JP2012122789A - Wheel bearing with rotation detection device - Google Patents

Wheel bearing with rotation detection device Download PDF

Info

Publication number
JP2012122789A
JP2012122789A JP2010272272A JP2010272272A JP2012122789A JP 2012122789 A JP2012122789 A JP 2012122789A JP 2010272272 A JP2010272272 A JP 2010272272A JP 2010272272 A JP2010272272 A JP 2010272272A JP 2012122789 A JP2012122789 A JP 2012122789A
Authority
JP
Japan
Prior art keywords
magnetic
wheel bearing
sensor
magnetic encoder
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010272272A
Other languages
Japanese (ja)
Inventor
Takayuki Norimatsu
孝幸 乗松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010272272A priority Critical patent/JP2012122789A/en
Publication of JP2012122789A publication Critical patent/JP2012122789A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wheel bearing with a rotation detection device capable of preventing a magnetic encoder from being damaged due to biting of a foreign matter and providing a sufficient rotation detection accuracy.SOLUTION: A wheel bearing has an outer member 1 and an inner member 2 which are relatively rotatable via a rolling element 5, and supports a wheel rotatably on a vehicle body. An annular magnetic encoder 22 in which a plurality of pairs of magnetic poles are circumferentially arranged at equal intervals is provided on one end part in an axial direction of a rotation side member among the outer member 1 and the inner member 2 so as to be concentric with the rotation side member. A sensor 23 for detecting the pairs of magnetic poles of the magnetic encoder 22 is provided confronting the magnetic encoder 22. A protective cover 18 is provided which is interposed between the magnetic encoder 22 and the sensor 23 and protects the magnetic encoder 22. Multiplication means 24 is provided which multiplies the phase of the pair of magnetic poles from the output of the sensor.

Description

この発明は、回転検出装置を搭載した回転検出装置付き車輪用軸受に関する。   The present invention relates to a wheel bearing with a rotation detection device equipped with a rotation detection device.

この種の回転検出装置付き車輪用軸受として、図6のように、転動体(図示せず)を介して相対回転可能とされた外方部材101および内方部材102のうち、回転側部材となる内方部材102のインボード側端部にこれと同心に環状の磁気エンコーダ111を取付けると共に、前記外方部材101および内方部材102のうち固定側部材となる外方部材101のインボード側端部に、前記磁気エンコーダ111の外方側でこの磁気エンコーダ111と対峙する保護カバー113を取付けたものが提案されている(例えば特許文献1)。磁気エンコーダ111の磁極を検出するセンサ112は、前記保護カバー113を挟んで、磁気エンコーダ111と所定のエアギャップを介して対峙させ、これにより内方部材102の回転数を検出する。
このように、磁気エンコーダ111の外方側に保護カバー113を配置することにより、磁気エンコーダ111とセンサ112との間へ石などの異物が噛み込み難くなり、また噛み込みが生じても磁気エンコーダ111が損傷するのを防止できる。
As this type of wheel bearing with a rotation detection device, as shown in FIG. 6, among the outer member 101 and the inner member 102 that are relatively rotatable via a rolling element (not shown), An annular magnetic encoder 111 is attached concentrically to the inboard side end of the inner member 102 and the inboard side of the outer member 101 serving as a fixed member of the outer member 101 and the inner member 102. A device in which a protective cover 113 facing the magnetic encoder 111 on the outer side of the magnetic encoder 111 is attached to the end is proposed (for example, Patent Document 1). A sensor 112 for detecting the magnetic pole of the magnetic encoder 111 is opposed to the magnetic encoder 111 via a predetermined air gap with the protective cover 113 interposed therebetween, thereby detecting the rotational speed of the inner member 102.
As described above, by disposing the protective cover 113 on the outer side of the magnetic encoder 111, it is difficult for foreign matters such as stones to be caught between the magnetic encoder 111 and the sensor 112, and even if the biting occurs, the magnetic encoder 111 can be prevented from being damaged.

特開2002−267680号公報JP 2002-267680 A

しかし、上記構成の場合、磁気エンコーダとセンサの間に保護カバーが介在するため、磁気エンコーダの表面からセンサまでの距離(エアギャップ)が増大してしまい、センサで検出する磁気エンコーダの磁束密度が低下するという問題がある。検出する磁束密度の低下を避けるためには、前記エアギャップを狭くするか、磁気エンコーダの磁束密度を大きくすれば良いが、エアギャップを狭くするには限界がある。   However, in the case of the above configuration, since the protective cover is interposed between the magnetic encoder and the sensor, the distance (air gap) from the surface of the magnetic encoder to the sensor increases, and the magnetic flux density of the magnetic encoder detected by the sensor increases. There is a problem of lowering. In order to avoid a decrease in the detected magnetic flux density, the air gap may be narrowed or the magnetic encoder magnetic flux density may be increased, but there is a limit to narrowing the air gap.

