JP2012122430A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2012122430A
JP2012122430A JP2010275246A JP2010275246A JP2012122430A JP 2012122430 A JP2012122430 A JP 2012122430A JP 2010275246 A JP2010275246 A JP 2010275246A JP 2010275246 A JP2010275246 A JP 2010275246A JP 2012122430 A JP2012122430 A JP 2012122430A
Authority
JP
Japan
Prior art keywords
exhaust gas
passage
pressure
low
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010275246A
Other languages
Japanese (ja)
Other versions
JP5688959B2 (en
Inventor
Hideki Takase
秀樹 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010275246A priority Critical patent/JP5688959B2/en
Publication of JP2012122430A publication Critical patent/JP2012122430A/en
Application granted granted Critical
Publication of JP5688959B2 publication Critical patent/JP5688959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an accidental fire during deceleration in an internal combustion engine which has a high-pressure loop type exhaust gas recirculation passage and a low-pressure loop type exhaust gas recirculation passage and which uses the passages by switching between the passages.SOLUTION: In the internal combustion engine with a turbo charger which has the turbo charger 4 having a turbine 5 and a compressor 6 provided at an exhaust passage 3, a throttle valve 10 provided downstream of the compressor 6, a low-pressure loop type EGR device 25, and a high-pressure loop type EGR device 42, the low-pressure loop type EGR device 25 is operated in a high load area, and the high-pressure loop type EGR device 44 is operated in a low load area, and, when a decrease of a required load is detected in the high load area, control is performed so that as a decrease speed of the required load increases, a low-pressure EGR valve 27 of the low-pressure loop type EGR device 25 is closed more rapidly, and a high-pressure EGR valve 44 of the high-pressure loop type EGR device 42 is opened more moderately.

Description

本発明は、高圧排気ガス再循環通路及び低圧排気ガス再循環通路を備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine having a high-pressure exhaust gas recirculation passage and a low-pressure exhaust gas recirculation passage.

気筒内の燃焼温度を低下させ、以て有害物質であるNOxの排出量を削減する排気ガス再循環(Exhaust Gas Recirculation)装置が知られている。EGR装置は、燃焼により発生した排気ガスの一部を吸気に混入するものである。 Lowering the combustion temperature in the cylinders, than Te to reduce the emissions of the NO x which is a harmful substance exhaust gas recirculation (Exhaust Gas Recirculation) system has been known. The EGR device mixes a part of exhaust gas generated by combustion into intake air.

このようなEGR装置を有する内燃機関として、気筒から排出された直後の高温高圧の排気ガスを吸気通路に還流する高圧ループ式EGR装置と、排気ターボ過給機のタービン及び排気ガス浄化用の触媒を通過した低温低圧の排気ガスを吸気通路に還流する低圧ループ式EGR装置とを備え、これら高圧ループ式EGR装置と低圧ループ式EGR装置とを回転速度や負荷等の運転状態により切り替えて使用するものが知られている。   As an internal combustion engine having such an EGR device, a high-pressure loop EGR device that recirculates high-temperature and high-pressure exhaust gas immediately after being discharged from a cylinder to an intake passage, a turbine of an exhaust turbocharger, and an exhaust gas purification catalyst A low-pressure loop EGR device that recirculates low-temperature and low-pressure exhaust gas that has passed through the intake passage, and switches between the high-pressure loop EGR device and the low-pressure loop EGR device depending on the operating state such as rotational speed and load. Things are known.

より具体的には、低速高負荷領域では、タービンに入るガス圧よりも吸気管圧力が高く、高圧ループ式EGR装置を利用した排気ガス再循環を行うことができないので低圧ループ式EGR装置を使用し、低速中低負荷領域では、ノッキングが発生しにくいので、よりEGRガスの温度を高くして燃焼を安定させることにより排気ガスをより多く還流させるべく、経路が短い高圧ループ式EGR装置を使用するようにしている(例えば、特許文献1を参照)。   More specifically, in the low-speed and high-load region, the intake pipe pressure is higher than the gas pressure entering the turbine, and the exhaust gas recirculation using the high-pressure loop EGR device cannot be performed, so the low-pressure loop EGR device is used. However, since it is difficult for knocking to occur in the low, middle and low load regions, a high-pressure loop EGR device with a short path is used to recirculate more exhaust gas by increasing the temperature of the EGR gas and stabilizing the combustion. (For example, refer to Patent Document 1).

ここで、高負荷運転中に車両の減速を行うべくアクセル操作量を急速に小さくして低負荷運転に移行した際には、低圧ループ式EGR装置の使用を中止し高圧ループ式EGR装置の使用を開始する制御が行われる。   Here, when the accelerator operation amount is rapidly reduced to shift to low load operation to decelerate the vehicle during high load operation, use of the low pressure loop type EGR device is stopped and use of the high pressure loop type EGR device is stopped. Control to start is performed.

しかして、高負荷時における低圧ループ式EGR装置の使用中においては、EGRガス及び既燃ガスの全量がターボチャージャのタービンを通過するので、タービンの上流の圧力が高くなっている。この状態から高圧ループ式EGR装置へ使用するEGR装置を切り替えると、タービンの上流の圧力が高くなっていることから、高圧ループ式EGR装置中のEGR弁の開度を定常運転時と同様に設定した場合、気筒に導入されるEGRガスの量が多すぎて失火が発生する不具合の発生が懸念される。   Thus, during the use of the low-pressure loop EGR device at the time of high load, since the entire amount of EGR gas and burned gas passes through the turbine of the turbocharger, the pressure upstream of the turbine is high. When the EGR device to be used is switched from this state to the high-pressure loop EGR device, the upstream pressure of the turbine is increased, so the opening degree of the EGR valve in the high-pressure loop EGR device is set in the same manner as during steady operation. In such a case, there is a concern that the amount of EGR gas introduced into the cylinder is too large, resulting in a problem of misfire.

