JP2012123049A - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
JP2012123049A
JP2012123049A JP2010271667A JP2010271667A JP2012123049A JP 2012123049 A JP2012123049 A JP 2012123049A JP 2010271667 A JP2010271667 A JP 2010271667A JP 2010271667 A JP2010271667 A JP 2010271667A JP 2012123049 A JP2012123049 A JP 2012123049A
Authority
JP
Japan
Prior art keywords
photomask
substrate
light
exposure
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010271667A
Other languages
Japanese (ja)
Other versions
JP5709495B2 (en
Inventor
Ryosuke Yasui
亮輔 安井
Daisuke Ishii
大助 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, V Technology Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010271667A priority Critical patent/JP5709495B2/en
Publication of JP2012123049A publication Critical patent/JP2012123049A/en
Application granted granted Critical
Publication of JP5709495B2 publication Critical patent/JP5709495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exposure device capable of achieving exposure in which light from a light source penetrates an opening of a photomask and a local illuminance distribution of light irradiated on a substrate is almost the same both in a conveyance direction of the substrate and in a direction orthogonal to the conveyance direction for small mask continuous exposure.SOLUTION: An exposure device comprises a light source, a photomask disposed between the light source and a substrate and a fly-eye lens 6 for uniformizing an illuminance distribution of light irradiated on an irradiation region 40 on the photomask. The width of the irradiation region 40 is 1 to 1.5 times the length.

Description

本発明は、例えば、液晶表示装置を構成するカラーフィルタ基板を露光するための露光装置に関する。   The present invention relates to an exposure apparatus for exposing a color filter substrate constituting a liquid crystal display device, for example.

近年の液晶表示装置の大型化に伴い、液晶表示装置に用いられるカラーフィルタも大型化している。カラーフィルタの製造工程では、フォトリソグラフィ法によって着色層をパターニングするが、大型の露光マスクは非常に高価であるため、カラーフィルタの製造コストが高くなるという問題がある。そこで、カラーフィルタ基板の表示画素領域の大きさより小さなフォトマスクを露光ヘッドに装着した露光機を用い、基板を搬送しながら、露光対象となる基板全面に対して繰り返し露光を行う方式(以下「小型マスク連続露光方式」という)がある。小型マスク連続露光方式では、例えば、基板を搬送しながら、点滅式光源から光を照射することで、基板上にフォトマスクの開口パターンが繰り返し転写される。   With the recent increase in size of liquid crystal display devices, color filters used in liquid crystal display devices have also increased in size. In the color filter manufacturing process, the colored layer is patterned by a photolithography method. However, since a large exposure mask is very expensive, there is a problem that the manufacturing cost of the color filter increases. Therefore, using an exposure machine in which a photomask smaller than the display pixel area of the color filter substrate is mounted on the exposure head, the entire surface of the substrate to be exposed is repeatedly exposed while the substrate is being transported (hereinafter referred to as “compact”). A mask continuous exposure method). In the small mask continuous exposure method, for example, the opening pattern of the photomask is repeatedly transferred onto the substrate by irradiating light from a blinking light source while transporting the substrate.

小型マスク連続露光では、基板を一方向に搬送しながら露光を行う。従って、基板搬送方向における開口パターンが形成される領域(以下、「開口パターン形成領域」という)の長さを短く設計できる。従って、フォトマスク上に、サイズやピッチの異なる2種類以上の開口パターン形成領域を搬送方向に並べることができる。これによって、カラーフィルタの品種ごとにフォトマスクの領域を変えて露光を行い、フォトマスクを効率的に用い、フォトマスクの枚数を削減している。   In the small mask continuous exposure, exposure is performed while the substrate is conveyed in one direction. Therefore, it is possible to design the length of the region where the opening pattern is formed in the substrate transport direction (hereinafter referred to as “opening pattern formation region”) short. Therefore, two or more types of opening pattern forming regions having different sizes and pitches can be arranged on the photomask in the transport direction. Thus, exposure is performed by changing the photomask region for each type of color filter, the photomask is used efficiently, and the number of photomasks is reduced.