磁気エンコーダの磁束密度を大きくするものとして、以下の対策が考えられる。
(1)磁気エンコーダの磁極の材料である磁性体粉(フェライト磁石)の量を増やす。 (2)磁気エンコーダの磁極の材料である磁性体粉を希土類磁石に変更する。
(3)磁気エンコーダのサイズを大きくする。
(4)磁気エンコーダの磁極数を減らす。
このうち、(1)〜(3)の対策は、コストアップや軸受サイズの大型化等を招くため実現が難しい。
磁極数を減らす(4)の対策では、着磁される1磁極の周方向幅(面積)が広がるので、着磁強度が大きくなる。例えば、磁極対(N磁極とS磁極の対)の数が48(N磁極が48,S磁極が48)のものを24に半減した場合、着磁強度は約2.2倍に向上する。これにより、エアギャップが広がっても、センサで検出する磁束密度は低下しない。ただし、このように磁極数を減らした場合、車輪1回転で得られる出力パルス数が減少してしまうため、車輪回転速度の検出精度が悪化してしまうという新たな問題が発生する。
The following countermeasures can be considered to increase the magnetic flux density of the magnetic encoder.
(1) Increasing the amount of magnetic powder (ferrite magnet), which is a magnetic pole material of a magnetic encoder. (2) The magnetic powder that is the material of the magnetic encoder magnetic pole is changed to a rare earth magnet.
(3) Increase the size of the magnetic encoder.
(4) Reduce the number of magnetic encoder magnetic poles.
Among these, the countermeasures (1) to (3) are difficult to realize because they increase costs and increase the bearing size.
In the measure (4) for reducing the number of magnetic poles, the circumferential width (area) of one magnetic pole to be magnetized is increased, so that the magnetization intensity is increased. For example, if the number of magnetic pole pairs (N magnetic pole and S magnetic pole pairs) is 48 (N magnetic pole is 48, S magnetic pole is 48), the magnetization strength is improved by about 2.2 times. Thereby, even if an air gap spreads, the magnetic flux density detected with a sensor does not fall. However, when the number of magnetic poles is reduced in this way, the number of output pulses obtained by one rotation of the wheel is reduced, which causes a new problem that the detection accuracy of the wheel rotation speed is deteriorated.

この発明の目的は、異物の噛み込みによる磁気エンコーダの損傷を防止でき、かつ十分な回転検出精度が得られる回転検出装置付き車輪用軸受を提供することである。   An object of the present invention is to provide a wheel bearing with a rotation detection device that can prevent damage to a magnetic encoder due to foreign object biting and can obtain sufficient rotation detection accuracy.

この発明の回転検出装置付き車輪用軸受は、転動体を介して相対回転可能とされた外方部材と内方部材とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの回転側部材の軸方向一端部に、円周方向に並ぶ複数の磁極対が等配された環状の磁気エンコーダを回転側部材と同心に設けると共に、この磁気エンコーダに対峙して磁気エンコーダの前記磁極対を検出するセンサを設け、前記磁気エンコーダとセンサの間に介在して磁気エンコーダを保護する保護カバーを設けた回転検出装置付き車輪用軸受であって、前記センサの出力から前記磁極対の位相を逓倍する逓倍手段を設けたことを特徴とする。
この構成によると、磁気エンコーダとセンサとの間に介在して磁気エンコーダを保護する保護カバーを設けているので、磁気エンコーダとセンサとの間に異物が噛み込み難く、また噛み込みが生じても磁気エンコーダが損傷するのを防止できる。また、回転検出装置では、逓倍手段により、センサの出力から磁気エンコーダの磁極対の位相を逓倍するようにしている。このため、磁気エンコーダとセンサとの間に介在する保護カバーのために、磁気エンコーダとセンサとの間のエアギャップが大きくなって、センサで検出する磁気エンコーダの磁束密度が低下することを、磁気エンコーダの磁極対数を減らすことで防止しても、十分な回転検出精度を得ることができる。これにより、異物の噛み込みによる磁気エンコーダの損傷を防止でき、かつ十分な回転検出精度を得ることができる。
The wheel bearing with a rotation detection device of the present invention includes an outer member and an inner member that are rotatable relative to each other via a rolling element, and in the wheel bearing that rotatably supports the wheel with respect to the vehicle body, An annular magnetic encoder in which a plurality of magnetic pole pairs arranged in the circumferential direction are equally arranged at one axial end portion of the rotation side member of the outer member and the inner member is provided concentrically with the rotation side member. A wheel bearing with a rotation detection device provided with a sensor for detecting the magnetic pole pair of the magnetic encoder opposite to the magnetic encoder, and provided with a protective cover interposed between the magnetic encoder and the sensor to protect the magnetic encoder. A multiplication means for multiplying the phase of the magnetic pole pair from the output of the sensor is provided.
According to this configuration, since the protective cover is provided between the magnetic encoder and the sensor to protect the magnetic encoder, it is difficult for foreign matter to be caught between the magnetic encoder and the sensor, and even if the biting occurs. It is possible to prevent the magnetic encoder from being damaged. In the rotation detector, the phase of the magnetic pole pair of the magnetic encoder is multiplied from the output of the sensor by the multiplication means. For this reason, the protective cover interposed between the magnetic encoder and the sensor increases the air gap between the magnetic encoder and the sensor, and the magnetic flux density of the magnetic encoder detected by the sensor decreases. Even if it is prevented by reducing the number of magnetic pole pairs of the encoder, sufficient rotation detection accuracy can be obtained. As a result, damage to the magnetic encoder due to foreign matter biting can be prevented, and sufficient rotation detection accuracy can be obtained.

この発明において、前記磁気エンコーダが設けられる回転側部材の軸方向一端部が、車輪用軸受のインボード側端部であっても良い。   In this invention, the axial direction one end part of the rotation side member provided with the said magnetic encoder may be an inboard side edge part of the bearing for wheels.

この発明において、前記保護カバーを、上記外方部材および内方部材のうちの固定側部材に設けても良い。   In the present invention, the protective cover may be provided on a fixed member of the outer member and the inner member.

