JP2008224440A - Bearing rotation detecting apparatus - Google Patents

Bearing rotation detecting apparatus Download PDF

Info

Publication number
JP2008224440A
JP2008224440A JP2007063665A JP2007063665A JP2008224440A JP 2008224440 A JP2008224440 A JP 2008224440A JP 2007063665 A JP2007063665 A JP 2007063665A JP 2007063665 A JP2007063665 A JP 2007063665A JP 2008224440 A JP2008224440 A JP 2008224440A
Authority
JP
Japan
Prior art keywords
detection
waveform
magnetic field
ring
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007063665A
Other languages
Japanese (ja)
Inventor
Tatsunori Mori
達規 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007063665A priority Critical patent/JP2008224440A/en
Publication of JP2008224440A publication Critical patent/JP2008224440A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing rotation detecting apparatus capable of significantly increasing the resolution of angle detection without increasing the number of magnetic poles. <P>SOLUTION: This bearing rotation detecting apparatus has a plurality of magnetic field detecting elements 51 and 52 arranged at mutually different angular positions in the circumferential direction of a pulsar ring 11, in the relation where phase difference smaller than 1/2-wavelength of a periodic waveform is generated between detection waveforms with respect to the same pulsar ring 11. Then, the detection waveform of each of the magnetic field detecting elements 51 and 52 is converted into a square waveform, the start-up edges and falling edges of the waveform are counted as angular information in the coming order in the mutually mixing form without distinguishing which element the edges belong to the detection wave form of. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、軸受回転検出装置に関する。   The present invention relates to a bearing rotation detection device.

特開2004−198378号公報JP 2004-198378 A 特開2000−249138号公報JP 2000-249138 A 特開2002−40037号公報JP 2002-40037 A

回転センサは光学式のロータリーエンコーダが広く使用されているが、自動車の足回り系統の回転検知には、汚れ付着等による誤検出を防止するために磁気式の回転センサが使用されることが多い。磁気式の回転センサには種々の方式があるが、検知対象物と共に回転する磁性被検知体に磁気ギャップを介して、磁気ヘッド、磁気抵抗効果素子あるいはホール素子といった磁界検出素子を配置し、磁性被検知体の回転に基づく磁気ギャップ内の磁界変動を測定し、その検出波形を用いて回転角度を算出する方式が、センサ構造が比較的簡便であり精度も高いことから広く使用されている。   Optical rotary encoders are widely used as rotation sensors, but magnetic rotation sensors are often used for detecting rotation of automobile undercarriage systems in order to prevent erroneous detection due to dirt adhesion and the like. . There are various types of magnetic rotation sensors. Magnetic field detection elements such as magnetic heads, magnetoresistive effect elements, or Hall elements are arranged through magnetic gaps on a magnetic object that rotates together with the object to be detected. A method of measuring the magnetic field fluctuation in the magnetic gap based on the rotation of the object to be detected and calculating the rotation angle using the detected waveform is widely used because the sensor structure is relatively simple and accurate.

近年、上記のような磁気式回転センサをアンチロックブレーキシステム(ABS)等の制御に用いるため、車軸を支持する転がり軸受として、該センサの磁性被検知体リング(例えばパルサーリング)を取り付けた転がり軸受が採用されている(例えば、特許文献1〜3)。この種の転がり軸受では、回転検出対象となる車軸が取り付けられる内輪にパルサーリングを取り付け、非回転の外輪側に磁界検出素子を含んだ検知ユニットを取り付ける構造が一般的である。   In recent years, in order to use the magnetic rotation sensor as described above for control of an anti-lock brake system (ABS) or the like, a rolling bearing in which a magnetic sensing element ring (for example, a pulsar ring) of the sensor is attached as a rolling bearing for supporting an axle. A bearing is employed (for example, Patent Documents 1 to 3). In this type of rolling bearing, a structure in which a pulsar ring is attached to an inner ring to which an axle that is a rotation detection target is attached, and a detection unit including a magnetic field detection element is attached to the non-rotating outer ring side.

近年、ABSの制御レスポンスを向上させるため、車輪のロック/回転の検出精度をより高める要求があり、ハブユニットに取り付けられた回転センサもその角度検出の分解能を向上させる必要がある。磁気式回転センサの分解能を向上するには、パルサーリングの着磁極数をさらに増やす必要がある。しかし、着磁極数をむやみに増大させた場合、個々の着磁領域の幅が小さくなりすぎ、磁束が減少するとともに極近接に伴う減磁の影響も大きくなるので、センシングに必要な磁界強度が得られなくなる問題がある。   In recent years, in order to improve the control response of ABS, there has been a demand for higher detection accuracy of wheel lock / rotation, and a rotation sensor attached to a hub unit also needs to improve resolution of angle detection. In order to improve the resolution of the magnetic rotation sensor, it is necessary to further increase the number of magnetic poles of the pulsar ring. However, if the number of magnetized poles is increased unnecessarily, the width of each magnetized region becomes too small, the magnetic flux decreases, and the effect of demagnetization due to close proximity increases, so the magnetic field strength required for sensing is reduced. There is a problem that cannot be obtained.