また、点滅式光源を用いて、光の点滅に合わせてフォトマスクの開口パターンを搬送中の基板に転写する場合には、光を高周波数で点滅させ、かつ、1回の点灯で高エネルギーの光を照射する必要がある。そのため、光源にはレーザー光が用いられることがある。但し、レーザー光の強度は、光軸中心に近いほど高くなるガウシアン分布となっている。そこで、フライアイレンズを用いて、照射領域におけるレーザー光の照度分布を均一にしている。また、露光時には、光源からの光を有効に用いるために、光源からの光が照射される領域が開口パターン形成領域に対して略相似形となるよう、露光装置の光学系が設計されている。   In addition, when a flashing light source is used to transfer the opening pattern of the photomask to the substrate being transported in accordance with the flashing of the light, the light is flashed at a high frequency, and the light is flashed at a high energy level. It is necessary to irradiate light. Therefore, laser light may be used as the light source. However, the intensity of the laser light has a Gaussian distribution that increases as it is closer to the center of the optical axis. Therefore, the fly-eye lens is used to make the illuminance distribution of the laser light uniform in the irradiation region. Further, in order to effectively use light from the light source during exposure, the optical system of the exposure apparatus is designed so that the region irradiated with light from the light source is substantially similar to the aperture pattern formation region. .

特開2006−292955号公報JP 2006-292955 A

図4は、従来の露光装置に用いられるフライアイレンズの正面図であり、図5は、従来のフォトマスクの一例を示す平面図である。尚、以降の図では、基板搬送方向をY軸正方向とする。   FIG. 4 is a front view of a fly-eye lens used in a conventional exposure apparatus, and FIG. 5 is a plan view showing an example of a conventional photomask. In the following drawings, the substrate transport direction is the Y axis positive direction.

フライアイレンズ106は、行列状に並べられた複数の単レンズ161からなる。フライアイレンズ106に入射されるレーザー光は、中心に近づくほど光の強度が高くなる同心円の強度分布を有する。そして、各々の単レンズ161から出射される光は、互いに重ね合わされ、フォトマスク103上の開口パターンに照射される。各単レンズ161からの出射光が照射されるフォトマスク130上の領域を照射領域140という。   The fly-eye lens 106 includes a plurality of single lenses 161 arranged in a matrix. The laser light incident on the fly-eye lens 106 has a concentric intensity distribution in which the intensity of light increases as it approaches the center. Then, the light emitted from each single lens 161 is superimposed on each other and irradiated onto the opening pattern on the photomask 103. An area on the photomask 130 irradiated with light emitted from each single lens 161 is referred to as an irradiation area 140.

図5に示すフォトマスク103には、一例として、X軸方向の長さ(以下、「幅」という)が215mm、Y軸方向の長さ(以下、「縦の長さ」という)が60mmに設計された開口パターン形成領域132a及び132bが設けられている。このように、開口パターン形成領域の縦の長さを幅より小さくすることで、フォトマスク103上に、2種類の開口パターン形成領域132a及び132bをY軸方向に並べている。ここで、上述したように、照射領域140は、開口パターン形成領域132a及び132bと略相似形に設計される。従って、図4に示すように、照射領域140に光を出射する各単レンズ161は、幅が縦の長さの3倍となるように設計されている。そのため、正方形のフライアイレンズ106に対する単レンズの分割数は4×12となり、X軸方向とY軸方向とで単レンズ161の数が異なる。この場合、以下に述べるような問題がある。   As an example, the photomask 103 shown in FIG. 5 has a length in the X-axis direction (hereinafter referred to as “width”) of 215 mm and a length in the Y-axis direction (hereinafter referred to as “vertical length”) of 60 mm. Designed opening pattern formation regions 132a and 132b are provided. In this manner, by making the vertical length of the opening pattern formation region smaller than the width, two types of opening pattern formation regions 132 a and 132 b are arranged in the Y-axis direction on the photomask 103. Here, as described above, the irradiation region 140 is designed to be substantially similar to the opening pattern formation regions 132a and 132b. Therefore, as shown in FIG. 4, each single lens 161 that emits light to the irradiation region 140 is designed so that the width is three times the vertical length. Therefore, the number of divisions of the single lens with respect to the square fly-eye lens 106 is 4 × 12, and the number of single lenses 161 is different in the X-axis direction and the Y-axis direction. In this case, there are problems as described below.

