JP2012122130A - High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part - Google Patents

High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part Download PDF

Info

Publication number
JP2012122130A
JP2012122130A JP2011180617A JP2011180617A JP2012122130A JP 2012122130 A JP2012122130 A JP 2012122130A JP 2011180617 A JP2011180617 A JP 2011180617A JP 2011180617 A JP2011180617 A JP 2011180617A JP 2012122130 A JP2012122130 A JP 2012122130A
Authority
JP
Japan
Prior art keywords
less
steel sheet
martensite
warm
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011180617A
Other languages
Japanese (ja)
Other versions
JP5662903B2 (en
Inventor
Toshio Murakami
俊夫 村上
Elijah Kakiuchi
エライジャ 柿内
Hideo Hatake
英雄 畠
Tatsuya Asai
達也 浅井
Naoki Mizuta
直気 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46084083&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012122130(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011180617A priority Critical patent/JP5662903B2/en
Priority to EP11840864.0A priority patent/EP2641990B1/en
Priority to PCT/JP2011/076442 priority patent/WO2012067160A1/en
Priority to KR1020137012648A priority patent/KR101532491B1/en
Priority to CN201180055275.XA priority patent/CN103210109B/en
Priority to US13/988,210 priority patent/US20130259734A1/en
Publication of JP2012122130A publication Critical patent/JP2012122130A/en
Publication of JP5662903B2 publication Critical patent/JP5662903B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength steel plate that is more excellent in ductility while maintaining strength of not less than 980 MPa class.SOLUTION: The high-strength steel plate includes, in percentages by mass, 0.05-0.3% C, 1-3% Si, 0.5-3% Mn, not more than 0.1% P (including 0%), not more than 0.01% S (including 0%), 0.001-0.1% Al, and 0.002-0.03% N. The remainder has a component composition comprising iron and impurities, and has a structure including, in terms of an area ratio relative to the entire structure, 50-90% bainitic ferrite, not less than 3% retained austenite (γ), 10-50% martensite plus the γabove, and not more than 40% ferrite (including 0%). The γhas a concentration C (Cγ) of 0.5-1.2 mass%, and not less than 0.3% of γexists surrounded by the martensite.

Description

本発明は、成形性に優れた高強度鋼板およびそれを用いた温間加工方法、ならびに温間加工された自動車部品に関する。なお、本発明の高強度鋼板としては、冷延鋼板、溶融亜鉛めっき鋼板、および、合金化溶融亜鉛めっき鋼板が含まれる。   The present invention relates to a high-strength steel sheet excellent in formability, a warm working method using the same, and a warm-worked automobile part. The high-strength steel sheet of the present invention includes a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet.

自動車用骨格部品に供される薄鋼板は衝突安全性と燃費改善を実現するため、高強度化が求められている。そのため、鋼板強度を980MPa級以上に高強度化しつつも、プレス成形性を確保することが要求されている。980MPa級以上の高強度鋼板において、高強度化と成形性確保を両立させるにはTRIP効果を活用した鋼を用いることが有効であることが知られている(例えば、特許文献1参照)。   Thin steel plates used for automobile frame parts are required to have high strength in order to realize collision safety and fuel efficiency improvement. Therefore, it is required to ensure press formability while increasing the strength of the steel sheet to 980 MPa class or higher. It is known that in a high-strength steel sheet of 980 MPa class or higher, it is effective to use steel utilizing the TRIP effect to achieve both high strength and formability (for example, see Patent Document 1).

上記特許文献1には、ベイナイトまたはベイニティック・フェライトを主相とし、残留オーステナイト(γR)を面積率で3%以上含有する高強度鋼板が開示されている。しかしながら、この高強度鋼板は、室温での引張強度980MPa以上で伸びが20%に達しておらず、さらなる機械的特性(以下、単に「特性」ともいう。)の改善が求められる。 Patent Document 1 discloses a high-strength steel plate containing bainite or bainitic ferrite as a main phase and containing retained austenite (γ R ) in an area ratio of 3% or more. However, this high-strength steel sheet has a tensile strength at room temperature of 980 MPa or more and does not reach an elongation of 20%, and further improvement in mechanical properties (hereinafter also simply referred to as “characteristics”) is required.

一方、冷間での成形ではTRIP鋼板でも成形性に限界があることから、一層の伸び改善のため、100〜400℃で温間加工することでTRIP効果をさらに有効に発現させて伸びを高める技術が提案されている(非特許文献1、特許文献2参照)。   On the other hand, since there is a limit to the formability of TRIP steel sheet in cold forming, the TRIP effect is further effectively expressed by increasing the elongation by warm working at 100 to 400 ° C for further improvement of elongation. Techniques have been proposed (see Non-Patent Document 1 and Patent Document 2).

上記特許文献2の表2に示すように、ベイニティック・フェライト主体の組織に炭素濃度1質量%以上のγRを存在させることで、200℃付近での伸びを1200MPa級で23%まで改善できている。しかしながら、これらの鋼板は、機械的特性を確保できる温度範囲が比較適狭いため、プレス成形の際に安定して成形することが難しい。 As shown in Table 2 of Patent Document 2, the elongation around 200 ° C. is improved to 23% in the 1200 MPa class by making γ R having a carbon concentration of 1 mass% or more present in the structure mainly composed of bainitic ferrite. is made of. However, since these steel sheets have a comparatively narrow temperature range in which mechanical properties can be ensured, it is difficult to stably form them during press forming.

特開2003−19319号公報JP 2003-19319 A 特開2004−190050号公報JP 2004-190050 A

杉本公一,宋星武,坂口淳也,長坂明彦,鹿島高弘,「超高強度低合金TRIP型ベイニティックフェライト鋼板の温間成形性」,鉄と鋼,2005年,第91巻、第2号,p.34−40Koichi Sugimoto, Takeshi Hoshi, Takeya Sakaguchi, Akihiko Nagasaka, Takahiro Kashima, “Warm Formability of Ultra High Strength Low Alloy TRIP Type Bainitic Ferritic Steel”, Iron and Steel, 2005, Vol. 91, No. 2, p. 34-40

本発明は上記事情に着目してなされたものであり、その目的は、980MPa級以上の強度を確保しつつ、より延性(プレス加工性)に優れた高強度鋼板およびそれを用いた温間加工方法、ならびにその方法で温間加工された自動車部品を提供することにある。   The present invention has been made by paying attention to the above circumstances, and its purpose is to secure a strength of 980 MPa class or higher and a high-strength steel sheet having superior ductility (press workability) and warm working using the same. It is an object of the present invention to provide a method and an automotive part warm worked by the method.

請求項1に記載の発明は、
質量%で(以下、化学成分について同じ。)、
C :0.05〜0.3%、
Si:1〜3%、
Mn:0.5〜3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001〜0.1%、
N :0.002〜0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50〜90%、
残留オーステナイト:3%以上、
マルテンサイト+上記残留オーステナイト:10〜50%、
フェライト:40%以下(0%を含む)
を含む組織を有し、
上記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.2質量%であり、
この残留オーステナイトのうち、マルテンサイトに囲まれたものが0.3%以上存在する
ことを特徴とする成形性に優れた高強度鋼板である。
The invention described in claim 1
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.3%
Si: 1-3%
Mn: 0.5-3%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
Al: 0.001 to 0.1%,
N: 0.002 to 0.03%
And the balance has a component composition consisting of iron and impurities,
The area ratio for all tissues (hereinafter the same for tissues)
Bainitic ferrite: 50-90%
Residual austenite: 3% or more,
Martensite + the above retained austenite: 10 to 50%,
Ferrite: 40% or less (including 0%)
Having an organization including
The residual austenite has a C concentration (Cγ R ) of 0.5 to 1.2% by mass,
This retained austenite is a high-strength steel sheet with excellent formability, characterized by the presence of 0.3% or more of martensite.

請求項2に記載の発明は、
成分組成が、さらに、
Cr:0.01〜3%
Mo:0.01〜1%、
Cu:0.01〜2%、
Ni:0.01〜2%、
B :0.00001〜0.01%の1種または2種以上
を含むものである請求項1に記載の成形性に優れた高強度鋼板である。
The invention described in claim 2
Ingredient composition further
Cr: 0.01 to 3%
Mo: 0.01 to 1%,
Cu: 0.01-2%,
Ni: 0.01-2%,
The high strength steel sheet having excellent formability according to claim 1, wherein B: one or more of 0.00001 to 0.01%.