この発明において、前記磁気エンコーダの磁極対数を24とし、前記逓倍手段の逓倍数を2倍としても良い。この場合、磁極の磁束密度は磁極対数が48の場合の約2.2倍となるので、保護カバーのためにセンサで検出する磁束密度が低下することはなく、しかも磁極対数の半減による検出精度の低下は逓倍手段の逓倍数を2倍としていることで防止できる。   In the present invention, the number of magnetic pole pairs of the magnetic encoder may be 24, and the multiplication number of the multiplication means may be doubled. In this case, the magnetic flux density of the magnetic pole is about 2.2 times that when the number of magnetic pole pairs is 48. Therefore, the magnetic flux density detected by the sensor for the protective cover does not decrease, and the detection accuracy is reduced by half the number of magnetic pole pairs. Can be prevented by doubling the multiplication number of the multiplication means.

この発明において、前記逓倍手段の出力が入力されて、またはこの逓倍手段の出力および前記センサの検出出力が入力されて定められた倍率のパルスを出力するパルス出力手段を設けても良い。   In the present invention, there may be provided pulse output means for outputting a pulse having a predetermined magnification by inputting the output of the multiplication means or inputting the output of the multiplication means and the detection output of the sensor.

前記パルス出力手段は、出力するパルスを、全て前記逓倍手段の出力から生成するものであっても良い。   The pulse output means may generate all the pulses to be output from the output of the multiplication means.

また、前記パルス出力手段の出力するパルスの逓倍数を2としても良い。   Further, the multiplication factor of the pulse output from the pulse output means may be set to 2.

この発明において、前記パルス出力手段が出力するパルスの倍率設定を外部から変更する倍率変更手段を設けても良い。ここで言う「外部」は、パルス出力手段に対する外部であり、回転検出装置に対する外部、例えば車両に搭載された電気制御ユニット等に設けられた手段からパルス出力手段のパルスの倍率設定を変更可能するようにしても良い。これにより、例えば使用中に車両走行速度の変化等による回転速度の変化に対応した倍率のパルスを出力させることができる。   In the present invention, a magnification changing means for changing the magnification setting of the pulse output from the pulse output means from the outside may be provided. Here, “external” is external to the pulse output means, and the pulse magnification setting of the pulse output means can be changed from the external to the rotation detection device, for example, means provided in an electric control unit mounted on the vehicle. You may do it. Thereby, for example, a pulse having a magnification corresponding to a change in the rotational speed due to a change in the vehicle traveling speed or the like can be output during use.

この発明において、前記センサが、前記磁気エンコーダの磁極対の並び方向に沿ってセンサ素子が並ぶラインセンサで構成され、演算により2相の正弦波状信号を生成して、1磁極内の位相を検出するものであっても良い。この構成の場合、磁極パターンの歪みやノイズの影響が低減されるので、高い精度で磁気エンコーダの位相を検出することが可能である。   In this invention, the sensor is composed of a line sensor in which sensor elements are arranged along the arrangement direction of the magnetic pole pairs of the magnetic encoder, and generates a two-phase sinusoidal signal by calculation to detect a phase in one magnetic pole. It may be what you do. In the case of this configuration, since the influence of distortion and noise of the magnetic pole pattern is reduced, the phase of the magnetic encoder can be detected with high accuracy.

この発明において、前記パルス出力手段の出力する少なくとも1種類の倍率のパルスを、互いに位相が90度異なるA相,B相の位相差信号としても良い。
このように、同じ倍率の回転パルス信号として、互いに位相が90度異なるA相,B相の位相差信号を出力することにより、回転方向の検出が可能となり車両の前進・後退を検出することができる。
In the present invention, the pulses of at least one type of magnification output from the pulse output means may be A phase and B phase difference signals having phases different from each other by 90 degrees.
As described above, by outputting the phase difference signals of the A phase and the B phase that are 90 degrees different from each other as the rotation pulse signal having the same magnification, it is possible to detect the rotation direction and to detect the forward / reverse of the vehicle. it can.

この発明において、前記センサと、前記逓倍手段と、前記パルス出力手段とを、共通の集積回路に集積して一体化しても良い。この集積回路は、ICチップである。これにより、車輪用軸受への回転検出装置の搭載をコンパクトに行なえ、軽量化も可能となる。   In the present invention, the sensor, the multiplication unit, and the pulse output unit may be integrated and integrated in a common integrated circuit. This integrated circuit is an IC chip. As a result, the rotation detection device can be compactly mounted on the wheel bearing, and the weight can be reduced.

この発明の回転検出装置付き車輪用軸受は、転動体を介して相対回転可能とされた外方部材と内方部材とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの回転側部材の軸方向一端部に、円周方向に並ぶ複数の磁極対が等配された環状の磁気エンコーダを回転側部材と同心に設けると共に、この磁気エンコーダに対峙して磁気エンコーダの前記磁極対を検出するセンサを設け、前記磁気エンコーダとセンサの間に介在して磁気エンコーダを保護する保護カバーを設けた回転検出装置付き車輪用軸受であって、前記センサの出力から前記磁極対の位相を逓倍する逓倍手段を設けたため、異物の噛み込みによる磁気エンコーダの損傷を防止でき、かつ十分な回転検出精度を得ることができる。   The wheel bearing with a rotation detection device of the present invention includes an outer member and an inner member that are rotatable relative to each other via a rolling element, and in the wheel bearing that rotatably supports the wheel with respect to the vehicle body, An annular magnetic encoder in which a plurality of magnetic pole pairs arranged in the circumferential direction are equally arranged at one axial end portion of the rotation side member of the outer member and the inner member is provided concentrically with the rotation side member. A wheel bearing with a rotation detection device provided with a sensor for detecting the magnetic pole pair of the magnetic encoder opposite to the magnetic encoder, and provided with a protective cover interposed between the magnetic encoder and the sensor to protect the magnetic encoder. Since the multiplication means for multiplying the phase of the magnetic pole pair from the output of the sensor is provided, it is possible to prevent damage to the magnetic encoder due to foreign matter biting and to obtain sufficient rotation detection accuracy. .