図6は、照射領域と照度分布との関係を示すグラフ図であり、より詳細には、フォトマスクの開口パターンを通過した光の照度が基板上でどのような局所的分布を示すかをシミュレーションした結果を示す。尚、照度分布は、X軸方向(実線で示す)及びY軸方向(破線で示す)の各々の結果を示している。また、シミュレーション条件として、開口パターンの形状を、対向する1辺の間隔が30μmである正八角形に設定し、基板とフォトマスクとの間隔を200μmに設定し、光のコリメーション半角を±1.8度に設定した。尚、フライアイレンズ106から出射された光は、光の照射領域全体では、照度分布が均一であるが、局所的には、照度が変化している。   FIG. 6 is a graph showing the relationship between the irradiation area and the illuminance distribution. More specifically, the simulation shows what local distribution of the illuminance of light that has passed through the opening pattern of the photomask shows on the substrate. The results are shown. The illuminance distribution indicates the results in the X-axis direction (shown by a solid line) and the Y-axis direction (shown by a broken line). Further, as a simulation condition, the shape of the opening pattern is set to a regular octagon with an interval between opposing sides of 30 μm, the interval between the substrate and the photomask is set to 200 μm, and the light collimation half angle is ± 1.8. Set to degrees. Note that the light emitted from the fly-eye lens 106 has a uniform illuminance distribution in the entire light irradiation region, but the illuminance changes locally.

照射光のコリメーション角の影響により、開口パターンを通過した照射領域の幅及び縦の長さ(約0.044mm)は、開口パターンの対向する一対の辺の間隔(0.03mm)に比べて大きくなっている。そして、光の照度は、照射領域の中央部分では略均一であるが、両側の端部では、各々、外側に向かって減衰する。ここで、Y軸方向の照度分布の減衰は滑らかであるのに対して、X軸方向の照度分布は階段状に減衰する。これは、X軸方向に並ぶ単レンズの数が少なくなるにつれて、X軸方向に隣接する単レンズからの出射光の照射領域同士の位置ズレが大きくなり、照度の減衰の連続性が失われることに起因する。   Due to the influence of the collimation angle of the irradiation light, the width and the vertical length (about 0.044 mm) of the irradiation region that has passed through the opening pattern are larger than the interval (0.03 mm) between a pair of opposing sides of the opening pattern. It has become. And although the illumination intensity of light is substantially uniform in the center part of an irradiation area | region, in the edge part of both sides, it attenuate | damps respectively outward. Here, the attenuation of the illuminance distribution in the Y-axis direction is smooth, whereas the illuminance distribution in the X-axis direction attenuates stepwise. This is because as the number of single lenses arranged in the X-axis direction decreases, the positional deviation between the irradiation areas of the light emitted from the single lenses adjacent in the X-axis direction increases, and the continuity of illuminance attenuation is lost. caused by.

開口パターンを透過した光が図6のように階段状の照度分布を示す場合、フォトマスクの開口パターンの形状が基板上のレジストに相似形で転写されないという問題がある。具体的に説明すると、レジストは、所定の光照射量(レジスト感度)以上の光が照射された場合に、現像時に溶解することなく、露光パターンを形成することができる。例えば、図5の1点鎖線で示すラインが、レジスト感度が得られる照度である場合は、1点鎖線と照度分布線とが交差する箇所の照射領域の位置が露光パターンの端縁となる。従って、現像後に形成される露光パターンは、幅と、縦の長さとにズレ108aが生じる(幅>縦の長さ)。一方、2点差線で示すラインがレジスト感度が得られる照度である場合は、露光パターンの幅と縦の長さとにズレ108bが生じる(縦の長さ>幅)。このように、X軸方向とY軸方向との照度分布の減衰の仕方の違いに起因して、フォトマスクの開口パターンの幅と縦の長さとの比率と、露光パターンの幅と縦の長さとの比率とが変わってしまう。   When the light transmitted through the opening pattern exhibits a stepwise illuminance distribution as shown in FIG. 6, there is a problem that the shape of the opening pattern of the photomask is not transferred in a similar manner to the resist on the substrate. More specifically, the resist can form an exposure pattern without being dissolved during development when irradiated with light of a predetermined light irradiation amount (resist sensitivity) or more. For example, when the line indicated by the alternate long and short dash line in FIG. 5 is the illuminance at which the resist sensitivity is obtained, the position of the irradiation region where the alternate long and short dash line intersects the illuminance distribution line is the edge of the exposure pattern. Accordingly, the exposure pattern formed after development has a deviation 108a between the width and the vertical length (width> vertical length). On the other hand, when the line indicated by the two-point difference line is illuminance at which resist sensitivity is obtained, a deviation 108b occurs between the width and the vertical length of the exposure pattern (vertical length> width). As described above, due to the difference in the method of attenuation of the illuminance distribution between the X-axis direction and the Y-axis direction, the ratio between the width and the vertical length of the opening pattern of the photomask, and the width and the vertical length of the exposure pattern. The ratio of to and will change.