特開2008−19730号公報JP 2008-19730 A

本発明は以上の点に着目し、高圧ループ式排気ガス再循環装置及び低圧ループ式排気ガス再循環装置を備え、これらを切り替えて使用する内燃機関において、減速時の失火を予防することを目的とする。   The present invention pays attention to the above points and aims to prevent misfire at the time of deceleration in an internal combustion engine that includes a high-pressure loop exhaust gas recirculation device and a low-pressure loop exhaust gas recirculation device and uses them by switching them. And

すなわち本発明の内燃機関の制御装置は、排気通路に設けられたタービン、及び前記タービンにより駆動される吸気通路のコンプレッサとを備えたターボチャージャと、吸気通路における前記コンプレッサの下流に設けたスロットル弁と、吸気通路における前記コンプレッサの上流に設けた吸気絞り弁と、排気通路における前記タービンの下流の箇所から吸気通路における前記コンプレッサの上流かつ前記吸気絞り弁の下流の箇所に排気ガスの一部を還流させる低圧排気ガス再循環通路及びこの低圧排気ガス再循環通路を流通する排気ガスの量を制御する低圧排気ガス再循環制御弁を有する低圧ループ式EGR装置と、排気通路における前記タービンの上流の箇所から吸気通路における前記コンプレッサの下流の箇所に排気ガスの一部を還流させる高圧排気ガス再循環通路及びこの高圧排気ガス再循環通路を流通する排気ガスの量を制御する高圧排気ガス再循環制御弁を有する高圧ループ式EGR装置とを具備するターボチャージャ付き内燃機関に用いられ、高負荷領域においては前記低圧排気ガス再循環通路に排気ガスを流通させ、低負荷領域においては前記高圧排気ガス再循環通路に排気ガスを流通させ、高負荷領域において要求負荷の減少が検知されたときに、要求負荷の減少速度が大きくなるにつれ、前記低圧排気ガス再循環制御弁はより急速に閉じ、前記高圧排気ガス再循環制御弁はより緩やかに開く制御を行うことを特徴とする。   That is, the control device for an internal combustion engine according to the present invention includes a turbocharger including a turbine provided in an exhaust passage and a compressor of an intake passage driven by the turbine, and a throttle valve provided downstream of the compressor in the intake passage. An intake throttle valve provided upstream of the compressor in the intake passage, and a portion of the exhaust gas from a location downstream of the turbine in the exhaust passage to a location upstream of the compressor and downstream of the intake throttle valve in the intake passage. A low-pressure loop EGR device having a low-pressure exhaust gas recirculation passage for recirculation and a low-pressure exhaust gas recirculation control valve for controlling the amount of exhaust gas flowing through the low-pressure exhaust gas recirculation passage; and an upstream of the turbine in the exhaust passage Part of the exhaust gas is circulated from the location to the location downstream of the compressor in the intake passage And a high-pressure loop EGR device having a high-pressure exhaust gas recirculation control valve for controlling the amount of exhaust gas flowing through the high-pressure exhaust gas recirculation passage. The exhaust gas is circulated through the low-pressure exhaust gas recirculation passage in the high load region, and the exhaust gas is circulated through the high-pressure exhaust gas recirculation passage in the low load region. The low pressure exhaust gas recirculation control valve closes more rapidly and the high pressure exhaust gas recirculation control valve performs control to open more slowly as the rate of decrease in the required load increases. .

このようなものであれば、高圧排気ガス再循環制御弁を緩やかに開弁することにより、気筒に導入されるEGRガス量の増加を緩やかなものにすることができ、従って気筒に導入されるEGRガス量が多すぎることによる失火の発生を防ぐことができる。   If this is the case, the increase in the amount of EGR gas introduced into the cylinder can be moderated by gently opening the high-pressure exhaust gas recirculation control valve. The occurrence of misfire due to the excessive amount of EGR gas can be prevented.

なお、本発明において、「要求負荷」とは、アクセル操作量や、スロットルバルブの開度や、新気の吸入空気量や、吸気管圧力等、運転者が要求する内燃機関の出力に対応する量全般を示す概念である。   In the present invention, the “required load” corresponds to the output of the internal combustion engine requested by the driver, such as the accelerator operation amount, the throttle valve opening, the intake air amount of fresh air, the intake pipe pressure, and the like. It is a concept showing the whole quantity.

本発明の内燃機関の制御装置によれば、高圧ループ式排気ガス再循環装置及び低圧ループ式排気ガス再循環装置を備え、これらを切り替えて使用する内燃機関において、減速時の失火を予防することができる。   According to the control device for an internal combustion engine of the present invention, a high-pressure loop exhaust gas recirculation device and a low-pressure loop exhaust gas recirculation device are provided. Can do.

本発明の一実施形態に係るエンジンの概略構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic structure explanatory drawing of the engine which concerns on one Embodiment of this invention. 同実施形態の電子制御装置の概略構成説明図。FIG. 3 is a schematic configuration explanatory diagram of the electronic control device of the embodiment. 同実施形態の制御手順を示すフローチャート。The flowchart which shows the control procedure of the embodiment. 同実施形態に係る作用説明図。Action | operation explanatory drawing which concerns on the same embodiment.