この発明の一実施形態にかかる回転検出装置付き車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a rotation detector concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同車輪用軸受の部分拡大断面図である。It is a partial expanded sectional view of the wheel bearing. (A)は磁極対数を48とした磁気エンコーダの半部正面図、(B)は磁極対数を24とした磁気エンコーダの半部正面図である。(A) is a half front view of the magnetic encoder with 48 magnetic pole pairs, and (B) is a half front view of the magnetic encoder with 24 magnetic pole pairs. 回転検出装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a rotation detection apparatus. 同回転検出装置における磁気センサの一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the magnetic sensor in the rotation detection apparatus. 従来例の部分拡大断面図である。It is a partial expanded sectional view of a prior art example.

この発明の一実施形態を図1ないし図5と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、従動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for supporting a driven wheel. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

この回転検出装置付き車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間におけるアウトボード側端はシール7によって密封されている。   As shown in a sectional view in FIG. 1, the bearing for the wheel bearing with the rotation detecting device is opposed to the outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and the respective rolling surfaces 3. The inner member 2 has a rolling surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. The outboard side end in the bearing space between the outer member 1 and the inner member 2 is sealed by a seal 7.

外方部材1は固定側部材となるものであって、車体の懸架装置におけるナックル(図示せず)に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックルのボルト挿通孔に挿通したナックルボルト(いずれも図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックルに取付けられる。 内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブフランジ9aには、周方向複数箇所にハブボルト11の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。   The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle (not shown) in the suspension device of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with screw holes 14 for attaching knuckles at a plurality of locations in the circumferential direction, and knuckle bolts (both not shown) inserted into the bolt insertion holes of the knuckle from the inboard side are screwed into the screw holes 14. Thus, the vehicle body mounting flange 1a is attached to the knuckle. The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. The hub flange 9a is provided with press-fitting holes 15 for the hub bolts 11 at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

回転側部材である内方部材2のインボード側端部の外周には、環状で断面L字状の磁気エンコーダ22が嵌合されている。磁気エンコーダ22は、図2に拡大して示すように、断面L字状の芯金29の円筒部29aの一端から外径側に延びる立板部29bのインボード側を向く側面の円周方向に、複数の磁極対22c(図4)を等配位置に並べて着磁させてなり、芯金29の円筒部29aを内方部材2のインボード側端部の外周に嵌合させることで取付けられる。この磁気エンコーダ22の磁極N,Sを検出する磁気センサ23が、磁気エンコーダ22の磁極面(つまり芯金29の立板部29b)と軸方向に所定のエアギャップGを介して対峙するように、磁気エンコーダ22の取付け位置よりもインボード側に配置される。すなわち、ここでは、磁気エンコーダ22はアキシアルタイプとされる。磁気センサ23は、磁気エンコーダ22の磁極N,Sを検出することで内方部材2の回転を検出する。ただし、磁気エンコーダ22はこのようなアキシアルタイプのものに限らず、周面に磁極対を等配位置に並べたラジアルタイプのものであっても良い。この場合、磁気センサ23は磁気エンコーダ22の磁極面に対して所定のエアギャップを介して径方向に対峙するように、内方部材2の外径側に配置される。   An annular magnetic encoder 22 having an L-shaped cross section is fitted to the outer periphery of the end portion on the inboard side of the inner member 2 that is a rotation side member. As shown in an enlarged view in FIG. 2, the magnetic encoder 22 has a circumferential direction of a side surface facing the inboard side of the upright plate portion 29 b extending from one end of the cylindrical portion 29 a of the L-shaped cored bar 29 a to the outer diameter side. In addition, a plurality of magnetic pole pairs 22c (FIG. 4) are magnetized by arranging them at equal positions, and the cylindrical portion 29a of the core metal 29 is fitted to the outer periphery of the inboard side end portion of the inner member 2. It is done. The magnetic sensor 23 that detects the magnetic poles N and S of the magnetic encoder 22 faces the magnetic pole surface of the magnetic encoder 22 (that is, the standing plate portion 29b of the core metal 29) in the axial direction via a predetermined air gap G. The magnetic encoder 22 is disposed on the inboard side of the mounting position. That is, here, the magnetic encoder 22 is an axial type. The magnetic sensor 23 detects the rotation of the inner member 2 by detecting the magnetic poles N and S of the magnetic encoder 22. However, the magnetic encoder 22 is not limited to such an axial type, but may be a radial type in which magnetic pole pairs are arranged at equal positions on the circumferential surface. In this case, the magnetic sensor 23 is disposed on the outer diameter side of the inner member 2 so as to face the magnetic pole surface of the magnetic encoder 22 in the radial direction via a predetermined air gap.

図4に示すように、前記磁気エンコーダ22および磁気センサ23と、磁気センサ23の出力から磁気エンコーダ22の磁極対22c内の位相を逓倍数Nに逓倍して逓倍パルスbを発生する逓倍手段24と、この逓倍手段24から生成される逓倍パルスbに基づき定められた倍率の回転パルスを出力するパルス出力手段25とで、車輪用軸受の内方部材2の回転つまり車輪の回転を検出する回転検出装置21が構成される。   As shown in FIG. 4, the magnetic encoder 22 and the magnetic sensor 23, and a multiplication means 24 for generating a multiplied pulse b by multiplying the phase in the magnetic pole pair 22c of the magnetic encoder 22 by a multiplication number N from the output of the magnetic sensor 23. And rotation for detecting rotation of the inner member 2 of the wheel bearing, that is, rotation of the wheel, by the pulse output means 25 for outputting a rotation pulse having a magnification determined based on the multiplication pulse b generated from the multiplication means 24. A detection device 21 is configured.