それ故に、本発明では、小型マスク連続露光において、フォトマスク上の画素形成用パターンを透過した光の照度分布が、基板の搬送方向と、搬送方向に直交する方向とで略同じとなる露光を実現できる露光装置を提供することを目的とする。   Therefore, in the present invention, in the small mask continuous exposure, the exposure in which the illuminance distribution of the light transmitted through the pixel formation pattern on the photomask is substantially the same in the transport direction of the substrate and the direction orthogonal to the transport direction. An object of the present invention is to provide an exposure apparatus that can be realized.

本発明は、基板を搬送方向に搬送しながら、前記基板上に繰り返し露光を行う露光装置に関する。露光装置は、光源と、光源と基板との間に配置されるフォトマスクと、光源から出射された光の照度分布を一様にしてフォトマスク上に照射するフライアイレンズとを備える。フライアイレンズは、矩形状の単レンズが行列方向にマトリクス状に配列されたものである。フォトマスク上には、単レンズからの出射光が照射される照射領域が形成され、搬送方向に直交する方向における照射領域の長さが、搬送方向における照射領域の長さの1〜1.5倍である。   The present invention relates to an exposure apparatus that repeatedly exposes a substrate while transporting the substrate in a transport direction. The exposure apparatus includes a light source, a photomask disposed between the light source and the substrate, and a fly-eye lens that irradiates the photomask with a uniform illuminance distribution of light emitted from the light source. The fly-eye lens is a lens in which rectangular single lenses are arranged in a matrix in the matrix direction. On the photomask, an irradiation area irradiated with light emitted from the single lens is formed, and the length of the irradiation area in the direction orthogonal to the transport direction is 1 to 1.5 of the length of the irradiation area in the transport direction. Is double.

本発明によると、小型マスク連続露光において、フォトマスクの画素形成用パターンを透過した光の局所的な照度分布を、基板の搬送方向と、搬送方向に直交する方向とで略同じにすることができるので、フォトマスクの画素形成用パターンの形状を歪ませることなくレジストに転写できる。   According to the present invention, in the small mask continuous exposure, the local illuminance distribution of the light transmitted through the pixel formation pattern of the photomask can be made substantially the same in the substrate transport direction and the direction orthogonal to the transport direction. Thus, the shape of the photomask pixel formation pattern can be transferred to the resist without distortion.

本発明の実施形態に係る露光装置の平面図The top view of the exposure apparatus which concerns on embodiment of this invention 図1に示す露光装置の側面図Side view of the exposure apparatus shown in FIG. フライアイレンズの平面図Top view of fly-eye lens 従来のフライアイレンズの平面図Plan view of conventional fly-eye lens 従来のフォトマスクの一例を示す平面図Plan view showing an example of a conventional photomask 照射領域と照度分布との関係を示すグラフ図A graph showing the relationship between irradiation area and illuminance distribution

(実施形態)
図1は、本実施形態の露光装置の平面図であり、図2は、図1に示す露光装置の側面図である。尚、以下の図においては、基板の搬送方向をY軸正方向とする。
(Embodiment)
FIG. 1 is a plan view of the exposure apparatus of the present embodiment, and FIG. 2 is a side view of the exposure apparatus shown in FIG. In the following drawings, the substrate transport direction is the Y-axis positive direction.

本実施形態に係る露光装置1は、基板7を搬送しながら、基板7上の複数の露光領域(右上がりハッチング部)にドット状の着色パターンを繰り返し露光する。露光装置1は、搬送装置2と、フォトマスク3と、光源4と、ビームエキスパンダ5と、フライアイレンズ6とを備える。   The exposure apparatus 1 according to the present embodiment repeatedly exposes a dot-like colored pattern on a plurality of exposure regions (upwardly hatched portions) on the substrate 7 while conveying the substrate 7. The exposure apparatus 1 includes a transport device 2, a photomask 3, a light source 4, a beam expander 5, and a fly eye lens 6.