以下、本発明の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に構成を概略的に示した内燃機関であるエンジン100は、2つのシリンダ1を有するもので、各シリンダ1に吸入空気を供給するための吸気通路2と、排気ガスを排出するための排気通路3と、排気通路3上に配設されたタービン5及び吸気通路2上に配設されたコンプレッサ6を有するターボチャージャ4とを少なくとも具備してなるものである。前記吸気通路2には、エアクリーナ7、吸気絞り弁8、コンプレッサ6、インタークーラ9、及び電子制御式スロットル弁(以下、スロットル弁10と称する)を上流からこの順で配設している。また、本実施形態では、スロットル弁10とシリンダ1との間にサージタンク11を設けている。加えて本実施形態では、吸気絞り弁8より上流側の箇所とスロットル弁10より下流側の箇所、具体的にはサージタンク11との間を連通する新気バイパス通路12a、及びこの新気バイパス通路12a中に設けてなる新気バイパス弁12bを有する新気バイパス機構12を配設している。前記新気バイパス弁12bは、全閉状態と全開状態との間で開度を連続的に変更可能な弁である。前記スロットル弁10は、図示しないアクセルペダルの操作量に応じて開閉する。そして、図示しない燃料タンク内に発生した燃料蒸発ガスはキャニスタ13に吸着され、エンジン100が始動された後にパージバキュームスイッチングバルブ14(パージVSV)を介して吸気通路2に導入されるように構成してある。   An engine 100 which is an internal combustion engine schematically shown in FIG. 1 has two cylinders 1, an intake passage 2 for supplying intake air to each cylinder 1, and an exhaust gas for discharging exhaust gas. It comprises at least an exhaust passage 3 and a turbocharger 4 having a turbine 5 disposed on the exhaust passage 3 and a compressor 6 disposed on the intake passage 2. In the intake passage 2, an air cleaner 7, an intake throttle valve 8, a compressor 6, an intercooler 9, and an electronically controlled throttle valve (hereinafter referred to as a throttle valve 10) are arranged in this order from the upstream. In the present embodiment, a surge tank 11 is provided between the throttle valve 10 and the cylinder 1. In addition, in the present embodiment, a fresh air bypass passage 12a that communicates between a location upstream of the intake throttle valve 8 and a location downstream of the throttle valve 10, specifically, the surge tank 11, and the fresh air bypass. A fresh air bypass mechanism 12 having a fresh air bypass valve 12b provided in the passage 12a is disposed. The fresh air bypass valve 12b is a valve capable of continuously changing the opening degree between a fully closed state and a fully open state. The throttle valve 10 opens and closes according to an operation amount of an accelerator pedal (not shown). The fuel evaporative gas generated in a fuel tank (not shown) is adsorbed by the canister 13 and is introduced into the intake passage 2 via the purge vacuum switching valve 14 (purge VSV) after the engine 100 is started. It is.

前記各シリンダ1には、点火プラグ15及び燃料噴射弁16を配設している。前記燃料噴射弁16は、デリバリパイプ17を介して高圧燃料ポンプ18に接続している。   Each cylinder 1 is provided with a spark plug 15 and a fuel injection valve 16. The fuel injection valve 16 is connected to a high-pressure fuel pump 18 via a delivery pipe 17.

前記排気通路3上には、タービン5、三元触媒20、及び図示しない排気マフラを上流からこの順で配設している。三元触媒20より上流側には、三元触媒20の上流側における空燃比または酸素濃度に応じた出力信号を電子制御装置(以下ECU33と称する)に出力する空燃比センサ21を設けている。一方、三元触媒20より下流側には、三元触媒20中の酸素濃度に応じた信号をECU33に出力するリアO2センサ22を設けている。 On the exhaust passage 3, a turbine 5, a three-way catalyst 20, and an exhaust muffler (not shown) are arranged in this order from the upstream. On the upstream side of the three-way catalyst 20, an air-fuel ratio sensor 21 is provided that outputs an output signal corresponding to the air-fuel ratio or oxygen concentration upstream of the three-way catalyst 20 to an electronic control unit (hereinafter referred to as ECU 33). On the other hand, a rear O 2 sensor 22 that outputs a signal corresponding to the oxygen concentration in the three-way catalyst 20 to the ECU 33 is provided downstream of the three-way catalyst 20.

前記ターボチャージャ4は、この分野でよく知られたものを使用することができるもので、過給圧を制御するために、タービン5の上流と下流とを連通可能にする排気バイパス通路23aを備え、その排気バイパス通路23aを開閉するウェイストゲート弁23bを備えている。このウェイストゲート弁23bは、低速走行時にはより多くの排気ガスをタービン5に導くことにより、より多くの新気をシリンダ1内に過給するようにすべく閉じられ、中高速走行時には過過給によるノッキングの発生を防ぐべく開かれる。また、ターボチャージャ4のコンプレッサ6側においては、コンプレッサ6を迂回する過給圧迂回機構24が設けてある。この過給圧迂回機構24は、コンプレッサ6の上流と下流とを連通可能にする吸気バイパス通路24aと、その吸気バイパス通路24aを開閉する吸気バイパス弁たるABV24b(エアバイパスバルブ)とを備えている。減速時には、過給圧を下げるようにしている。   The turbocharger 4 can use a well-known one in this field, and includes an exhaust bypass passage 23a that enables communication between the upstream and downstream of the turbine 5 in order to control the supercharging pressure. A waste gate valve 23b for opening and closing the exhaust bypass passage 23a is provided. The waste gate valve 23b is closed so as to supercharge more fresh air into the cylinder 1 by introducing more exhaust gas to the turbine 5 during low-speed traveling, and supercharging during medium-high speed traveling. Opened to prevent knocking from occurring. A turbocharging pressure bypass mechanism 24 that bypasses the compressor 6 is provided on the compressor 6 side of the turbocharger 4. The supercharging pressure bypass mechanism 24 includes an intake bypass passage 24a that enables communication between the upstream and downstream of the compressor 6, and an ABV 24b (air bypass valve) that is an intake bypass valve that opens and closes the intake bypass passage 24a. . During deceleration, the boost pressure is reduced.