磁気エンコーダ22の軸受外方側、つまり磁気エンコーダ22と磁気センサ23との間には、磁気エンコーダ22の磁極面と対峙する非磁性体製の保護カバー18が配置されている。非磁性体製の保護カバー18は、例えば非磁性のステンレス等の金属板や、樹脂材であっても良い。磁気センサ23は、この保護カバー18を介して磁気エンコーダ22の磁極を検出することになる。保護カバー18は、図2のように円板状の底板部18aとその外周の円筒状部18bとを有する有底のキャップ形状に形成され、円筒状部18bを外方部材1のインボード側端部の内径面に圧入状態に嵌合することで、外方部材1に取付けられている。   A protective cover 18 made of a non-magnetic material facing the magnetic pole surface of the magnetic encoder 22 is disposed on the bearing outer side of the magnetic encoder 22, that is, between the magnetic encoder 22 and the magnetic sensor 23. The protective cover 18 made of nonmagnetic material may be a metal plate such as nonmagnetic stainless steel or a resin material, for example. The magnetic sensor 23 detects the magnetic pole of the magnetic encoder 22 through the protective cover 18. As shown in FIG. 2, the protective cover 18 is formed into a bottomed cap shape having a disk-like bottom plate portion 18 a and a cylindrical portion 18 b on the outer periphery thereof, and the cylindrical portion 18 b is formed on the inboard side of the outer member 1. The outer member 1 is attached by being fitted into the inner diameter surface of the end portion in a press-fitted state.

磁気センサ23は、ここでは図5(B)に示すようなラインセンサ23A,23Bと演算増幅部30とでなる。ラインセンサ23A,23Bは、磁気エンコーダ22の磁極の並び方向に沿って複数の磁気センサ素子23aを等配して並べて構成される。演算増幅部30は、複数の加算回路31,32,33,34とインバータ35とでなる。なお、図5(A)は、磁気エンコーダ22の1磁極の区間を磁界強度に換算して波形図で示したものである。この場合、第1のラインセンサ23Aは、図5(A)における180度の位相区間のうち90度の位相区間に対応付けて配置し、第2のラインセンサ23Bは残りの90度の位相区間に対応付けて配置する。このような配置構成により、第1のラインセンサ23Aの検出信号を加算回路31で加算した信号S1と、第2のラインセンサ23Bの検出信号を加算回路32で加算した信号S2とを別の加算回路33で加算することで、図5(C)に示すような磁界信号に応じたsin 信号を得る。また、信号S1と、インバータ35を介した信号S2とをさらに別の加算回路34で加算することで、図5(C)に示すような磁界信号に応じたcos 信号を得る。このようにして得られた2相の出力信号から、磁極内における位置を検出することができる。   Here, the magnetic sensor 23 includes line sensors 23A and 23B and an operational amplifier 30 as shown in FIG. The line sensors 23 </ b> A and 23 </ b> B are configured by arranging a plurality of magnetic sensor elements 23 a so as to be aligned along the arrangement direction of the magnetic poles of the magnetic encoder 22. The operational amplifier 30 includes a plurality of adder circuits 31, 32, 33, 34 and an inverter 35. FIG. 5A is a waveform diagram in which one magnetic pole section of the magnetic encoder 22 is converted into a magnetic field strength. In this case, the first line sensor 23A is arranged in association with the 90-degree phase section of the 180-degree phase section in FIG. 5A, and the second line sensor 23B is the remaining 90-degree phase section. It is arranged in association with. With such an arrangement, the signal S1 obtained by adding the detection signal of the first line sensor 23A by the addition circuit 31 and the signal S2 obtained by adding the detection signal of the second line sensor 23B by the addition circuit 32 are added separately. By adding in the circuit 33, a sin signal corresponding to the magnetic field signal as shown in FIG. 5C is obtained. Further, the signal S1 and the signal S2 via the inverter 35 are added by another adding circuit 34 to obtain a cos signal corresponding to the magnetic field signal as shown in FIG. The position in the magnetic pole can be detected from the two-phase output signal thus obtained.

磁気センサ23をこのようにラインセンサ23A,23Bで構成した場合、磁界パターンの歪みやノイズの影響が低減されるので、高い精度で磁気エンコーダ22の位相を検出することが可能である。   When the magnetic sensor 23 is configured by the line sensors 23A and 23B as described above, the influence of the distortion and noise of the magnetic field pattern is reduced, so that the phase of the magnetic encoder 22 can be detected with high accuracy.

なお、このほかの磁気センサ23の例として、磁気エンコーダ22の1磁極対のピッチλを1周期とするとき、90度位相差(λ/4)となるように磁極の並び方向に離して配置したホール素子などの2つの磁気センサ素子を用い、これら2つの磁気センサ素子により得られる2相の信号(sinφ,cosφ) から磁極内位相 (φ=tan-1(sinφ/cos φ))を逓倍して算出するものとしても良い。   As another example of the magnetic sensor 23, when the pitch λ of one magnetic pole pair of the magnetic encoder 22 is one cycle, the magnetic sensors 23 are arranged apart from each other in the arrangement direction of the magnetic poles so that the phase difference is 90 degrees (λ / 4). The magnetic pole phase (φ = tan-1 (sinφ / cos φ)) is multiplied from the two-phase signals (sinφ, cosφ) obtained by these two magnetic sensor elements. It is good also as what calculates.