搬送装置2は、基板7をY軸正方向に一定速度で搬送する。また、基板7には、フォトリソグラフィ法等によって、遮光層として機能するブラックマトリックスが予め形成されている。ブラックマトリクスで区画された画素領域の外側には、周辺ダミーパターン及びアライメントマークが形成されている。更に、基板7の表面には、着色パターンを形成するためのレジストが塗布されている。   The transport device 2 transports the substrate 7 at a constant speed in the positive Y-axis direction. A black matrix that functions as a light shielding layer is formed in advance on the substrate 7 by a photolithography method or the like. A peripheral dummy pattern and an alignment mark are formed outside the pixel area defined by the black matrix. Further, a resist for forming a colored pattern is applied to the surface of the substrate 7.

フォトマスク3は、光源4と基板7との間に配置されている。また、図1に示すように、フォトマスク3は、X軸方向に6枚ずつ、2行に配置されている。一方の行に配置されるフォトマスク3の間を、他の列に配置されるフォトマスク3が補完している。更に、フォトマスク3の各々には、着色パターンを露光するための複数の開口パターン31が開口パターン形成領域32(右上がりハッチングで示す矩形状の領域)に形成されている。尚、図1の各フォトマスク3において、Y軸方向に一つの開口パターン31のみ示しているが、開口パターン31は、Y軸方向に並ぶ複数のドット状の開口により形成される場合もある。   The photomask 3 is disposed between the light source 4 and the substrate 7. Further, as shown in FIG. 1, six photomasks 3 are arranged in two rows in the X-axis direction. Between the photomasks 3 arranged in one row, the photomask 3 arranged in the other column complements. Furthermore, each of the photomasks 3 is formed with a plurality of opening patterns 31 for exposing the colored pattern in an opening pattern forming region 32 (rectangular region indicated by right-up hatching). 1 shows only one opening pattern 31 in the Y-axis direction, the opening pattern 31 may be formed by a plurality of dot-like openings arranged in the Y-axis direction.

光源4には、所定の間隔で点滅するレーザー光(例えば、YAGレーザー)が用いられる。尚、光源4から照射される光の強度はガウシアン分布に従い、光軸中心に近づくほど光の強度が高くなる。光源4から出射された光は、ビームエキスパンダ5で光径が拡大され、フライアイレンズ6(フライアイレンズ6の詳細については後述する)に入射する。フライアイレンズ6で照度分布が均一にされた光は、フォトマスク3に入射する。フォトマスク3に入射した光は、開口パターン形成領域32に設けられた開口パターン31を通過し、基板7上の露光領域41に照射される。   As the light source 4, laser light (for example, YAG laser) blinking at a predetermined interval is used. Note that the intensity of light emitted from the light source 4 follows a Gaussian distribution, and the intensity of light increases as it approaches the center of the optical axis. The light emitted from the light source 4 is enlarged in diameter by the beam expander 5 and enters the fly eye lens 6 (details of the fly eye lens 6 will be described later). The light whose illuminance distribution is made uniform by the fly-eye lens 6 enters the photomask 3. The light incident on the photomask 3 passes through the opening pattern 31 provided in the opening pattern formation region 32 and is irradiated to the exposure region 41 on the substrate 7.

次に、図3を用いて、フライアイレンズ6の詳細について説明する。   Next, details of the fly-eye lens 6 will be described with reference to FIG.

フライアイレンズ6は、略正方形であり、8×12の行列状に並べた複数の単レンズ61からなる。単レンズ61のX軸方向の長さ(以下、「幅」という)は、Y軸方向の長さ(以下、「縦の長さ」という)の1〜1.5倍である。   The fly-eye lens 6 is substantially square and includes a plurality of single lenses 61 arranged in an 8 × 12 matrix. The length of the single lens 61 in the X-axis direction (hereinafter referred to as “width”) is 1 to 1.5 times the length in the Y-axis direction (hereinafter referred to as “vertical length”).

フライアイレンズ6が正方形であれば、単レンズ61の形状を正方形に近づけることで、X軸方向の単レンズ61の数を増やすことができる。これによって、開口パターンを通過した光のX軸方向の照度分布の減衰の仕方は、図6のシミュレーション結果(実線)と比べてよりなだらかになる。   If the fly-eye lens 6 is square, the number of single lenses 61 in the X-axis direction can be increased by making the shape of the single lens 61 close to a square. Thereby, the method of attenuation of the illuminance distribution in the X-axis direction of the light that has passed through the aperture pattern becomes gentler than the simulation result (solid line) in FIG.