本発明の課題は、着磁極数を増大させることなく角度検出の分解能を大幅に高めることができる軸受回転検出装置を提供することにある。   An object of the present invention is to provide a bearing rotation detection device that can greatly increase the resolution of angle detection without increasing the number of magnetic poles.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の軸受回転検出装置は、
内輪と、内輪の外側に同心的に配置された外輪と、内輪と外輪との間に配置される複数の転動体とを有する軸受と、
内輪又は外輪の一方に同心的に固定された永久磁石部材として構成され、着磁極性の互いに異なる第一着磁領域と第二着磁領域とを等間隔にて交互に形成したパルサーリングと、
該パルサーリングに対し磁気ギャップを形成する形で非回転にて対向配置され、パルサーリングの回転に伴い交互に通過する第一着磁領域及び第二着磁領域が形成する磁界変動を、互いに隣接する第一着磁領域及び第二着磁領域の対が繰り返し通過して形成される周期的波形として各々検出するとともに、検知波形間に周期的波形の1/2波長よりも小さい位相差を生ずる関係にて、パルサーリングの周方向にて互いに異なる角度位置に配置された複数の磁界検出素子と、
各磁界検出素子の検知波形を方形波化する波形整形部と、
その方形波化された複数の検知波形の立上りエッジ及び立下りエッジに対応する計数信号を、いずれの検知波形に属するかを区別せず時系列的に互いに混在させた形でその到来順に出力するエッジ計数信号出力手段と、を備えたことを特徴とする。
In order to solve the above problems, the bearing rotation detection device of the present invention is
A bearing having an inner ring, an outer ring disposed concentrically on the outer side of the inner ring, and a plurality of rolling elements disposed between the inner ring and the outer ring;
A pulsar ring that is configured as a permanent magnet member concentrically fixed to one of the inner ring and the outer ring, and in which first and second magnetized regions having different magnetic polarities are alternately formed at equal intervals;
The magnetic field fluctuations formed by the first and second magnetized regions that are arranged opposite to each other in a non-rotating manner so as to form a magnetic gap with respect to the pulsar ring and pass alternately with the rotation of the pulsar ring are adjacent to each other. Each pair of the first and second magnetized regions to be detected is detected as a periodic waveform formed repeatedly, and a phase difference smaller than ½ wavelength of the periodic waveform is generated between the detected waveforms. In relation, a plurality of magnetic field detection elements arranged at different angular positions in the circumferential direction of the pulsar ring,
A waveform shaping unit that squares the detection waveform of each magnetic field detection element;
The counting signals corresponding to the rising and falling edges of the plurality of detection waveforms that are square-shaped are output in the order of arrival in a mixed form in time series without distinguishing which detection waveform belongs to And an edge count signal output means.

上記の構成によると、同じパルサーリングに対し、検知波形間に周期的波形の1/2波長よりも小さい位相差を生ずる関係にて、パルサーリングの周方向にて互いに異なる角度位置に配置された複数の磁界検出素子を設ける。そして、個々の磁界検出素子の検知波形を方形波化し、その波形の立上りエッジ及び立下りエッジを、いずれの素子の検知波形に属するかを区別せず時系列的に互いに混在させた形でその到来順に角度情報として計数する。これにより、パルサーリングの着磁領域数(着磁極数)が同じであっても、磁界検出素子の数が増える分だけ、検出角度間隔を表わす波形立上りエッジ及び立下りエッジの到来間隔を増加することができ、角度検出の分解能を大幅に高めることができる。   According to the above configuration, for the same pulsar ring, they are arranged at different angular positions in the circumferential direction of the pulsar ring in a relationship that causes a phase difference smaller than ½ wavelength of the periodic waveform between detection waveforms. A plurality of magnetic field detection elements are provided. Then, the detection waveform of each magnetic field detection element is squared, and the rising edge and falling edge of the waveform are mixed with each other in time series without distinguishing which element the detection waveform belongs to. Count as angle information in the order of arrival. Thereby, even if the number of magnetized regions (number of magnetized poles) of the pulsar ring is the same, the arrival intervals of the waveform rising edge and the falling edge representing the detection angle interval are increased by the increase in the number of magnetic field detection elements. The angle detection resolution can be greatly increased.

複数の磁界検出素子は各々ホール素子にて構成することができる。ホール素子は小形で高感度の磁電変換素子であり、検出素子として軸受に組み込む上で好都合である。   Each of the plurality of magnetic field detection elements can be constituted by a Hall element. The Hall element is a small and highly sensitive magnetoelectric conversion element, which is convenient for incorporation into a bearing as a detection element.

複数の磁界検出素子は、方形波化された各検知波形の立上りエッジ及び立下りエッジが、個々の検知波形の一波長区間を互いに等分割しあう関係となるように、パルサーリングの周方向にて互いに異なる角度位置に配置することが望ましい。このようにすると、複数の磁界検出素子から相次いで出力される検知波形の立上りエッジ及び立下りエッジの到来角度間隔が一様となり、エッジ計数値から実際の角度位置あるいは回転速度を求めるための演算処理が大幅に簡略化される。幾何学的には、複数の磁界検出素子の配置個数をnとしたとき、それら磁界検出素子を、各検知波形の位相が(1/2n)波長ずつ順次ずれた位置関係となるように配置することで上記の構成が実現できる。例えば、磁界検出素子の配置個数が2である場合、それら磁界検出素子は、各検知波形の位相が(1/4)波長ずれた位置関係となるように配置するとよい。   The plurality of magnetic field detection elements are arranged in the circumferential direction of the pulsar ring so that the rising edge and the falling edge of each square-shaped detection waveform are equally divided into one wavelength section of each detection waveform. It is desirable to arrange them at different angular positions. In this way, the arrival angle intervals of the rising and falling edges of the detection waveforms output one after another from the plurality of magnetic field detecting elements become uniform, and the calculation for obtaining the actual angular position or rotational speed from the edge count value Processing is greatly simplified. Geometrically, when the number of arranged magnetic field detection elements is n, the magnetic field detection elements are arranged such that the phases of the detection waveforms are sequentially shifted by (1 / 2n) wavelengths. Thus, the above configuration can be realized. For example, when the number of magnetic field detection elements to be arranged is 2, these magnetic field detection elements are preferably arranged so that the phase of each detection waveform is in a positional relationship shifted by (1/4) wavelength.