図4において、パルス出力手段25は、前記逓倍手段24から入力されて来る磁極対22c内の位相データである逓倍パルスbから定められた倍率の回転パルスを出力する手段である。逓倍手段24での逓倍数Nが例えば2倍であると、パルス出力手段25からは逓倍数Nそのままの倍率(×2)の回転パルスが出力される。つまり、磁気エンコーダ22の1磁極対22c内の位置(位相)を2個の回転パルスで検出する。この場合、磁気エンコーダ22の磁極対数を24(その例を図3(B)に示す)とすると、パルス出力手段25からは48個の回転パルスが出力される。この例では、磁極の磁束密度は磁極対数が48の場合(その例を図3(A)に示す)の約2.2倍となるので、保護カバー18のために磁気センサ23で検出する磁束密度が低下することはなく、しかも磁極対数の半減による検出精度の低下は逓倍手段24の逓倍数Nを2倍としていることで防止できる。   In FIG. 4, a pulse output means 25 is a means for outputting a rotation pulse having a magnification determined from a multiplication pulse b which is phase data in the magnetic pole pair 22c inputted from the multiplication means 24. When the multiplication number N in the multiplication means 24 is, for example, twice, the pulse output means 25 outputs a rotation pulse having a multiplication factor (× 2) as it is. That is, the position (phase) within the magnetic pole pair 22c of the magnetic encoder 22 is detected by two rotation pulses. In this case, assuming that the number of magnetic pole pairs of the magnetic encoder 22 is 24 (an example is shown in FIG. 3B), the pulse output means 25 outputs 48 rotation pulses. In this example, the magnetic flux density of the magnetic poles is about 2.2 times that when the number of magnetic pole pairs is 48 (an example is shown in FIG. 3A), and therefore the magnetic flux detected by the magnetic sensor 23 for the protective cover 18. The density does not decrease, and a decrease in detection accuracy due to halving of the number of magnetic pole pairs can be prevented by doubling the multiplication number N of the multiplication means 24.

なお、パルス出力手段25は、逓倍手段24の出力のほか、磁気センサ22の検出出力も入力することで、定められた倍率の回転パルスを出力するものとしても良い。また、パルス出力手段25から互いに倍率の異なる複数種類の回転パルスを出力するようにしても良い。また、同じ倍率の回転パルス信号として、互いに位相が90度異なるA相の回転パルスとB相の回転パルスとを、パルス出力手段25から個別に出力するようにしても良い。このように、同じ倍率の回転パルス信号として、互いに位相が90度異なるA相,B相の位相差信号を出力することで回転方向の検出が可能となり、車両の前進・後退を検出することができる。   The pulse output means 25 may output a rotation pulse having a predetermined magnification by inputting the detection output of the magnetic sensor 22 in addition to the output of the multiplication means 24. Further, a plurality of types of rotation pulses having different magnifications may be output from the pulse output means 25. Alternatively, the A-phase rotation pulse and the B-phase rotation pulse whose phases are different from each other by 90 degrees may be individually output from the pulse output means 25 as rotation pulse signals having the same magnification. As described above, the rotation direction can be detected by outputting the phase difference signals of the A phase and the B phase, which are 90 degrees different from each other as the rotation pulse signal having the same magnification, and the vehicle can be detected as moving forward or backward. it can.

ここでは、前記パルス出力手段25において出力される回転パルスの倍率は2倍に固定されているが、図4に仮想線で示すように、倍率変更手段27を外部に設け、この倍率変更手段27からの指令により出力される回転パルスの倍率を変更できるようにしても良い。これにより、例えば使用中に車両走行速度の変化等による回転速度の変化に対応した倍率の回転パルスを出力させることができる。   Here, the magnification of the rotation pulse output from the pulse output means 25 is fixed to 2 times. However, as indicated by a virtual line in FIG. It is also possible to change the magnification of the rotation pulse output by the command from Thereby, for example, a rotation pulse with a magnification corresponding to a change in the rotation speed due to a change in the vehicle running speed or the like can be output during use.

前記磁気センサ23、逓倍手段24、およびパルス出力手段25は、共通の集積回路28に集積して一体化され、回転パルスが出力される出力端子が設けられている。集積回路28はICチップからなる。これにより、車輪用軸受への回転検出装置21の搭載をコンパクトに行なえ、軽量化も可能となる。   The magnetic sensor 23, the multiplication unit 24, and the pulse output unit 25 are integrated and integrated in a common integrated circuit 28, and an output terminal from which a rotation pulse is output is provided. The integrated circuit 28 consists of an IC chip. As a result, the rotation detector 21 can be mounted compactly on the wheel bearing, and the weight can be reduced.