請求項3に記載の発明は、
成分組成が、さらに、
Ca :0.0005〜0.01%、
Mg :0.0005〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
を含むものである請求項1または2に記載の成形性に優れた高強度鋼板である。
The invention according to claim 3
Ingredient composition further
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The high-strength steel sheet having excellent formability according to claim 1 or 2, wherein the REM contains one or more of 0.0001 to 0.01%.

請求項4に記載の発明は、
請求項1〜3のいずれか1項に記載の高強度鋼板を、200〜400℃に加熱後、3600s以内に加工することを特徴とする高強度鋼板の温間加工方法である。
The invention according to claim 4
It is a warm processing method of the high strength steel plate characterized by processing the high strength steel plate according to any one of claims 1 to 3 within 3600 seconds after heating to 200 to 400 ° C.

請求項5に記載の発明は、
請求項4に記載の方法で加工された自動車部品であって、加工時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在し、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下であることを特徴とする自動車部品である。
The invention described in claim 5
The automobile part processed by the method according to claim 4, wherein a region where the true strain applied during processing is 0.05 or more and a region where it is less than 0.05 are mixed, and the region where the true strain is maximum The difference in yield stress between the first part and the smallest part is 200 MPa or less.

本発明によれば、全組織に対する面積率で、ベイニティック・フェライト:50〜90%、残留オーステナイト:3%以上、マルテンサイト+上記残留オーステナイト:10〜50%、フェライト:40%以下(0%を含む)を含む組織を有し、上記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.2質量%であり、この残留オーステナイトのうち、マルテンサイトに囲まれたものが0.3%以上存在するものとすることで、広い温度範囲で980MPa級以上の強度を維持しつつ伸びを確保した高強度鋼板、およびそれを用いた温間加工方法、ならびにその方法で温間加工された自動車部品を提供できるようになった。 According to the present invention, bainitic ferrite: 50 to 90%, retained austenite: 3% or more, martensite + the above retained austenite: 10 to 50%, ferrite: 40% or less (0) The residual austenite has a C concentration (Cγ R ) of 0.5 to 1.2% by mass, and the residual austenite surrounded by martensite A high-strength steel sheet that ensures elongation while maintaining a strength of 980 MPa or more in a wide temperature range, a warm working method using the same, and It is now possible to provide processed auto parts.

本発明鋼板および比較鋼板の断面組織写真である。It is a cross-sectional structure photograph of this invention steel plate and a comparative steel plate.

上述したように、本発明者らは、上記従来技術と同様の、転位密度の高い下部組織(マトリックス)を有するベイニティック・フェライトと残留オーステナイト(γR)を含有するTRIP鋼板に着目し、強度を確保しつつ、伸び性を一層向上させるべく、さらに検討を重ねてきた。 As described above, the present inventors pay attention to a TRIP steel sheet containing bainitic ferrite having a substructure (matrix) with a high dislocation density and residual austenite (γ R ), similar to the above-described conventional technology, Further studies have been made to further improve the stretchability while ensuring the strength.

その結果、(1)組織中にマルテンサイトを一部導入することで、強度を確保したうえで、(2)炭素濃度0.5〜1.2質量%のγRを面積率で3%以上含有させることで、TRIP効果により伸びを高め、(3)さらに、上記γRのうち、面積率で0.3%以上のγRを、マトリックスのベイニティック・フェライトに接しさせずに、硬質なマルテンサイトに覆わせることで、塑性変形時に当該γRにひずみが加わりにくくして、変形初期の加工誘起変態を抑制しつつ、変形後期にも加工変形誘起変態を起こしやすくすることにより、加工硬化を広い範囲で実現できることを見出し、該知見に基づいて本発明を完成するに至った。 As a result, (1) after ensuring the strength by partially introducing martensite into the structure, (2) γ R having a carbon concentration of 0.5 to 1.2% by mass is 3% or more by area ratio. by including, enhance elongation by TRIP effect, (3) further, among the above gamma R, 0.3% or more gamma R at an area ratio, without let contact the matrix of bainitic ferrite, hard By covering it with martensite, it is difficult to apply strain to the γ R during plastic deformation, suppressing processing-induced transformation at the early stage of deformation, and making it easier to cause processing deformation-induced transformation at the later stage of deformation. It has been found that curing can be realized in a wide range, and the present invention has been completed based on this finding.

以下、まず本発明鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the steel sheet of the present invention will be described first.

〔本発明鋼板の組織〕
上述したとおり、本発明鋼板は、上記従来技術と同じくTRIP鋼の組織をベースとするものであるが、特に、マルテンサイトを所定量含有するとともに、炭素濃度0.5〜1.2質量%のγRを面積率で3%以上含有し、さらに、上記γRのうち、マルテンサイトに囲まれているものが面積率で0.3%以上存在するものである点で、上記従来技術と相違している。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention is based on the structure of TRIP steel as in the above prior art. In particular, the steel sheet contains a predetermined amount of martensite and has a carbon concentration of 0.5 to 1.2% by mass. It differs from the above prior art in that it contains 3% or more of γ R in area ratio, and further, among the above γ R , those surrounded by martensite are present in an area ratio of 0.3% or more. is doing.

<ベイニティック・フェライト:50〜90%>
本発明における「ベイニティック・フェライト」とは、ベイナイト組織が転位密度の高いラス状組織を持った下部組織を有しており、組織内に炭化物を有していない点で、ベイナイト組織とは明らかに異なり、また、転位密度がないかあるいは極めて少ない下部組織を有するポリゴナル・フェライト組織、あるいは細かいサブグレイン等の下部組織を持った準ポリゴナル・フェライト組織とも異なっている(日本鉄鋼協会 基礎研究会 発行「鋼のベイナイト写真集−1」参照)。
<Bainitic ferrite: 50-90%>
“Bainitic ferrite” in the present invention has a substructure having a lath-like structure with a high dislocation density in the bainite structure and is free of carbides in the structure. It is clearly different, and is also different from the polygonal ferrite structure having a substructure with little or no dislocation density, or a quasi-polygonal ferrite structure having a substructure such as fine subgrains (Japan Iron and Steel Institute Fundamental Study Group) Issued “Steel Bainite Photobook-1”).

このように本発明鋼板の組織は、均一微細で延性に富み、かつ、転位密度が高く強度が高いベイニティック・フェライトを母相とすることで強度と成形性のバランスを高めることができる。   Thus, the balance of strength and formability can be improved by using bainitic ferrite having a uniform and fine structure, high ductility, high dislocation density and high strength as the parent phase.

本発明鋼板では、上記ベイニティック・フェライト組織の量は、全組織に対して面積率で50〜90%(好ましくは60〜90%、より好ましくは70〜90%)であることが必要である。これにより、上記ベイニティック・フェライト組織による効果が有効に発揮されるからである。なお、上記ベイニティック・フェライト組織の量は、γRとのバランスによって定められるものであり、所望の特性を発揮し得るよう、適切に制御することが推奨される。 In the steel sheet of the present invention, the amount of the bainitic ferrite structure needs to be 50 to 90% (preferably 60 to 90%, more preferably 70 to 90%) in terms of area ratio with respect to the entire structure. is there. This is because the effect of the bainitic ferrite structure is effectively exhibited. Note that the amount of the bainitic ferrite structure is determined by the balance with γ R, and it is recommended that the amount be controlled appropriately so that desired characteristics can be exhibited.

<残留オーステナイト(γ)を全組織に対して面積率で3%以上含有>
γRは全伸びの向上に有用であり、このような作用を有効に発揮させるためには、全組織に対して面積率で3%以上(好ましくは5%以上、より好ましくは10%以上)存在することが必要である。ただし、多量に存在すると伸びフランジ性が劣化するので、20%以下とするのが好ましい。
<Contains 3% or more of retained austenite (γ R ) in area ratio with respect to the entire structure>
γ R is useful for improving the total elongation, and in order to effectively exhibit such action, the area ratio is 3% or more (preferably 5% or more, more preferably 10% or more) with respect to the entire structure. It is necessary to exist. However, if it is present in a large amount, the stretch flangeability deteriorates, so it is preferably 20% or less.