尚、図1に示すフォトマスク3の幅が予め決まっており、照射領域40の幅は一定値に維持する必要があるので、単レンズ61の幅が、縦の長さの1倍未満になると、照射領域40の縦の長さが大きくなってしまい、好ましくない。この場合、照射領域40の面積が増大し、露光に要求される光の照射強度が得られない虞がある。逆に、単レンズ61の幅が縦の長さの1.5倍を超えると、X軸方向における単レンズの数が減少するので、図6に示したシミュレーション結果と同様に、フォトマスク3を透過した光の照度分布が顕著な階段状となる。この場合、X軸方向とY軸方向の照度分布との差が大きくなるため、開口パターンのエッジによって規定される着色層の外周縁の位置がずれ、フォトマスク3の開口パターンが歪んで転写されてしまう。   Since the width of the photomask 3 shown in FIG. 1 is determined in advance and the width of the irradiation region 40 needs to be maintained at a constant value, when the width of the single lens 61 is less than one time of the vertical length. The vertical length of the irradiation region 40 becomes large, which is not preferable. In this case, the area of the irradiation region 40 increases, and there is a possibility that the irradiation intensity of light required for exposure cannot be obtained. On the other hand, if the width of the single lens 61 exceeds 1.5 times the vertical length, the number of single lenses in the X-axis direction is reduced, so that the photomask 3 is removed as in the simulation result shown in FIG. The illuminance distribution of the transmitted light is stepped. In this case, since the difference between the illuminance distribution in the X-axis direction and the Y-axis direction becomes large, the position of the outer peripheral edge of the colored layer defined by the edge of the opening pattern is shifted, and the opening pattern of the photomask 3 is distorted and transferred. End up.

また、照射領域40に出射される光を有効に用いるために、フォトマスク3上の開口パターン形成領域32は、照射領域40と略相似形となるように設計される。一例として、基板7上に照射される領域41のX軸方向の長さが215mm、Y軸方向の長さが150mmとなるように、フォトマスク開口パターン形成領域32の大きさが設計される。本実施形態では、フォトマスク上に複数の開口パターン形成領域を設ける代わりに、縦の長さを大きくした開口パターン形成領域を一つ設けることで、開口パターンを透過した局所的な光の照度分布を均一にすることができるという利点を有する。   Further, in order to effectively use the light emitted to the irradiation region 40, the opening pattern formation region 32 on the photomask 3 is designed to be substantially similar to the irradiation region 40. As an example, the size of the photomask opening pattern formation region 32 is designed so that the length of the region 41 irradiated on the substrate 7 is 215 mm in the X-axis direction and 150 mm in the Y-axis direction. In this embodiment, instead of providing a plurality of opening pattern formation regions on a photomask, by providing one opening pattern formation region having a large vertical length, local illumination distribution of light transmitted through the opening pattern Can be made uniform.

以上に述べた露光装置1を用いて、基板7をY軸正方向に一定速度で搬送しながら、光源4を点滅させ、フォトマスク3の開口パターン31をY軸方向に繰り返し転写し、基板7上にドット状の着色パターンを形成する。上述したように、露光装置1においては、開口パターンを通過して基板上に照射される光のX軸方向の照度分布とY軸方向の照度分布とが略同じである。従って、開口パターン31と相似形となるように着色パターンを形成することができる。   Using the exposure apparatus 1 described above, the substrate 7 is conveyed at a constant speed in the Y-axis positive direction, the light source 4 is blinked, and the opening pattern 31 of the photomask 3 is repeatedly transferred in the Y-axis direction. A dot-like colored pattern is formed on the top. As described above, in the exposure apparatus 1, the illuminance distribution in the X-axis direction and the illuminance distribution in the Y-axis direction of light that passes through the opening pattern and is irradiated on the substrate are substantially the same. Therefore, the coloring pattern can be formed so as to be similar to the opening pattern 31.

