JP2012122995A - Apparatus for applying multi-axial inertial force - Google Patents

Apparatus for applying multi-axial inertial force Download PDF

Info

Publication number
JP2012122995A
JP2012122995A JP2011253623A JP2011253623A JP2012122995A JP 2012122995 A JP2012122995 A JP 2012122995A JP 2011253623 A JP2011253623 A JP 2011253623A JP 2011253623 A JP2011253623 A JP 2011253623A JP 2012122995 A JP2012122995 A JP 2012122995A
Authority
JP
Japan
Prior art keywords
support member
inertial force
axis
force application
application device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253623A
Other languages
Japanese (ja)
Inventor
Jun Lim
リム,ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2012122995A publication Critical patent/JP2012122995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B1/00Vices
    • B25B1/20Vices for clamping work of special profile, e.g. pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Toys (AREA)
  • Vibration Prevention Devices (AREA)
  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for applying multi-axial inertial force that may apply vibration and rotation in three-axes directions using a uni-axial vibration exciter (uni-axial inertial force generator).SOLUTION: The apparatus includes: a lower support plate 110; first support members 120 fixed to stand up from the lower support plate 110; a second support member 130 positioned to be orthogonal to the stand-up direction of the first support members 120 and rotatably coupled to the first support member 120; and a third support member 140 stacked on the second support member 130 and coupled to the second support member 130 so as to be rotatable upon a rotational axis corresponding to the stacked direction.

Description

本発明は、多軸慣性力印加装置に関する。   The present invention relates to a multi-axis inertial force application device.

最近、MEMS技術を利用した小型、軽量の慣性センサの製作が容易になるにつれて家電製品等に応用領域が拡大されている。また、これによるセンサの機能も発展し続け、一つのセンサで一つの軸に対する慣性力のみを検出できる単軸センサから、一つのセンサで二軸以上の多軸に対する慣性力を検出できる多軸センサへと、その機能が日々発展している。   Recently, as the manufacture of a small and light inertial sensor using MEMS technology becomes easier, the application area has been expanded to home appliances and the like. In addition, the sensor functions continue to develop. From a single-axis sensor that can detect only the inertial force for one axis with one sensor, a multi-axis sensor that can detect the inertial force for two or more axes with one sensor. The function is developing day by day.

また、製造された慣性センサは、製品として発売する前に、性能試験を必須に行う。なお、慣性センサは、センサに印加された慣性力(角速度、加速度)を電気的な信号に変更する変換器(Transducer)であるため、慣性力を直接センサに印加し、電気的な出力を測定することにより、その性能を確認することができる。   The manufactured inertial sensor must be subjected to a performance test before being released as a product. Since the inertial sensor is a transducer that changes the inertial force (angular velocity, acceleration) applied to the sensor into an electrical signal, the inertial force is directly applied to the sensor and the electrical output is measured. By doing so, the performance can be confirmed.

しかし、単軸から多軸にセンサの機能が拡大するにつれて、測定の際、センサに印加すべき慣性力の方向も単軸から多軸に増加しなければならず、これにより、慣性力を印加する装置の構造や機能が非常に複雑になるという問題点を有している。   However, as the sensor function expands from single axis to multiple axes, the direction of inertial force to be applied to the sensor must also increase from single axis to multiple axes during measurement, thereby applying the inertial force. However, there is a problem that the structure and function of the device to be performed becomes very complicated.

そのため、従来技術による三軸のレートテーブル(Rate Table)の場合、単軸のレートテーブル(Rate Table)に比べて体積も3倍以上大きいだけでなく、価格も非常に高い。特に、線形加速度を発生する用途に使用される加振機(Vibration Exciter)の場合、一つの装置で三軸を同時に加振することが不可能であるため、測定しようとするセンサを各軸ごとに装置を移動しながら測定しなければならないという問題点を有している。   Therefore, in the case of a three-axis rate table according to the prior art, the volume is not only three times larger than the single-axis rate table (Rate Table), but also the price is very high. In particular, in the case of a vibration exciter (Vibration Exciter) used for generating linear acceleration, it is impossible to simultaneously excite three axes with one device. However, there is a problem that the measurement must be performed while moving the apparatus.

また、このような理由により、多軸慣性センサを試験するためにかかる時間は、単軸センサに比べて非常に長くなり、試験時間(Test Time)の増加は、結局製品のコスト増加に繋がる問題となり、製品の競争力を低下する要因となる。   For this reason, the time taken to test a multi-axis inertial sensor is much longer than that of a single-axis sensor, and the increase in test time (Test Time) eventually leads to an increase in product cost. As a result, the competitiveness of the product is reduced.

