティブノイズコントロールにおける二次経路位相の推定
JP6724135B2 (ja) アクティブノイズコントロールにおける二次経路大きさの推定
US9830900B2 (en) Adaptive equalizer, acoustic echo canceller device, and active noise control device
JP4742226B2 (ja) 能動消音制御装置及び方法
CN106797511B (zh) 主动降噪设备
JP2012123135A (ja) 能動騒音低減装置
US8270625B2 (en) Secondary path modeling for active noise control
JP6650570B2 (ja) 能動型騒音低減装置
WO2017172774A1 (en) Adaptive modeling of secondary path in an active noise control system
EP2597638A1 (en) Tunable active noise control
US9704470B2 (en) Method and apparatus for nonlinear compensation in an active noise control system
Aslam et al. Robust active noise control design by optimal weighted least squares approach
Aslam Maximum likelihood least squares identification method for active noise control systems with autoregressive moving average noise
Walia et al. Design of active noise control system using hybrid functional link artificial neural network and finite impulse response filters
Sahib et al. Nonlinear FXLMS algorithm for active noise control systems with saturation nonlinearity
Landau et al. Adaptive attenuation of unknown and time‐varying narrow band and broadband disturbances
Sahib et al. Comparison of performance and computational complexity of nonlinear active noise control algorithms
JP2023542007A (ja) 推定された二次経路を適応させるためのシステム及び方法
JP6116300B2 (ja) 能動型消音システム
Akhtar A normalized filtered-x generalized fractional lower order moment adaptive algorithm for impulsive ANC systems
JP2012141532A (ja) 能動騒音低減装置
WO2024047691A1 (ja) 能動騒音制御方法、能動騒音制御装置、およびプログラム
Landau Adaptive Attenuation of Unknown and Time Varying Disturbances
Mouli et al. A Novel Approach to Active Noise Control using Normalized Clipped Adaptive Algorithm