また、本実施形態では、エアクリーナ7を介して吸気通路2に流入する新気に排気ガスを混合するための低圧ループ式EGR装置25を、吸気通路2と排気通路3との間に連通させて設けている。すなわち、低圧ループ式EGR装置25は、吸気通路2と排気通路3とが選択的に連通される低圧排気ガス再循環通路(以下、低圧EGR通路26と称する)と、その低圧EGR通路26に設けられて低圧EGR通路26を通過するか、または再循環させる排気ガス(EGRガス)の量を制御する低圧排気ガス再循環制御弁(以下、低圧EGR弁27と称する)と、この低圧EGR弁27の上流に設けられEGRガスを水冷するEGRクーラ28とを備えて構成される。低圧EGR通路26は、排気通路3のタービン5より下流の箇所、より正確には三元触媒20より下流の箇所と、吸気通路2の吸気絞り弁8の下流かつコンプレッサ6の上流の部位とを連通する。低圧EGR弁27は、ECU33により制御されている。   In the present embodiment, a low-pressure loop EGR device 25 for mixing exhaust gas with fresh air flowing into the intake passage 2 via the air cleaner 7 is communicated between the intake passage 2 and the exhaust passage 3. Provided. That is, the low-pressure loop EGR device 25 is provided in a low-pressure exhaust gas recirculation passage (hereinafter referred to as a low-pressure EGR passage 26) in which the intake passage 2 and the exhaust passage 3 are selectively communicated, and the low-pressure EGR passage 26. A low pressure exhaust gas recirculation control valve (hereinafter referred to as a low pressure EGR valve 27) that controls the amount of exhaust gas (EGR gas) that passes through or is recirculated through the low pressure EGR passage 26, and the low pressure EGR valve 27. And an EGR cooler 28 that cools the EGR gas with water. The low pressure EGR passage 26 has a location downstream of the turbine 5 in the exhaust passage 3, more precisely a location downstream of the three-way catalyst 20, and a location downstream of the intake throttle valve 8 and upstream of the compressor 6 in the intake passage 2. Communicate. The low pressure EGR valve 27 is controlled by the ECU 33.

また、本実施形態では、エアクリーナ7を介して吸気通路2に流入する新気に排気ガスを混合するための高圧ループ式EGR装置42も、吸気通路2と排気通路3との間に連通させて設けている。この高圧ループ式EGR装置42は、排気通路3における前記タービン5より上流の箇所と吸気通路2における前記コンプレッサ6の下流の箇所とを連通する高圧排気ガス再循環通路(以下、高圧EGR通路43と称する)と、この高圧EGR通路43を流通する排気ガスの量を制御する高圧EGR弁44とを有する。高圧EGR弁44も、ECU33により制御されている。   In the present embodiment, a high-pressure loop EGR device 42 for mixing exhaust gas into fresh air flowing into the intake passage 2 via the air cleaner 7 is also connected between the intake passage 2 and the exhaust passage 3. Provided. The high-pressure loop EGR device 42 includes a high-pressure exhaust gas recirculation passage (hereinafter referred to as a high-pressure EGR passage 43 and a high-pressure exhaust gas recirculation passage) that connects a location upstream of the turbine 5 in the exhaust passage 3 and a location downstream of the compressor 6 in the intake passage 2. And a high-pressure EGR valve 44 for controlling the amount of exhaust gas flowing through the high-pressure EGR passage 43. The high pressure EGR valve 44 is also controlled by the ECU 33.

さらに本実施形態では、連続可変バルブタイミング機構(以下、VVT29と称する)を具備する。このVVT29は、図示しないクランクシャフトの回転に対して排気弁を常に一定のタイミングで開閉させつつ、吸気弁のバルブタイミングを変化させて、排気弁のバルブタイミングと吸気弁のバルブタイミングとの相対位相差を所定角度範囲内で自在に変化させることができる。VVT29の制御は、ECU33により行う。   Furthermore, in this embodiment, a continuously variable valve timing mechanism (hereinafter referred to as VVT 29) is provided. The VVT 29 changes the valve timing of the intake valve while constantly opening and closing the exhaust valve with respect to the rotation of the crankshaft (not shown), so that the relative position between the valve timing of the exhaust valve and the valve timing of the intake valve is changed. The phase difference can be freely changed within a predetermined angle range. The ECU 33 controls the VVT 29.