この回転検出装置付き車輪用軸受によると、磁気エンコーダ22と磁気センサ23との間に介在して磁気エンコーダ22を保護する保護カバー18を設けているので、磁気エンコーダ22と磁気センサ23との間に異物が噛み込み難く、また噛み込みが生じても磁気エンコーダ22が損傷するのを防止できる。また、回転検出装置1では、逓倍手段24により、磁気センサ23の出力から磁気エンコーダ22の磁極対22c内の位相を逓倍した高倍率の逓倍パルスbを生成し、その逓倍パルスbに応じてパルス出力手段25から高倍率の回転パルスを出力するようにしている。このため、磁気エンコーダ22と磁気センサ23との間に介在する保護カバー18のために、磁気エンコーダ22と磁気センサ23との間のエアギャップGが大きくなって、磁気センサ23で検出する磁気エンコーダ22の磁束密度が低下することを、磁気エンコーダ22の磁極対数を減らすことで防止しても、十分な回転検出精度を得ることができる。   According to this wheel bearing with a rotation detection device, the protective cover 18 is provided between the magnetic encoder 22 and the magnetic sensor 23 so as to protect the magnetic encoder 22. It is difficult for foreign matter to bite into the magnetic encoder 22, and even if the biting occurs, the magnetic encoder 22 can be prevented from being damaged. Further, in the rotation detection device 1, the multiplication unit 24 generates a high-magnification multiplied pulse b obtained by multiplying the phase in the magnetic pole pair 22 c of the magnetic encoder 22 from the output of the magnetic sensor 23, and a pulse corresponding to the multiplied pulse b. A high-magnification rotation pulse is output from the output means 25. For this reason, because of the protective cover 18 interposed between the magnetic encoder 22 and the magnetic sensor 23, the air gap G between the magnetic encoder 22 and the magnetic sensor 23 becomes large, and the magnetic encoder detected by the magnetic sensor 23 is detected. Even if the decrease in the magnetic flux density of 22 is prevented by reducing the number of magnetic pole pairs of the magnetic encoder 22, sufficient rotation detection accuracy can be obtained.

なお、上記した実施形態では、磁気エンコーダ22を車輪用軸受のインボード側に設けた場合につき説明したが、この発明は、車輪用軸受のアウトボード側に磁気エンコーダ22を設けた場合にも同様に適用することができる。
また、上記した実施形態では、内方部材2が回転側部材である場合につき説明したが、この発明は、外方部材が回転側部材である車輪用軸受にも適用することができ、その場合、磁気エンコーダ22は外方部材に設ける。
また、上記した実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、この回転検出装置付き車輪用軸受は、駆動輪用の車輪用軸受にも適用でき、さらに各世代型のテーパころタイプの車輪用軸受にも適用することができる。
In the above-described embodiment, the case where the magnetic encoder 22 is provided on the inboard side of the wheel bearing has been described. However, the present invention also applies to the case where the magnetic encoder 22 is provided on the outboard side of the wheel bearing. Can be applied to.
In the above-described embodiment, the case where the inner member 2 is a rotation side member has been described. However, the present invention can also be applied to a wheel bearing in which the outer member is a rotation side member. The magnetic encoder 22 is provided on the outer member.
In the above-described embodiment, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention is for a first or second generation type wheel in which the bearing portion and the hub are independent parts. The present invention can also be applied to a bearing or a fourth-generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint. Moreover, this wheel bearing with a rotation detection device can be applied to a wheel bearing for a driving wheel, and can also be applied to each generation type tapered roller type wheel bearing.

1…外方部材
2…内方部材
5…転動体
18…保護カバー
21…回転検出装置
22…磁気エンコーダ
22c…磁極対
23…磁気センサ
23A,23B…ラインセンサ
24…逓倍手段
25…パルス出力手段
27…倍率変更手段
28…集積回路
DESCRIPTION OF SYMBOLS 1 ... Outer member 2 ... Inner member 5 ... Rolling body 18 ... Protective cover 21 ... Rotation detection apparatus 22 ... Magnetic encoder 22c ... Magnetic pole pair 23 ... Magnetic sensor 23A, 23B ... Line sensor 24 ... Multiplication means 25 ... Pulse output means 27: Magnification changing means 28 ... Integrated circuit

Claims (11)