また、三軸方向の慣性力を検出できる三軸角速度センサの場合、互いに直交する三軸方向全てに対してその特性を評価しなければならないため、三軸角速度印加装置が必要である。しかし、従来技術による三軸角速度印加装置は、単軸角速度印加装置に比べて体積が非常に大きく、使用部品の数も3倍以上となる。このような装備は、高価であるだけでなく、非常に精密なモータが必要であり、回転量を検出できる角度エンコーダー(Angle Encoder)、電気信号をモータの回転軸を介して外部に連結するスリップリング(Slip Ring)などの非常に精密な部品が使用されており、軸が増加するとその倍ほどの部品が必要となる。また、スリップリング(Slip Ring)は、DUTから出力された信号を外部測定装備に連結するチャンネルの機能を行うが、モータの回転時に、スリップリング自体がノイズ源になるため、電気信号が通過するスリップリング(Slip Ring)の個数が増加するほどチャンネルのノイズ成分が増加するという問題点を有している。   In the case of a triaxial angular velocity sensor that can detect the inertial force in the triaxial direction, the characteristics must be evaluated for all the three axial directions orthogonal to each other, and thus a triaxial angular velocity applying device is required. However, the triaxial angular velocity application device according to the prior art has a very large volume and the number of parts used is three times or more than that of the single axis angular velocity application device. Such equipment is not only expensive, but also requires a very precise motor, an angle encoder that can detect the amount of rotation, and an slip that connects the electrical signal to the outside via the rotation shaft of the motor. Very precise parts such as a ring (Slip Ring) are used, and as the number of axes increases, as many parts as that are required. In addition, the slip ring (Slip Ring) functions as a channel for connecting the signal output from the DUT to an external measurement device. However, when the motor rotates, the slip ring itself becomes a noise source, so that an electrical signal passes. There is a problem that the noise component of the channel increases as the number of slip rings increases.

また、加振機(Vibration Exciter)あるいは線形加速度発生器の場合、一つの装置で多軸に加速度を発生することが非常に難しいため、単軸加振機を複数台角軸方向に固定して使用することが一般的である。このような場合、多軸測定のために、DUT(Device Under Test)を軸方向に沿って設定された複数台の加振機に移動して装着しなければならない煩わしさがあり、試験時間を大きく増加させ、軸の方向ごとに複数台の加速度印加装置が必要となり、測定システムを構成するコストも増加するという問題点を有している。   In addition, in the case of a vibration exciter or a linear acceleration generator, it is very difficult to generate acceleration on multiple axes with a single device. It is common to use. In such a case, for multi-axis measurement, the DUT (Device Under Test) must be moved and mounted on a plurality of vibrators set along the axial direction. There is a problem that the number of acceleration application devices is increased for each axis direction, and the cost for configuring the measurement system increases.

本発明は、前記のような問題点を解決することを目的とし、単軸加振機(単軸慣性力発生器)で三軸方向に振動及び回転の印加が可能な多軸慣性力印加装置を提供することを目的とする。   The present invention aims to solve the above-described problems, and a multi-axis inertial force application device capable of applying vibration and rotation in three axial directions with a single-axis shaker (single-axis inertial force generator). The purpose is to provide.

前記本発明の目的を果たすために、本発明による多軸慣性力印加装置は、下部支持板と、前記下部支持板から立ち上がるように固定された2個の第1支持部材と、前記2個の第1支持部材内側に立ち上がり方向に直交するように位置し、前記第1支持部材に回転可能に結合された第2支持部材と、前記第2支持部材に積層され、積層方向に対応する回転軸を中心に回転できるように第2支持部材に結合された第3支持部材と、を含む。   To achieve the object of the present invention, a multi-axis inertial force application device according to the present invention includes a lower support plate, two first support members fixed so as to rise from the lower support plate, and the two support members. A second support member that is positioned inside the first support member so as to be orthogonal to the rising direction and is rotatably coupled to the first support member, and a rotation shaft that is stacked on the second support member and corresponds to the stacking direction A third support member coupled to the second support member so as to be rotatable about the center.

また、前記第3支持部材には、積層方向にDUT装着部が形成される。   In addition, a DUT mounting portion is formed on the third support member in the stacking direction.