加えて、本実施形態では、エンジン100のクランクケース内のクランク室及びシリンダヘッドカバー内のカム室で発生するブローバイガスを吸気通路2に送り出すためのブローバイガス還流装置30も備えている。このブローバイガス還流装置30は、PCV通路31と、ブローバイ通路32とを要素とする。PCV通路31は、クランクケース内のクランク室を、吸気通路2に連通せしめる。本実施形態では、PCV通路31の一端を、吸気通路2のスロットル弁10より下流の部位に接続している。ブローバイ通路32は、シリンダヘッドカバー内のカム室を、吸気通路2に連通せしめる。図示はしないが、カム室は、内部通路を介してクランク室と繋がっており、相互にブローバイガスや新気を行き来させることができる。本実施形態では、ブローバイ通路32の一端を、吸気通路2におけるコンプレッサ6の上流側、より正確には吸気絞り弁8の上流側の所定箇所に接続している。   In addition, in this embodiment, a blow-by gas recirculation device 30 for sending blow-by gas generated in the crank chamber in the crank case of the engine 100 and the cam chamber in the cylinder head cover to the intake passage 2 is also provided. The blow-by gas recirculation device 30 includes a PCV passage 31 and a blow-by passage 32 as elements. The PCV passage 31 allows the crank chamber in the crankcase to communicate with the intake passage 2. In the present embodiment, one end of the PCV passage 31 is connected to a portion of the intake passage 2 downstream from the throttle valve 10. The blow-by passage 32 allows the cam chamber in the cylinder head cover to communicate with the intake passage 2. Although not shown, the cam chamber is connected to the crank chamber via an internal passage, and blow-by gas and fresh air can be exchanged with each other. In the present embodiment, one end of the blow-by passage 32 is connected to a predetermined location on the upstream side of the compressor 6 in the intake passage 2, more precisely on the upstream side of the intake throttle valve 8.

ECU33は、図2に概略的に示すように、CPU33a、RAM33b、ROM33c、フラッシュメモリ33d、I/Oインタフェース33e等を包有するマイクロコンピュータシステムである。I/Oインタフェース33eには、空気流量を検出するためのエアフローメータ34から出力される空気流量信号a、車速を検出する車速センサ35から出力される車速信号b、エンジン回転数を検出する回転数センサ36から出力される回転数信号c、スロットル弁開度を検出するスロットルポジションセンサ37から出力されるスロットル開度信号d、吸気通路2内、より具体的にはサージタンク11内の吸気圧(過給圧)を検出する圧力センサ38から出力される吸気圧信号e、吸気通路2内の吸気温を検出する吸気温センサ39から出力される吸気温信号f、冷却水温を検出する水温センサ40から出力される水温信号g、アクセルペダルの操作量を検出するアクセル操作量センサ41から出力されるアクセル操作量信号h、空燃比センサ21から出力される空燃比信号i、リアO2センサ22から出力される電圧信号j等が入力される。また、I/Oインタフェース33eからは、燃料噴射弁16に対して燃料噴射信号p、点火プラグ15(のイグニッションコイル)に対して点火信号q、新気バイパス弁12bに対して開閉信号r、低圧EGR弁27に対して開閉弁信号s、高圧EGR弁44に対して開閉弁信号t等をそれぞれ出力する。このECU33は、請求項中の制御装置として機能する。 As schematically shown in FIG. 2, the ECU 33 is a microcomputer system including a CPU 33a, a RAM 33b, a ROM 33c, a flash memory 33d, an I / O interface 33e, and the like. The I / O interface 33e includes an air flow rate signal a output from the air flow meter 34 for detecting the air flow rate, a vehicle speed signal b output from the vehicle speed sensor 35 for detecting the vehicle speed, and a rotational speed for detecting the engine speed. The rotation speed signal c output from the sensor 36, the throttle opening signal d output from the throttle position sensor 37 for detecting the throttle valve opening, the intake pressure in the intake passage 2, more specifically in the surge tank 11 ( The intake pressure signal e output from the pressure sensor 38 for detecting the supercharging pressure), the intake air temperature signal f output from the intake air temperature sensor 39 for detecting the intake air temperature in the intake passage 2, and the water temperature sensor 40 for detecting the cooling water temperature. The water temperature signal g output from the accelerator, the accelerator operation amount signal h output from the accelerator operation amount sensor 41 for detecting the operation amount of the accelerator pedal, the air-fuel ratio The air-fuel ratio signal i output from the capacitors 21, the voltage signal j or the like to be output from the rear O 2 sensor 22 are inputted. Further, from the I / O interface 33e, a fuel injection signal p for the fuel injection valve 16, an ignition signal q for the ignition plug 15 (ignition coil thereof), an open / close signal r for the fresh air bypass valve 12b, a low pressure An on-off valve signal s is output to the EGR valve 27, and an on-off valve signal t is output to the high pressure EGR valve 44. The ECU 33 functions as a control device in the claims.

各種制御用のプログラムは、ROM33c又はフラッシュメモリ33dに格納されており、そのプログラムがRAM33bに読み込まれCPU33aによって解読される。CPU33aは、エンジン100の運転制御に必要な各種信号a,b,c,d,e,f,g,h,i,jをI/Oインタフェース33eを介して取得し、それら信号が示す情報に基づいて吸入空気量や要求燃料噴射量、点火時期、開閉弁時期、EGR弁25bの開度等を演算する。そして、演算結果に対応した各種制御信号p,q,r,s,tをI/Oインタフェース33eを介して印加する。   Various control programs are stored in the ROM 33c or the flash memory 33d, and the programs are read into the RAM 33b and decoded by the CPU 33a. The CPU 33a acquires various signals a, b, c, d, e, f, g, h, i, j necessary for operation control of the engine 100 via the I / O interface 33e, and uses the information indicated by these signals. Based on this, the intake air amount, the required fuel injection amount, the ignition timing, the opening / closing valve timing, the opening degree of the EGR valve 25b, and the like are calculated. Various control signals p, q, r, s, and t corresponding to the calculation result are applied through the I / O interface 33e.

しかして本実施形態では、ECU33は、低速高負荷領域では低圧ループ式EGR装置25を使用すべく低圧EGR弁27を開弁し高圧EGR弁44を閉弁し、低速中低負荷領域では高圧ループ式EGR装置42を使用すべく低圧EGR弁27を閉弁し高圧EGR弁44を開弁する制御を行う。   Thus, in the present embodiment, the ECU 33 opens the low pressure EGR valve 27 and closes the high pressure EGR valve 44 so as to use the low pressure loop EGR device 25 in the low speed and high load region, and closes the high pressure EGR valve 44 in the low speed, medium and low load region. Control is performed so that the low pressure EGR valve 27 is closed and the high pressure EGR valve 44 is opened to use the EGR device 42.