パルサーリングの着磁領域は、互いに隣接する第一着磁領域と第二着磁領域の組が検知波形1波長分の回転角度範囲に相当するから、1/2波長以下の角度スパンで配置される複数の磁界検出素子は、1つの着磁領域内に収まるように互いに隣接配置することが可能である。この場合、それら隣接配置された磁界検出素子を共通の樹脂モールドにて一体化し、検知モジュールを形成することができる。このようにすると、複数個の磁界検出素子を検知モジュールの形で軸受に一括組み付けでき、組み立て工程を簡略化することができ、また、装置の小形化に寄与する。特に、磁界検出素子として磁電変換素子を採用する場合、その素子出力の信号処理回路(ICで構成できる)も樹脂モールドに組み込むことができ、一層の小形化を図ることができる。該構成においては、例えば前述のホール素子など比較的小型の磁電変換素子を採用することが有利である。   The pulsar ring magnetized region is arranged with an angular span of ½ wavelength or less because the pair of the first magnetized region and the second magnetized region adjacent to each other corresponds to the rotation angle range for one wavelength of the detection waveform. The plurality of magnetic field detecting elements can be arranged adjacent to each other so as to be within one magnetized region. In this case, the magnetic field detection elements arranged adjacent to each other can be integrated by a common resin mold to form a detection module. In this way, a plurality of magnetic field detection elements can be collectively assembled to the bearing in the form of a detection module, the assembly process can be simplified, and the apparatus can be miniaturized. In particular, when a magnetoelectric conversion element is employed as the magnetic field detection element, a signal processing circuit (which can be constituted by an IC) of the element output can be incorporated into the resin mold, and further miniaturization can be achieved. In this configuration, it is advantageous to employ a relatively small magnetoelectric conversion element such as the Hall element described above.

一方、複数の磁界検出素子は、パルサーリング上の着磁領域の配列周期性、ひいてはそれにより形成される検知波形の周期性を利用すれば、必ずしも隣接配置することなく等価な検知波形を得ることができる。具体的には、互いに隣接する第一着磁領域及び第二着磁領域間の角度間隔よりも広い角度間隔にて、パルサーリングの周方向に分散配置することができる。このようにすると、磁界検出素子を隣接配置することがスペース的に難しい場合にも問題なく対応することができ、素子レイアウトに係る設計自由度を大幅に増すことができる。また、磁界検出素子の配置個数を増加させる上でも有利であり、角度検出分解能の更なる向上にも寄与する。   On the other hand, a plurality of magnetic field detection elements can obtain an equivalent detection waveform without necessarily being arranged adjacent to each other by using the periodicity of the magnetized region on the pulsar ring, and the periodicity of the detection waveform formed thereby. Can do. Specifically, it can be dispersedly arranged in the circumferential direction of the pulsar ring at an angular interval wider than the angular interval between the first and second magnetized regions adjacent to each other. In this way, even when it is difficult to place the magnetic field detection elements adjacent to each other in space, it can be handled without any problem, and the degree of design freedom related to the element layout can be greatly increased. Further, it is advantageous in increasing the number of magnetic field detection elements arranged, and contributes to further improvement in angle detection resolution.

軸受は、外輪が車体側に非回転に取り付けられ、この外輪と同心配置されるとともに車輪取り付け用フランジが周方向に形成されたハブホイールを有し、内輪が該ハブホイールの少なくとも車両インナ側端部の外周面に嵌着され、さらに該内輪又はハブホイールと外輪との間にて周方向に配列する複数の転動体からなる転動体列とを備える車両用ハブユニットとして構成することができる。これにより、本発明の軸受回転検出装置を、車両用(特に自動車用)のABS制御やトラクション制御等に適用することが可能となり、例えばABS制御に適用した場合は、車輪のロック/回転の検出精度を大幅に高めることができる。   The bearing has a hub wheel in which an outer ring is mounted non-rotatably on the vehicle body side, is concentrically arranged with the outer ring, and a wheel mounting flange is formed in a circumferential direction. The inner ring is at least a vehicle inner side end of the hub wheel. Further, it can be configured as a vehicle hub unit that includes a rolling element row that is fitted to the outer peripheral surface of the portion and is arranged in the circumferential direction between the inner ring or the hub wheel and the outer ring. As a result, the bearing rotation detection device of the present invention can be applied to ABS control, traction control, etc. for vehicles (particularly for automobiles). For example, when applied to ABS control, detection of lock / rotation of wheels. The accuracy can be greatly increased.

以下、図面を参照しつつ本発明の実施の形態について説明する。図1は、本発明の適用対象の軸受の一例であるハブユニット1を示す断面図である。なお、いずれの図も、左側が車両アウタ側、右側が車両インナ側となっている。図1に示すようにハブユニット1は、二列の軌道を有する固定輪としての外輪2と、外輪2と同心配置されるハブ軸(ハブホイール)3と、一列の軌道を有する回転輪としての内輪4と、複列の転動体列5,5と、冠形保持器153,153とを備え、上記ハブ軸3の大径外周面3bにも一列の軌道を有する構成になっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a hub unit 1 which is an example of a bearing to which the present invention is applied. In both figures, the left side is the vehicle outer side, and the right side is the vehicle inner side. As shown in FIG. 1, the hub unit 1 includes an outer ring 2 as a fixed ring having two rows of tracks, a hub shaft (hub wheel) 3 arranged concentrically with the outer ring 2, and a rotating wheel having a row of tracks. The inner ring 4, double row rolling element rows 5, 5, and crown-shaped cages 153, 153 are provided, and the large-diameter outer peripheral surface 3 b of the hub shaft 3 has a row of tracks.

外輪2は、S55C等の機械構造用炭素鋼の熱間鍛造材であり、内周に2列の軌道面を有する筒状の外輪本体部(本体部)20と、該外輪本体部20の外周面からラジアル方向に突出する外輪フランジ部23とを有する。本体部20のうち、外輪フランジ部23よりも車両インナ側に突出する部分が車体への取付部をなす外輪インロー部21とされている。また、外輪フランジ部23にはアキシャル方向にボルト挿通孔23hが形成されている。   The outer ring 2 is a hot forged material of carbon steel for machine structure such as S55C, and has a cylindrical outer ring main body (main body) 20 having two rows of raceway surfaces on the inner periphery, and an outer periphery of the outer ring main body 20. And an outer ring flange portion 23 protruding in the radial direction from the surface. A portion of the main body portion 20 that protrudes further toward the vehicle inner side than the outer ring flange portion 23 is an outer ring inlay portion 21 that forms an attachment portion to the vehicle body. The outer ring flange portion 23 is formed with a bolt insertion hole 23h in the axial direction.