<マルテンサイト+上記残留オーステナイト(γ):10〜50%>
強度確保のため、組織中にマルテンサイトを一部導入するが、マルテンサイトの量が多くなりすぎると成形性が確保できなくなるので、全組織に対してマルテンサイト+γの合計面積率で10%以上(好ましくは12%以上、より好ましくは16%以上)50%以下に制限した。
<Martensite + Retained austenite (γ R ): 10-50%>
For securing strength, but introduces some martensite in the tissue, since the moldability amount of martensite is too large can not be secured, 10% total area fraction of martensite + gamma R for all tissues It is limited to 50% or less (preferably 12% or more, more preferably 16% or more).

<フェライト:40%以下(0%を含む)>
フェライトは軟質相であり、延性を高めるのには有効であるため、強度が保証できる面積率40%以下の範囲で導入してもよい。好ましくは30%以下である。
<Ferrite: 40% or less (including 0%)>
Since ferrite is a soft phase and effective in increasing ductility, it may be introduced in an area ratio of 40% or less that can guarantee strength. Preferably it is 30% or less.

<残留オーステナイト(γ)のC濃度(Cγ):0.5〜1.2質量%>
Cγは、加工時にγRがマルテンサイトに変態する安定度に影響する指標である。CγRが低すぎると、γRが不安定なため、応力付与後、塑性変形する前に加工誘起マルテンサイト変態が起るため、張り出し成形性が得られなくなる。一方、CγRが高すぎると、γRが安定になりすぎて、加工を加えても加工誘起マルテンサイト変態が起らないため、やはり張り出し成形性が得られなくなる。十分な張り出し成形性を得るためには、Cγは0.5〜1.2質量%とする必要がある。好ましくは0.6〜1.1質量%である。
<C concentration of residual austenite (γ R ) (Cγ R ): 0.5 to 1.2% by mass>
R is, γ R at the time of processing is an indicator that affects the stability of the transformation to martensite. When C gamma R is too low, gamma for R is unstable, after stressing, since the deformation-induced martensitic transformation occurs prior to plastic deformation, not bulging property can be obtained. On the other hand, when the C gamma R is too high, gamma R becomes too stable, since the addition of machining work-induced martensitic transformation does not occur, not too bulging property can be obtained. To obtain a sufficient stretch forming property, C gamma R is required to be 0.5 to 1.2 mass%. Preferably it is 0.6-1.1 mass%.

<マルテンサイトに囲まれた残留オーステナイト(γ)が全組織に対して面積率で0.3%以上存在>
一部のγを硬質のマルテンサイトで覆うことで、残りのγは変形の比較的初期にTRIP効果を発現させ、マルテンサイトで囲まれたγは変形初期には当該γへのひずみの集中を防止し、変形後期に加工誘起マルテンサイト変態によるTRIP効果を発現させるようにする。このようにすることで、冷間成形では広いひずみ範囲でTRIP効果が発現するので高い伸びが得られ、温間成形では広い温度範囲で適正な安定度のγを存在させることができるので高い伸びが得られる温度範囲が広がる。
<Residual austenite (γ R ) surrounded by martensite is 0.3% or more in area ratio with respect to the entire structure>
Part of gamma R by covering martensite rigid, the remainder of the gamma R was expressed relatively early TRIP effect of deformation, the gamma R is deformed initially surrounded by martensite to the gamma R The concentration of strain is prevented, and the TRIP effect due to the processing-induced martensitic transformation is expressed in the later stage of deformation. By doing in this way, since the TRIP effect is manifested in a wide strain range in cold forming, high elongation is obtained, and in warm forming, γ R having an appropriate stability can be present in a wide temperature range. The temperature range where elongation can be obtained is expanded.

上記広い範囲でのTRIP効果を発現させるためには、マルテンサイトで囲まれたγは、全組織に対して面積率で0.3%以上存在させる必要がある。 Said to express the TRIP effect in a wide range, the gamma R surrounded by martensite, should be present in area ratio 0.3% of the total tissue.

本発明の鋼板は、上記組織のみ(マルテンサイトおよび/またはベイニティック・フェライト、ポリゴナル・フェライトならびにγRの混合組織)からなっていてもよいが、本発明の作用を損なわない範囲で、他の異種組織として、ベイナイトを有していてもよい。この組織は本発明鋼板の製造過程で必然的に残存し得るものであるが、少なければ少ない程よく、全組織に対して面積率で5%以下、より好ましくは3%以下に制御することが推奨される。 Steel sheet of the present invention, to the extent the tissue only (martensite and / or bainitic ferrite, mixed structure of polygonal ferrite and gamma R) may be composed of, not impairing the effects of the present invention, other As the heterogeneous structure, bainite may be included. Although this structure can inevitably remain in the manufacturing process of the steel sheet of the present invention, the smaller the number, the better. It is recommended to control the area ratio to 5% or less, more preferably 3% or less with respect to the entire structure. Is done.

〔各相の面積率、γのC濃度(Cγ)、および、マルテンサイトに囲まれたγの面積率の各測定方法〕
ここで、各相の面積率、γのC濃度(Cγ)、および、マルテンサイトに囲まれたγの面積率の各測定方法について説明する。
[Each phase area ratio, gamma C concentration of R (C gamma R), and each method for measuring the area ratio of gamma R surrounded by martensite]
Here, each phase area ratio, C concentration of γ R (Cγ R), and will be described the method for measuring the area ratio of gamma R surrounded by martensite.

鋼板中組織の面積率は、鋼板をレペラー腐食し、光学顕微鏡観察(倍率1000倍)により、例えば白い領域を「マルテンサイト+残留オーステナイト(γ)」と定義して、組織の面積率を測定した。 The area ratio of the microstructure in the steel sheet is measured by repeller corrosion of the steel sheet, and by observing with a light microscope (magnification 1000 times), for example, the white area is defined as “martensite + retained austenite (γ R )”. did.

なお、γRの面積率およびγRのC濃度(Cγ)は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法により測定した(ISIJ Int.Vol.33,(1933),No.7,p.776)。また、フェライトの面積率は、鋼板をナイタール腐食し、光学顕微鏡観察(倍率400倍)により、円相当直径5μm以上の塊状の白い領域をフェライトと同定して面積率を求めた。さらにパーライト等のその他組織の面積率を光学顕微鏡観察(倍率1000倍)にて同定した後、「マルテンサイト+残留オーステナイト(γ)」および「フェライト」および「その他組織」以外の部分をベイニティック・フェライトとして、面積率を算出した。 Incidentally, gamma C concentration area ratio and gamma R of the R (C gamma R), after grinding to 1/4 the thickness of the steel sheet was measured by X-ray diffraction method from the chemical polishing (ISIJ Int.Vol.33 (1933), No. 7, p. 776). The area ratio of the ferrite was determined by corroding the steel plate with nital and identifying an agglomerated white region having an equivalent circle diameter of 5 μm or more as ferrite by optical microscope observation (magnification 400 times). Further, after the area ratio of other structures such as pearlite was identified by optical microscope observation (magnification 1000 times), portions other than “martensite + residual austenite (γ R )”, “ferrite” and “other structures” were The area ratio was calculated as tick ferrite.

マルテンサイトに囲まれたγの面積率は、以下のようにして求めた。まず、SEMにOIM(Orientation Imaging Microscopy TM)解析システムを組み合わせて、0.2μmピッチでEBSD(Electron Back Scatter diffraction Pattern)測定を行い、FCC相とBCC相と、さらにBCC相については隣接した結晶粒と15°以上の方位差がある粒界とをマッピングする。このマッピングの中で、FCC相としてマッピングされた領域をγと定義して同定する。また、BCC相で15°以上の方位差がある粒界の面積が5測定点以下の領域、および、FCC相もしくはBCC相として解析できなかった領域をマルテンサイトと定義して同定する。このようにして同定されたマルテンサイトに周囲を完全に囲まれたγRを識別し、それをマルテンサイトに囲まれたγRと定義して同定し、その面積率を求めた。 Area ratio of gamma R surrounded by martensite was determined as follows. First, SEM is combined with an OIM (Orientation Imaging Microscopy ™) analysis system, EBSD (Electron Back Scattering Diffraction Pattern) measurement is performed at a pitch of 0.2 μm, and the FCC phase, BCC phase, and BCC phase are adjacent crystal grains. And grain boundaries having an orientation difference of 15 ° or more are mapped. In this mapping, identifying the mapped region as FCC phase is defined as gamma R. Further, a region where the area of the grain boundary having an orientation difference of 15 ° or more in the BCC phase is 5 measurement points or less and a region that could not be analyzed as the FCC phase or the BCC phase are defined as martensite and identified. The γ R completely surrounded by the martensite thus identified was identified and defined as γ R surrounded by the martensite, and the area ratio was determined.