尚、本実施形態に係る露光装置では、点滅式光源を用いて、ドット形状の着色パターンを形成しているが、光源の種類は特に限定されない。例えば、常灯式光源を用いて、フォトマスクのストライプ状の開口パターンを、Y軸方向に連続して転写することで、ストライプ状の着色パターンを形成しても良い。   In the exposure apparatus according to this embodiment, a dot-shaped coloring pattern is formed using a blinking light source, but the type of light source is not particularly limited. For example, the stripe-shaped coloring pattern may be formed by continuously transferring the stripe-shaped opening pattern of the photomask in the Y-axis direction using an ordinary light source.

また、本実施形態に係る露光装置では、光源、ビームエキスパンダ、及びフライアイレンズを基板に対して垂直な方向に並べて配置しているが、これらの配置は、特に限定されない。例えば、光軸上に設けた複数のミラーやプリズムによって、光を任意の角度で複数回反射させ、当該反射させた光の光軸に対して適切な向きにビームエキスパンダ、フライアイレンズを夫々配置しても良い。   In the exposure apparatus according to this embodiment, the light source, the beam expander, and the fly-eye lens are arranged side by side in a direction perpendicular to the substrate, but these arrangements are not particularly limited. For example, a plurality of mirrors and prisms provided on the optical axis reflect light multiple times at an arbitrary angle, and a beam expander and a fly-eye lens are respectively oriented in an appropriate direction with respect to the optical axis of the reflected light. It may be arranged.

また、本実施形態に係る露光装置では、フライアイレンズから出射した光は直接フォトマスク上に照射されるが、特にこのような光学系を備えることに限定されない。例えば、フライアイレンズとフォトマスクとの間に、更にレンズ等を設けた光学系を用いても良い。   Further, in the exposure apparatus according to the present embodiment, the light emitted from the fly-eye lens is directly irradiated onto the photomask, but is not particularly limited to including such an optical system. For example, an optical system in which a lens or the like is further provided between the fly-eye lens and the photomask may be used.

本発明は、例えば、液晶表示装置に用いられるカラーフィルタ基板を露光するための露光装置に用いることができる。   The present invention can be used, for example, in an exposure apparatus for exposing a color filter substrate used in a liquid crystal display device.

1 露光装置
2 搬送装置
3 フォトマスク
31 開口パターン
32 開口パターン形成領域
4 光源
40 照射領域
41 露光領域
5 ビームエキスパンダ
6 フライアイレンズ
61 単レンズ
7 基板
DESCRIPTION OF SYMBOLS 1 Exposure apparatus 2 Conveyance apparatus 3 Photomask 31 Opening pattern 32 Opening pattern formation area 4 Light source 40 Irradiation area 41 Exposure area 5 Beam expander 6 Fly eye lens 61 Single lens 7 Substrate

Claims (2)

基板を搬送方向に搬送しながら、前記基板上に繰り返し露光を行う露光装置であって、
光源と、
前記光源と前記基板との間に配置されるフォトマスクと、
前記光源か出射された光の照度分布を一様にして前記フォトマスク上に照射するフライアイレンズとを備え、
前記フライアイレンズは、矩形状の単レンズが行列方向にマトリクス状に配列されたものであり、
前記フォトマスク上には、前記単レンズからの出射光が照射される照射領域が形成され、前記搬送方向に直交する方向における前記照射領域の長さが、前記搬送方向における前記照射領域の長さの1〜1.5倍である、露光装置。
An exposure apparatus that repeatedly performs exposure on the substrate while transporting the substrate in the transport direction,
A light source;
A photomask disposed between the light source and the substrate;
A fly-eye lens that irradiates the photomask with a uniform illuminance distribution of light emitted from the light source;
The fly-eye lens is a rectangular single lens arranged in a matrix in the matrix direction,
On the photomask, an irradiation area irradiated with light emitted from the single lens is formed, and the length of the irradiation area in the direction orthogonal to the transport direction is the length of the irradiation area in the transport direction. 1 to 1.5 times the exposure apparatus.
前記フライアイレンズの縦方向の単レンズの数と、横方向の単レンズの数との比率が、1〜1.5倍である、請求項1に記載の露光装置。   2. The exposure apparatus according to claim 1, wherein a ratio of the number of single lenses in the vertical direction of the fly-eye lens to the number of single lenses in the horizontal direction is 1 to 1.5 times.
JP2010271667A 2010-12-06 2010-12-06 Exposure equipment Active JP5709495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271667A JP5709495B2 (en) 2010-12-06 2010-12-06 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271667A JP5709495B2 (en) 2010-12-06 2010-12-06 Exposure equipment