外輪インロー部21の車両インナ側の外周面21aによって、車体側に形成されたボルト挿通孔に対する位置決めを行い、ボルト挿通孔81h,82h,23hにボルト26を挿通することで、外輪2の外輪フランジ部23の車両インナ側主表面23aにスペーサ81を挟んで車体側のキャリア(ナックル)82が固定される。これにより、ハブユニット1が車体に対して固定される。そして外輪2を介してタイヤホイール(車輪)6が車体に対して回転自在に支持される。また、外輪2の車両インナ側端部開口21hには、その開口21hを覆うように保護キャップ(キャップ部)が該外輪2と一体回転可能に取り付けられる。   Positioning with respect to the bolt insertion hole formed on the vehicle body side is performed by the outer peripheral surface 21a on the vehicle inner side of the outer ring inlay part 21, and the bolt 26 is inserted into the bolt insertion holes 81h, 82h, and 23h, thereby the outer ring flange of the outer ring 2 A vehicle body side carrier (knuckle) 82 is fixed to the vehicle inner side main surface 23a of the portion 23 with a spacer 81 interposed therebetween. Thereby, the hub unit 1 is fixed to the vehicle body. A tire wheel (wheel) 6 is rotatably supported with respect to the vehicle body via the outer ring 2. A protective cap (cap portion) is attached to the vehicle inner side end opening 21h of the outer ring 2 so as to be able to rotate integrally with the outer ring 2 so as to cover the opening 21h.

ハブ軸3は、軸心回りに回転する軸部30と、該軸部30からラジアル方向に突出する環状の車輪取り付け用フランジ33とを有して構成され、外輪2と同心に配置される。軸部30の外周には外輪2が装着されている。軸部30の車両インナ側端部(小径部)31の外周面3aには内輪4が嵌着される。車輪取り付け用フランジ33は、車輪のタイヤホイール6やブレーキ装置のブレーキディスクロータ7を固定するためのものであり、タイヤホイール(車輪)6とブレーキディスクロータ7とが取り付けられてこれらと一体回転する。   The hub shaft 3 includes a shaft portion 30 that rotates around the shaft center and an annular wheel mounting flange 33 that protrudes in the radial direction from the shaft portion 30, and is disposed concentrically with the outer ring 2. An outer ring 2 is mounted on the outer periphery of the shaft portion 30. The inner ring 4 is fitted on the outer peripheral surface 3 a of the vehicle inner side end portion (small diameter portion) 31 of the shaft portion 30. The wheel mounting flange 33 is for fixing the tire wheel 6 of the wheel and the brake disc rotor 7 of the brake device, and the tire wheel (wheel) 6 and the brake disc rotor 7 are attached to rotate integrally therewith. .

具体的には、車輪取り付け用フランジ33の主表面34には、該主表面34から車両アウタ側へ突出するように、ブレーキディスクロータ7及びタイヤホイール6のラジアル方向の取付位置をガイドするインロー部32が形成されており、ブレーキディスクロータ7がインロー部32に当接してブレーキディスクロータ7の車輪取り付け用フランジ33に対する位置決めがなされ、さらにタイヤホイール6がインロー部32に当接してタイヤホイール6の車輪取り付け用フランジ33に対する位置決めがなされる。そして、ハブ軸3の挿通孔33hに挿通された複数本のハブボルトが、ブレーキディスクロータ7及びタイヤホイール6に形成されたそれぞれの取付孔に挿通され、複数個のハブナット37がそれぞれのハブボルト36にねじ込まれて、タイヤホイール6がブレーキディスクロータ7とともに、ハブ軸3に固定される。   Specifically, the main surface 34 of the wheel mounting flange 33 is an inlay portion that guides the radial mounting positions of the brake disc rotor 7 and the tire wheel 6 so as to protrude from the main surface 34 toward the vehicle outer side. 32 is formed, the brake disc rotor 7 abuts on the inlay portion 32 to position the brake disc rotor 7 with respect to the wheel mounting flange 33, and the tire wheel 6 abuts on the inlay portion 32 to Positioning with respect to the wheel mounting flange 33 is performed. A plurality of hub bolts inserted into the insertion holes 33 h of the hub shaft 3 are inserted into the respective mounting holes formed in the brake disc rotor 7 and the tire wheel 6, and a plurality of hub nuts 37 are inserted into the respective hub bolts 36. The tire wheel 6 is fixed to the hub shaft 3 together with the brake disc rotor 7 by being screwed.

次に、ハブ1には回転センサ10が取り付けられている。回転センサ10は、上記ハブ軸3の回転速度や回転方向などの回転状態を検出するものであり、パルサーリング11と、検知モジュール12とを備える。パルサーリング11は、内輪4の車両インナ側端部41からアキシャル方向に突設される。センサ(検知体)12は、外輪2の車両インナ側端部開口21hを覆うように該外輪2と一体回転可能に取り付けられるキャップ部9の内面9a側で、パルサーリング11に対してアキシャル方向に予め定められた検出ギャップAを介して対向配置されている。   Next, a rotation sensor 10 is attached to the hub 1. The rotation sensor 10 detects a rotation state such as a rotation speed and a rotation direction of the hub shaft 3 and includes a pulsar ring 11 and a detection module 12. The pulsar ring 11 projects from the vehicle inner side end 41 of the inner ring 4 in the axial direction. The sensor (detecting body) 12 is arranged in the axial direction with respect to the pulsar ring 11 on the inner surface 9a side of the cap portion 9 that is attached to the outer ring 2 so as to be integrally rotatable so as to cover the vehicle inner side end opening 21h of the outer ring 2. They are arranged opposite to each other via a predetermined detection gap A.

パルサーリング11は、内輪4の外周面肩部に取り付けられる支持部11bと、この支持部11bに対して取り付けられる環状永久磁石部材11aとを有している。環状永久磁石部材11aは、図2に示すように、扁平板状リング形態のフェライト系ボンド磁石にて構成され、アキシャル着磁により、着磁極性の互いに異なる第一着磁領域Nと第二着磁領域Sとを周方向に等間隔にて交互に配列形成したものである。   The pulsar ring 11 has a support portion 11b attached to the shoulder portion of the outer peripheral surface of the inner ring 4, and an annular permanent magnet member 11a attached to the support portion 11b. As shown in FIG. 2, the annular permanent magnet member 11a is composed of a ferrite-based bonded magnet in the form of a flat plate ring, and the first magnetized region N and the second magnetized magnets having different magnetic polarities by axial magnetization. The magnetic regions S are alternately arranged at equal intervals in the circumferential direction.

検知モジュール12は、図3にて一点鎖線で示すように、該検知モジュール12のセンタと環状永久磁石部材11aの各着磁領域の中心とが一致し、かつパルサーリング11の環状永久磁石部材11aの外面に対して予め定められた検出ギャップA(エアーギャップ)を介してアキシャル方向に対向する形で保護キャップ9の内側面9aに取り付けられており、環状永久磁石部材11aの回転状態に対応した電気信号を出力する。この保護キャップ9は外輪2に嵌合固定されたものである。この検知モジュール12は、検出ギャップA内の磁界強度に応じて電気的出力を変化させる磁電変換素子、本実施形態ではホール素子51,52と、各ホール素子51,52の検知出力を増幅し、その増幅波形を方形波化した後、角度検知用の計数パルスに変換して出力する信号処理出力回路ICとを樹脂モールド12mにより一体化したものである。   3, the detection module 12 has the center of the detection module 12 coincident with the center of each magnetized region of the annular permanent magnet member 11a and the annular permanent magnet member 11a of the pulsar ring 11 Is attached to the inner side surface 9a of the protective cap 9 in a form opposed to the outer surface of the protective cap 9 through a predetermined detection gap A (air gap), corresponding to the rotational state of the annular permanent magnet member 11a. Outputs electrical signals. The protective cap 9 is fitted and fixed to the outer ring 2. The detection module 12 amplifies the magnetoelectric conversion elements that change the electrical output according to the magnetic field strength in the detection gap A, in this embodiment the Hall elements 51 and 52, and the detection outputs of the Hall elements 51 and 52, A signal processing output circuit IC that converts the amplified waveform into a square wave, converts it into a counting pulse for angle detection, and outputs it is integrated by a resin mold 12m.

図4に示すように、磁界検出素子51,52は、いずれも、パルサーリング11の回転に伴い交互に通過する第一着磁領域N及び第二着磁領域Sが形成する磁界Hの変動を、互いに隣接する第一着磁領域N及び第二着磁領域Sの対が繰り返し通過して形成される周期的波形として各々検出する。図5は、検知波形間に周期的波形の1/2波長よりも小さい位相差を生ずる関係にて、パルサーリング11の周方向にて互いに異なる角度位置に複数、図4の場合にあっては、2個配置されている。以下、第一の磁界検出素子51を素子1、第二の磁界検出素子52を素子2ともいう。   As shown in FIG. 4, the magnetic field detection elements 51 and 52 both exhibit fluctuations in the magnetic field H formed by the first magnetization region N and the second magnetization region S that pass alternately with the rotation of the pulsar ring 11. , Each of the first and second magnetized regions N and S adjacent to each other is detected as a periodic waveform formed by repeated passage. FIG. 5 shows a case where a plurality of the angular positions different from each other in the circumferential direction of the pulsar ring 11 in the case of FIG. Two are arranged. Hereinafter, the first magnetic field detection element 51 is also referred to as element 1, and the second magnetic field detection element 52 is also referred to as element 2.

上記の磁界検出素子51,52は、図5に示すように、方形波化された素子1及び素子2の各検知波形の立上りエッジUE1,UE2及び立下りエッジUD1,UD2が、個々の検知波形の一波長区間λを互いに等分割しあう関係となるように、パルサーリング11の周方向にて互いに異なる角度位置に配置されてなる。具体的には、磁界検出素子51,52の配置個数をnとしたとき、それら磁界検出素子51,52は、各検知波形の位相が(1/2n)波長ずつ順次ずれた位置関係となるように配置され、ここではn=2であるから、素子1及び素子2の検知波形の位相は互いに(1/4)λだけずれた関係となるように、磁界検出素子51,52の配置間隔が定められている。   As shown in FIG. 5, the magnetic field detection elements 51 and 52 are configured so that the rising edges UE1 and UE2 and the falling edges UD1 and UD2 of the detection waveforms of the square-waved elements 1 and 2 are individually detected waveforms. Are arranged at different angular positions in the circumferential direction of the pulsar ring 11 so that the one wavelength section λ is equally divided. Specifically, when the number of arranged magnetic field detection elements 51 and 52 is n, the magnetic field detection elements 51 and 52 are in a positional relationship in which the phases of the detection waveforms are sequentially shifted by (1 / 2n) wavelengths. Since n = 2 here, the arrangement interval of the magnetic field detection elements 51 and 52 is set so that the phases of the detection waveforms of the element 1 and the element 2 are shifted from each other by (1/4) λ. It has been established.

図4に示すように、パルサーリング11の着磁領域は、互いに隣接する第一着磁領域Nと第二着磁領域Sの組が検知波形1波長(λ)分の回転角度範囲θλに相当する。従って、検知波形の位相が互いに(1/4)λずれるための、磁界検出素子51,52の配置間隔の最小値は(1/4)θλであり、1つの着磁領域(N又はS)内に収まるように互いに隣接配置することが可能である。そして、図4においては、磁界検出素子51,52の配置間隔をこの最小値に設定することで、それら磁界検出素子51,52を共通の樹脂モールド12mにて一体化した構成が実現している。図4の構成で、パルサーリング11が矢印の方向に回転する場合、素子1の波形が素子2の波形よりも(1/4)λだけ位相が先行する。 As shown in FIG. 4, the magnetized region of the pulsar ring 11 includes a first magnetized region N and a second magnetized region S adjacent to each other within a rotation angle range θ λ corresponding to one wavelength (λ) of the detected waveform. Equivalent to. Therefore, the minimum value of the arrangement interval of the magnetic field detection elements 51 and 52 for shifting the phase of the detection waveform from each other by (1/4) λ is (1/4) θλ , and one magnetization region (N or S ) Can be arranged adjacent to each other so as to be within. In FIG. 4, the arrangement interval of the magnetic field detection elements 51 and 52 is set to the minimum value, thereby realizing a configuration in which the magnetic field detection elements 51 and 52 are integrated by a common resin mold 12m. . In the configuration of FIG. 4, when the pulsar ring 11 rotates in the direction of the arrow, the waveform of the element 1 precedes the phase of the waveform of the element 2 by (1/4) λ.

従来のごとく、磁界検出素子51が1個のみである場合、検知波形は図10のごとき方形波となる。仮に、その波形の立下りエッジのみを計数するように構成した場合、角度検出の分解能は、NSの着磁領域対の長さで定まる前述のθλ程度であり、立上りエッジと立下りエッジとの両方を計数すれば分解能がθλ/2となる。しかし、本発明においては、図4に示すごとく、2つの素子の方形波化された各検知波形の立上りエッジUE1,UE2と立下りエッジUD1,UD2の全てを、いずれの検知波形に属するかを区別せず時系列的に互いに混在させた形でその到来順に計数することで、分解能はθλ/4となって従来よりも倍精度化される。 As in the prior art, when there is only one magnetic field detecting element 51, the detected waveform is a square wave as shown in FIG. If the configuration is such that only the falling edges of the waveform are counted, the angle detection resolution is about the above-mentioned θ λ determined by the length of the NS magnetized region pair, and the rising edge and the falling edge If both are counted, the resolution becomes θ λ / 2. However, in the present invention, as shown in FIG. 4, it is determined to which detection waveform all the rising edges UE1 and UE2 and the falling edges UD1 and UD2 of the detection waveforms squared by the two elements belong. By counting in the order of arrival in a mixed manner in time series without distinction, the resolution becomes θ λ / 4, which is doubled as compared with the prior art.

図6は、信号処理出力回路60の構成例を示すものである。各磁界検出素子51,52のアナログ原検知波形は図示しない増幅回路にてそれぞれ増幅される。そして、その増幅された各アナログ原検知波形はシュミットトリガ回路61,62によりそれぞれ方形波化され、図中のA,Bのごとき波形となる。この波形を直接出力し、回転センサが接続される先のシステムでエッジ検出・計数のための信号処理を行なってもよいが、この実施形態では、接続先システムでの信号処理負担を軽減するため、波形A,Bの各エッジを、これらに一対一に対応する角度パルス信号に変換して出力するための回路を組み込んである。この回路により、接続先システムで、角度パルスの立下りエッジ入力によりカウントアップするTラッチ回路等を用いた周知のデジタルカウンタ回路88等を採用でき、面倒なエッジ検知処理が不要となる。   FIG. 6 shows a configuration example of the signal processing output circuit 60. The analog original detection waveforms of the magnetic field detection elements 51 and 52 are amplified by an amplification circuit (not shown). The amplified analog original detection waveforms are squared by the Schmitt trigger circuits 61 and 62, respectively, and become waveforms such as A and B in the figure. Although this waveform may be directly output and signal processing for edge detection / counting may be performed in the system to which the rotation sensor is connected, in this embodiment, in order to reduce the signal processing burden in the connection destination system In addition, a circuit for converting the respective edges of the waveforms A and B into angle pulse signals corresponding one-to-one and outputting them is incorporated. With this circuit, a well-known digital counter circuit 88 using a T latch circuit or the like that counts up by the falling edge input of an angle pulse can be adopted in the connection destination system, and troublesome edge detection processing becomes unnecessary.

具体的には、λ/4だけ位相がずれた波形A,Bが排他的論理和ゲート53に入力される。排他的論理和ゲート53の出力により、両入力波形はCのごとく、波形Bの立上りエッジUE2と波形Aの立下りエッジDE1とに由来した第一パルスPと、波形Bの立下りエッジDE2と波形Aの立上りエッジUE1に由来した第二パルスSとが交互に出現する、周波数の逓倍化されたパルス波形に合成される。その出力は単安定回路65,66に一方をインバータ64によりレベル反転しつつ分配入力される(波形C,E)。単安定回路65は、合成パルス波形Cの立上りエッジDE3に対応するパルス波形を出力する(波形D)。他方、単安定回路66は、入力のレベルが反転していることで立上りエッジUE3に対応するパルス波形を出力する(波形F)。そこで、これら波形D,Fを論理和ゲート67に入力すれば、その出力が目的とする角度パルス波形Gとして得られる。   Specifically, the waveforms A and B whose phases are shifted by λ / 4 are input to the exclusive OR gate 53. As a result of the output of the exclusive OR gate 53, both input waveforms are C like the first pulse P derived from the rising edge UE2 of the waveform B and the falling edge DE1 of the waveform A, and the falling edge DE2 of the waveform B. The second pulse S derived from the rising edge UE1 of the waveform A is synthesized into a pulse waveform having a frequency multiplied so that the second pulse S appears alternately. The output is distributed and input to the monostable circuits 65 and 66 while the level is inverted by the inverter 64 (waveforms C and E). The monostable circuit 65 outputs a pulse waveform corresponding to the rising edge DE3 of the composite pulse waveform C (waveform D). On the other hand, the monostable circuit 66 outputs a pulse waveform corresponding to the rising edge UE3 (waveform F) because the input level is inverted. Therefore, if these waveforms D and F are input to the OR gate 67, the output is obtained as the target angle pulse waveform G.