次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔本発明鋼板の成分組成〕
C:0.05〜0.3%
Cは、高強度を確保しつつ、所望の主要組織(ベイニティック・フェライト+マルテンサイト+γR)を得るために必須の元素であり、このような作用を有効に発揮させるためには0.05%以上(好ましくは0.10%以上、より好ましくは0.15%以上)添加する必要がある。ただし、0.3%超では溶接に適さない。
[Component composition of the steel sheet of the present invention]
C: 0.05-0.3%
C is an essential element for obtaining a desired main structure (bainitic ferrite + martensite + γ R ) while ensuring high strength, and 0. It is necessary to add 05% or more (preferably 0.10% or more, more preferably 0.15% or more). However, if it exceeds 0.3%, it is not suitable for welding.

Si:1〜3%
Siは、γRが分解して炭化物が生成するのを有効に抑制する元素である。特にSiは、固溶強化元素としても有用である。このような作用を有効に発揮させるためには、Siを1%以上添加する必要がある。好ましくは1.1%以上、より好ましくは1.2%以上である。ただし、Siを3%を超えて添加すると、ベイニティック・フェライト+マルテンサイト組織の生成が阻害される他、熱間変形抵抗が高くなって溶接部の脆化を起こしやすくなり、さらには鋼板の表面性状にも悪影響を及ぼすので、その上限を3%とする。好ましくは2.5%以下、より好ましくは2%以下である。
Si: 1-3%
Si is an element that effectively suppresses the generation of carbides by decomposition of γ R. In particular, Si is useful as a solid solution strengthening element. In order to exhibit such an action effectively, it is necessary to add Si 1% or more. Preferably it is 1.1% or more, More preferably, it is 1.2% or more. However, if Si is added in excess of 3%, the formation of bainitic ferrite + martensite structure is hindered, the hot deformation resistance is increased, and the welds are easily embrittled. It also has an adverse effect on the surface properties of the film, so the upper limit is made 3%. Preferably it is 2.5% or less, More preferably, it is 2% or less.

Mn:0.5〜3%
Mnは、固溶強化元素として有効に作用する他、変態を促進してベイニティック・フェライト+マルテンサイト組織の生成を促進する作用も発揮する。さらにはγを安定化し、所望のγRを得るために必要な元素である。このような作用を有効に発揮させるためには、0.5%以上添加することが必要である。好ましくは0.7%以上、より好ましくは1%以上である。ただし、3%を超えて添加すると、鋳片割れが生じる等の悪影響が見られる。好ましくは2.5%以下、より好ましくは2%以下である。
Mn: 0.5 to 3%
In addition to effectively acting as a solid solution strengthening element, Mn also exerts an effect of promoting transformation and promoting the formation of bainitic ferrite + martensite structure. Furthermore, it is an element necessary for stabilizing γ and obtaining a desired γ R. In order to exhibit such an action effectively, it is necessary to add 0.5% or more. Preferably it is 0.7% or more, More preferably, it is 1% or more. However, when it is added in excess of 3%, adverse effects such as slab cracking are observed. Preferably it is 2.5% or less, More preferably, it is 2% or less.

P :0.1%以下(0%を含む)
Pは不純物元素として不可避的に存在するが、所望のγRを確保するために添加してもよい元素である。ただし、0.1%を超えて添加すると二次加工性が劣化する。より好ましくは0.03%以下である。
P: 0.1% or less (including 0%)
P is inevitably present as an impurity element, but is an element that may be added to ensure desired γ R. However, when it exceeds 0.1%, secondary workability deteriorates. More preferably, it is 0.03% or less.

S :0.01%以下(0%を含む)
Sも不純物元素として不可避的に存在し、MnS等の硫化物系介在物を形成し、割れの起点となって加工性を劣化させる元素である。好ましくは0.01%以下、より好ましくは0.005%以下である。
S: 0.01% or less (including 0%)
S is also an element unavoidably present as an impurity element, forms sulfide inclusions such as MnS, and becomes a starting point of cracking and deteriorates workability. Preferably it is 0.01% or less, More preferably, it is 0.005% or less.

Al:0.001〜0.1%
Alは、脱酸剤として添加されるとともに、上記Siと相俟って、γRが分解して炭化物が生成するのを有効に抑制する元素である。このような作用を有効に発揮させるためには、Alを0.001%以上添加する必要がある。ただし、過剰に添加しても効果が飽和し経済的に無駄であるので、その上限を0.1%とする。
Al: 0.001 to 0.1%
Al is an element which is added as a deoxidizer and effectively suppresses the generation of carbides by decomposition of γ R in combination with Si. In order to exhibit such an action effectively, it is necessary to add 0.001% or more of Al. However, even if added excessively, the effect is saturated and is economically wasteful, so the upper limit is made 0.1%.

N:0.002〜0.03%
Nは、不可避的に存在する元素であるが、AlやNbなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。N含有量が少なすぎるとオーステナイト粒が粗大化し、その結果、伸長したラス状組織が主体になるためγのアスペクト比が大きくなる。一方、N含有量が多すぎると、本発明の材料のような低炭素鋼では鋳造が困難になるため、製造自体ができなくなる。
N: 0.002 to 0.03%
N is an unavoidable element, but forms a precipitate when combined with carbonitride-forming elements such as Al and Nb, and contributes to strength improvement and microstructure refinement. And austenite grain coarsening the N content is too low, as a result, the aspect ratio for gamma R which elongated lath structure becomes mainly increases. On the other hand, if the N content is too high, casting becomes difficult with low carbon steel such as the material of the present invention, and therefore the production itself cannot be performed.

本発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel of the present invention basically contains the above components, and the balance is substantially iron and unavoidable impurities, but the following allowable components can be added as long as the effects of the present invention are not impaired. .

Cr:0.01〜3%
Mo:0.01〜1%、
Cu:0.01〜2%、
Ni:0.01〜2%、
B :0.00001〜0.01%の1種または2種以上
これらの元素は、鋼の強化元素として有用であるとともに、γRの安定化や所定量の確保に有効な元素である。このような作用を有効に発揮させるためには、Mo:0.01%以上(より好ましくは0.02%以上)、Cu:0.01%以上(より好ましくは0.1%以上)、Ni:0.01%以上(より好ましくは0.1%以上)、B:0.00001%以上(より好ましくは0.0002%以上)を、それぞれ添加することが推奨される。ただし、Crは3%、Moは1%、CuおよびNiはそれぞれ2%、Bは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCr:2.0%以下、Mo:0.8%以下、Cu:1.0%以下、Ni:1.0%以下、B:0.0030%以下である。
Cr: 0.01 to 3%
Mo: 0.01 to 1%,
Cu: 0.01-2%,
Ni: 0.01-2%,
B: One or more elements of 0.00001 to 0.01% These elements are useful elements for strengthening steel and are effective in stabilizing γ R and securing a predetermined amount. In order to effectively exhibit such an action, Mo: 0.01% or more (more preferably 0.02% or more), Cu: 0.01% or more (more preferably 0.1% or more), Ni : 0.01% or more (more preferably 0.1% or more) and B: 0.00001% or more (more preferably 0.0002% or more) are recommended. However, even if Cr is added in an amount of 3%, Mo is added in an amount of 1%, Cu and Ni are added in an amount of more than 2%, and B is added in an amount exceeding 0.01%, the above effect is saturated, which is economically wasteful. More preferably, Cr is 2.0% or less, Mo is 0.8% or less, Cu is 1.0% or less, Ni is 1.0% or less, and B is 0.0030% or less.