Publications (2)

Publication Number Publication Date
JP2012123049A true JP2012123049A (en) 2012-06-28
JP5709495B2 JP5709495B2 (en) 2015-04-30

Family

ID=46504586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271667A Active JP5709495B2 (en) 2010-12-06 2010-12-06 Exposure equipment

Country Status (1)

Country Link
JP (1) JP5709495B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135133A (en) * 1993-06-16 1995-05-23 Nikon Corp Optical illumination equipment
JPH09289159A (en) * 1996-04-22 1997-11-04 Nikon Corp Exposure system
JPH09330863A (en) * 1996-06-10 1997-12-22 Nikon Corp Method and apparatus for proximity exposure
US5891806A (en) * 1996-04-22 1999-04-06 Nikon Corporation Proximity-type microlithography apparatus and method
JP2004246144A (en) * 2003-02-14 2004-09-02 Dainippon Printing Co Ltd Exposure method, aligner and illumination apparatus
JP2008164729A (en) * 2006-12-27 2008-07-17 Ushio Inc Light irradiator, light irradiation apparatus, and exposure method
JP2009210598A (en) * 2008-02-29 2009-09-17 Nsk Ltd Glass substrate, and proximity scan exposure apparatus, and proximity scan exposure method
JP2010243680A (en) * 2009-04-03 2010-10-28 V Technology Co Ltd Exposure method and exposure apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135133A (en) * 1993-06-16 1995-05-23 Nikon Corp Optical illumination equipment
JPH09289159A (en) * 1996-04-22 1997-11-04 Nikon Corp Exposure system
US5891806A (en) * 1996-04-22 1999-04-06 Nikon Corporation Proximity-type microlithography apparatus and method
JPH09330863A (en) * 1996-06-10 1997-12-22 Nikon Corp Method and apparatus for proximity exposure
JP2004246144A (en) * 2003-02-14 2004-09-02 Dainippon Printing Co Ltd Exposure method, aligner and illumination apparatus
JP2008164729A (en) * 2006-12-27 2008-07-17 Ushio Inc Light irradiator, light irradiation apparatus, and exposure method
JP2009210598A (en) * 2008-02-29 2009-09-17 Nsk Ltd Glass substrate, and proximity scan exposure apparatus, and proximity scan exposure method
JP2010243680A (en) * 2009-04-03 2010-10-28 V Technology Co Ltd Exposure method and exposure apparatus
US20120075612A1 (en) * 2009-04-03 2012-03-29 Koichi Kajiyama Exposure method and exposure apparatus

Also Published As

Publication number Publication date
JP5709495B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2015093304A1 (en) Method for manufacturing film forming mask and film forming mask
JP5224341B2 (en) Exposure apparatus and photomask
US20180052395A1 (en) Exposure method, substrate and exposure apparatus
WO2011132620A1 (en) Orientation treatment method and orientation treatment device
US10747100B2 (en) Pattern structure and exposure method of patterned sapphire substrate mask
JP2005116733A (en) Mask and method for inspecting aligner, and aligner
JP5757245B2 (en) Exposure method and exposure apparatus
TWI470379B (en) Exposure method, method for manufacturing color filter, and exposure device
KR20050033473A (en) Photomask and method for pattern formation
JP5354803B2 (en) Exposure equipment
JP4589788B2 (en) Laser irradiation method
JP2008244361A (en) Laser beam machining method for printed circuit board
JP2007072371A (en) Exposure apparatus
JP5709495B2 (en) Exposure equipment
JP5157945B2 (en) Light irradiation device
JP4791630B2 (en) Exposure equipment
KR100636922B1 (en) Dummy exposure mask and method for exposuring using the same
KR20120009601A (en) Exposure apparatus and exposure method using the same
KR20130074532A (en) An exposure apparatus
JP2010122619A (en) Pattern drawing device, pattern drawing method and mask for pattern drawing
KR20100079307A (en) Reticle for fabricating a semiconductor device and exposure method using the same
JP2018072690A (en) Photomask and method for manufacturing electronic device
KR20090068003A (en) Method for fabricating in photomask
KR100583167B1 (en) Wafer edge exposure device
JP2016133667A (en) Polarizer, method for manufacturing the same, and electron beam irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250