なお、磁界検出素子51,52は、パルサーリング11上の着磁領域N,Sの配列周期性、ひいてはそれにより形成される検知波形の周期性を利用することで、必ずしも隣接配置せずとも、図5と等価な検知波形を得ることができる。例えば、磁界検出素子51,52の配置間隔の最小値は前述のごとく(1/4)θλであるが、磁界検出素子51の位置を基準に考えると、磁界検出素子52の位置は、波形の周期性から、そこから(1/4)θλ離間した以外にも、図7に実線矢印にて示すごとく、波長の整数倍を加算したθλ+(1/4)θλ、2θλ+(1/4)θλ、‥、nθλ+(1/4)θλ(nは整数)が可能であり、結果として、隣接する第一着磁領域N及び第二着磁領域S間の角度間隔θ1よりも広い角度間隔θ2にて、パルサーリング11の周方向に分散配置することができる。また、図4の例では、素子1の波形が(1/4)θλだけ進角するように各素子の配置関係が定められていたが、図7に破線で示すように、素子2の波形が(1/4)θλだけ進角するように各素子の配置関係が定めることも可能である。 The magnetic field detection elements 51 and 52 are not necessarily arranged adjacent to each other by utilizing the periodicity of the magnetization regions N and S on the pulsar ring 11 and the periodicity of the detection waveform formed thereby. A detection waveform equivalent to that in FIG. 5 can be obtained. For example, the minimum value of the arrangement interval between the magnetic field detection elements 51 and 52 is (1/4) θ λ as described above, but when the position of the magnetic field detection element 51 is considered as a reference, the position of the magnetic field detection element 52 has a waveform. from the period of, from which (1/4) besides spaced theta lambda, as indicated by the solid line arrows in FIG. 7, by adding an integer multiple of the wavelength θ λ + (1/4) θ λ , 2θ λ + (1/4) θ λ ,..., Nθ λ + (1/4) θ λ (n is an integer) is possible, and as a result, between the adjacent first and second magnetized regions N and S. The pulsar ring 11 can be distributed in the circumferential direction at an angular interval θ2 wider than the angular interval θ1. Further, in the example of FIG. 4, had positional relationship of each element is defined so that only advanced waveform element 1 (1/4) θ λ, as shown by the broken line in FIG. 7, the element 2 waveform (1/4) θ λ to only advance it is determined layout relations of the elements are possible.

また、磁界検出素子の個数は2個に限らず、3個以上の複数個とすることも可能であり、個数が増えるほど角度検出の分解能を高めることが可能となる。図8は、4個の磁界検出素子51,52,53を分散配置した例を示すものである。各磁界検出素子子51,52,53は、各検知波形の位相が(1/8)波長ずつ順次ずれた位置関係となるように配置されてなる。   In addition, the number of magnetic field detection elements is not limited to two, and may be three or more. As the number increases, the resolution of angle detection can be increased. FIG. 8 shows an example in which four magnetic field detection elements 51, 52, 53 are arranged in a distributed manner. The magnetic field detection elements 51, 52, and 53 are arranged so that the phases of the detection waveforms are sequentially shifted by (1/8) wavelength.

本発明の適用対象となるハブユニットの一例を示す断面図。Sectional drawing which shows an example of the hub unit used as the application object of this invention. パルサーリングを説明する図。The figure explaining pulsar ring. 回転センサの構造を説明する図。The figure explaining the structure of a rotation sensor. 本発明の要部を模式的に示す斜視図。The perspective view which shows the principal part of this invention typically. 図4の各磁界検出素子の方形波出力を示す波形図。FIG. 5 is a waveform diagram showing a square wave output of each magnetic field detection element of FIG. 4. 図4の構成に対応する信号処理出力回路の一例を、各部の出力波形とともに示す回路図。FIG. 5 is a circuit diagram illustrating an example of a signal processing output circuit corresponding to the configuration of FIG. 4 together with output waveforms of respective units. 図4の第一変形例を各磁界検出素子の方形波出力とともに示す説明図。Explanatory drawing which shows the 1st modification of FIG. 4 with the square wave output of each magnetic field detection element. 同じく第二変形例を各磁界検出素子の方形波出力とともに示す説明図。Explanatory drawing which similarly shows a 2nd modification with the square wave output of each magnetic field detection element. 従来の軸受回転検出装置の構成を示す斜視図。The perspective view which shows the structure of the conventional bearing rotation detection apparatus. その磁界検出素子の方形波出力を示す説明図。Explanatory drawing which shows the square wave output of the magnetic field detection element.

符号の説明Explanation of symbols

1 ハブユニット(軸受)
2 外輪
3 ハブ軸(ハブホイール)
4 内輪
5 転動体
6 タイヤホイール
7 ブレーキディスクロータ
11 パルサーリング
N 第一着磁領域
S 第二着磁領域
60 信号処理出力回路(エッジ計数信号出力手段)
61,62 シュミットトリガ回路(波形整形部)
1 Hub unit (bearing)
2 Outer ring 3 Hub axle (hub wheel)
4 Inner ring 5 Rolling element 6 Tire wheel 7 Brake disc rotor 11 Pulsar ring N First magnetized area S Second magnetized area 60 Signal processing output circuit (edge count signal output means)
61, 62 Schmitt trigger circuit (waveform shaping unit)

Claims (2)

内輪と、前記内輪の外側に同心的に配置された外輪と、前記内輪と前記外輪との間に配置される複数の転動体とを有する軸受と、
前記内輪又は外輪の一方に同心的に固定された永久磁石部材として構成され、着磁極性の互いに異なる第一着磁領域と第二着磁領域とを等間隔にて交互に形成したパルサーリングと、
該パルサーリングに対し磁気ギャップを形成する形で非回転にて対向配置され、前記パルサーリングの回転に伴い交互に通過する前記第一着磁領域及び前記第二着磁領域が形成する磁界変動を、互いに隣接する第一着磁領域及び第二着磁領域の対が繰り返し通過して形成される周期的波形として各々検出するとともに、検知波形間に前記周期的波形の1/2波長よりも小さい位相差を生ずる関係にて、前記パルサーリングの周方向にて互いに異なる角度位置に配置された複数の磁界検出素子と、
各前記磁界検出素子の検知波形を方形波化する波形整形部と、
その方形波化された複数の検知波形の立上りエッジ及び立下りエッジに対応する計数信号を、いずれの検知波形に属するかを区別せず時系列的に互いに混在させた形でその到来順に出力するエッジ計数信号出力手段と、
を備えたことを特徴とする軸受回転検出装置。
A bearing having an inner ring, an outer ring disposed concentrically outside the inner ring, and a plurality of rolling elements disposed between the inner ring and the outer ring;
A pulsar ring that is configured as a permanent magnet member concentrically fixed to one of the inner ring and the outer ring, and in which first and second magnetized areas having different magnetic polarities are alternately formed at equal intervals; ,
The magnetic field fluctuations formed by the first and second magnetized regions that are opposed to each other in a non-rotating manner to form a magnetic gap with respect to the pulsar ring and pass alternately with the rotation of the pulsar ring. , Detecting each as a periodic waveform formed by repeatedly passing a pair of first and second magnetized regions adjacent to each other, and smaller than ½ wavelength of the periodic waveform between the detected waveforms A plurality of magnetic field detection elements arranged at different angular positions in the circumferential direction of the pulsar ring in relation to generate a phase difference,
A waveform shaping unit that squares the detection waveform of each of the magnetic field detection elements;
The counting signals corresponding to the rising and falling edges of the plurality of detection waveforms that are square-shaped are output in the order of arrival in a mixed form in time series without distinguishing which detection waveform belongs to Edge counting signal output means;
A bearing rotation detection device comprising:
前記複数の磁界検出素子は、方形波化された各検知波形の立上りエッジ及び立下りエッジが、個々の検知波形の一波長区間を互いに等分割しあう関係となるように、前記パルサーリングの周方向にて互いに異なる角度位置に配置されてなる請求項1記載の軸受回転検出装置。   The plurality of magnetic field detection elements are arranged so that a rising edge and a falling edge of each square-shaped detection waveform have a relationship in which one wavelength section of each detection waveform is equally divided from each other. The bearing rotation detection device according to claim 1, wherein the bearing rotation detection devices are arranged at different angular positions in the direction.
JP2007063665A 2007-03-13 2007-03-13 Bearing rotation detecting apparatus Pending JP2008224440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063665A JP2008224440A (en) 2007-03-13 2007-03-13 Bearing rotation detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063665A JP2008224440A (en) 2007-03-13 2007-03-13 Bearing rotation detecting apparatus

Publications (1)

Publication Number Publication Date
JP2008224440A true JP2008224440A (en) 2008-09-25

Family

ID=39843246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063665A Pending JP2008224440A (en) 2007-03-13 2007-03-13 Bearing rotation detecting apparatus

Country Status (1)

Country Link
JP (1) JP2008224440A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008073A (en) * 2010-06-28 2012-01-12 Nsk Ltd Rolling bearing with sensor
JP2012021840A (en) * 2010-07-13 2012-02-02 Tokai Rika Co Ltd Sensor target and rotation angle detecting apparatus
JP2015059763A (en) * 2013-09-17 2015-03-30 株式会社デンソー Rotation angle sensor and rotation angle detection system including the same
CN107003194A (en) * 2014-12-16 2017-08-01 斯凯孚公司 Load for rolling bearing determines system
CN112771384A (en) * 2018-10-03 2021-05-07 住友电装株式会社 Wheel speed sensor
CN114263622A (en) * 2021-12-30 2022-04-01 浙江启尔机电技术有限公司 Magnetic coupling online monitoring system and method and magnetic pump adopting same
CN114263622B (en) * 2021-12-30 2024-04-30 浙江启尔机电技术有限公司 Magnetic coupling on-line monitoring system and method and magnetic pump adopting magnetic coupling on-line monitoring system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442018A (en) * 1990-06-07 1992-02-12 Mitsubishi Electric Corp Up/down counter apparatus
JP2006214513A (en) * 2005-02-03 2006-08-17 Ntn Corp Bearing with sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442018A (en) * 1990-06-07 1992-02-12 Mitsubishi Electric Corp Up/down counter apparatus
JP2006214513A (en) * 2005-02-03 2006-08-17 Ntn Corp Bearing with sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008073A (en) * 2010-06-28 2012-01-12 Nsk Ltd Rolling bearing with sensor
JP2012021840A (en) * 2010-07-13 2012-02-02 Tokai Rika Co Ltd Sensor target and rotation angle detecting apparatus
JP2015059763A (en) * 2013-09-17 2015-03-30 株式会社デンソー Rotation angle sensor and rotation angle detection system including the same
CN107003194A (en) * 2014-12-16 2017-08-01 斯凯孚公司 Load for rolling bearing determines system
CN107003194B (en) * 2014-12-16 2019-11-08 斯凯孚公司 Load for rolling bearing determines system
CN112771384A (en) * 2018-10-03 2021-05-07 住友电装株式会社 Wheel speed sensor
CN112771384B (en) * 2018-10-03 2023-04-18 住友电装株式会社 Wheel speed sensor
CN114263622A (en) * 2021-12-30 2022-04-01 浙江启尔机电技术有限公司 Magnetic coupling online monitoring system and method and magnetic pump adopting same
CN114263622B (en) * 2021-12-30 2024-04-30 浙江启尔机电技术有限公司 Magnetic coupling on-line monitoring system and method and magnetic pump adopting magnetic coupling on-line monitoring system and method

Similar Documents

Publication Publication Date Title
JP5840374B2 (en) Absolute encoder device and motor
CN101400971A (en) System for detecting an absolute angular position by differential comparison, rolling bearing and rotary machine
JP5893134B2 (en) Magnetic rotation angle detector
US9618528B2 (en) Speed sensor
US11041739B2 (en) Rotation sensor
US20090022441A1 (en) Assembly Forming a Bearing Housing Equipped with an Information Sensing System
JP2008224440A (en) Bearing rotation detecting apparatus
JP2008045881A (en) Rotation angle position detector
JP2006322794A (en) Steering angle sensor
US20050174106A1 (en) Rolling bearing
JP2009097896A (en) Shaft torque measuring device and measurement method of drive shaft
JP2006208049A (en) Rotation angle detection apparatus
JP2008019933A (en) Bearing device with sensor and bearing system
JP2006090831A (en) Bearing with rotation sensor
JP5724326B2 (en) Rolling bearings with sensors and automobiles, railway vehicles, steelmaking facilities, machine tools using rolling bearings with sensors
JP2019120544A (en) Torque sensor
JP5242122B2 (en) Drive shaft axial torque measuring device and measuring method
JP5007616B2 (en) State quantity measuring device for rolling bearing units
JP2004132477A (en) Rolling bearing device
JP2002340918A (en) Rotational speed detector and bearing for wheel having the same
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP2008249353A (en) Rotation detection device, and bearing with rotation detection device
KR102419301B1 (en) Absolute position detection device and detection method of rotating body
JP2004132476A (en) Rolling bearing device
JP2004212347A (en) Revolution speed sensor device and rotation device with the revolution speed sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Effective date: 20111104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A02 Decision of refusal

Effective date: 20120502

Free format text: JAPANESE INTERMEDIATE CODE: A02