Ca :0.0005〜0.01%、
Mg :0.0005〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
これらの元素は、鋼中硫化物の形態を制御し、加工性向上に有効な元素である。ここで、本発明に用いられるREM(希土類元素)としては、Sc、Y、ランタノイド等が挙げられる。上記作用を有効に発揮させるためには、CaおよびMgはそれぞれ0.0005%以上(より好ましくは0.0001%以上)、REMは0.0001%以上(より好ましくは0.0002%以上)添加することが推奨される。ただし、CaおよびMgはそれぞれ0.01%、REMは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCaおよびMgは0.003%以下、REMは0.006%以下である。
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: One or more of 0.0001 to 0.01% These elements are effective elements for controlling the form of sulfide in steel and improving workability. Here, examples of the REM (rare earth element) used in the present invention include Sc, Y, and lanthanoid. In order to effectively exhibit the above-mentioned action, Ca and Mg are each added to 0.0005% or more (more preferably 0.0001% or more), and REM is added to 0.0001% or more (more preferably 0.0002% or more). It is recommended to do. However, even if Ca and Mg are added in an amount of 0.01% and REM is added in excess of 0.01%, the above effects are saturated, which is economically wasteful. More preferably, Ca and Mg are 0.003% or less, and REM is 0.006% or less.

〔温間加工方法〕
上記本発明鋼板は、常温下にても伸びおよび深絞り性に優れているので、部品への成形に当たり冷間加工してもよいが、200〜400℃の間の適正な温度に加熱した後、3600s以内(より好ましくは1200s以内)に加工するのが特に推奨される。
[Warm processing method]
The steel sheet of the present invention is excellent in elongation and deep drawability even at room temperature, and may be cold worked for forming into parts, but after being heated to an appropriate temperature between 200 and 400 ° C. It is particularly recommended to work within 3600 s (more preferably within 1200 s).

γRの安定度が最適になる温度条件下で、γRの分解が起る前に加工することにより、伸びおよび深絞り性を最大化させることができる。 Elongation and deep drawability can be maximized by processing before the decomposition of γ R occurs under temperature conditions where the stability of γ R is optimal.

〔自動車部品〕
上記温間加工方法で加工された自動車部品は、伸びおよび深絞り性に優れるものであるが、特に、上記温間加工時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在し、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下であるものが推奨される。
〔Auto parts〕
The automobile parts processed by the warm processing method are excellent in elongation and deep drawability, and in particular, the true strain applied during the warm processing is 0.05 or more and less than 0.05. A region in which the difference in yield stress between the region having the maximum true strain and the region having the minimum true strain is 200 MPa or less is recommended.

γRを含む鋼板は一般に低降伏比であり、かつ、低ひずみ域での加工硬化率が高い。 そのため、付与するひずみ量が小さい領域での、ひずみ付与後の強度、特に降伏応力のひずみ量依存性が 非常に大きくなる。プレス加工により部品を成形する場合、部位により加わるひずみ量が異なり、部分的には殆どひずみが加わらないような領域も存在する。このため、部品内において加工の加わる領域と加工の加わらない領域とで大きな強度差が生じ、部品内に強度分布が形成されることがある。このような強度分布が存在する場合、強度の低い領域が降伏することで変形や座屈が起こるため、部品強度としては最も強度の低い部分が律速することとなる。 steel sheet containing gamma R is typically a low yield ratio and a high rate of work hardening in a low strain region. For this reason, in the region where the applied strain is small, the strength after applying the strain, in particular, the strain dependence of the yield stress, becomes very large. When a part is formed by press working, the amount of strain applied varies depending on the part, and there is a region where strain is hardly applied partially. For this reason, a large strength difference may occur between a region where machining is performed and a region where machining is not performed in the component, and a strength distribution may be formed in the component. When such an intensity distribution exists, deformation and buckling occur due to the yielding of the low-strength region, so that the part having the lowest strength is rate-determined.

γRを含む鋼で降伏応力が低い原因は、γRを導入する際に、同時に形成されるマルテンサイトが、変態時に周囲の母相中に可動転位を導入するためと考えられる。したがって、加工量の少ない領域でもこの転位の移動を防止すれば、降伏応力が向上でき、部品強度を高められる。可動転位の移動を抑制するには、素材を加熱して可動転位をなくしたり、固溶炭素などのひずみ時効で止めたりすることが有効であり、そうすることで降伏応力を高めることができる。 The reason why the yield stress is low in the steel containing γ R is thought to be that when γ R is introduced, martensite formed at the same time introduces mobile dislocations in the surrounding matrix during transformation. Therefore, if this dislocation movement is prevented even in a region where the amount of processing is small, the yield stress can be improved and the component strength can be increased. In order to suppress the movement of movable dislocations, it is effective to heat the material to eliminate the movable dislocations or to stop it by strain aging such as solute carbon, which can increase the yield stress.

そのため、γRを含む鋼板を200〜400℃の間の適正温度に加熱してプレス成形(温間加工)すると、ひずみの小さい部分でも降伏強度が高くなって、部品中の強度分布が小さくなることで部品強度を向上させることができることとなる。 Therefore, when a steel sheet containing γ R is heated to an appropriate temperature between 200 ° C. and 400 ° C. and press-formed (warm processing), the yield strength is increased even in a portion with a small strain, and the strength distribution in the part is reduced. As a result, the component strength can be improved.

具体的には、上記プレス成形(温間加工)時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在するような低ひずみ域を有する部品であっても、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下である部品は、部品中の強度分布が小さく部品強度が高くなるため、自動車部品としてより好適なものとなる。   Specifically, even in a component having a low strain region in which a region where the true strain applied during the press molding (warm processing) is 0.05 or more and a region less than 0.05 is mixed, A part having a difference in yield stress between the part having the maximum true strain and the part having the minimum true strain of 200 MPa or less is more suitable as an automobile part because the strength distribution in the part is small and the part strength is high. Become.

次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining the said steel plate of this invention is demonstrated below.

〔本発明鋼板の好ましい製造方法〕
本発明鋼板は、上記成分組成を満足する鋼材を、熱間圧延し、ついで冷間圧延した後、熱処理を行って製造するが、γRの一部をマルテンサイトで囲むようにするためには、以下の考え方で製造条件を設定すればよい。すなわち、オーステンパ中のベイナイト変態を適切な段階に制御して未変態オーステナイトへの炭素濃化を適正なレベルに制御し、かつ、未変態オーステナイトのサイズを粗大にしておくことで、オーステンパ後の冷却中に未変態オーステナイトの一部分がマルテンサイト変態し、そのマルテンサイト中に未変態オーステナイトが残留するといったメカニズムにより、オーステンパ終了後の冷却中に、マルテンサイトがγを囲むような形で形成される。この際にオーステナイト中の炭素含有量が少なすぎると冷却中にマルテンサイト変態する割合が多くなりγ量が確保できない。一方、炭素含有量が多すぎると未変態オーステナイトの大半がγとして残存するようになるため、マルテンサイトに囲まれるγ量が少なくなる。そして、γのサイズを大きくするためには、初期組織を粗大にしておく必要がある。
[Preferred production method of the steel sheet of the present invention]
The steel sheet of the present invention is manufactured by hot-rolling a steel material satisfying the above component composition, followed by cold rolling, followed by heat treatment, but in order to surround a part of γ R with martensite. The manufacturing conditions may be set based on the following concept. That is, by controlling the bainite transformation in the austemper to an appropriate stage to control the carbon concentration in the untransformed austenite to an appropriate level, and keeping the size of the untransformed austenite coarse, cooling after austempering a portion of the untransformed austenite martensite transformation during, by a mechanism such as the untransformed austenite to martensite remains, during cooling after austempering completion, martensite is formed in a manner to surround the gamma R . At this time many be gamma R content rate of martensitic transformation in the in cooling the carbon content is too low in austenite can not be secured. Meanwhile, since so most of untransformed austenite remains as gamma R and the carbon content is too high, gamma R content surrounded by the martensite is reduced. Then, in order to increase the size of the gamma R, it is necessary to keep the coarse initial tissue.

[熱間圧延条件]
そのため、熱間圧延の仕上げ温度(圧延終了温度、FDT)を900〜1000℃、巻取り温度を600〜700℃と従来より高めの温度とすることで、熱延材の組織を従来より粗大にしておくことにより、その後の熱処理プロセスで形成される組織が粗大になり、結果的にγRのサイズも大きくなる。
[Hot rolling conditions]
Therefore, the hot rolling finish temperature (rolling end temperature, FDT) is set to 900 to 1000 ° C., and the coiling temperature is set to 600 to 700 ° C., which is higher than the conventional one, thereby making the structure of the hot rolled material coarser than before. By doing so, the structure formed in the subsequent heat treatment process becomes coarse, and as a result, the size of γ R also increases.