転動体を介して相対回転可能とされた外方部材と内方部材とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの回転側部材の軸方向一端部に、円周方向に並ぶ複数の磁極対が等配された環状の磁気エンコーダを回転側部材と同心に設けると共に、この磁気エンコーダに対峙して磁気エンコーダの前記磁極対を検出するセンサを設け、前記磁気エンコーダとセンサの間に介在して磁気エンコーダを保護する保護カバーを設けた回転検出装置付き車輪用軸受であって、
前記センサの出力から前記磁極対の位相を逓倍する逓倍手段を設けたことを特徴とする回転検出装置付き車輪用軸受。
In a wheel bearing that includes an outer member and an inner member that are rotatable relative to each other via a rolling element, and that rotatably supports the wheel with respect to the vehicle body,
An annular magnetic encoder in which a plurality of magnetic pole pairs arranged in the circumferential direction are equally arranged at one axial end portion of the rotation side member of the outer member and the inner member is provided concentrically with the rotation side member. A wheel bearing with a rotation detection device provided with a sensor for detecting the magnetic pole pair of the magnetic encoder opposite to the magnetic encoder, and provided with a protective cover interposed between the magnetic encoder and the sensor to protect the magnetic encoder. ,
A wheel bearing with a rotation detection device, characterized in that a multiplication means for multiplying the phase of the magnetic pole pair from the output of the sensor is provided.
請求項1において、前記磁気エンコーダが設けられる回転側部材の軸方向一端部が、車輪用軸受のインボード側端部である回転検出装置付き車輪用軸受。   The wheel bearing with a rotation detecting device according to claim 1, wherein one end portion in the axial direction of the rotation side member provided with the magnetic encoder is an inboard side end portion of the wheel bearing. 請求項1または請求項2において、前記保護カバーを、上記外方部材および内方部材のうちの固定側部材に設けた回転検出装置付き車輪用軸受。   The wheel bearing with a rotation detector according to claim 1 or 2, wherein the protective cover is provided on a fixed side member of the outer member and the inner member. 請求項1ないし請求項3のいずれか1項において、前記磁気エンコーダの磁極対数を24とし、前記逓倍手段の逓倍数を2倍とした回転検出装置付き車輪用軸受。   The wheel bearing with a rotation detector according to any one of claims 1 to 3, wherein the number of magnetic pole pairs of the magnetic encoder is 24 and the multiplication number of the multiplication means is twice. 請求項1ないし請求項4のいずれか1項において、前記逓倍手段の出力が入力されて、またはこの逓倍手段の出力および前記センサの検出出力が入力されて定められた倍率のパルスを出力するパルス出力手段を設けた回転検出装置付き車輪用軸受。   5. The pulse according to claim 1, wherein an output of the multiplying unit is input, or an output of the multiplying unit and a detection output of the sensor are input to output a pulse having a predetermined magnification. Wheel bearing with rotation detector provided with output means. 請求項5において、前記パルス出力手段は、出力するパルスを、全て前記逓倍手段の出力から生成するものである回転検出装置付き車輪用軸受。   6. The wheel bearing with rotation detection device according to claim 5, wherein the pulse output means generates all the pulses to be output from the output of the multiplication means. 請求項6において、前記パルス出力手段の出力するパルスの逓倍数を2とした回転検出装置付き車輪用軸受。   The wheel bearing bearing with a rotation detecting device according to claim 6, wherein a multiplication factor of a pulse output from said pulse output means is 2. 請求項5ないし請求項7のいずれか1項において、前記パルス出力手段が出力するパルスの倍率設定を外部から変更する倍率変更手段を設けた回転検出装置付き車輪用軸受。   The wheel bearing with a rotation detecting device according to any one of claims 5 to 7, further comprising a magnification changing means for changing a magnification setting of a pulse output from the pulse output means from outside. 請求項1ないし請求項8のいずれか1項において、前記センサが、前記磁気エンコーダの磁極対の並び方向に沿ってセンサ素子が並ぶラインセンサで構成され、演算により2相の正弦波状信号を生成して、1磁極内の位相を検出するものである回転検出装置付き車輪用軸受。   9. The sensor according to claim 1, wherein the sensor is configured by a line sensor in which sensor elements are arranged along an arrangement direction of magnetic pole pairs of the magnetic encoder, and generates a two-phase sinusoidal signal by calculation. A wheel bearing with a rotation detection device that detects a phase in one magnetic pole. 請求項5ないし請求項9のいずれか1項において、前記パルス出力手段の出力する少なくとも1種類の倍率のパルスを、互いに位相が90度異なるA相,B相の位相差信号とした回転検出装置付き車輪用軸受。   10. The rotation detection device according to claim 5, wherein at least one type of magnification pulse output from the pulse output means is used as an A-phase and B-phase phase difference signal having a phase difference of 90 degrees. Bearings with wheels. 請求項5ないし請求項10のいずれか1項において、前記センサと、前記逓倍手段と、前記パルス出力手段とを、共通の集積回路に集積して一体化した回転検出装置付き車輪用軸受。   11. The wheel bearing with a rotation detecting device according to claim 5, wherein the sensor, the multiplying unit, and the pulse output unit are integrated and integrated in a common integrated circuit.
JP2010272272A 2010-12-07 2010-12-07 Wheel bearing with rotation detection device Pending JP2012122789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272272A JP2012122789A (en) 2010-12-07 2010-12-07 Wheel bearing with rotation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272272A JP2012122789A (en) 2010-12-07 2010-12-07 Wheel bearing with rotation detection device

Publications (1)

Publication Number Publication Date
JP2012122789A true JP2012122789A (en) 2012-06-28

Family

ID=46504381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272272A Pending JP2012122789A (en) 2010-12-07 2010-12-07 Wheel bearing with rotation detection device

Country Status (1)

Country Link
JP (1) JP2012122789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016030948A1 (en) * 2014-08-25 2017-06-22 株式会社エスジー Rotation detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016030948A1 (en) * 2014-08-25 2017-06-22 株式会社エスジー Rotation detector

Similar Documents

Publication Publication Date Title
JP5081553B2 (en) Rotation detection device and bearing with rotation detection device
JP2008051683A (en) Bearing device for wheel fitted with rotation sensor
JP4275444B2 (en) Bearing with absolute encoder
JP2008045881A (en) Rotation angle position detector
JPH06100474B2 (en) Thrust bearing with magnetic field detector
JP2008224440A (en) Bearing rotation detecting apparatus
JP5857470B2 (en) Rolling bearing device with sensor
JP2006208049A (en) Rotation angle detection apparatus
JP2012122789A (en) Wheel bearing with rotation detection device
JP2006090831A (en) Bearing with rotation sensor
JP5724326B2 (en) Rolling bearings with sensors and automobiles, railway vehicles, steelmaking facilities, machine tools using rolling bearings with sensors
JP2007064778A (en) Bearing for wheel with sensor
JP2018105757A (en) Magnetic encoder device
JP5251802B2 (en) Physical quantity measuring device for rolling bearing units
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP2002340918A (en) Rotational speed detector and bearing for wheel having the same
JP2004045177A (en) Rotation detector
KR102419301B1 (en) Absolute position detection device and detection method of rotating body
JP4587656B2 (en) Bearing with absolute encoder
JP2006058256A (en) Rotation detector
JP2008064633A (en) Bearing device with sensor
JP5045490B2 (en) Magnetizing method and magnetizing apparatus for encoder
JP2003315092A (en) Rotation angle sensor and torque sensor
JP2008224248A (en) Bearing device with sensor
JP2004308724A (en) Bearing with rotation sensor