また、高負荷領域において要求負荷の減少が検知されたときには、要求負荷の減少速度が大きくなるにつれ、前記低圧EGR弁27はより急速に閉じ、前記高圧EGR弁44はより緩やかに開く制御を行う。本実施形態では、要求負荷を示す量としてアクセル操作量信号hが示すアクセルペダルの操作量(以下、アクセル操作量と称する)を採用している。すなわち、アクセル操作量の減少が検知されたときに要求負荷の減少が検知されたものとしている。具体的には、アクセル操作量の減少速度と低圧EGR弁27及び高圧EGR弁44の単位時間当たりの開弁量を記憶した開閉弁速度マップをECU33のROM33c又はフラッシュメモリ33dに記憶していて、検知されたアクセル操作量の減少速度に基づき低圧EGR弁27の単位時間当たりの閉弁量及び高圧EGR弁44の単位時間当たりの開弁量をそれぞれ補間計算し、その計算結果に基づき開閉弁する制御を行う。そして、前記単位時間当たりの閉弁量は前記減少速度が大きくなるにつれて大きく、また、前記単位時間当たりの開弁量は前記減少速度が大きくなるにつれて小さくしている。ここで本実施形態では、アクセル操作量の減少速度は、所定時間ごと、例えば0.1秒ごとにアクセル操作量信号hが示すアクセル操作量を検知し、その所定時間ごとの変化量として検出するようにしている。   Further, when a decrease in the required load is detected in the high load region, the low pressure EGR valve 27 is closed more rapidly and the high pressure EGR valve 44 is controlled to open more gradually as the decrease rate of the required load increases. . In the present embodiment, an accelerator pedal operation amount (hereinafter referred to as an accelerator operation amount) indicated by an accelerator operation amount signal h is adopted as an amount indicating a required load. That is, it is assumed that a decrease in the required load is detected when a decrease in the accelerator operation amount is detected. More specifically, an opening / closing valve speed map storing the reduction speed of the accelerator operation amount and the valve opening amounts per unit time of the low pressure EGR valve 27 and the high pressure EGR valve 44 is stored in the ROM 33c or the flash memory 33d of the ECU 33, The valve closing amount per unit time of the low pressure EGR valve 27 and the valve opening amount per unit time of the high pressure EGR valve 44 are respectively calculated by interpolation based on the detected decrease rate of the accelerator operation amount, and the valve is opened and closed based on the calculation result. Take control. The valve closing amount per unit time increases as the decrease rate increases, and the valve opening amount per unit time decreases as the decrease rate increases. Here, in this embodiment, the rate of decrease in the accelerator operation amount is detected as a change amount per predetermined time by detecting the accelerator operation amount indicated by the accelerator operation amount signal h every predetermined time, for example, every 0.1 second. I am doing so.

以下、図3に示すフローチャートを参照しつつ、ECU33がプログラムに従い実行する処理の手順を述べる。   Hereinafter, the procedure of processing executed by the ECU 33 according to the program will be described with reference to the flowchart shown in FIG.

まず、運転状態が低速高負荷領域から低速低中負荷領域に移行したか否かを判定し(S1)、低速高負荷領域から低速低中負荷領域に移行した場合にはアクセル操作量の減少速度を検知し(S2)、検知したアクセル操作量の減少速度に基づき低圧EGR弁27の単位時間当たりの閉弁量及び高圧EGR弁44の単位時間当たりの開弁量を決定し(S3)、決定した閉弁量だけ低圧EGR弁27を閉弁するとともに決定した開弁量だけ高圧EGR弁44を開弁する(S4)。   First, it is determined whether or not the operating state has shifted from the low speed / high load area to the low speed / low / medium load area (S1). Is detected (S2), and the valve closing amount per unit time of the low pressure EGR valve 27 and the valve opening amount per unit time of the high pressure EGR valve 44 are determined based on the detected decrease rate of the accelerator operation amount (S3). The low pressure EGR valve 27 is closed by the closed valve amount and the high pressure EGR valve 44 is opened by the determined valve opening amount (S4).

すなわち、図4の時刻t1においてアクセル操作量が減少すると、アクセル操作量の減少速度に対応した速度で低圧EGR弁27が閉弁するとともに、アクセル操作量の減少速度に対応した速度で高圧EGR弁44が図4の実線に示すように開弁する。この高圧EGR弁44の開弁速度は、図4の破線に示すような従来の制御を行った場合と比較して緩やかである。そして、このように高圧EGR弁44の開弁速度を従来と比較して緩やかにすることにより、シリンダ1への空気流量の変化が図4の破線に示す従来の制御を行った場合と比較して緩やかになり、従って、図4の破線に示す従来の制御を行った場合と異なりEGR率が急増することがなくなる。さらに、図4の二点鎖線に示すように、アクセル操作量がより急激に減少した場合は、低圧EGR弁27をさらに急速に閉弁するとともに、高圧EGR弁44をさらに緩やかに開弁する。このときも、シリンダ1への空気流量の変化が図4の破線に示す従来の制御を行った場合と比較して緩やかになり、従って、図4の破線に示す従来の制御を行った場合と異なりEGR率が急増することがなくなる。 That is, when the accelerator operation amount decreases at time t 1 in FIG. 4, the low pressure EGR valve 27 closes at a speed corresponding to the decrease speed of the accelerator operation amount, and the high pressure EGR at a speed corresponding to the decrease speed of the accelerator operation amount. The valve 44 opens as shown by the solid line in FIG. The valve opening speed of the high pressure EGR valve 44 is gentle as compared with the case where the conventional control as shown by the broken line in FIG. 4 is performed. Then, by making the valve opening speed of the high pressure EGR valve 44 gentler than in the conventional case, the change in the air flow rate to the cylinder 1 is compared with the case where the conventional control shown by the broken line in FIG. 4 is performed. Therefore, unlike the case where the conventional control indicated by the broken line in FIG. 4 is performed, the EGR rate does not increase rapidly. Furthermore, as shown by the two-dot chain line in FIG. 4, when the accelerator operation amount decreases more rapidly, the low pressure EGR valve 27 is closed more rapidly and the high pressure EGR valve 44 is opened more gradually. Also at this time, the change in the air flow rate to the cylinder 1 becomes gradual compared to the case where the conventional control indicated by the broken line in FIG. 4 is performed, and accordingly, the case where the conventional control indicated by the broken line in FIG. Unlikely, the EGR rate does not increase rapidly.