[冷間圧延条件]
また、冷間圧延の際の冷延率を10〜30%(より好ましくは10〜20%)と小さくすることで、その後の焼鈍工程での加熱時における再結晶組織を粗くし、さらに冷却時における逆変態組織が粗くなるようにする。
[Cold rolling conditions]
In addition, by reducing the cold rolling ratio during cold rolling to 10 to 30% (more preferably 10 to 20%), the recrystallized structure during heating in the subsequent annealing step is roughened and further cooled. The reverse transformation structure in is roughened.

[熱処理条件]
熱処理条件については、オーステナイト化するため(γ+α)2相域またはγ単相域のいずれかの温度域で均熱し、所定の冷却速度で急冷して過冷した後、その過冷温度で所定時間保持してオーステンパ処理することで所望の組織を得ることができる。なお、所望の組織を著しく分解させることなく、本発明の作用を損なわない範囲で、めっき、さらには合金化処理してもよい。
[Heat treatment conditions]
Regarding heat treatment conditions, soaking in austenitic (γ + α) two-phase region or γ single-phase region, soaking at a predetermined cooling rate and supercooling, followed by a predetermined time at the supercooling temperature A desired tissue can be obtained by holding and austempering. It should be noted that plating or further alloying treatment may be performed without significantly degrading the desired structure and within the range not impairing the action of the present invention.

具体的には、以下の熱処理条件が推奨される。すなわち、上記冷間圧延後の冷延材を、オーステナイト化するため、(γ+α)2相域またはγ単相域である、0.6Ac1+0.4Ac3以上(好ましくは0.5Ac1+0.5Ac3以上)950℃以下(930℃以下)の温度域で1800s以下(好ましくは900s以下)の時間保持した後、3℃/s以上(好ましくは5℃/s以上、より好ましくは10℃/s以上、特に好ましくは20℃/s以上)の平均冷却速度で、350〜500℃(好ましくは380〜480℃、さらに好ましくは420〜460℃)の温度域まで急冷して過冷し(ここまで上記(1)の場合と同じ熱処理条件である。)、この急冷停止温度(過冷温度)で10〜100s(好ましくは20〜60s)の時間保持してオーステンパ処理した後、常温まで冷却する。   Specifically, the following heat treatment conditions are recommended. That is, in order to austenitize the cold-rolled material after the cold rolling, 0.6Ac1 + 0.4Ac3 or more (preferably 0.5Ac1 + 0.5Ac3 or more) 950 ° C. which is a (γ + α) two-phase region or a γ single-phase region. After holding for 1800 s or less (preferably 900 s or less) in the temperature range of 930 ° C. or less (preferably 900 s or less), 3 ° C./s or more (preferably 5 ° C./s or more, more preferably 10 ° C./s or more, particularly preferably At an average cooling rate of 20 ° C./s or more), it is rapidly cooled to a temperature range of 350 to 500 ° C. (preferably 380 to 480 ° C., more preferably 420 to 460 ° C.) and supercooled (to the above (1) The heat treatment conditions are the same as those in the case.) The austempering treatment is performed at this quenching stop temperature (supercooling temperature) for 10 to 100 s (preferably 20 to 60 s), and then cooled to room temperature. .

なお、上記推奨の熱処理条件に限られるものではなく、例えば、以下の熱処理条件にても本発明の組織を得ることができる。すなわち、上記冷間圧延後の冷延材を、オーステナイト化するため、(γ+α)2相域またはγ単相域である、0.6Ac1+0.4Ac3以上(好ましくは0.5Ac1+0.5Ac3以上)950℃以下(930℃以下)の温度域で1800s以下(好ましくは900s以下)の時間保持した後、3℃/s以上(好ましくは5℃/s以上、より好ましくは10℃/s以上、特に好ましくは20℃/s以上)の平均冷却速度で、350〜500℃(好ましくは380〜480℃、さらに好ましくは420〜460℃)の温度域まで急冷して過冷し(ここまで上記(1)の場合と同じ熱処理条件である。)、この急冷停止温度(過冷温度)で10〜100s(好ましくは20〜60s)の時間保持してオーステンパ処理した後(ここまで上記(2)の場合と同じ熱処理条件である。)、480〜600℃(好ましくは480〜550℃)の温度域で1〜100sの時間再加熱して合金化処理した後、常温まで冷却する。   In addition, it is not restricted to the said recommended heat processing conditions, For example, the structure | tissue of this invention can be obtained also on the following heat processing conditions. That is, in order to austenitize the cold-rolled material after the cold rolling, 0.6Ac1 + 0.4Ac3 or more (preferably 0.5Ac1 + 0.5Ac3 or more) 950 ° C. which is a (γ + α) two-phase region or a γ single-phase region. After holding for 1800 s or less (preferably 900 s or less) in the temperature range of 930 ° C. or less (preferably 900 s or less), 3 ° C./s or more (preferably 5 ° C./s or more, more preferably 10 ° C./s or more, particularly preferably At an average cooling rate of 20 ° C./s or more), it is rapidly cooled to a temperature range of 350 to 500 ° C. (preferably 380 to 480 ° C., more preferably 420 to 460 ° C.) and supercooled (to the above (1) The heat treatment conditions are the same as in the case.) After the austempering treatment by holding for 10 to 100 s (preferably 20 to 60 s) at this quenching stop temperature (supercooling temperature) (to the above ( ) Is the same heat treatment conditions as in.), 480-600 ° C. (preferably after alloying treatment by time reheat 1~100s in a temperature range of four hundred and eighty to five hundred and fifty ° C.), cooled to room temperature.

〔高強度鋼板の機械的特性に及ぼす成分組成および製造条件の検討〕
本実施例では、成分組成および製造条件を変化させた場合における高強度鋼板の機械的特性の影響について調査した。表1に示す各成分組成からなる供試鋼を真空溶製し、板厚30mmのスラブとした後、当該スラブを表2に示す各製造条件にて熱間圧延し、冷間圧延した後、熱処理を施した。具体的には、上記スラブを1200℃に加熱し、圧延終了温度(FDT)T1℃で板厚tmmに熱間圧延した後、巻取り温度T2℃で保持炉に入れ、空冷することで熱延板の巻取りを模擬した。その後、冷延率r%で冷間圧延して板厚12mmの冷延板とした。そして、この冷延材を、10℃/sで均熱温度T3℃まで加熱し、その温度で90s保持した後、冷却速度R4℃/sで冷却し、過冷温度T5℃でt5秒保持した後、空冷するか、もしくは、過冷温度T5℃でt5秒保持した後、さらに保持温度T6℃でt6秒保持したのち、空冷した。
[Examination of composition and production conditions affecting mechanical properties of high-strength steel sheet]
In this example, the influence of the mechanical properties of the high-strength steel sheet when the component composition and manufacturing conditions were changed was investigated. After vacuum-melting the test steel consisting of each component composition shown in Table 1 to form a slab with a plate thickness of 30 mm, the slab was hot-rolled under each production condition shown in Table 2 and cold-rolled. Heat treatment was applied. Specifically, the slab is heated to 1200 ° C., hot-rolled to a sheet thickness tmm at a rolling finish temperature (FDT) T1 ° C., then placed in a holding furnace at a coiling temperature T2 ° C., and air-cooled. Simulated board winding. Then, it cold-rolled by the cold rolling rate r%, and was set as the cold-rolled board of plate thickness 12mm. The cold-rolled material was heated to a soaking temperature T3 ° C. at 10 ° C./s, held at that temperature for 90 s, then cooled at a cooling rate R4 ° C./s, and held at a supercooling temperature T5 ° C. for t5 seconds. Thereafter, it was cooled with air, or held at a supercooling temperature T5 ° C. for t5 seconds, and further held at a holding temperature T6 ° C. for t6 seconds, and then cooled with air.

このようにして得られた鋼板について、上記[発明を実施するための形態]の項で説明した測定方法により、各相の面積率、γのC濃度(Cγ)、および、マルテンサイトに囲まれたγの面積率を測定した。なお、マルテンサイトに囲まれたγの面積率は、JEOL製(型番JSM−5410)のSEMにTSL社製のOIM解析システムを組み込んだものを用いて測定を行った。 The steel sheet thus obtained, by a measuring method described in the section of [Description of the Invention, each phase area ratio, C concentration of γ R (Cγ R), and, in martensite the area ratio of the enclosed gamma R was measured. The area ratio of gamma R surrounded by martensite was measured using those incorporating the OIM analysis system TSL manufactured in SEM made JEOL (model number JSM-5410).

また、上記鋼板について、冷間および温間での機械的特性を評価するため、下記要領で、室温および300℃のそれぞれで、引張強度(TS)、伸び[全伸び(EL)]、および、深絞り性[限界絞り比(LDR)]を測定した。   In addition, in order to evaluate the cold and warm mechanical properties of the steel sheet, tensile strength (TS), elongation [total elongation (EL)], and at room temperature and 300 ° C., respectively, in the following manner: Deep drawability [limit drawing ratio (LDR)] was measured.

TSおよびELは、引張試験によりJIS5号試験片を用いて測定した。なお、引張試験のひずみ速度は1mm/sとした。また、LDRは、ダイ径:53.4mm、パンチ径:50.0mm、肩R:8mmの円筒金型を用いて、しわ抑え圧9.8kNにて径80〜140mm試験片を深絞り成形して測定した。   TS and EL were measured using a JIS No. 5 test piece by a tensile test. The strain rate in the tensile test was 1 mm / s. In addition, LDR was formed by deep-drawing a test piece having a diameter of 80 to 140 mm using a cylindrical mold having a die diameter of 53.4 mm, a punch diameter of 50.0 mm, and a shoulder R of 8 mm and a wrinkle-reducing pressure of 9.8 kN. Measured.

これらの結果を表3および表4に示す。   These results are shown in Tables 3 and 4.

これらの表に示すように、鋼No.1〜3、9〜18、26〜33はいずれも、本発明の成分組成の範囲を満足する鋼種を用い、推奨の製造条件で製造した結果、本発明の組織規定の要件を充足する本発明鋼板であり、室温特性、温間特性ともに判定基準を満たしており、成形性に優れた高強度鋼板が得られた。   As shown in these tables, steel no. 1 to 3, 9 to 18, and 26 to 33 are all steels satisfying the range of the component composition of the present invention, and are manufactured under recommended manufacturing conditions. It was a steel sheet, and both the room temperature characteristics and the warm characteristics met the judgment criteria, and a high-strength steel sheet excellent in formability was obtained.

これに対し、鋼No.4〜8、19〜25は本発明で規定する成分組成および組織の要件のうち少なくともいずれかを満足しない比較鋼板であり、室温特性、温間特性が判定基準を満たしていない。   On the other hand, Steel No. Nos. 4 to 8 and 19 to 25 are comparative steel plates that do not satisfy at least one of the component composition and the structure requirement defined in the present invention, and the room temperature characteristics and the warm characteristics do not satisfy the judgment criteria.

ちなみに、本発明鋼板(鋼No.27)と比較鋼板(鋼No.19)の、組織中におけるγの分布状態を図1に例示する。図1はEBSD測定の結果であり、灰色または黒色の小六角形で示される部分がγ、白色の小六角形で示される部分がマルテンサイト、白色の広い領域で示される部分がマトリックスのベイニティック・フェライトである。この図より、比較鋼板(鋼No.19)では、γは、互いに連結しているものが多数で、基本的にマトリックスのベイニティック・フェライトに接触して存在しているのに対し、本発明鋼板(鋼No.27)では、γは、細かく分割され、微小なマルテンサイト相内に埋め込まれ(囲まれ)て存在するものが多いことがわかる。 Incidentally, the distribution state of γ R in the structure of the steel plate of the present invention (steel No. 27) and the comparative steel plate (steel No. 19) is illustrated in FIG. FIG. 1 shows the results of EBSD measurement. The portion indicated by a gray or black small hexagon is γ R , the portion indicated by a white small hexagon is martensite, and the portion indicated by a white wide area is a matrix bay. Nitic ferrite. From this figure, in the comparative steel plate (steel No. 19), there are many γ Rs connected to each other, basically being in contact with the bainitic ferrite of the matrix, In the steel sheet of the present invention (steel No. 27), it can be seen that γ R is finely divided and is often embedded (enclosed) in a fine martensite phase.

〔温間加工の適正温度範囲の検討〕
つぎに、本発明鋼板を温間加工する場合の適正温度範囲を調査するため、鋼No.27を用いて、150〜450℃の間で加熱温度を順次変更して温間特性を測定した。その結果を表5に示す。なお、同表における温度300℃の結果は、上記表4の鋼No.27の温間特性を再掲したものである。
[Examination of appropriate temperature range for warm working]
Next, in order to investigate the appropriate temperature range when warming the steel sheet of the present invention, the steel No. 27, the heating temperature was sequentially changed between 150 to 450 ° C., and the warm characteristics were measured. The results are shown in Table 5. The results at a temperature of 300 ° C. in the same table indicate the steel No. in Table 4 above. 27 warm characteristics are shown again.

この表に示すように、200℃未満または400℃超えの温度では、温間特性の判定基準を満たさないのに対し、200〜400℃の間の温度では、温間特性の判定基準を満たしており、広い温度範囲で優れた温間成形性が発揮されることがわかった。   As shown in this table, while the temperature of less than 200 ° C. or over 400 ° C. does not meet the criteria for warm characteristics, the temperature between 200 ° C. and 400 ° C. satisfies the criteria for warm characteristics. It was found that excellent warm formability was exhibited in a wide temperature range.

〔部品内の強度ばらつきに対する加工温度の影響の検討〕
さらに、本発明鋼板を加工して得られた部品内のひずみ分布による強度のばらつきに対する加工温度の影響を調査するために、鋼No.27を用いて、室温および300℃のそれぞれで、真ひずみを全く付与しない無加工のまま(真ひずみ0%)で、または、真ひずみを5%付与する加工を施した後に、再度、室温で引っ張り試験を行って降伏応力(YS)を測定した。その結果を表6に示す。
[Examination of the effect of processing temperature on strength variations in parts]
Furthermore, in order to investigate the influence of the processing temperature on the variation in strength due to the strain distribution in the part obtained by processing the steel sheet of the present invention, 27, at each of room temperature and 300 ° C., with no processing giving true strain at all (true strain 0%), or after applying processing to give 5% true strain, again at room temperature A tensile test was performed to measure the yield stress (YS). The results are shown in Table 6.

同表に示すように、本発明鋼板を温間加工して得られた部品は、冷間加工して得られた部品に比べ、部品中の加工量の違いによる降伏応力のばらつきが小さくなり、部品強度が向上することが確認できた。   As shown in the same table, the parts obtained by warm working the steel sheet of the present invention have less variation in yield stress due to differences in the amount of work in the parts than parts obtained by cold working, It was confirmed that the component strength was improved.

Claims (5)

質量%で(以下、化学成分について同じ。)、
C :0.05〜0.3%、
Si:1〜3%、
Mn:0.5〜3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001〜0.1%、
N :0.002〜0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50〜90%、
残留オーステナイト:3%以上、
マルテンサイト+上記残留オーステナイト:10〜50%、
フェライト:40%以下(0%を含む)
を含む組織を有し、
上記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.2質量%であり、
この残留オーステナイトのうち、マルテンサイトに囲まれたものが0.3%以上存在する
ことを特徴とする成形性に優れた高強度鋼板。
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.3%
Si: 1-3%
Mn: 0.5-3%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
Al: 0.001 to 0.1%,
N: 0.002 to 0.03%
And the balance has a component composition consisting of iron and impurities,
The area ratio for all tissues (hereinafter the same for tissues)
Bainitic ferrite: 50-90%
Residual austenite: 3% or more,
Martensite + the above retained austenite: 10 to 50%,
Ferrite: 40% or less (including 0%)
Having an organization including
The residual austenite has a C concentration (Cγ R ) of 0.5 to 1.2% by mass,
A high-strength steel sheet excellent in formability, characterized in that 0.3% or more of the retained austenite is surrounded by martensite.
成分組成が、さらに、
Cr:0.01〜3%
Mo:0.01〜1%、
Cu:0.01〜2%、
Ni:0.01〜2%、
B :0.00001〜0.01%の1種または2種以上
を含むものである請求項1に記載の成形性に優れた高強度鋼板。
Ingredient composition further
Cr: 0.01 to 3%
Mo: 0.01 to 1%,
Cu: 0.01-2%,
Ni: 0.01-2%,
The high-strength steel sheet having excellent formability according to claim 1, wherein B: one or more of 0.00001 to 0.01%.
成分組成が、さらに、
Ca :0.0005〜0.01%、
Mg :0.0005〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
を含むものである請求項1または2に記載の成形性に優れた高強度鋼板。
Ingredient composition further
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The high-strength steel sheet having excellent formability according to claim 1 or 2, comprising REM: 0.0001 to 0.01% of one or more.
請求項1〜3のいずれか1項に記載の高強度鋼板を、200〜400℃に加熱後、3600s以内に加工することを特徴とする高強度鋼板の温間加工方法。   A warm-working method for a high-strength steel sheet, wherein the high-strength steel sheet according to any one of claims 1 to 3 is processed within 3600 s after being heated to 200 to 400 ° C. 請求項4に記載の方法で加工された自動車部品であって、加工時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在し、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下であることを特徴とする自動車部品。   The automobile part processed by the method according to claim 4, wherein a region where the true strain applied during processing is 0.05 or more and a region where it is less than 0.05 are mixed, and the region where the true strain is maximum A difference in yield stress between the first part and the smallest part is 200 MPa or less.
JP2011180617A 2010-11-18 2011-08-22 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts Active JP5662903B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011180617A JP5662903B2 (en) 2010-11-18 2011-08-22 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
CN201180055275.XA CN103210109B (en) 2010-11-18 2011-11-16 High-strength steel sheet, temperature processing method and the auto parts through temperature processing having excellent formability
PCT/JP2011/076442 WO2012067160A1 (en) 2010-11-18 2011-11-16 High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part
KR1020137012648A KR101532491B1 (en) 2010-11-18 2011-11-16 High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part
EP11840864.0A EP2641990B1 (en) 2010-11-18 2011-11-16 Highly formable high-strength steel sheet, warm working method, and warm-worked automotive part
US13/988,210 US20130259734A1 (en) 2010-11-18 2011-11-16 Highly formable high-strength steel sheet, warm working method, and warm-worked automobile part

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010258152 2010-11-18
JP2010258152 2010-11-18
JP2011180617A JP5662903B2 (en) 2010-11-18 2011-08-22 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts

Publications (2)

Publication Number Publication Date
JP2012122130A true JP2012122130A (en) 2012-06-28
JP5662903B2 JP5662903B2 (en) 2015-02-04

Family

ID=46084083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180617A Active JP5662903B2 (en) 2010-11-18 2011-08-22 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts

Country Status (6)

Country Link
US (1) US20130259734A1 (en)
EP (1) EP2641990B1 (en)
JP (1) JP5662903B2 (en)
KR (1) KR101532491B1 (en)
CN (1) CN103210109B (en)
WO (1) WO2012067160A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660251B2 (en) * 2012-05-17 2015-01-28 新日鐵住金株式会社 Plastic processing method and plastic processing apparatus for metal material
WO2016136625A1 (en) * 2015-02-27 2016-09-01 株式会社神戸製鋼所 High-strength, highly-ductile steel sheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2730666T3 (en) * 2011-07-06 2018-11-30 Nippon Steel & Sumitomo Metal Corporation Method for producing a cold-rolled steel sheet
EP2995691B1 (en) 2011-07-21 2017-09-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing hot-pressed steel member
JP5636347B2 (en) 2011-08-17 2014-12-03 株式会社神戸製鋼所 High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method
JP5860308B2 (en) 2012-02-29 2016-02-16 株式会社神戸製鋼所 High strength steel plate with excellent warm formability and method for producing the same
JP5860354B2 (en) 2012-07-12 2016-02-16 株式会社神戸製鋼所 High-strength hot-dip galvanized steel sheet with excellent yield strength and formability and method for producing the same
US20180195143A1 (en) * 2015-09-04 2018-07-12 Jfe Steel Corporation High-strength thin steel sheet and method of producing the same
WO2019186989A1 (en) * 2018-03-30 2019-10-03 日本製鉄株式会社 Steel sheet
WO2023145146A1 (en) * 2022-01-28 2023-08-03 Jfeスチール株式会社 Galvanized steel sheet and member, and method for producing same
JP7311068B1 (en) 2022-01-28 2023-07-19 Jfeスチール株式会社 Galvanized steel sheet and member, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190050A (en) * 2002-12-06 2004-07-08 Kobe Steel Ltd High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part
JP2010065272A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010116593A (en) * 2008-11-12 2010-05-27 Kobe Steel Ltd Method for manufacturing high-strength hot-dip galvannealed steel sheet, and high-strength hot-dip galvannealed steel sheet

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181230A (en) * 1984-02-29 1985-09-14 Nippon Steel Corp Production of high-tension hot rolled steel plate having excellent workability
FR2649415B1 (en) 1989-07-07 1991-10-31 Gautier Jacques PROCESS FOR MANUFACTURING PARTS WITH HIGH MECHANICAL CHARACTERISTICS FROM UNTREATED STEEL
CN1183268C (en) * 2000-02-23 2005-01-05 杰富意钢铁株式会社 High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing same
JP4051999B2 (en) * 2001-06-19 2008-02-27 Jfeスチール株式会社 High tensile hot-rolled steel sheet excellent in shape freezing property and durability fatigue property after forming, and method for producing the same
JP2003019319A (en) 2001-07-09 2003-01-21 Samii Kk Game board fixing and holding device for pachinko machine
US20050150580A1 (en) * 2004-01-09 2005-07-14 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
EP1676932B1 (en) * 2004-12-28 2015-10-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property
JP4088316B2 (en) * 2006-03-24 2008-05-21 株式会社神戸製鋼所 High strength hot-rolled steel sheet with excellent composite formability
CN100510143C (en) * 2006-05-29 2009-07-08 株式会社神户制钢所 High strength steel sheet with excellent extending flange property
JP5030200B2 (en) * 2006-06-05 2012-09-19 株式会社神戸製鋼所 High strength steel plate with excellent elongation, stretch flangeability and weldability
JP4732962B2 (en) 2006-06-09 2011-07-27 株式会社神戸製鋼所 Method for improving variation in strength-ductility balance of galvannealed steel sheet
JP5040197B2 (en) * 2006-07-10 2012-10-03 Jfeスチール株式会社 Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
EP2209926B1 (en) 2007-10-10 2019-08-07 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5365112B2 (en) * 2008-09-10 2013-12-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP2010258152A (en) 2009-04-23 2010-11-11 Elpida Memory Inc Standard cell and semiconductor device
JP5579659B2 (en) 2011-06-09 2014-08-27 Hoya株式会社 Optical device
JP5636347B2 (en) 2011-08-17 2014-12-03 株式会社神戸製鋼所 High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190050A (en) * 2002-12-06 2004-07-08 Kobe Steel Ltd High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part
JP2010065272A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010116593A (en) * 2008-11-12 2010-05-27 Kobe Steel Ltd Method for manufacturing high-strength hot-dip galvannealed steel sheet, and high-strength hot-dip galvannealed steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660251B2 (en) * 2012-05-17 2015-01-28 新日鐵住金株式会社 Plastic processing method and plastic processing apparatus for metal material
US10010917B2 (en) 2012-05-17 2018-07-03 Nippon Steel & Sumitomo Metal Corporation Plastic working method of metals and plastic working apparatus
WO2016136625A1 (en) * 2015-02-27 2016-09-01 株式会社神戸製鋼所 High-strength, highly-ductile steel sheet
JP2016160467A (en) * 2015-02-27 2016-09-05 株式会社神戸製鋼所 High strength high ductility steel sheet

Also Published As

Publication number Publication date
WO2012067160A1 (en) 2012-05-24
CN103210109B (en) 2016-07-06
EP2641990A1 (en) 2013-09-25
US20130259734A1 (en) 2013-10-03
EP2641990B1 (en) 2019-03-20
KR101532491B1 (en) 2015-06-29
KR20130101546A (en) 2013-09-13
EP2641990A4 (en) 2016-07-06
JP5662903B2 (en) 2015-02-04
CN103210109A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5662903B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5662902B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5667472B2 (en) High-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method
JP5860308B2 (en) High strength steel plate with excellent warm formability and method for producing the same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5667471B2 (en) High-strength steel plate with excellent deep drawability in warm and its warm working method
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5824283B2 (en) High strength steel plate with excellent formability at room temperature and warm temperature
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP2012240095A (en) Warm forming method of high-strength steel sheet
JP5636347B2 (en) High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP2012237044A (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof
JP5632759B2 (en) Method for forming high-strength steel members
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5662903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150