また、本発明による多軸慣性力印加装置は、前記第2支持部材に回転軸方向に結合される方向転換レバーをさらに含み、前記方向転換レバーは、第1支持部材の外側部に回転可能に結合される。   The multi-axis inertial force application apparatus according to the present invention further includes a direction changing lever coupled to the second support member in a rotation axis direction, and the direction changing lever is rotatable on an outer portion of the first support member. Combined.

また、前記第2支持部材には、前記方向転換レバーが結合及び固定される結合孔が形成される。   The second support member is formed with a coupling hole for coupling and fixing the direction change lever.

また、前記第1支持部材には、前記方向転換レバーが貫通されるための支持孔が形成される。   The first support member is formed with a support hole through which the direction changing lever is passed.

また、本発明による多軸慣性力印加装置は、前記第3支持部材に結合される方向転換レバーをさらに含む。   In addition, the multi-axis inertial force applying device according to the present invention further includes a direction changing lever coupled to the third support member.

また、本発明による多軸慣性力印加装置は、前記第1支持部材及び第2支持部材に連結され、前記第2支持部材を支持する補助支持板をさらに含む。   In addition, the multi-axis inertial force application device according to the present invention further includes an auxiliary support plate connected to the first support member and the second support member and supporting the second support member.

また、前記第2支持部材には、補助支持板に対応する挿入突起が形成され、前記補助支持板には、前記挿入突起に対応する固定溝が形成される。   Further, the second support member is formed with an insertion protrusion corresponding to the auxiliary support plate, and the auxiliary support plate is formed with a fixing groove corresponding to the insertion protrusion.

また、本発明による多軸慣性力印加装置は、前記第2支持部材及び第3支持部材をそれぞれ移動させる駆動装置をさらに含む。   In addition, the multi-axis inertial force application device according to the present invention further includes a driving device for moving the second support member and the third support member, respectively.

本発明の特徴及び利点は、添付図面に基づいた以下の詳細な説明によってさらに明らかになるであろう。   The features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.

本発明の詳細な説明に先立ち、本明細書及び特許請求の範囲に用いられた用語や単語は、通常的かつ辞書的な意味に解釈されてはならず、発明者が自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則にしたがって本発明の技術的思想にかなう意味と概念に解釈されるべきである。   Prior to the detailed description of the invention, the terms and words used in the specification and claims should not be construed in a normal and lexicographic sense, and the inventor shall best understand his invention. It should be construed as meaning and concept in accordance with the technical idea of the present invention in accordance with the principle that the concept of terms can be appropriately defined to explain in a method.

本発明のよると、一つの方向のみに加振及び回転が可能な単軸慣性力発生器を用いて多軸方向の加振及び回転を可能な多軸慣性力印加装置を得ることができる。前記多軸慣性力印加装置は、簡単な構成を有しており、安価で具現することができる。また、前記多軸慣性力印加装置におけるスリップリングの数が従来技術による多軸慣性力印加装置に比べ減少され、ノイズ及び測定時間が短縮される。   According to the present invention, it is possible to obtain a multi-axis inertial force application device capable of exciting and rotating in a multi-axis direction using a single-axis inertia force generator capable of exciting and rotating only in one direction. The multi-axis inertial force application device has a simple configuration and can be implemented at low cost. Further, the number of slip rings in the multi-axis inertial force applying device is reduced as compared with the multi-axis inertial force applying device according to the prior art, and noise and measurement time are shortened.

本発明による多軸慣性力印加装置の第1実施例による概略的な使用状態図である。FIG. 3 is a schematic diagram illustrating a use state of the multi-axis inertial force application device according to the first embodiment of the present invention. 本発明による多軸慣性力印加装置の第2実施例による概略的な使用状態図である。FIG. 5 is a schematic diagram illustrating a use state of a multi-axis inertial force application device according to a second embodiment of the present invention. 本発明による多軸慣性力印加装置の第3実施例による概略的な使用状態図である。And FIG. 6 is a schematic diagram illustrating a use state of a multi-axis inertial force application device according to a third embodiment of the present invention. 本発明の他の実施例による多軸慣性力印加装置の概略的な斜視図である。FIG. 6 is a schematic perspective view of a multi-axis inertial force application device according to another embodiment of the present invention.

本発明の目的、特定の長所及び新規の特徴は、添付図面に係る以下の詳細な説明及び好ましい実施例によってさらに明らかになるであろう。本明細書において、各図面の構成要素に参照番号を付け加えるに際し、同一の構成要素に限っては、たとえ異なる図面に示されても、できるだけ同一の番号を付けるようにしていることに留意しなければならない。また、本発明を説明するにあたり、係わる公知技術についての具体的な説明が本発明の要旨を不明瞭にする可能性があると判断される場合は、その詳細な説明を省略する。   Objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments with reference to the accompanying drawings. In this specification, it should be noted that when adding reference numerals to the components of each drawing, the same components are given the same number as much as possible even if they are shown in different drawings. I must. Further, in describing the present invention, if it is determined that a specific description of the known technique may obscure the gist of the present invention, a detailed description thereof will be omitted.

以下、添付の図面を参照して、本発明の好ましい実施例による多軸慣性力印加装置について詳細に説明する。   Hereinafter, a multi-axis inertial force application apparatus according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による多軸慣性力印加装置の第1実施例による概略的な使用状態図である。   FIG. 1 is a schematic diagram illustrating a use state of a multi-axis inertial force application device according to a first embodiment of the present invention.

図示したように、前記多軸慣性力印加装置100は、下部支持板110、第1支持部材120、第2支持部材130及び第3支持部材140を含む。   As illustrated, the multi-axis inertial force applying device 100 includes a lower support plate 110, a first support member 120, a second support member 130, and a third support member 140.

より具体的に、前記下部支持板110は、駆動手段(不図示)に連結され、回転または垂直振動を伝達するためのものである。   More specifically, the lower support plate 110 is connected to a driving unit (not shown) and transmits rotation or vertical vibration.

また、前記第1支持部材120は、前記下部支持板110から立ち上がるように固定される。   In addition, the first support member 120 is fixed to rise from the lower support plate 110.

また、第2支持部材130は、第1支持部材120に立ち上がり方向に直交するように位置し、前記第1支持部材120に回転可能に結合される。このため、多軸慣性力印加装置100は、前記第2支持部材130に回転軸方向に結合される方向転換レバー150をさらに含み、前記第2支持部材130には、結合孔(不図示)が形成され、前記第1支持部材120には、支持孔(不図示)が形成され、前記方向転換レバー150には、結合突起151が形成され、前記結合突起151は、前記支持孔を貫通及び支持するとともに前記結合孔に結合される。このように形成することにより、前記方向転換レバー150により、前記第2支持部材130は、前記第1支持部材に対して回転方向に移動することができる。   The second support member 130 is positioned to be orthogonal to the rising direction of the first support member 120 and is rotatably coupled to the first support member 120. Therefore, the multi-axis inertial force applying apparatus 100 further includes a direction changing lever 150 coupled to the second support member 130 in the rotation axis direction. The second support member 130 has a coupling hole (not shown). The first support member 120 is formed with a support hole (not shown), the direction changing lever 150 is formed with a coupling protrusion 151, and the coupling protrusion 151 penetrates and supports the support hole. And coupled to the coupling hole. By forming in this way, the second support member 130 can move in the rotational direction with respect to the first support member by the direction changing lever 150.

また、前記第2支持部材130は、前記第1支持部材の内側に結合される側壁部131及び前記側壁部131に直交する支持部132を備え、前記結合孔は側壁部に形成される。   The second support member 130 includes a side wall portion 131 coupled to the inside of the first support member and a support portion 132 orthogonal to the side wall portion 131, and the coupling hole is formed in the side wall portion.

また、第3支持部材140は、前記第2支持部材に積層され、積層方向に対応する回転軸を中心に回転できるように第2支持部材130に結合される。また、前記第3支持部材140には、積層方向にDUT装着部(不図示)が形成される。前記DUT装着部には、慣性センサ200などが装着される。   The third support member 140 is stacked on the second support member, and is coupled to the second support member 130 so as to be rotatable about a rotation axis corresponding to the stacking direction. The third support member 140 has a DUT mounting portion (not shown) in the stacking direction. The inertia sensor 200 or the like is mounted on the DUT mounting portion.

また、前記多軸慣性力印加装置100は、前記第3支持部材140に結合される方向転換レバー170をさらに含む。また、前記方向転換レバー170の操作により、前記第3支持部材140は、第2支持部材130に対して回転する。   In addition, the multi-axis inertial force applying apparatus 100 further includes a direction changing lever 170 coupled to the third support member 140. In addition, the third support member 140 rotates with respect to the second support member 130 by the operation of the direction change lever 170.

また、本発明による多軸慣性力印加装置は、前記第1支持部材120及び第2支持部材130に連結され、前記第2支持部材130を支持する補助支持板160をさらに含む。   In addition, the multi-axis inertial force applying apparatus according to the present invention further includes an auxiliary support plate 160 connected to the first support member 120 and the second support member 130 and supporting the second support member 130.

また、前記第2支持部材130には、補助支持板に対応する挿入突起121が形成され、前記補助支持板160には、前記挿入突起に対応する固定溝161が形成される。   The second support member 130 is formed with an insertion protrusion 121 corresponding to the auxiliary support plate, and the auxiliary support plate 160 is formed with a fixing groove 161 corresponding to the insertion protrusion.

また、本発明による多軸慣性力印加装置は、前記第2支持部材及び第3支持部材をそれぞれ移動させる駆動装置をさらに含むことができる。   In addition, the multi-axis inertial force application device according to the present invention may further include a driving device for moving the second support member and the third support member, respectively.

上記構成においてZ軸が回転軸方向にセットされた後、慣性力を印加される使用状態が図1に示されている。   FIG. 1 shows a use state in which an inertial force is applied after the Z-axis is set in the direction of the rotation axis in the above configuration.

図2は、本発明による多軸慣性力印加装置の第2実施例による概略的な使用状態図である。   FIG. 2 is a schematic diagram illustrating a use state of a multi-axis inertial force application device according to a second embodiment of the present invention.

図示したように、図1に図示した多軸慣性力印加装置において、方向転換レバー150を矢印方向である反時計方向に回転する場合、前記第2支持部材130は、第1支持部材120に対して−90°回転する。   As illustrated, in the multi-axis inertial force application device illustrated in FIG. 1, when the direction changing lever 150 is rotated in the counterclockwise direction, which is the arrow direction, the second support member 130 moves relative to the first support member 120. Rotate -90 °.

図1は、Z軸を回転軸方向にセットされた後、慣性力が印加される使用状態を図示しているが、図2は、X軸が回転軸方向にセットされた後、慣性力を印加する使用状態を示している。   FIG. 1 illustrates a use state in which an inertial force is applied after the Z-axis is set in the direction of the rotation axis, but FIG. 2 illustrates the inertial force after the X-axis is set in the direction of the rotation axis. The use state to apply is shown.

図3は、本発明による多軸慣性力印加装置の第3実施例による概略的な使用状態図である。   FIG. 3 is a schematic diagram illustrating a use state of a multi-axis inertial force application device according to a third embodiment of the present invention.

図示したように、図2に図示した多軸慣性力印加装置において、方向転換レバー170を矢印方向である反時計方向に回転する場合、前記第3支持部材140は、第2支持部材130に対して−90°回転する。   2, in the multi-axis inertial force application device illustrated in FIG. 2, when the direction changing lever 170 is rotated in the counterclockwise direction that is the arrow direction, the third support member 140 is moved relative to the second support member 130. Rotate -90 °.

図2は、X軸が回転軸方向にセットされた後、慣性力が印加される使用状態を図示しているが、図3は、Y軸が回転軸方向にセットされた後、慣性力が印加される使用状態を示している。   FIG. 2 illustrates a use state in which an inertial force is applied after the X-axis is set in the rotation axis direction, but FIG. 3 illustrates that the inertial force is applied after the Y-axis is set in the rotation axis direction. The applied usage state is shown.

上記のように形成されることにより、本発明による多軸慣性力印加装置は、加振及び回転方向が常に一定であっても、第1、2及び3支持部材によって慣性センサ200が受ける慣性力の軸を変更することができる。即ち、一つの方向のみに加振及び回転が可能な単軸慣性力発生器を用いて、多軸方向の加振及び回転が可能となる。   By being formed as described above, the multi-axis inertial force application device according to the present invention is configured so that the inertial force received by the inertial sensor 200 by the first, second, and third support members even when the excitation and rotation directions are always constant. The axis can be changed. That is, using a single-axis inertia force generator capable of excitation and rotation in only one direction, excitation and rotation in multiple axes can be performed.

また、本発明による多軸慣性力印加装置は、従来技術により慣性力を印加するモータのように、非常に精密であり、モータの回転を認識する角度エンコーダー(Angle Encoder)及びDUTとの電気的な連結チャンネルを確保するためのスリップリングを含む必要がないため、非常に安価で簡単に具現することができる。   In addition, the multi-axis inertial force application device according to the present invention is very precise like a motor that applies inertial force according to the prior art, and is electrically connected to an angle encoder and a DUT that recognize the rotation of the motor. Since it is not necessary to include a slip ring for securing a secure connection channel, it can be implemented at a very low cost.

図4は、本発明の他の実施例による多軸慣性力印加装置の概略的な斜視図である。   FIG. 4 is a schematic perspective view of a multi-axis inertial force application device according to another embodiment of the present invention.

図示したように、多軸慣性力印加装置は、図1に図示した方向転換レバー150の代わりにモータ(M)を用いて前記第2支持部材130を回転させる。   As shown in the figure, the multi-axis inertial force application device rotates the second support member 130 using a motor (M) instead of the direction changing lever 150 shown in FIG.

また、本発明による多軸慣性力印加装置は、別のモータ(不図示)を備えて第3支持部材を移動させることもできる。   In addition, the multi-axis inertial force application device according to the present invention can be provided with another motor (not shown) to move the third support member.

以上、本発明を具体的な実施例に基づいて詳細に説明したが、これは、本発明を具体的に説明するためのものであり、本発明による多軸慣性力印加装置は、これに限定されず、該当分野における通常の知識を有する者であれば、本発明の技術的思想内にての変形や改良が可能であることは明白であろう。   The present invention has been described in detail on the basis of specific embodiments. However, this is intended to specifically describe the present invention, and the multi-axis inertial force application device according to the present invention is not limited thereto. It will be apparent to those skilled in the art that modifications and improvements can be made within the technical idea of the present invention.

本発明の単純な変形乃至変更は、いずれも本発明の領域に属するものであり、本発明の具体的な保護範囲は、添付の特許請求の範囲により明確になるであろう。   All simple variations and modifications of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.

本発明は、単軸加振機(単軸慣性力発生器)で三軸方向に振動及び回転の印加が可能な多軸慣性力印加装置に適用可能である。   The present invention can be applied to a multi-axis inertial force application device capable of applying vibration and rotation in three-axis directions with a single-axis vibrator (single-axis inertial force generator).

100 多軸慣性力印加装置
110 下部支持板
120 第1支持部材
130 第2支持部材
140 第3支持部材
150、170 方向転換レバー
160 補助支持板
DESCRIPTION OF SYMBOLS 100 Multiaxial inertia force application apparatus 110 Lower support plate 120 1st support member 130 2nd support member 140 3rd support member 150,170 Direction change lever 160 Auxiliary support plate

Claims (11)

下部支持板と、
前記下部支持板から立ち上がるように固定された第1支持部材と、
前記第1支持部材に立ち上がり方向に直交するように位置し、前記第1支持部材に回転可能に結合された第2支持部材と、
前記第2支持部材に積層され、積層方向に対応する回転軸を中心に回転できるように第2支持部材に結合された第3支持部材と、を含むことを特徴とする多軸慣性力印加装置。
A lower support plate;
A first support member fixed so as to rise from the lower support plate;
A second support member that is positioned perpendicular to the rising direction to the first support member and is rotatably coupled to the first support member;
A multi-axis inertial force application device, comprising: a third support member stacked on the second support member and coupled to the second support member so as to be rotatable about a rotation axis corresponding to the stacking direction. .
前記第1支持部材は2個が備えられ、前記第2支持部材は前記第1支持部材の内側に立ち上がり方向に直交するように位置することを特徴とする請求項1に記載の多軸慣性力印加装置。   2. The multiaxial inertial force according to claim 1, wherein two first support members are provided, and the second support member is positioned inside the first support member so as to be orthogonal to a rising direction. 3. Application device. 前記第3支持部材には積層方向にDUT装着部が形成されることを特徴とする請求項1に記載の多軸慣性力印加装置。   The multi-axis inertial force application device according to claim 1, wherein a DUT mounting portion is formed in the stacking direction on the third support member. 前記第2支持部材に回転軸方向に結合される方向転換レバーをさらに含むことを特徴とする請求項1に記載の多軸慣性力印加装置。   The multi-axis inertial force application device according to claim 1, further comprising a direction changing lever coupled to the second support member in a rotation axis direction. 前記第2支持部材には前記方向転換レバーが結合及び固定される結合孔が形成されることを特徴とする請求項4に記載の多軸慣性力印加装置。   The multi-axis inertial force application device according to claim 4, wherein the second support member is formed with a coupling hole to which the direction changing lever is coupled and fixed. 前記方向転換レバーは第1支持部材の外側部に回転可能に結合されることを特徴とする請求項4に記載の多軸慣性力印加装置。   The multi-axis inertial force application device according to claim 4, wherein the direction change lever is rotatably coupled to an outer portion of the first support member. 前記第1支持部材には前記方向転換レバーが貫通されるための支持孔が形成されることを特徴とする請求項6に記載の多軸慣性力印加装置。   The multi-axis inertial force application device according to claim 6, wherein the first support member is formed with a support hole through which the direction changing lever is passed. 前記第3支持部材に結合される方向転換レバーをさらに含むことを特徴とする請求項1に記載の多軸慣性力印加装置。   The multi-axis inertial force application apparatus according to claim 1, further comprising a direction changing lever coupled to the third support member. 前記第1支持部材及び第2支持部材に連結され、前記第2支持部材を支持する補助支持板をさらに含むことを特徴とする請求項1に記載の多軸慣性力印加装置。   The multi-axis inertial force application apparatus according to claim 1, further comprising an auxiliary support plate connected to the first support member and the second support member and supporting the second support member. 前記第2支持部材には補助支持板に対応する挿入突起が形成され、前記補助支持板には前記挿入突起に対応する固定溝が形成されることを特徴とする請求項9に記載の多軸慣性力印加装置。   The multi-axis according to claim 9, wherein an insertion protrusion corresponding to the auxiliary support plate is formed on the second support member, and a fixing groove corresponding to the insertion protrusion is formed on the auxiliary support plate. Inertial force application device. 前記第2支持部材及び第3支持部材をそれぞれ移動させる駆動装置をさらに含むことを特徴とする請求項1に記載の多軸慣性力印加装置。   The multi-axis inertial force application device according to claim 1, further comprising a driving device that moves the second support member and the third support member, respectively.
JP2011253623A 2010-12-07 2011-11-21 Apparatus for applying multi-axial inertial force Pending JP2012122995A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100124297A KR20120063217A (en) 2010-12-07 2010-12-07 Apparatus for apply multiaxial-inertial force
KR10-2010-0124297 2010-12-07

Publications (1)

Publication Number Publication Date
JP2012122995A true JP2012122995A (en) 2012-06-28

Family

ID=45422000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253623A Pending JP2012122995A (en) 2010-12-07 2011-11-21 Apparatus for applying multi-axial inertial force

Country Status (4)

Country Link
US (1) US9103682B2 (en)
EP (1) EP2463626A3 (en)
JP (1) JP2012122995A (en)
KR (1) KR20120063217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215176A (en) * 2014-05-08 2015-12-03 国立大学法人東京工業大学 Acceleration sensor property evaluation device and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120063217A (en) * 2010-12-07 2012-06-15 삼성전기주식회사 Apparatus for apply multiaxial-inertial force
US9751757B2 (en) 2013-03-04 2017-09-05 Kionix, Inc. Single motor dynamic calibration unit
CN104477409B (en) * 2014-12-05 2016-06-08 上海新跃仪表厂 Realize device and the method for three axle turntable single shafts
CN104615139B (en) * 2015-02-02 2017-03-08 沈阳艾克申机器人技术开发有限责任公司 A kind of pose signal pickup assembly for comprehensive planar motion mechanism
US10161826B2 (en) 2016-05-04 2018-12-25 International Business Machines Corporation Method and apparatus for inducing multiaxial excitation
DE102017115667A1 (en) * 2017-07-12 2019-01-17 Tdk Electronics Ag Method for measuring a behavior of a MEMS device
CN109470889B (en) * 2018-09-13 2021-07-13 蚌埠市龙子湖区金力传感器厂 Speed measurement sensor detection device
EP3800477A1 (en) * 2019-10-04 2021-04-07 Afore Oy Testing device and method for electrically testing an integrated circuit
CN115371703A (en) * 2022-08-22 2022-11-22 广东粤电科试验检测技术有限公司 Angle sensor calibration device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624666B2 (en) * 1974-11-29 1987-01-31 Sanders Associates Inc
JPH07110342A (en) * 1993-10-12 1995-04-25 Akebono Brake Ind Co Ltd Centrifugal acceleration tester
JPH102914A (en) * 1996-06-13 1998-01-06 Fujikura Ltd Acceleration generating device and acceleration-sensor measuring device using the device
JP2004347587A (en) * 2003-04-28 2004-12-09 National Institute Of Advanced Industrial & Technology Dynamic matrix sensitivity measurement device for inertia sensor, and measurement method therefor
JP2006226680A (en) * 2005-02-15 2006-08-31 Nippon Telegr & Teleph Corp <Ntt> Calibration method of acceleration sensor and acceleration measuring device
JP2006260046A (en) * 2005-03-16 2006-09-28 Fujitsu Ltd Rf tag evaluation apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341375A (en) * 1981-05-04 1982-07-27 Mario Romanin Dual vise for skis and the like
DE19654962A1 (en) * 1996-12-12 1998-06-18 Dornier Gmbh Lindauer Holding and positioning device for a leno selvedge device in weaving machines
US6375178B1 (en) * 2000-07-31 2002-04-23 Genesis Systems Group, Ltd. Dual cylinder work piece positioner
US6860800B1 (en) * 2002-11-26 2005-03-01 Ronald L. Maurer Panel turning apparatus
FR2927418B1 (en) * 2008-02-08 2011-09-23 Mbda France METHOD AND SYSTEM FOR VALIDING AN INERTIAL POWER PLANT OF A MOBILE.
US7635119B1 (en) * 2008-06-04 2009-12-22 United Technologies Corporation Adjustable leveling mount
KR20120063217A (en) * 2010-12-07 2012-06-15 삼성전기주식회사 Apparatus for apply multiaxial-inertial force
JP5291820B2 (en) * 2011-05-26 2013-09-18 ファナック株式会社 Oscillator control device and machine tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624666B2 (en) * 1974-11-29 1987-01-31 Sanders Associates Inc
JPH07110342A (en) * 1993-10-12 1995-04-25 Akebono Brake Ind Co Ltd Centrifugal acceleration tester
JPH102914A (en) * 1996-06-13 1998-01-06 Fujikura Ltd Acceleration generating device and acceleration-sensor measuring device using the device
JP2004347587A (en) * 2003-04-28 2004-12-09 National Institute Of Advanced Industrial & Technology Dynamic matrix sensitivity measurement device for inertia sensor, and measurement method therefor
JP2006226680A (en) * 2005-02-15 2006-08-31 Nippon Telegr & Teleph Corp <Ntt> Calibration method of acceleration sensor and acceleration measuring device
JP2006260046A (en) * 2005-03-16 2006-09-28 Fujitsu Ltd Rf tag evaluation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215176A (en) * 2014-05-08 2015-12-03 国立大学法人東京工業大学 Acceleration sensor property evaluation device and method

Also Published As

Publication number Publication date
EP2463626A3 (en) 2013-12-04
US9103682B2 (en) 2015-08-11
KR20120063217A (en) 2012-06-15
US20120139175A1 (en) 2012-06-07
EP2463626A2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP2012122995A (en) Apparatus for applying multi-axial inertial force
CN102365523B (en) Micro gyroscope for determining rotational movements about three spatial axes which are perpendicular to one another
JP5639087B2 (en) MEMS gyroscope for detecting rotational movement about x, y and / or z axis
JP6363638B2 (en) Vibrating mass gyroscope system and method
JP5425211B2 (en) Coriolis rotation speed sensor by micromechanics
CN101545790B (en) System for testing rotation and vibration performance of inertia device
JP2007333643A (en) Inertial sensor
KR101162975B1 (en) Device and method for measuring center of gravity and moment of inertia
JP2009198206A (en) Angular velocity sensor
KR101677955B1 (en) Electromechanic microsensor
JP5968265B2 (en) Angular velocity sensor
JP6538967B2 (en) Ultra-robust two-axis rotational speed sensor for automobiles
CN104344838A (en) Property testing device and testing method thereof for six-axis MEMS (micro-electromechanical system) movement sensor
CN205593534U (en) Micro electronmechanical gyroscope and electronic system
JP2009236880A (en) Standard exciter
JP6398137B2 (en) Seismometer
JP2013079856A (en) Double turntable with two orthogonal rotary axes for gyroscope calibration
JP2021189175A (en) Multiaxis gyroscope with supplementary mass
RU2256880C1 (en) Method and device for combined testing of platform-free inertial measuring unit on the base of micromechanic gyros and accelerometers
RU2165088C1 (en) Process of calibration of accelerometers and device for its realization
JP5697149B2 (en) Acceleration sensor characteristic evaluation method and program
CN105387853A (en) Shock-robust integrated multi-axis mems gyroscope
JP2014215294A (en) MEMS element
KR101299729B1 (en) Sensor
CN113639736A (en) Micromechanical gyroscope

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528