以上に述べたように、本発明に係る制御を行うと、上述したように高圧EGR弁44が従来の制御を行った場合と比較して緩やかに開弁されるので、シリンダ1に導入されるEGRガス量の増加を緩やかなものにすることができる。従って、シリンダ1に導入されるEGRガス量が急増することによる失火の発生を防ぐことができるとともに、高圧ループ式EGR装置25と低圧ループ式EGR装置51とを併用してさらなる燃費の向上を図ることができる。   As described above, when the control according to the present invention is performed, the high pressure EGR valve 44 is gradually opened as compared with the case where the conventional control is performed as described above. The increase in the amount of EGR gas can be made moderate. Accordingly, it is possible to prevent the occurrence of misfire due to a sudden increase in the amount of EGR gas introduced into the cylinder 1, and to further improve fuel efficiency by using the high-pressure loop EGR device 25 and the low-pressure loop EGR device 51 together. be able to.

なお、本実施形態は上述した実施形態に限られない。   In addition, this embodiment is not restricted to embodiment mentioned above.

例えば、上述した実施形態としては、要求負荷を示す量としてアクセル操作量を採用し、アクセル操作量の減少速度と低圧EGR弁の閉弁速度及び高圧EGR弁の開弁速度とを関連付けているが、これ以外に、スロットルバルブの開度や、新気の空気流量や、吸気管圧力等、要求負荷を示す他の量と低圧EGR弁の閉弁速度及び高圧EGR弁の開弁速度とを関連付けるようにしてもよい。   For example, in the above-described embodiment, the accelerator operation amount is adopted as the amount indicating the required load, and the decrease rate of the accelerator operation amount is associated with the valve closing speed of the low pressure EGR valve and the valve opening speed of the high pressure EGR valve. In addition, other amounts indicating the required load, such as the opening degree of the throttle valve, the fresh air flow rate, the intake pipe pressure, and the valve closing speed of the low pressure EGR valve and the valve opening speed of the high pressure EGR valve are associated with each other. You may do it.

その他、本発明の趣旨を損ねない範囲で種々に変形してよい。   In addition, various modifications may be made without departing from the spirit of the present invention.

2…吸気通路
3…排気通路
4…ターボチャージャ
5…タービン
6…コンプレッサ
8…吸気絞り弁
10…スロットル弁
25…低圧ループ式EGR装置
26…低圧EGR通路(低圧排気ガス再循環通路)
27…低圧EGR弁(低圧排気ガス再循環制御弁)
42…高圧ループ式EGR装置
43…高圧EGR通路(高圧排気ガス再循環通路)
44…高圧EGR弁(高圧排気ガス再循環制御弁)
2 ... Intake passage 3 ... Exhaust passage 4 ... Turbocharger 5 ... Turbine 6 ... Compressor 8 ... Intake throttle valve 10 ... Throttle valve 25 ... Low pressure loop EGR device 26 ... Low pressure EGR passage (low pressure exhaust gas recirculation passage)
27 ... Low pressure EGR valve (Low pressure exhaust gas recirculation control valve)
42 ... High-pressure loop EGR device 43 ... High-pressure EGR passage (high-pressure exhaust gas recirculation passage)
44 ... High pressure EGR valve (High pressure exhaust gas recirculation control valve)

Claims (1)

排気通路に設けられたタービン、及び前記タービンにより駆動される吸気通路のコンプレッサとを備えたターボチャージャと、
吸気通路における前記コンプレッサの下流に設けたスロットル弁と、
吸気通路における前記コンプレッサの上流に設けた吸気絞り弁と、
排気通路における前記タービンの下流の箇所から吸気通路における前記コンプレッサの上流かつ前記吸気絞り弁の下流の箇所に排気ガスの一部を還流させる低圧排気ガス再循環通路及びこの低圧排気ガス再循環通路を流通する排気ガスの量を制御する低圧排気ガス再循環制御弁を有する低圧ループ式EGR装置と、
排気通路における前記タービンの上流の箇所から吸気通路における前記コンプレッサの下流の箇所に排気ガスの一部を還流させる高圧排気ガス再循環通路及びこの高圧排気ガス再循環通路を流通する排気ガスの量を制御する高圧排気ガス再循環制御弁を有する高圧ループ式EGR装置と
を具備するターボチャージャ付き内燃機関に用いられ、
高負荷領域においては前記低圧排気ガス再循環通路に排気ガスを流通させ、
低負荷領域においては前記高圧排気ガス再循環通路に排気ガスを流通させ、
高負荷領域において要求負荷の減少が検知されたときに、要求負荷の減少速度が大きくなるにつれ、
前記低圧排気ガス再循環制御弁はより急速に閉じ、
前記高圧排気ガス再循環制御弁はより緩やかに開く
制御を行うことを特徴とする内燃機関の制御装置。
A turbocharger comprising a turbine provided in an exhaust passage and a compressor of an intake passage driven by the turbine;
A throttle valve provided downstream of the compressor in the intake passage;
An intake throttle valve provided upstream of the compressor in the intake passage;
A low pressure exhaust gas recirculation passage for recirculating a part of the exhaust gas from a location downstream of the turbine in the exhaust passage to a location upstream of the compressor and downstream of the intake throttle valve in the intake passage, and the low pressure exhaust gas recirculation passage; A low-pressure loop EGR device having a low-pressure exhaust gas recirculation control valve for controlling the amount of exhaust gas flowing;
A high-pressure exhaust gas recirculation passage for recirculating a part of the exhaust gas from a location upstream of the turbine in the exhaust passage to a location downstream of the compressor in the intake passage, and an amount of exhaust gas flowing through the high-pressure exhaust gas recirculation passage. Used in a turbocharged internal combustion engine comprising a high-pressure loop EGR device having a high-pressure exhaust gas recirculation control valve to control,
In the high load region, exhaust gas is circulated through the low pressure exhaust gas recirculation passage,
In the low load region, the exhaust gas is circulated through the high-pressure exhaust gas recirculation passage,
When a decrease in the required load is detected in the high load region,
The low pressure exhaust gas recirculation control valve closes more rapidly;
The control apparatus for an internal combustion engine, wherein the high-pressure exhaust gas recirculation control valve performs control to open more gently.
JP2010275246A 2010-12-10 2010-12-10 Control device for internal combustion engine Expired - Fee Related JP5688959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010275246A JP5688959B2 (en) 2010-12-10 2010-12-10 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010275246A JP5688959B2 (en) 2010-12-10 2010-12-10 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012122430A true JP2012122430A (en) 2012-06-28
JP5688959B2 JP5688959B2 (en) 2015-03-25

Family

ID=46504119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275246A Expired - Fee Related JP5688959B2 (en) 2010-12-10 2010-12-10 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5688959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031189A (en) * 2016-09-19 2018-03-28 현대자동차주식회사 Apparatus and method for purging fuel vapor
KR20180053998A (en) * 2016-11-14 2018-05-24 현대자동차주식회사 Fuel vapor purging system and method for diagnozing leakage of fuel vapor
KR20180067338A (en) * 2016-12-12 2018-06-20 현대오트론 주식회사 Dual Purge System Using the Differential Pressure Valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019730A (en) * 2006-07-11 2008-01-31 Toyota Motor Corp Exhaust gas recirculating device of internal combustion engine
JP2008051022A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019730A (en) * 2006-07-11 2008-01-31 Toyota Motor Corp Exhaust gas recirculating device of internal combustion engine
JP2008051022A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031189A (en) * 2016-09-19 2018-03-28 현대자동차주식회사 Apparatus and method for purging fuel vapor
KR101896324B1 (en) * 2016-09-19 2018-09-07 현대자동차 주식회사 Apparatus and method for purging fuel vapor
US10533524B2 (en) 2016-09-19 2020-01-14 Hyundai Motor Company Apparatus and method for purging fuel vapor
KR20180053998A (en) * 2016-11-14 2018-05-24 현대자동차주식회사 Fuel vapor purging system and method for diagnozing leakage of fuel vapor
KR101905565B1 (en) * 2016-11-14 2018-10-08 현대자동차 주식회사 Fuel vapor purging system and method for diagnozing leakage of fuel vapor
US10655568B2 (en) 2016-11-14 2020-05-19 Hyundai Motor Company Fuel vapor purge system and method for diagnosing leakage of fuel vapor using the same
KR20180067338A (en) * 2016-12-12 2018-06-20 현대오트론 주식회사 Dual Purge System Using the Differential Pressure Valve
KR101898197B1 (en) * 2016-12-12 2018-09-12 현대오트론 주식회사 Dual Purge System Using the Differential Pressure Valve

Also Published As

Publication number Publication date
JP5688959B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5545654B2 (en) Turbocharged internal combustion engine
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
JP5610873B2 (en) Internal combustion engine
JP5187123B2 (en) Control device for internal combustion engine
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
JP5649343B2 (en) Intake throttle control method for internal combustion engine
JP2012067609A (en) Internal combustion engine with turbocharger
JP2008075589A (en) Egr gas scavenging device for internal combustion engine
JP5688959B2 (en) Control device for internal combustion engine
JP2014227844A (en) Controller of internal combustion engine
JP2007247612A (en) Control unit for internal-combustion engine
JP6005543B2 (en) Control device for supercharged engine
JP2013130121A (en) Exhaust gas recirculation system for spark-ignition-type internal combustion engine
JP5679776B2 (en) Exhaust gas recirculation control method for internal combustion engine
JP2010223077A (en) Internal combustion engine
JP4206934B2 (en) Supercharging system for internal combustion engines
JP5769402B2 (en) Control device for internal combustion engine
US11300065B2 (en) Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device
JP2012163009A (en) Control device for internal combustion engine
JP2010168954A (en) Control device for internal combustion engine
JP2009250209A (en) Exhaust gas recirculating device of internal combustion engine
JP5730056B2 (en) Exhaust gas recirculation system for internal combustion engines
JP7070368B2 (en) Supercharging system
JP2018184873A (en) Control device for engine
JP6835655B2 (en) EGR device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5688959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees