JP2012119092A - Nonaqueous electrolytic solution, electrode, and electrochemical device comprising nonaqueous electrolytic solution and electrode - Google Patents

Nonaqueous electrolytic solution, electrode, and electrochemical device comprising nonaqueous electrolytic solution and electrode Download PDF

Info

Publication number
JP2012119092A
JP2012119092A JP2010265517A JP2010265517A JP2012119092A JP 2012119092 A JP2012119092 A JP 2012119092A JP 2010265517 A JP2010265517 A JP 2010265517A JP 2010265517 A JP2010265517 A JP 2010265517A JP 2012119092 A JP2012119092 A JP 2012119092A
Authority
JP
Japan
Prior art keywords
meth
formula
group
phosphate
acryloyloxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010265517A
Other languages
Japanese (ja)
Other versions
JP5556625B2 (en
Inventor
Hirokazu Onuma
弘和 大沼
Takeru Suzuki
長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010265517A priority Critical patent/JP5556625B2/en
Publication of JP2012119092A publication Critical patent/JP2012119092A/en
Application granted granted Critical
Publication of JP5556625B2 publication Critical patent/JP5556625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution improving safety of an electrochemical device by reducing the heating value in an electrode active material layer while maintaining the discharge capacity, an electrode, and an electrochemical device comprising the nonaqueous electrolytic solution and the electrode.SOLUTION: A nonaqueous electrolytic solution contains: a compound represented by the formula (I) in which at least two of three hydrogen atoms in phosphoric acid are substituted by a (meth)acryloyloxyalkyl group; a nonaqueous solvent; and an electrolyte. In the formula (I), Xand Xrepresent a hydrogen atom or a methyl group, and Xand Xmay be the same or different; Rrepresents a hydrogen atom, a C1-C24 hydrocarbon group, or a specific (meth)acryloyloxyalkyl group; and a and b represent an integer of 1 to 10, and a and b may be the same or different.

Description

本発明は、非水系電解液、電極、ならびに、当該非水系電解液及び電極を備える電気化学デバイスに関する。   The present invention relates to a non-aqueous electrolyte solution, an electrode, and an electrochemical device including the non-aqueous electrolyte solution and the electrode.

容量、保存特性、サイクル特性、安全性等、非水系電解液を用いた電気化学デバイスの性能を向上させるため、電解液にメタクリル酸メチル等の有機化合物を添加することが検討されている(特許文献1〜6参照)。   In order to improve the performance of electrochemical devices using non-aqueous electrolytes, such as capacity, storage characteristics, cycle characteristics, safety, etc., addition of organic compounds such as methyl methacrylate to the electrolyte has been studied (patent) Reference 1-6).

特開2000−223154号公報JP 2000-223154 A 特開2000−149989号公報JP 2000-149989 A 特開2006−216276号公報JP 2006-216276 A 特開2010−027616号公報JP 2010-027616 A 特開2001−015158号公報JP 2001-015158 A 特開2009−123498号公報JP 2009-123498 A

ところで、安全性の観点において、非水系電解液を用いる電気化学デバイスは、電極活物質、電解液等のデバイスの構成要素が一般的に燃えやすい材料であるため、ショート等によって内部の温度が急激に上昇する(異常発熱)と、電気化学デバイス本体が燃焼してしまうという危険がある。   By the way, in terms of safety, an electrochemical device using a non-aqueous electrolytic solution is a material that is generally flammable, such as an electrode active material and an electrolytic solution. If the temperature rises (abnormal heat generation), there is a risk that the electrochemical device body burns.

このような問題を解決するため、電極活物質に、例えば、オリビン型リン酸鉄リチウム、チタン酸リチウム等を用いることや、電解液に、例えば、イオン液体を用いることが検討されている。しかしながら、これらの材料を採用することは、エネルギー密度の低下やコスト面で好ましいものとはいえない。また、電解液に添加剤を添加し、電気化学デバイスの異常発熱を低減することも検討されているが、高温環境下での電極活物質層における発熱に着目し、当該発熱量を抑制することについては未だ十分に検討されていなかった。   In order to solve such problems, for example, the use of olivine-type lithium iron phosphate, lithium titanate, or the like as the electrode active material, or the use of, for example, an ionic liquid as the electrolytic solution has been studied. However, employing these materials is not preferable in terms of energy density reduction and cost. In addition, an additive is added to the electrolyte solution to reduce abnormal heat generation of the electrochemical device. However, paying attention to heat generation in the electrode active material layer under a high temperature environment, the heat generation amount is suppressed. Has not yet been fully studied.

そこで本発明は、放電容量を維持しながら、電極活物質層における発熱量を低減させ、電気化学デバイスの安全性を向上させる非水系電解液、電極、ならびに、当該非水電解液及び電極を備える電気化学デバイスを提供することを目的とする。   Therefore, the present invention includes a non-aqueous electrolyte solution, an electrode, and the non-aqueous electrolyte solution and the electrode that reduce the calorific value in the electrode active material layer and improve the safety of the electrochemical device while maintaining the discharge capacity. An object is to provide an electrochemical device.

本発明は、リン酸が有する3つの水素原子のうち2以上の水素原子が、(メタ)アクリロイルオキシアルキル基で置換された式(I)で表される化合物と、非水溶媒と、電解質と、を含む非水系電解液を提供する。

Figure 2012119092

式(I)中、X及びXは水素原子又はメチル基を示し、X及びXはそれぞれ同一でも異なっていてもよく、R1は水素原子、炭素数1〜24の炭化水素基又は、式(II)で表される(メタ)アクリロイルオキシアルキル基を示し、a及びbは1〜10の整数を示し、a及びbはそれぞれ同一であっても異なっていてもよい。
Figure 2012119092

式(II)中、Xは水素原子又はメチル基を示し、cは1〜10の整数を示す。 The present invention relates to a compound represented by the formula (I) in which two or more hydrogen atoms among three hydrogen atoms of phosphoric acid are substituted with a (meth) acryloyloxyalkyl group, a non-aqueous solvent, an electrolyte, A non-aqueous electrolyte solution is provided.
Figure 2012119092

In formula (I), X 1 and X 2 represent a hydrogen atom or a methyl group, X 1 and X 2 may be the same or different, and R 1 is a hydrogen atom or a hydrocarbon group having 1 to 24 carbon atoms. Or the (meth) acryloyloxyalkyl group represented by Formula (II) is shown, a and b show the integer of 1-10, and a and b may be the same or different, respectively.
Figure 2012119092

In formula (II), X 3 represents a hydrogen atom or a methyl group, and c represents an integer of 1 to 10.

非水系電解液が上記式(I)で表される化合物を含むことにより、放電容量を維持しながら、高温環境下での電極活物質層における発熱量を低減することができる。これにより、電気化学デバイスの温度上昇を抑制でき、電気化学デバイスの安全性を向上させることができる。   When the non-aqueous electrolyte contains the compound represented by the above formula (I), the amount of heat generated in the electrode active material layer in a high temperature environment can be reduced while maintaining the discharge capacity. Thereby, the temperature rise of an electrochemical device can be suppressed and the safety | security of an electrochemical device can be improved.

ここで、本発明は、式(III)で表される化合物をさらに含んでいてもよい。

Figure 2012119092

式(III)中、Xは水素原子又はメチル基を示し、dは1〜10の整数を示す。 Here, this invention may further contain the compound represented by Formula (III).
Figure 2012119092

In formula (III), X 4 represents a hydrogen atom or a methyl group, and d represents an integer of 1 to 10.

また、式(I)で表される化合物の含有量は、0.0008質量%〜4.0質量%であることが好ましく、0.008質量%〜3.0質量%であることがより好ましい。   Further, the content of the compound represented by the formula (I) is preferably 0.0008% by mass to 4.0% by mass, and more preferably 0.008% by mass to 3.0% by mass. .

本発明の非水系電解液において、式(I)で表される化合物の含有量が0.0008質量%より少ないと、電極活物質層における発熱量の低減効果が不十分となる傾向がある。一方、4.0質量%より多いと、電極活物質層における発熱量の低減効果は向上するものの、放電容量が低下する傾向がある。式(I)で表される化合物を、0.0008質量%以上4.0質量%以下含有することにより、上記本発明の効果をより確実に得ることができる。また、式(I)で表される化合物を、0.008質量%以上3.0質量%以下含有することにより、上記本発明の効果をより一層確実に得ることができる。   When the content of the compound represented by the formula (I) is less than 0.0008% by mass in the non-aqueous electrolyte solution of the present invention, the effect of reducing the calorific value in the electrode active material layer tends to be insufficient. On the other hand, when the amount is more than 4.0% by mass, the effect of reducing the amount of heat generated in the electrode active material layer is improved, but the discharge capacity tends to decrease. By containing the compound represented by the formula (I) in an amount of 0.0008% by mass to 4.0% by mass, the effect of the present invention can be obtained more reliably. Moreover, the effect of the said invention can be acquired more reliably by containing the compound represented by Formula (I) 0.008 mass% or more and 3.0 mass% or less.

本発明はまた、集電体と、活物質、バインダー及び式(I)で表される化合物由来の構造単位を有するポリマーを含み、集電体の表面に形成された活物質層と、を備える電極を提供する。

Figure 2012119092

式(I)中、X及びXは水素原子又はメチル基を示し、X及びXはそれぞれ同一でも異なっていてもよく、R1は水素原子、炭素数1〜24の炭化水素基又は、式(II)で表される(メタ)アクリロイルオキシアルキル基を示し、a及びbは1〜10の整数を示し、a及びbはそれぞれ同一であっても異なっていてもよい。
Figure 2012119092

式(II)中、Xは水素原子又はメチル基を示し、cは1〜10の整数を示す。 The present invention also includes a current collector and an active material layer including an active material, a binder, and a polymer having a structural unit derived from the compound represented by formula (I) and formed on the surface of the current collector. An electrode is provided.
Figure 2012119092

In formula (I), X 1 and X 2 represent a hydrogen atom or a methyl group, X 1 and X 2 may be the same or different, and R 1 is a hydrogen atom or a hydrocarbon group having 1 to 24 carbon atoms. Or the (meth) acryloyloxyalkyl group represented by Formula (II) is shown, a and b show the integer of 1-10, and a and b may be the same or different, respectively.
Figure 2012119092

In formula (II), X 3 represents a hydrogen atom or a methyl group, and c represents an integer of 1 to 10.

これにより、放電容量が十分維持され、かつ、高温環境下での発熱量が低減された電極を得ることができる。   As a result, it is possible to obtain an electrode in which the discharge capacity is sufficiently maintained and the calorific value in a high temperature environment is reduced.

また本発明の電極は、上記ポリマーが、式(III)で表される化合物由来の構造単位をさらに有していてもよい。

Figure 2012119092

式(III)中、Xは水素原子又はメチル基を示し、dは1〜10の整数を示す。 In the electrode of the present invention, the polymer may further have a structural unit derived from the compound represented by the formula (III).
Figure 2012119092

In formula (III), X 4 represents a hydrogen atom or a methyl group, and d represents an integer of 1 to 10.

また、本発明は、上記の非水系電解液を備える電気化学デバイス、ならびに、上記の電極を備える電気化学デバイスを提供する。   Moreover, this invention provides an electrochemical device provided with said non-aqueous electrolyte solution, and an electrochemical device provided with said electrode.

これにより、安全性の向上した電気化学デバイスを得ることができる。   Thereby, an electrochemical device with improved safety can be obtained.

本発明によれば、放電容量を維持しながら、電極活物質層における発熱量を低減させ、電気化学デバイスの安全性を向上させる非水系電解液、電極、ならびに、当該非水電解液及び電極を備える電気化学デバイスを提供することができる。   According to the present invention, a non-aqueous electrolyte solution, an electrode, and a non-aqueous electrolyte solution and an electrode that reduce the calorific value in the electrode active material layer and improve the safety of the electrochemical device while maintaining the discharge capacity. An electrochemical device can be provided.

図1は、本実施形態に係る電気化学デバイスを示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an electrochemical device according to this embodiment.

以下、必要により図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

まず、本実施形態に係る電気化学デバイスに用いられる非水系電解液について説明する。
[非水系電解液]
本発明の非水系電解液は、リン酸が有する3つの水素原子のうち2以上の水素原子が、(メタ)アクリロイルオキシアルキル基で置換された式(I)で表されるリン酸塩と、非水溶媒と、電解質と、を含む。
First, the non-aqueous electrolyte used for the electrochemical device according to this embodiment will be described.
[Non-aqueous electrolyte]
The non-aqueous electrolyte solution of the present invention includes a phosphate represented by the formula (I) in which two or more hydrogen atoms among three hydrogen atoms of phosphoric acid are substituted with a (meth) acryloyloxyalkyl group; A non-aqueous solvent and an electrolyte.

Figure 2012119092
Figure 2012119092

式(I)中、X及びXは水素原子又はメチル基を示し、X及びXはそれぞれ同一でも異なっていてもよい。R1は水素原子、炭素数1〜24の炭化水素基又は、式(II)で表される(メタ)アクリロイルオキシアルキル基を示す。炭素数1〜24の炭化水素基としては、直鎖アルキル基、分岐アルキル基、シクロアルキル基、アリール基、或いは、直鎖アルキレン基又は分岐アルキレン基がシクロアルキル基と結合した基、シクロアルキレン基が直鎖アルキル基又は分岐アルキル基と結合した基、直鎖アルキレン基、分岐アルキレン基、又はシクロアルキレン基がアリール基と結合した基、アリーレン基が直鎖アルキル基、分岐アルキル基、又はシクロアルキル基と結合した基が挙げられる。これらの炭化水素基における炭素骨格に結合した水素原子は、フッ素原子で置換されていてもよい。a及びbは1〜10の整数を示し、a及びbはそれぞれ同一であっても異なっていてもよい。なお、本発明における、(メタ)アクリロイルオキシ基は、アクリロイルオキシ基及びメタクリロイルオキシ基を包含する。 In formula (I), X 1 and X 2 represent a hydrogen atom or a methyl group, and X 1 and X 2 may be the same or different. R 1 represents a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, or a (meth) acryloyloxyalkyl group represented by the formula (II). Examples of the hydrocarbon group having 1 to 24 carbon atoms include a linear alkyl group, a branched alkyl group, a cycloalkyl group, an aryl group, a group in which a linear alkylene group or a branched alkylene group is bonded to a cycloalkyl group, and a cycloalkylene group. Is a group in which a linear alkyl group or a branched alkyl group is bonded, a linear alkylene group, a branched alkylene group, or a group in which a cycloalkylene group is bonded to an aryl group, an arylene group is a linear alkyl group, a branched alkyl group, or a cycloalkyl And a group bonded to the group. The hydrogen atom bonded to the carbon skeleton in these hydrocarbon groups may be substituted with a fluorine atom. a and b represent an integer of 1 to 10, and a and b may be the same or different. In the present invention, the (meth) acryloyloxy group includes an acryloyloxy group and a methacryloyloxy group.

Figure 2012119092
Figure 2012119092

式(II)中、Xは水素原子又はメチル基を示し、cは1〜10の整数を示す。 In formula (II), X 3 represents a hydrogen atom or a methyl group, and c represents an integer of 1 to 10.

1において、直鎖又は分岐アルキル基としては、例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、ヘンイコシル、ドコシル、トリコシル、テトラコシルの直鎖又は分岐アルキル基が挙げられる。 In R 1 , the linear or branched alkyl group includes, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl , Nonadecyl, icosyl, henicosyl, docosyl, tricosyl, and tetracosyl linear or branched alkyl groups.

1において、シクロアルキル基としては、例えば、シクロメチル、シクロエチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、シクロウンデシル、シクロドデシル、シクロトリデシル、シクロテトラデシル、シクロペンタデシル、シクロヘキサデシル、シクロヘプタデシル、シクロオクタデシル、シクロノナデシル、シクロイコシル、シクロヘンイコシル、シクロドコシル、シクロトリコシル、シクロテトラコシルが挙げられる。 In R 1 , as the cycloalkyl group, for example, cyclomethyl, cycloethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, Examples include cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, cyclooctadecyl, cyclononadecyl, cycloicosyl, cyclohenicosyl, cyclodocosyl, cyclotricosyl, and cyclotetracosyl.

1において、アリール基としては、例えば、フェニル基、ナフチル基が挙げられる。 In R 1 , examples of the aryl group include a phenyl group and a naphthyl group.

1において、直鎖アルキレン基又は分岐アルキレン基と、シクロアルキル基とが結合した基としては、例えば、上記直鎖アルキル基又は分岐アルキル基から水素原子を少なくとも一つ取った基と、上記シクロアルキル基とが結合したものであって、当該基の炭素骨格の炭素数の合計が1〜24の範囲内にある基が挙げられる。 In R 1 , examples of the group in which a linear alkylene group or branched alkylene group and a cycloalkyl group are bonded include, for example, a group in which at least one hydrogen atom has been removed from the linear alkyl group or branched alkyl group, and the cycloalkyl group described above. Examples include groups in which an alkyl group is bonded and the total carbon number of the carbon skeleton of the group is in the range of 1 to 24.

1において、シクロアルキレン基と、直鎖アルキル基又は分岐アルキル基とが結合した基としては、例えば、上記シクロアルキル基から水素原子を少なくとも一つ取った基と、上記直鎖アルキル基又は分岐アルキル基とが結合したものであって、当該基の炭素骨格の炭素数の合計が1〜24の範囲内にある基が挙げられる。 In R 1 , examples of the group in which a cycloalkylene group and a linear alkyl group or branched alkyl group are bonded include, for example, a group obtained by removing at least one hydrogen atom from the cycloalkyl group, and the linear alkyl group or branched group. Examples include groups in which an alkyl group is bonded and the total carbon number of the carbon skeleton of the group is in the range of 1 to 24.

1において、直鎖アルキレン基、分岐アルキレン基、又はシクロアルキレン基がアリール基と結合した基としては、例えば、上記直鎖アルキル基、分岐アルキル基、又はシクロアルキル基から水素原子を少なくとも一つ取った基と、上記アリール基とが結合したものであって、当該基の炭素骨格の炭素数の合計が1〜24の範囲内にある基が挙げられる。具体的には、ベンジル基、トリチル基が挙げられる。 In R 1 , examples of the group in which a linear alkylene group, branched alkylene group, or cycloalkylene group is bonded to an aryl group include, for example, at least one hydrogen atom from the above linear alkyl group, branched alkyl group, or cycloalkyl group. Examples include groups in which the taken group is bonded to the aryl group, and the total carbon number of the carbon skeleton of the group is in the range of 1 to 24. Specific examples include a benzyl group and a trityl group.

1において、アリーレン基と、直鎖アルキル基、分岐アルキル基、又はシクロアルキル基とが結合した基である場合、上記アリール基から水素原子を少なくとも一つ取った基と、上記直鎖アルキル基、分岐アルキル基、又はシクロアルキル基とが結合したものであって、当該基の炭素骨格の炭素数の合計が1〜24の範囲内にある基が挙げられる。具体的には、トリル基、キシリル基が挙げられる。 In R 1 , when the arylene group is a group in which a linear alkyl group, a branched alkyl group, or a cycloalkyl group is bonded, a group in which at least one hydrogen atom is removed from the aryl group, and the linear alkyl group , A branched alkyl group, or a cycloalkyl group, and the total carbon number of the carbon skeleton of the group is in the range of 1 to 24. Specific examples include a tolyl group and a xylyl group.

1は、水素原子、炭素数1〜10の炭化水素基であることが好ましく、水素原子が特に好ましい。炭素数1〜10の炭化水素基としては、直鎖アルキル基、分岐アルキル基、シクロアルキル基、或いは、シクロアルキレン基が直鎖アルキル基又は分岐アルキル基と結合した基が好ましく、直鎖アルキル基、分岐アルキル基、又はシクロアルキル基がより好ましい。 R 1 is preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom. The hydrocarbon group having 1 to 10 carbon atoms is preferably a linear alkyl group, a branched alkyl group, a cycloalkyl group, or a group in which a cycloalkylene group is bonded to a linear alkyl group or a branched alkyl group. A branched alkyl group or a cycloalkyl group is more preferred.

式(I)で示されるリン酸塩としては、例えば、Rが水素原子であり、a及びbがそれぞれ同一であり、X及びXがそれぞれ同一である場合、リン酸水素=ビス[(メタ)アクリロイルオキシメチル]、リン酸水素=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸水素=ビス[3−((メタ)アクリロイルオキシ)プロピル]、リン酸水素=ビス[4−((メタ)アクリロイルオキシ)ブチル]、リン酸水素=ビス[5−((メタ)アクリロイルオキシ)ペンチル]、リン酸水素=ビス[6−((メタ)アクリロイルオキシ)ヘキシル]、リン酸水素=ビス[7−((メタ)アクリロイルオキシ)ヘプチル]、リン酸水素=ビス[8−((メタ)アクリロイルオキシ)オクチル]、リン酸水素=ビス[9−((メタ)アクリロイルオキシ)ノニル]、リン酸水素=ビス[10−((メタ)アクリロイルオキシ)デシル]が挙げられる。 As the phosphate represented by the formula (I), for example, when R 1 is a hydrogen atom, a and b are the same, and X 1 and X 2 are the same, hydrogen phosphate = bis [ (Meth) acryloyloxymethyl], hydrogen phosphate = bis [2-((meth) acryloyloxy) ethyl], hydrogen phosphate = bis [3-((meth) acryloyloxy) propyl], hydrogen phosphate = bis [ 4-((meth) acryloyloxy) butyl], hydrogen phosphate = bis [5-((meth) acryloyloxy) pentyl], hydrogen phosphate = bis [6-((meth) acryloyloxy) hexyl], phosphoric acid Hydrogen = bis [7-((meth) acryloyloxy) heptyl], hydrogen phosphate = bis [8-((meth) acryloyloxy) octyl], hydrogen phosphate = bis [9-((meth) Like ((meth) acryloyloxy) decyl] is - acryloyloxy) nonyl], hydrogen phosphate = bis [10.

また、Rが水素原子であり、a及びbがそれぞれ異なり、X及びXがそれぞれ同一又は互いに異なる場合、式(I)で示されるリン酸塩としては、例えば、リン酸水素=[(メタ)アクリロイルオキシメチル][2−((メタ)アクリロイルオキシ)エチル]、リン酸水素=[(メタ)アクリロイルオキシメチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸水素=[2−((メタ)アクリロイルオキシ)エチル][4−((メタ)アクリロイルオキシ)ブチル]、リン酸水素=[2−((メタ)アクリロイルオキシ)エチル][8−((メタ)アクリロイルオキシ)オクチル]、リン酸水素=[3−((メタ)アクリロイルオキシ)プロピル][10−((メタ)アクリロイルオキシ)デシル]が挙げられる。 In addition, when R 1 is a hydrogen atom, a and b are different, and X 1 and X 2 are the same or different from each other, examples of the phosphate represented by the formula (I) include hydrogen phosphate = [ (Meth) acryloyloxymethyl] [2-((meth) acryloyloxy) ethyl], hydrogen phosphate = [(meth) acryloyloxymethyl] [3-((meth) acryloyloxy) propyl], hydrogen phosphate = [ 2-((meth) acryloyloxy) ethyl] [4-((meth) acryloyloxy) butyl], hydrogen phosphate = [2-((meth) acryloyloxy) ethyl] [8-((meth) acryloyloxy) Octyl], hydrogen phosphate = [3-((meth) acryloyloxy) propyl] [10-((meth) acryloyloxy) decyl].

また、Rが炭素数1〜10の直鎖アルキル基、分岐アルキル基、又はシクロアルキル基であり、a及びbがそれぞれ同一であり、X及びXがそれぞれ同一である場合、式(I)で示されるリン酸塩としては、例えば、リン酸メチル=ビス[(メタ)アクリロイルオキシメチル]、リン酸エチル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸プロピル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸イソプロピル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸ブチル=ビス[4−((メタ)アクリロイルオキシ)ブチル]、リン酸tert−ブチル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸ペンチル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸シクロペンチル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸ヘキシル=ビス[3−((メタ)アクリロイルオキシ)プロピル]、リン酸シクロへキシル=ビス[3−((メタ)アクリロイルオキシ)プロピル]、リン酸ヘプチル=ビス[6−((メタ)アクリロイルオキシ)ヘキシル]、リン酸オクチル=ビス[3−((メタ)アクリロイルオキシ)プロピル]、リン酸ノニル=ビス[2−((メタ)アクリロイルオキシ)エチル]、リン酸デシル=ビス[(メタ)アクリロイルオキシメチル]が挙げられる。 In addition, when R 1 is a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group, or a cycloalkyl group, a and b are the same, and X 1 and X 2 are the same, Examples of the phosphate represented by I) include methyl phosphate = bis [(meth) acryloyloxymethyl], ethyl phosphate = bis [2-((meth) acryloyloxy) ethyl], propyl phosphate = bis [2-((meth) acryloyloxy) ethyl], isopropyl phosphate = bis [2-((meth) acryloyloxy) ethyl], butyl phosphate = bis [4-((meth) acryloyloxy) butyl], phosphorus Acid tert-butyl = bis [2-((meth) acryloyloxy) ethyl], pentyl phosphate = bis [2-((meth) acryloyloxy) ethyl], phosphorus Cyclopentyl = bis [2-((meth) acryloyloxy) ethyl], hexyl phosphate = bis [3-((meth) acryloyloxy) propyl], cyclohexyl phosphate = bis [3-((meth) acryloyloxy) ) Propyl], heptyl phosphate = bis [6-((meth) acryloyloxy) hexyl], octyl phosphate = bis [3-((meth) acryloyloxy) propyl], nonyl phosphate = bis [2-(( Meth) acryloyloxy) ethyl], decyl phosphate = bis [(meth) acryloyloxymethyl].

また、Rが炭素数1〜10の直鎖アルキル基、分岐アルキル基、又はシクロアルキル基であり、a及びbがそれぞれ異なり、X及びXがそれぞれ同一又は互いに異なる場合、式(I)で示されるリン酸塩としては、例えば、リン酸メチル=[(メタ)アクリロイルオキシメチル][2−((メタ)アクリロイルオキシ)エチル]、リン酸エチル=[2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸プロピル=[2−((メタ)アクリロイルオキシ)エチル][4−((メタ)アクリロイルオキシ)ブチル]、リン酸プロピル=[2−((メタ)アクリロイルオキシ)エチル][5−((メタ)アクリロイルオキシ)ペンチル]、リン酸ブチル=[4−((メタ)アクリロイルオキシ)ブチル][2−((メタ)アクリロイルオキシ)エチル]、リン酸tert−ブチル=[2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸ペンチル=[2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸シクロペンチル=[2−((メタ)アクリロイルオキシ)エチル][4−((メタ)アクリロイルオキシ)ブチル]、リン酸ヘキシル=[2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸シクロへキシル=[3−((メタ)アクリロイルオキシ)プロピル][4−((メタ)アクリロイルオキシ)ブチル]、リン酸ヘプチル=[(メタ)アクリロイルオキシメチル][4−((メタ)アクリロイルオキシ)ブチル]、リン酸オクチル=[2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸ノニル=[2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸デシル=[(メタ)アクリロイルオキシメチル][3−((メタ)アクリロイルオキシ)プロピル]が挙げられる。 In addition, when R 1 is a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group, or a cycloalkyl group, a and b are different, and X 1 and X 2 are the same or different from each other, formula (I Examples of the phosphate represented by) include methyl phosphate = [(meth) acryloyloxymethyl] [2-((meth) acryloyloxy) ethyl], ethyl phosphate = [2-((meth) acryloyloxy). ) Ethyl] [3-((meth) acryloyloxy) propyl], propyl phosphate = [2-((meth) acryloyloxy) ethyl] [4-((meth) acryloyloxy) butyl], propyl phosphate = [ 2-((meth) acryloyloxy) ethyl] [5-((meth) acryloyloxy) pentyl], butyl phosphate = [4-((meth) acryloyl) Xyl) butyl] [2-((meth) acryloyloxy) ethyl], tert-butyl phosphate = [2-((meth) acryloyloxy) ethyl] [3-((meth) acryloyloxy) propyl], phosphoric acid Pentyl = [2-((meth) acryloyloxy) ethyl] [3-((meth) acryloyloxy) propyl], cyclopentyl phosphate = [2-((meth) acryloyloxy) ethyl] [4-((meth) Acryloyloxy) butyl], hexyl phosphate = [2-((meth) acryloyloxy) ethyl] [3-((meth) acryloyloxy) propyl], cyclohexyl phosphate = [3-((meth) acryloyloxy) ) Propyl] [4-((meth) acryloyloxy) butyl], heptyl phosphate = [(meth) acryloyloxime [4-((meth) acryloyloxy) butyl], octyl phosphate = [2-((meth) acryloyloxy) ethyl] [3-((meth) acryloyloxy) propyl], nonyl phosphate = [2 -((Meth) acryloyloxy) ethyl] [3-((meth) acryloyloxy) propyl], decyl phosphate = [(meth) acryloyloxymethyl] [3-((meth) acryloyloxy) propyl] .

また、Rが式(II)で表される(メタ)アクリロイルオキシアルキル基であり、a、b及びcがそれぞれ同一であり、X、X、及びXがそれぞれ同一である場合、式(I)で示されるリン酸塩としては、例えば、リン酸=トリス[(メタ)アクリロイルオキシメチル]、リン酸=トリス[2−((メタ)アクリロイルオキシ)エチル]、リン酸=トリス[3−[[メタ]アクリロイルオキシ]プロピル]、リン酸=トリス[4−((メタ)アクリロイルオキシ)ブチル]、リン酸=トリス[5−((メタ)アクリロイルオキシ)ペンチル]、リン酸=トリス[6−((メタ)アクリロイルオキシ)へキシル]、リン酸=トリス[7−((メタ)アクリロイルオキシ)ヘプチル]、リン酸=トリス[8−((メタ)アクリロイルオキシ)オクチル]、リン酸=トリス[9−((メタ)アクリロイルオキシ)ノニル]、リン酸=トリス[10−((メタ)アクリロイルオキシ)デシル]が挙げられる。 When R 1 is a (meth) acryloyloxyalkyl group represented by the formula (II), a, b and c are the same and X 1 , X 2 and X 3 are the same, Examples of the phosphate represented by the formula (I) include phosphoric acid = tris [(meth) acryloyloxymethyl], phosphoric acid = tris [2-((meth) acryloyloxy) ethyl], phosphoric acid = tris [ 3-[[Meth] acryloyloxy] propyl], phosphoric acid = tris [4-((meth) acryloyloxy) butyl], phosphoric acid = tris [5-((meth) acryloyloxy) pentyl], phosphoric acid = tris [6-((meth) acryloyloxy) hexyl], phosphoric acid = tris [7-((meth) acryloyloxy) heptyl], phosphoric acid = tris [8-((meth) acryloyl) Carboxymethyl) octyl] phosphate = tris [9 - ((meth) acryloyloxy) nonyl], phosphoric acid = Tris [10 - like ((meth) acryloyloxy) decyl] is.

また、Rが式(II)で表される(メタ)アクリロイルオキシアルキル基であり、a、b及びcがそれぞれ異なり、X、X、及びXがそれぞれ同一又は異なる場合、式(I)で示されるリン酸塩としては、例えば、リン酸=[(メタ)アクリロイルオキシメチル][2−((メタ)アクリロイルオキシ)エチル][3−((メタ)アクリロイルオキシ)プロピル]、リン酸=[(メタ)アクリロイルオキシメチル][2−((メタ)アクリロイルオキシ)エチル][4−((メタ)アクリロイルオキシ)ブチル]、リン酸=[(メタ)アクリロイルオキシメチル][2−((メタ)アクリロイルオキシ)エチル][7−((メタ)アクリロイルオキシ)ヘプチル]、リン酸=[(メタ)アクリロイルオキシメチル][2−((メタ)アクリロイルオキシ)エチル][8−((メタ)アクリロイルオキシ)オクチル]が挙げられる。 In addition, when R 1 is a (meth) acryloyloxyalkyl group represented by the formula (II), a, b, and c are different and X 1 , X 2 , and X 3 are the same or different, Examples of the phosphate represented by I) include phosphoric acid = [(meth) acryloyloxymethyl] [2-((meth) acryloyloxy) ethyl] [3-((meth) acryloyloxy) propyl], phosphorus Acid = [(meth) acryloyloxymethyl] [2-((meth) acryloyloxy) ethyl] [4-((meth) acryloyloxy) butyl], phosphoric acid = [(meth) acryloyloxymethyl] [2- ( (Meth) acryloyloxy) ethyl] [7-((meth) acryloyloxy) heptyl], phosphoric acid = [(meth) acryloyloxymethyl] [2-((me ) Acryloyloxy) ethyl] [8 - ((meth) acryloyloxy) octyl] like.

式(I)で示されるリン酸塩は、電解液への溶解性の観点から、分子量の低いものが好ましく、式(I)で示されるリン酸塩のうち、Rが水素原子であるものがより好ましく、より好ましくはa及びbが1〜5の整数のものであり、さらに好ましくは1〜3の整数のものであり、特に好ましくはa及びbはそれぞれ同一のものである。中でも、リン酸水素=ビス[(メタ)アクリロイルオキシメチル]、リン酸水素=ビス[2−(メタ)アクリロイルオキシ)エチル]が特に好ましい。 The phosphate represented by the formula (I) preferably has a low molecular weight from the viewpoint of solubility in the electrolytic solution. Among the phosphates represented by the formula (I), R 1 is a hydrogen atom. More preferably, a and b are each an integer of 1 to 5, more preferably an integer of 1 to 3, and particularly preferably a and b are the same. Among them, hydrogen phosphate = bis [(meth) acryloyloxymethyl] and hydrogen phosphate = bis [2- (meth) acryloyloxy) ethyl] are particularly preferable.

本発明はまた、式(I)で表されるリン酸塩を、0.0008質量%〜4.0質量%含有することが好ましく、0.008質量%〜3.0質量%含有することがより好ましく、0.016質量%〜2.5質量%含有することがさらに好ましく、0.04質量%〜1.0質量%含有することが特に好ましく、0.04質量%以上0.5質量%以下含有することが一層好ましい。   In the present invention, the phosphate represented by the formula (I) is preferably contained in an amount of 0.0008% by mass to 4.0% by mass, and preferably 0.008% by mass to 3.0% by mass. More preferably, it is more preferably 0.016% by mass to 2.5% by mass, particularly preferably 0.04% by mass to 1.0% by mass, and more preferably 0.04% by mass to 0.5% by mass. It is more preferable to contain the following.

本発明の非水系電解液において、式(I)で表されるリン酸塩の含有量が0.0008質量%より少ないと、電極活物質層における発熱量の低減効果が不十分となる傾向がある。一方、4.0質量%より多いと、電極活物質層における発熱量の低減効果は向上するものの、放電容量が低下する傾向がある。式(I)で表されるリン酸塩を、0.0008質量%以上4.0質量%以下含有することにより、上記本発明の効果をより確実に得ることができる。   In the non-aqueous electrolyte of the present invention, if the content of the phosphate represented by the formula (I) is less than 0.0008% by mass, the effect of reducing the calorific value in the electrode active material layer tends to be insufficient. is there. On the other hand, when the amount is more than 4.0% by mass, the effect of reducing the amount of heat generated in the electrode active material layer is improved, but the discharge capacity tends to decrease. By containing 0.0008 mass% or more and 4.0 mass% or less of the phosphate represented by Formula (I), the effect of the said invention can be acquired more reliably.

ここで、本発明は、式(III)で表されるリン酸塩をさらに含むことができる。   Here, the present invention can further include a phosphate represented by the formula (III).

Figure 2012119092

[式(III)中、Xは水素原子又はメチル基を示し、dは1〜10の整数を示す。]
Figure 2012119092

[In Formula (III), X 4 represents a hydrogen atom or a methyl group, and d represents an integer of 1 to 10. ]

式(III)で示されるリン酸塩としては、例えば、リン酸(メタ)アクリロイルオキシメチル、リン酸2−((メタ)アクリロイルオキシ)エチル、リン酸3−((メタ)アクリロイルオキシ)プロピル、リン酸4−((メタ)アクリロイルオキシ)ブチル、リン酸5−((メタ)アクリロイルオキシ)ペンチル、リン酸6−((メタ)アクリロイルオキシ)ヘキシル、リン酸7−((メタ)アクリロイルオキシ)ヘプチル、リン酸8−((メタ)アクリロイルオキシ)オクチル、リン酸9−((メタ)アクリロイルオキシ)ノニル、リン酸10−((メタ)アクリロイルオキシ)デシルが挙げられる。   Examples of the phosphate represented by the formula (III) include (meth) acryloyloxymethyl phosphate, 2-((meth) acryloyloxy) ethyl phosphate, 3-((meth) acryloyloxy) propyl phosphate, 4-((meth) acryloyloxy) butyl phosphate, 5-((meth) acryloyloxy) pentyl phosphate, 6-((meth) acryloyloxy) hexyl phosphate, 7-((meth) acryloyloxy) phosphate Examples include heptyl, 8-((meth) acryloyloxy) octyl phosphate, 9-((meth) acryloyloxy) nonyl phosphate, and 10-((meth) acryloyloxy) decyl phosphate.

式(III)で示されるリン酸塩のうち、dが1〜5の整数のものが好ましく、1〜3の整数のものがより好ましく、中でも、リン酸(メタ)アクリロイルオキシメチル、リン酸2−(メタ)アクリロイルオキシエチルが特に好ましい。   Among the phosphates represented by the formula (III), d is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and of these, phosphoric acid (meth) acryloyloxymethyl, phosphoric acid 2 -(Meth) acryloyloxyethyl is particularly preferred.

式(III)で表されるリン酸塩は、例えば質量比で、式(I)で表されるリン酸塩に対して、0.0〜0.5倍、又は、0.001〜0.22倍、又は、0.01〜0.13倍となるように電解液に含まれることができる。本発明において、式(III)で表されるリン酸塩は必須成分ではないが、必須成分である式(I)で表されるリン酸塩は、通常、式(III)で表されるリン酸塩と平衡状態で存在し単離することが困難である。そのため、式(I)で表されるリン酸塩は、通常0.01〜10%に希釈されたリン酸水溶液中に、上記比率の式(III)で表されるリン酸塩とともに存在する溶液として市販されており(例えば、共栄社化学製、(商品名)P−2M)、このような溶液を用いて電解液を製造することにより、本発明に係る電解液中にも、上記比率の式(III)で表されるリン酸塩が存在することとなる。   The phosphate represented by the formula (III) is, for example, in mass ratio, 0.0 to 0.5 times or 0.001 to 0.00 with respect to the phosphate represented by the formula (I). It can be contained in the electrolyte so as to be 22 times or 0.01 to 0.13 times. In the present invention, the phosphate represented by the formula (III) is not an essential component, but the phosphate represented by the formula (I) which is an essential component is usually a phosphorus represented by the formula (III). It exists in equilibrium with the acid salt and is difficult to isolate. Therefore, the phosphate represented by the formula (I) is usually present in a phosphoric acid aqueous solution diluted to 0.01 to 10% together with the phosphate represented by the formula (III) in the above ratio. (For example, (trade name) P-2M, manufactured by Kyoeisha Chemical Co., Ltd.), and by producing an electrolytic solution using such a solution, the formula of the above ratio is also included in the electrolytic solution according to the present invention. The phosphate represented by (III) will be present.

非水系電解液が上記式(I)で表されるリン酸塩を含むことにより、非水系電解液を用いた電気化学デバイスは、放電容量を維持しながら、高温環境下での電極活物質層における発熱量を低減させることができる。これにより、電気化学デバイスの温度上昇を抑制でき、電気化学デバイスの安全性を向上させることができる。   When the non-aqueous electrolyte contains the phosphate represented by the above formula (I), the electrochemical device using the non-aqueous electrolyte is an electrode active material layer in a high-temperature environment while maintaining the discharge capacity. The amount of heat generated in can be reduced. Thereby, the temperature rise of an electrochemical device can be suppressed and the safety | security of an electrochemical device can be improved.

電解質としては、電気化学デバイスがリチウム二次電池の場合、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)等が挙げられる。 As the electrolyte, when the electrochemical device is a lithium secondary battery, a lithium salt is used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiN (CF 3 CF 2 CO) 2 , and the like.

また、電気化学デバイスが電気2重層キャパシタの場合には、例えば、テトラエチルアンモニウムテトラフルオロボレート(TEABF )、トリエチルモノメチルアンモニウムテトラフルオロボレート(TEMABF )等の4級アンモニウム塩を有機溶媒に溶解させた電解液が使用される。 When the electrochemical device is an electric double layer capacitor, for example, a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate (TEA + BF 4 ) or triethyl monomethyl ammonium tetrafluoroborate (TEMA + BF 4 ) is used. An electrolytic solution dissolved in an organic solvent is used.

なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。   In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、上記式(I)で表されるリン酸塩、上記式(III)で表されるリン酸塩を含む場合には上記式(III)で表されるリン酸塩、並びに、上記電解質を溶解することができるものであれば、公知の電気化学デバイスに使用されている溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、γ―バレロラクトン、ジメトキシメタン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキシレン、4−メチル−1,3−ジオキシレン、ギ酸メチル、酢酸メチル、プロピオン酸メチル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、アセトニトリル、スルホラン、2−メチルスルホラン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N−メチルオキサゾリジノンなどが挙げられる。これらの溶媒を単独もしくは複数種類併せて用いることができる。また、ビニルカーボネート、ビニレンカーボネートなどを添加剤量程度添加してもよい。   Moreover, as an organic solvent, when it includes the phosphate represented by the above formula (I), and the phosphate represented by the above formula (III), the phosphate represented by the above formula (III), Moreover, as long as it can dissolve the electrolyte, a solvent used in a known electrochemical device can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, dimethoxymethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxylene, 4-methyl-1,3 -Dixylene, methyl formate, methyl acetate, methyl propionate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, acetonitrile, sulfolane, 2-methyl sulfolane, dimethyl sulfoxide, N, N-dimethylformamide, N-methyloxazolidinone, etc. . These solvents can be used alone or in combination. Moreover, you may add about the amount of additives, such as vinyl carbonate and vinylene carbonate.

本発明の非水系電解液は、本願発明による効果が得られる限りにおいて、高分子等を添加することによりゲル状としてもよい。   The nonaqueous electrolytic solution of the present invention may be gelled by adding a polymer or the like as long as the effects of the present invention can be obtained.

続いて図1を参照し、本実施形態に係る電極及び電気化学デバイスについて説明する。具体的に、電気化学デバイスがリチウム二次電池である場合について説明する。   Subsequently, the electrode and the electrochemical device according to the present embodiment will be described with reference to FIG. Specifically, the case where the electrochemical device is a lithium secondary battery will be described.

[リチウムイオン二次電池]
リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。
[Lithium ion secondary battery]
The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of the positive electrode 10 and the negative electrode 20 are opposed to each other with the separator 18 interposed therebetween. The positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12. The negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

以下、正極10及び負極20を総称して、電極10、20といい、正極集電体12及び負極集電体22を総称して集電体12、22といい、正極活物質層14及び負極活物質層24を総称して活物質層14、24という。   Hereinafter, the positive electrode 10 and the negative electrode 20 are collectively referred to as electrodes 10 and 20, and the positive electrode current collector 12 and the negative electrode current collector 22 are collectively referred to as current collectors 12 and 22, and the positive electrode active material layer 14 and the negative electrode The active material layers 24 are collectively referred to as active material layers 14 and 24.

[電極]
電極10、20について具体的に説明する。電極10、20は、集電体12、22と、集電体12、22の表面に形成された活物質及びバインダーを含む活物質層14、24と、を備え、活物質層は、さらに上記式(I)で表されるリン酸由来の構造単位を有するポリマーを含む。当該ポリマーは、式(III)で表されるリン酸塩由来の構造単位をさらに有することが好ましい。
[electrode]
The electrodes 10 and 20 will be specifically described. The electrodes 10 and 20 include current collectors 12 and 22, and active material layers 14 and 24 containing active materials and binders formed on the surfaces of the current collectors 12 and 22, and the active material layer further includes the above A polymer having a structural unit derived from phosphoric acid represented by the formula (I) is included. The polymer preferably further has a phosphate-derived structural unit represented by the formula (III).

(正極10)
正極集電体12は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
正極活物質層14は、本実施形態に係る活物質、バインダー、必要に応じた量の導電材を含むものである。
(Positive electrode 10)
The positive electrode current collector 12 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
The positive electrode active material layer 14 includes the active material according to the present embodiment, a binder, and a conductive material in an amount necessary.

バインダーは、活物質同士を結合すると共に、活物質と正極集電体12とを結合している。   The binder bonds the active materials to each other and bonds the active material to the positive electrode current collector 12.

正極活物質としては、リチウムイオンを含有し、リチウムイオンを吸蔵・放出可能な化合物であればよく、例えば、LiCoO、LiNiO、LiMn、Li(CoNiMn)O、Li(NiCoAl)O、Li(MnAl、Li[LiMnNiCo]O、LiVOPO、LiFePO等のリチウム含有金属酸化物が挙げられる。 The positive electrode active material may be any compound that contains lithium ions and can occlude and release lithium ions. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li (Co x Ni y Mn z ) O 2 Li-containing metal oxides such as Li (Ni x Co y Al z ) O 2 , Li ( M n x Al y ) 2 O 4 , Li [Li w Mn x Ni y Co z ] O 2 , LiVOPO 4 , LiFePO 4 Is mentioned.

バインダーの材質としては、上述の結合が可能であればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のリン樹脂が挙げられる。   The material of the binder is not particularly limited as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene. -Perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride ( And a phosphorus resin such as PVF).

また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系リンゴム(VDF−HFP系リンゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系リンゴム(VDF−HFP−TFE系リンゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系リンゴム(VDF−PFP系リンゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系リンゴム(VDF−PFP−TFE系リンゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系リンゴム(VDF−PFMVE−TFE系リンゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系リンゴム(VDF−CTFE系リンゴム)等のビニリデンフルオライド系リンゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene phosphorubber (VDF-HFP phosphorubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene phosphorubber (VDF-HFP-TFE phosphorubber) ), Vinylidene fluoride-pentafluoropropylene phosphorus rubber (VDF-PFP phosphorus rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene phosphorus rubber (VDF-PFP-TFE phosphorus rubber), vinylidene fluoride-perfluoromethyl vinyl ether -Tetrafluoroethylene phosphorus rubber (VDF-PFMVE-TFE phosphorus rubber), vinylidene fluoride-chlorotrifluoroethylene phosphorus rubber (VDF-CT E system Ringomu) may be used vinylidene fluoride-based Ringomu such.

更に、上記の他に、バインダーとして、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。   In addition to the above, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used as the binder. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer may be used.

また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電材の機能も発揮するので導電材を添加しなくてもよい。   Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also functions as a conductive material, it is not necessary to add a conductive material.

イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等)のモノマーと、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、Li(CFSON、LiN(CSOリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。 As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) A crosslinked polymer of a polyether compound, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile, etc.) monomers, and LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, Examples include Li (CF 3 SO 2 ) 2 N, LiN (C 2 F 5 SO 2 ) 2 lithium salt, or a composite of alkali metal salt mainly composed of lithium. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

正極活物質層14に含まれるバインダーの含有率は、活物質層の質量を基準として0.5〜6質量%であることが好ましい。バインダーの含有率が0.5質量%未満となると、バインダーの量が少なすぎて強固な活物質層を形成できなくなる傾向が大きくなる。また、バインダーの含有率が6質量%を超えると、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向が大きくなる。また、この場合、特にバインダーの電子伝導性が低いと活物質層の電気抵抗が上昇し、十分な電気容量が得られなくなる傾向が大きくなる。   It is preferable that the content rate of the binder contained in the positive electrode active material layer 14 is 0.5-6 mass% on the basis of the mass of an active material layer. When the binder content is less than 0.5% by mass, the amount of the binder is too small and a tendency to fail to form a strong active material layer increases. Moreover, when the content rate of a binder exceeds 6 mass%, the quantity of the binder which does not contribute to an electrical capacity will increase, and the tendency for it to become difficult to obtain sufficient volume energy density becomes large. In this case, particularly, when the electronic conductivity of the binder is low, the electric resistance of the active material layer is increased, and there is a tendency that a sufficient electric capacity cannot be obtained.

導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。   Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done.

(負極20)
負極集電体22は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
負極活物質はチウムイオンを吸蔵・放出可能な化合物であればよく、公知の電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
バインダー、導電材は、それぞれ、正極と同様のものを使用できる。
(Negative electrode 20)
The negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
The negative electrode active material may be any compound that can occlude and release thium ions, and known negative electrode active materials for batteries can be used. Examples of the negative electrode active material include carbon materials such as graphite (natural graphite, artificial graphite) capable of inserting and extracting lithium ions, carbon nanotubes, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, Al, Si, and the like. And particles containing a metal that can be combined with lithium such as Sn, an amorphous compound mainly composed of an oxide such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), and the like. .
As the binder and the conductive material, the same materials as those for the positive electrode can be used.

次に、本実施形態に係る電極10,20の製造方法について説明する。
(電極10,20の製造方法)
本実施形態に係る電極10,20の製造方法は、電極活物質層14,24の原料である塗料を、集体上に塗布する工程(以下、「塗布工程」ということがある。)と、集電体上に塗布された塗料中の溶媒を除去し、電極活物質層を形成する工程(以下、「溶媒除去工程」ということがある。)と、電極活物質層の表面で、上記式(I)で表されるリン酸塩由来の構造単位を有するポリマーを形成する工程(以下、「ポリマー形成工程」ということがある。)と、を備える。
Next, a method for manufacturing the electrodes 10 and 20 according to this embodiment will be described.
(Method for manufacturing electrodes 10 and 20)
The method for manufacturing the electrodes 10 and 20 according to the present embodiment includes a step of applying a coating material, which is a raw material of the electrode active material layers 14 and 24, onto the aggregate (hereinafter, also referred to as “coating step”), and a collector. The step of removing the solvent in the paint applied on the electric body to form an electrode active material layer (hereinafter sometimes referred to as “solvent removal step”), and the surface of the electrode active material layer, A step of forming a polymer having a phosphate-derived structural unit represented by I) (hereinafter also referred to as “polymer forming step”).

(塗布工程)
塗料を集電体12、22に塗布する塗布工程について説明する。塗料は、上記活物質、バインダー、及び溶媒を含む。塗料には、これらの成分の他に、例えば、活物質の導電性を高めるための導電材が含まれていてもよい。溶媒としては、溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等を用いることができる。
(Coating process)
An application process for applying the paint to the current collectors 12 and 22 will be described. The paint contains the active material, a binder, and a solvent. In addition to these components, the coating material may contain, for example, a conductive material for increasing the conductivity of the active material. As the solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used.

活物質、バインダー、溶媒、導電材等の塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。例えば、まず、活物質、導電材及びバインダーを混合し、得られた混合物に、N−メチル−2−ピロリドンを加えて混合し、塗料を調整する。   The mixing method of the components constituting the paint such as the active material, the binder, the solvent, and the conductive material is not particularly limited, and the mixing order is not particularly limited. For example, first, an active material, a conductive material, and a binder are mixed, and N-methyl-2-pyrrolidone is added to and mixed with the obtained mixture to prepare a coating material.

上記塗料を、集電体12、22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   The paint is applied to the current collectors 12 and 22. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

(溶媒除去工程)
続いて、集電体12、22上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体12、22を、例えば80℃〜150℃の雰囲気下で乾燥させればよい。
(Solvent removal step)
Subsequently, the solvent in the paint applied on the current collectors 12 and 22 is removed. The removal method is not particularly limited, and the current collectors 12 and 22 to which the paint is applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして活物質層14、24が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10〜50kgf/cmとすることができる。   Then, the electrodes on which the active material layers 14 and 24 are formed in this way may then be pressed by a roll press device or the like as necessary. The linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.

以上の工程を経て、集電体12、22上に電極活物質層14,24が形成され、電極活物質層14,24の表面に上記式(I)で表されるリン酸塩由来の構造単位を有するポリマーが形成される前の電極(以下、「ポリマー形成前の電極」という。)を作製することができる。   Through the above steps, the electrode active material layers 14 and 24 are formed on the current collectors 12 and 22, and the phosphate-derived structure represented by the above formula (I) is formed on the surfaces of the electrode active material layers 14 and 24. An electrode before the polymer having the unit is formed (hereinafter referred to as “electrode before polymer formation”) can be produced.

(ポリマー形成工程)
続いて、ポリマー形成前の正極及び負極を、セパレータ18を介して積層させる。例えば、この積層体を本発明の非水系電解液に浸漬させ、リード60,62を充放電試験機に接続して少なくとも1回充放電することにより、ポリマー形成前の正極活物質層、及び、ポリマー形成前の負極活物質層に上記式(I)で表されるリン酸塩由来の構造単位を有するポリマーを形成でき、正極10,負極20を作製できる。当該ポリマーの存在状態は必ずしも明らかではないが、活物質やバインダーの表面に付着したり、活物質やバインダーに結合したりして、電極活物質層14,24の表面を被覆しているものと推察される。
(Polymer formation process)
Subsequently, the positive electrode and the negative electrode before polymer formation are laminated via the separator 18. For example, by immersing this laminate in the non-aqueous electrolyte solution of the present invention, connecting the leads 60 and 62 to a charge / discharge tester and charging / discharging at least once, the positive electrode active material layer before polymer formation, and A polymer having a phosphate-derived structural unit represented by the above formula (I) can be formed on the negative electrode active material layer before polymer formation, and the positive electrode 10 and the negative electrode 20 can be produced. The existence state of the polymer is not necessarily clear, but it is attached to the surface of the active material or the binder or bonded to the active material or the binder to cover the surfaces of the electrode active material layers 14 and 24. Inferred.

ポリマーは、通常の充放電試験において使用される充放電試験機を用い、充放電試験時に設定される条件下で作成でき、通常の充放電条件であれば特に限定されない。例えば、電圧3.0〜4.3V、電流密度0.001〜10mA/cm、温度20〜30℃にて、満充電時の80〜100%程度充電し、3.0Vまで放電すればよい。 The polymer can be prepared under the conditions set during the charge / discharge test using a charge / discharge tester used in a normal charge / discharge test, and is not particularly limited as long as it is a normal charge / discharge condition. For example, at a voltage of 3.0 to 4.3 V, a current density of 0.001 to 10 mA / cm 2 and a temperature of 20 to 30 ° C., the battery may be charged to about 80 to 100% at full charge and discharged to 3.0 V. .

なお、ポリマー形成工程においては、正極又は負極と、リチウム金属シートとを、セパレータを介して積層し、正極、負極それぞれについて、ハーフセル用積層体を作成し、当該ハーフセル用積層体を本発明に係る電解液に浸漬して、それぞれ少なくとも1回、上記の充放電条件で充放電を行なうことによって、正極活物質層の表面及び負極活物質層の表面に上記式(I)で表されるリン酸塩由来の構造単位を有するポリマーを形成し、正極10,負極20を別々に作製してもよい。   In the polymer forming step, the positive electrode or the negative electrode and the lithium metal sheet are laminated via a separator, a half cell laminate is prepared for each of the positive electrode and the negative electrode, and the half cell laminate according to the present invention. Phosphoric acid represented by the above formula (I) on the surface of the positive electrode active material layer and the surface of the negative electrode active material layer by immersing in an electrolytic solution and charging and discharging at least once under the above charge and discharge conditions. A polymer having a salt-derived structural unit may be formed, and the positive electrode 10 and the negative electrode 20 may be produced separately.

ここで、上述のように作製した電極を用いたリチウムイオン二次電池100の他の構成要素を説明する。   Here, another component of the lithium ion secondary battery 100 using the electrode manufactured as described above will be described.

セパレータ18は、電気絶縁性の多孔体であり、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 is an electrically insulating porous body, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. Examples thereof include a nonwoven fabric made of at least one selected constituent material.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). preferable.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。   Then, the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.

以上、本発明の非水電解液、電極、ならびに、当該電解液及び電極を備えるリチウムイオン二次電池、及び、それらの製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although non-aqueous electrolyte of this invention, an electrode, a lithium ion secondary battery provided with the said electrolyte and electrode, and suitable one Embodiment of those manufacturing methods were demonstrated in detail, this invention is the above-mentioned. It is not limited to the embodiment.

例えば、本発明の電解液及び電極は、リチウムイオン二次電池以外の電気化学デバイスに用いることができる。電気化学デバイスとしては、金属リチウム二次電池(カソードとして上記活物質を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。なお、リチウムイオン二次電池以外の電気化学デバイスの場合、電極活物質としては、それぞれの電気化学デバイスに適したものを用いればよい。例えば、電気化学キャパシタの場合には、正極活物質含有層及び負極活物質含有層中に含まれる活物質として、アセチレンブラック、グラファイト、黒鉛、活性炭などが用いられる。   For example, the electrolytic solution and electrode of the present invention can be used for electrochemical devices other than lithium ion secondary batteries. Electrochemical devices include secondary batteries other than lithium ion secondary batteries such as metallic lithium secondary batteries (using the above active material as the cathode and metallic lithium as the anode), and electrochemical capacitors such as lithium capacitors. Etc. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board. In the case of an electrochemical device other than a lithium ion secondary battery, a material suitable for each electrochemical device may be used as the electrode active material. For example, in the case of an electrochemical capacitor, acetylene black, graphite, graphite, activated carbon, or the like is used as the active material contained in the positive electrode active material-containing layer and the negative electrode active material-containing layer.

[作用効果]
本願発明の効果が得られる理由は必ずしも明らかではないが、上記効果の得られる理由について、本発明者らは以下のように推察する。電気化学デバイスの初回充放電時に、電解液と接する電極活物質層の表面、例えば、活物質の表面やバインダーの表面に、上記式(I)で表されるリン酸塩由来の構造単位を有するポリマーが形成される。上記式(I)で表されるリン酸塩は、1分子中に、(メタ)アクリロイルオキシアルキル基を少なくとも2つ有しているため、上記式(I)で表されるリン酸塩由来の構造単位を有する網目状のポリマーを形成できると考えられる。上記ポリマーは、安定性に優れると考えられ、例えば、電解液と電極活物質との反応を有効に抑制でき、また、異常発熱時には電極活物質層における発熱量を低減することができるものと考えられる。また、上記式(III)で表されるリン酸塩が存在する場合は、上記式(III)で表されるリン酸塩も重合可能であるため、ポリマーは、上記式(III)で表されるリン酸塩由来の構造単位含むことができる。なお、ポリマーの構造は、(メタ)アクリロイルオキシ基におけるビニル基同士が重合したポリマーや、当該ポリマー同士が当該ポリマーに含まれる水酸基の脱水縮合によりさらに重合したもの等が推測される。
[Function and effect]
The reason why the effect of the present invention is obtained is not necessarily clear, but the present inventors infer the reason why the above effect is obtained as follows. When the electrochemical device is charged and discharged for the first time, the surface of the electrode active material layer in contact with the electrolytic solution, for example, the surface of the active material or the surface of the binder has a structural unit derived from the phosphate represented by the above formula (I) A polymer is formed. Since the phosphate represented by the above formula (I) has at least two (meth) acryloyloxyalkyl groups in one molecule, it is derived from the phosphate represented by the above formula (I). It is thought that a network polymer having a structural unit can be formed. The polymer is considered to be excellent in stability, for example, it can effectively suppress the reaction between the electrolyte and the electrode active material, and can reduce the amount of heat generated in the electrode active material layer during abnormal heat generation. It is done. In addition, when the phosphate represented by the formula (III) is present, the phosphate represented by the formula (III) can also be polymerized, and therefore the polymer is represented by the formula (III). A phosphate-derived structural unit. The polymer structure is presumed to be a polymer in which vinyl groups in a (meth) acryloyloxy group are polymerized, or a polymer in which the polymers are further polymerized by dehydration condensation of a hydroxyl group contained in the polymer.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
[負極の作成]
負極活物質として人造黒鉛、バインダーとしてスチレン−ブタジエンゴム、増粘剤としてカルボキシメチルセルロースを、水を溶媒として混合し、塗料を作成した。この塗料を集電体である銅箔(厚さ15μm)にドクターブレード法で塗布し、80℃で乾燥させた後、圧延し、銅箔表面に正極活物質層を形成した。銅箔には、外部引き出し端子を接続するために、塗料を塗布しない部分を設けておいた。外部引き出し端子としては、外装体とのシール性を向上させる目的で、ニッケル箔に、無水マレイン酸をグラフト化したポリプロピレンを巻き付けたものを用意した。このニッケル箔と上記塗料を塗布し乾燥した後の銅箔とを超音波溶接した。
Example 1
[Creation of negative electrode]
Artificial graphite as a negative electrode active material, styrene-butadiene rubber as a binder, carboxymethyl cellulose as a thickener, and water as a solvent were mixed to prepare a paint. This paint was applied to a copper foil (thickness: 15 μm) as a current collector by a doctor blade method, dried at 80 ° C., and then rolled to form a positive electrode active material layer on the surface of the copper foil. The copper foil was provided with a portion to which no paint was applied in order to connect the external lead terminal. As the external lead terminal, a nickel foil wound with polypropylene grafted with maleic anhydride was prepared for the purpose of improving the sealing performance with the exterior body. The nickel foil and the copper foil after the coating material was applied and dried were ultrasonically welded.

[正極の作成]
正極活物質としてLi(Ni0.82Co0.15Al0.03)O、バインダーとしてポリフッ化ビニリデン、導電助剤としてカーボンブラック及び黒鉛を、N−メチルピロリドンを溶媒として混合し、塗料を作成した。この塗料を集電体であるアルミ箔(厚さ20μm)にドクターブレード法で塗布し、100℃で乾燥させた後、圧延し、アルミ箔表面に正極活物質層を形成した。なお、アルミ箔には、外部引き出し端子を接続するために、塗料を塗布しない部分を設けておいた。外部引き出し端子としては、外装体とのシール性を向上させる目的で、アルミ箔に、無水マレイン酸をグラフト化したポリプロピレンを巻き付けたものを用意した。このアルミ箔と上記塗料を塗布し乾燥した後のアルミ箔とを超音波溶接した。
[Creation of positive electrode]
Li (Ni 0.82 Co 0.15 Al 0.03 ) O 2 as a positive electrode active material, polyvinylidene fluoride as a binder, carbon black and graphite as a conductive additive, N-methylpyrrolidone as a solvent, and a paint Created. This paint was applied to an aluminum foil (thickness 20 μm) as a current collector by a doctor blade method, dried at 100 ° C., and then rolled to form a positive electrode active material layer on the surface of the aluminum foil. The aluminum foil was provided with a portion to which no paint was applied in order to connect the external lead terminal. As an external lead terminal, for the purpose of improving the sealing property with the exterior body, an aluminum foil wrapped with polypropylene grafted with maleic anhydride was prepared. This aluminum foil and the aluminum foil after the coating material was applied and dried were ultrasonically welded.

[電解液の作成]
エチレンカーボネートを30vol%、ジエチルカーボネートを70vol%の割合で混合した溶液に、濃度1MでLiPFを溶解させ、電解液を作成した。この電解液に、リン酸水素=ビス[2−(メタクリロイルオキシ)エチル]((CHCCHCOO−(CH−O−)−POOH、表1中リン酸塩(a)と表す)、及び、リン酸2−(メタクリロイルオキシ)エチル(CHCCHCOO−(CH−O−PO(OH)、表1中リン酸塩(b)と表す)を、質量比で80:20となるように含むリン酸塩(共栄社化学製、(商品名)P−2M)を0.1質量%添加し、溶解させた。
[Creation of electrolyte]
LiPF 6 was dissolved at a concentration of 1 M in a solution obtained by mixing ethylene carbonate at a ratio of 30 vol% and diethyl carbonate at a ratio of 70 vol% to prepare an electrolytic solution. In this electrolyte solution, hydrogen phosphate = bis [2- (methacryloyloxy) ethyl] ((CH 2 CCH 3 COO— (CH 2 ) 2 —O—) 2 —POOH, phosphate (a) in Table 1 and And 2- (methacryloyloxy) ethyl phosphate (CH 2 CCH 3 COO— (CH 2 ) 2 —O—PO (OH) 2 , represented by phosphate (b) in Table 1), 0.1 mass% of phosphate (manufactured by Kyoeisha Chemical Co., Ltd., (trade name) P-2M) containing 80:20 in a ratio was added and dissolved.

[ハーフセルの作成]
(正極ハーフセルの作製)
上述のようにして作製した正極、並びに、セパレータ(ポリオレフィン製の微多孔質膜、旭化成株式会社社製、(商品名)SV722)を所定の寸法に切断した。正極、セパレータ、リチウム金属をこの順序で積層し、正極ハーフセル用積層体を作成した。この積層体を封入する電池の外装体はアルミニウムラミネート材料からなり、その構成は、ポリエチレンテレフタレート(12μm)/Al(40μm)/ポリプロピレン(50μm)であった。なおこの時PPが内側となるように製袋した。この外装体の中に上記積層体を入れ、上述のようにして作製した電解液を適当量添加し外装体を真空密封し、正極ハーフセルを作製した。
[Create half-cell]
(Preparation of positive electrode half cell)
The positive electrode prepared as described above and a separator (polyolefin microporous membrane, manufactured by Asahi Kasei Corporation, (trade name) SV722) were cut into predetermined dimensions. A positive electrode, a separator, and a lithium metal were laminated in this order to produce a positive electrode half-cell laminate. The outer package of the battery enclosing the laminate was made of an aluminum laminate material, and the configuration thereof was polyethylene terephthalate (12 μm) / Al (40 μm) / polypropylene (50 μm). At this time, bags were made so that PP was inside. The laminate was placed in the outer package, an appropriate amount of the electrolyte prepared as described above was added, and the outer package was vacuum-sealed to produce a positive electrode half cell.

(負極ハーフセルの作製)
負極、セパレータ、リチウム金属をこの順序で積層し、負極ハーフセル用積層体を作成した以外は正極ハーフセルの作製方法と同様にして、負極ハーフセルを作製した。
(Preparation of negative electrode half cell)
A negative electrode half cell was produced in the same manner as the production method of the positive electrode half cell except that the negative electrode, the separator, and the lithium metal were laminated in this order to produce a laminate for the negative electrode half cell.

<放電容量の測定>
上述のようにして作成した正極ハーフセル及び負極ハーフセルを充放電試験機(北斗電工株式会社製、(製品名)HJ1001SM8A)で、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。正極の放電容量及び負極の放電容量を表1に示す。
なお、充放電後の電池から回収した電解液からは、CHCCHCOO−(CH−O−PO(OH)−(CH−OCO−OC、CHCCHCOO−(CH−O−PO(OH)−CH−O−PO(OH)−O−(CH)−O−COCCHCH、(CHCCHCOO−(CH−O−)−POO−(CH−OPOF−OCなどを微量検出した。これは上記添加剤の一部が分解し、溶媒又は支持塩の一部と反応することにより生成した物質であり、電池の性能は損なわれていなかった。
<Measurement of discharge capacity>
When the positive electrode half cell and the negative electrode half cell prepared as described above were subjected to a charge / discharge tester (manufactured by Hokuto Denko Corporation, (product name) HJ1001SM8A) with a discharge rate of 0.1 C (constant current discharge at 25 ° C.) The discharge capacity (unit: mAh / g) was measured when the current value reached the end of discharge in 10 hours. Table 1 shows the discharge capacity of the positive electrode and the discharge capacity of the negative electrode.
In addition, from the electrolyte solution collected from the battery after charge and discharge, CH 2 CCH 3 COO— (CH 2 ) 2 —O—PO (OH) — (CH 2 ) 2 —OCO—OC 2 H 5 , CH 2 CCH 3 COO- (CH 2) 2 -O -PO (OH) -CH 2 -O-PO (OH) -O- (CH 2) -O-COCCH 3 CH 2, (CH 2 CCH 3 COO- (CH 2 ) 2 -O-) 2 -POO- (CH 2 ) 2 -OPOF-OC 2 H 5 and the like were detected in minute amounts. This is a substance produced by decomposition of a part of the additive and reaction with a part of the solvent or the supporting salt, and the performance of the battery was not impaired.

<正極活物質層の発熱量の測定>
充放電試験後、正極ハーフセルを解体し、正極活物質層を一部取り出し、約1mgを直径5mmのSUSパンに入れSUS製の蓋でシールした後、示差走査熱量計(株式会社リガク社製、(製品名)Thermo plus DSC8230)にて発熱量を測定した。なお、測定範囲は25℃〜500℃、昇速速度は10℃/minであり、参照物質は、アルミナ(示差走査熱量計付属品)であった。発熱は、約230℃から始まった。
<Measurement of calorific value of positive electrode active material layer>
After the charge / discharge test, the positive electrode half cell was disassembled, a part of the positive electrode active material layer was taken out, about 1 mg was placed in a 5 mm diameter SUS pan and sealed with a SUS lid, and then a differential scanning calorimeter (manufactured by Rigaku Corporation, (Product name: Thermo plus DSC8230), the calorific value was measured. The measurement range was 25 ° C. to 500 ° C., the rate of increase was 10 ° C./min, and the reference material was alumina (attached to a differential scanning calorimeter). The exotherm began at about 230 ° C.

(実施例2)
電解液中のリン酸塩の含有量を1.0質量%(リン酸塩(a)の含有量:0.8質量%)とした以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Example 2)
The positive electrode half cell and the negative electrode half cell were the same as in Example 1 except that the phosphate content in the electrolytic solution was 1.0 mass% (the content of phosphate (a): 0.8 mass%). Was made.

(実施例3)
電解液中のリン酸塩の含有量を3.0質量%(リン酸塩(a)の含有量:2.4質量%)とした以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Example 3)
A positive electrode half cell and a negative electrode half cell in the same manner as in Example 1 except that the phosphate content in the electrolytic solution was changed to 3.0% by mass (the content of phosphate (a): 2.4% by mass). Was made.

(実施例4)
電解液中のリン酸塩の含有量を3.5質量%(リン酸塩(a)の含有量:2.8質量%)とした以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
Example 4
A positive electrode half cell and a negative electrode half cell in the same manner as in Example 1 except that the phosphate content in the electrolytic solution was 3.5% by mass (the content of phosphate (a): 2.8% by mass). Was made.

(実施例5)
電解液中のリン酸塩の含有量を0.005質量%(リン酸塩(a)の含有量:0.004質量%)とした以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Example 5)
The positive electrode half cell and the negative electrode half cell were the same as in Example 1 except that the phosphate content in the electrolyte was 0.005 mass% (the content of phosphate (a): 0.004 mass%). Was made.

(実施例6)
電解液中のリン酸塩の含有量を0.01質量%(リン酸塩(a)の含有量:0.008質量%)とした以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Example 6)
The positive electrode half cell and the negative electrode half cell were the same as in Example 1 except that the phosphate content in the electrolyte was 0.01% by mass (the content of phosphate (a): 0.008% by mass). Was made.

(比較例1)
電解液に添加剤を使用しなかった以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Comparative Example 1)
A positive electrode half cell and a negative electrode half cell were produced in the same manner as in Example 1 except that no additive was used in the electrolytic solution.

(比較例2)
0.1質量%のリン酸塩の代わりにメタクリル酸メチルを1.0質量%添加した以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Comparative Example 2)
A positive electrode half cell and a negative electrode half cell were produced in the same manner as in Example 1 except that 1.0% by mass of methyl methacrylate was added instead of 0.1% by mass of the phosphate.

(比較例3)
0.1質量%のリン酸塩の代わりに、メタクリル酸エチルを1.0質量%添加した以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Comparative Example 3)
A positive electrode half cell and a negative electrode half cell were produced in the same manner as in Example 1 except that 1.0% by mass of ethyl methacrylate was added instead of 0.1% by mass of phosphate.

(比較例4)
リン酸塩の代わりにメタクリル酸メチルを添加した以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Comparative Example 4)
A positive electrode half cell and a negative electrode half cell were prepared in the same manner as in Example 1 except that methyl methacrylate was added instead of phosphate.

(比較例5)
リン酸塩の代わりにメタクリル酸エチルを添加した以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Comparative Example 5)
A positive electrode half cell and a negative electrode half cell were prepared in the same manner as in Example 1 except that ethyl methacrylate was added instead of phosphate.

(比較例6)
0.1質量%のリン酸塩の代わりに、ビニレンカーボネート(VC)とプロパンスルトン(PS)とを合計1.0質量%添加した以外は実施例1と同様にして、正極ハーフセル及び負極ハーフセルを作製した。
(Comparative Example 6)
A positive electrode half cell and a negative electrode half cell were prepared in the same manner as in Example 1 except that vinylene carbonate (VC) and propane sultone (PS) were added in a total amount of 1.0% by mass instead of 0.1% by mass phosphate. Produced.

実施例2〜6及び比較例1〜6において、実施例1と同様に、正極ハーフセル及び負極ハーフセルに対し、正極及び負極の放電容量を測定した。また、実施例1と同様に、正極活物質層の発熱量を測定した。実施例1〜6及び比較例1〜6の正極の放電容量、負極の放電容量及び正極活物質層の発熱量を表1に示す。   In Examples 2 to 6 and Comparative Examples 1 to 6, as in Example 1, the discharge capacities of the positive electrode and the negative electrode were measured for the positive electrode half cell and the negative electrode half cell. Further, as in Example 1, the calorific value of the positive electrode active material layer was measured. Table 1 shows the discharge capacity of the positive electrode, the discharge capacity of the negative electrode, and the calorific value of the positive electrode active material layer in Examples 1 to 6 and Comparative Examples 1 to 6.

Figure 2012119092
Figure 2012119092

実施例においては、リン酸水素=ビス[2−(メタクリロイルオキシ)エチル]((CHCCHCOO−(CH−O−)−POOH:リン酸塩(a))を含むリン酸塩が1.0質量%未満でも、発熱量低減効果が十分に得られた。一方、比較例に示すように、メタクリル酸メチル、メタクリル酸エチル又は、VCとPSとの混合物を添加した電解液は、1.0質量%以上添加しなければ発熱量低減効果が薄かった。 In the examples, phosphoric acid containing hydrogen phosphate = bis [2- (methacryloyloxy) ethyl] ((CH 2 CCH 3 COO— (CH 2 ) 2 —O—) 2 —POOH: phosphate (a)) Even when the acid salt was less than 1.0% by mass, the effect of reducing the heat generation amount was sufficiently obtained. On the other hand, as shown in the comparative example, the electrolyte solution to which methyl methacrylate, ethyl methacrylate, or a mixture of VC and PS was added had a low heating value reduction effect unless 1.0% by mass or more was added.

10,20…電極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、52…金属箔、54…高分子膜、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10,20 ... Electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 52 ... Metal Foil, 54 ... polymer film, 60, 62 ... lead, 100 ... lithium ion secondary battery.

Claims (8)

リン酸が有する3つの水素原子のうち2以上の水素原子が、(メタ)アクリロイルオキシアルキル基で置換された式(I)で表される化合物と、非水溶媒と、電解質と、を含む非水系電解液。
Figure 2012119092

[式(I)中、X及びXは水素原子又はメチル基を示し、X及びXはそれぞれ同一でも異なっていてもよく、R1は水素原子、炭素数1〜24の炭化水素基又は、式(II)で表される(メタ)アクリロイルオキシアルキル基を示し、a及びbは1〜10の整数を示し、a及びbはそれぞれ同一であっても異なっていてもよい。]
Figure 2012119092

[式(II)中、Xは水素原子又はメチル基を示し、cは1〜10の整数を示す。]
A non-aqueous solvent containing a compound represented by formula (I) in which two or more hydrogen atoms among three hydrogen atoms of phosphoric acid are substituted with a (meth) acryloyloxyalkyl group, a nonaqueous solvent, and an electrolyte Aqueous electrolyte.
Figure 2012119092

[In Formula (I), X 1 and X 2 represent a hydrogen atom or a methyl group, X 1 and X 2 may be the same or different, and R 1 is a hydrogen atom or a hydrocarbon having 1 to 24 carbon atoms. A group or a (meth) acryloyloxyalkyl group represented by the formula (II), a and b each represent an integer of 1 to 10, and a and b may be the same or different. ]
Figure 2012119092

[In Formula (II), X 3 represents a hydrogen atom or a methyl group, and c represents an integer of 1 to 10. ]
式(III)で表される化合物をさらに含む請求項1に記載の非水系電解液。
Figure 2012119092

[式(III)中、Xは水素原子又はメチル基を示し、dは1〜10の整数を示す。]
The non-aqueous electrolyte solution according to claim 1, further comprising a compound represented by formula (III).
Figure 2012119092

[In Formula (III), X 4 represents a hydrogen atom or a methyl group, and d represents an integer of 1 to 10. ]
前記式(I)で表される化合物の含有量が、0.0008質量%〜4.0質量%である、請求項1又は2に記載の非水系電解液。   The non-aqueous electrolyte solution according to claim 1 or 2, wherein the content of the compound represented by the formula (I) is 0.0008% by mass to 4.0% by mass. 前記式(I)で表される化合物の含有量が、0.008質量%〜3.0質量%である、請求項1又は2に記載の非水系電解液。   The non-aqueous electrolyte solution according to claim 1 or 2, wherein the content of the compound represented by the formula (I) is 0.008% by mass to 3.0% by mass. 集電体と、
活物質、バインダー及び式(I)で表される化合物由来の構造単位を有するポリマーを含み、前記集電体の表面に形成された活物質層と、
を備える電極。
Figure 2012119092

[式(I)中、X及びXは水素原子又はメチル基を示し、X及びXはそれぞれ同一でも異なっていてもよく、R1は水素原子、炭素数1〜24の炭化水素基又は、式(II)で表される(メタ)アクリロイルオキシアルキル基を示し、a及びbは1〜10の整数を示し、a及びbはそれぞれ同一であっても異なっていてもよい。]
Figure 2012119092

[式(II)中、Xは水素原子又はメチル基を示し、cは1〜10の整数を示す。]
A current collector,
An active material layer comprising an active material, a binder, and a polymer having a structural unit derived from the compound represented by formula (I), and formed on the surface of the current collector;
Electrode.
Figure 2012119092

[In Formula (I), X 1 and X 2 represent a hydrogen atom or a methyl group, X 1 and X 2 may be the same or different, and R 1 is a hydrogen atom or a hydrocarbon having 1 to 24 carbon atoms. A group or a (meth) acryloyloxyalkyl group represented by the formula (II), a and b each represent an integer of 1 to 10, and a and b may be the same or different. ]
Figure 2012119092

[In Formula (II), X 3 represents a hydrogen atom or a methyl group, and c represents an integer of 1 to 10. ]
前記ポリマーが、式(III)で表される化合物由来の構造単位をさらに有する請求項5に記載の電極。
Figure 2012119092

[式(III)中、Xは水素原子又はメチル基を示し、dは1〜10の整数を示す。]
The electrode according to claim 5, wherein the polymer further has a structural unit derived from the compound represented by the formula (III).
Figure 2012119092

[In Formula (III), X 4 represents a hydrogen atom or a methyl group, and d represents an integer of 1 to 10. ]
請求項1〜4のいずれか一項に記載の非水系電解液を備える電気化学デバイス。   An electrochemical device comprising the nonaqueous electrolytic solution according to any one of claims 1 to 4. 請求項5又は6に記載の電極を備える電気化学デバイス。   An electrochemical device comprising the electrode according to claim 5.
JP2010265517A 2010-11-29 2010-11-29 Non-aqueous electrolyte solution, electrode, and electrochemical device including the non-aqueous electrolyte solution and electrode Expired - Fee Related JP5556625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265517A JP5556625B2 (en) 2010-11-29 2010-11-29 Non-aqueous electrolyte solution, electrode, and electrochemical device including the non-aqueous electrolyte solution and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265517A JP5556625B2 (en) 2010-11-29 2010-11-29 Non-aqueous electrolyte solution, electrode, and electrochemical device including the non-aqueous electrolyte solution and electrode

Publications (2)

Publication Number Publication Date
JP2012119092A true JP2012119092A (en) 2012-06-21
JP5556625B2 JP5556625B2 (en) 2014-07-23

Family

ID=46501714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265517A Expired - Fee Related JP5556625B2 (en) 2010-11-29 2010-11-29 Non-aqueous electrolyte solution, electrode, and electrochemical device including the non-aqueous electrolyte solution and electrode

Country Status (1)

Country Link
JP (1) JP5556625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063596A (en) * 2012-09-20 2014-04-10 Fujifilm Corp Electrolytic solution for nonaqueous secondary battery and secondary battery
CN104380504A (en) * 2012-07-10 2015-02-25 株式会社Lg化学 Negative electrode for secondary battery, and secondary battery comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084384A (en) * 2010-10-12 2012-04-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084384A (en) * 2010-10-12 2012-04-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380504A (en) * 2012-07-10 2015-02-25 株式会社Lg化学 Negative electrode for secondary battery, and secondary battery comprising same
JP2015518264A (en) * 2012-07-10 2015-06-25 エルジー・ケム・リミテッド Secondary battery cathode and secondary battery including the same
EP2874207A4 (en) * 2012-07-10 2016-01-20 Lg Chemical Ltd Negative electrode for secondary battery, and secondary battery comprising same
US10109862B2 (en) 2012-07-10 2018-10-23 Lg Chem, Ltd. Anode for secondary battery and secondary battery comprising the same
JP2014063596A (en) * 2012-09-20 2014-04-10 Fujifilm Corp Electrolytic solution for nonaqueous secondary battery and secondary battery

Also Published As

Publication number Publication date
JP5556625B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2014010526A1 (en) Non-aqueous electrolyte secondary battery
JP5987692B2 (en) Power storage device
JP2005093824A (en) Method for manufacturing electrochemical device
JP2012119091A (en) Nonaqueous electrolytic solution, electrode, and electrochemical device comprising nonaqueous electrolytic solution and electrode
JP2011049114A (en) Lithium-ion secondary battery
CN112563563A (en) Composite solid electrolyte, solid battery and preparation method thereof
EP3316380B1 (en) Battery cell in which gelation electrolyte solution component is included in pore of separator configuring electrode assembly
CN101853964B (en) Nonaqueous electrolyte lithium-ion secondary battery and preparation method thereof
CN112216878B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP5556625B2 (en) Non-aqueous electrolyte solution, electrode, and electrochemical device including the non-aqueous electrolyte solution and electrode
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6083289B2 (en) Lithium ion secondary battery
KR100281828B1 (en) A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method
JP5426809B2 (en) Secondary battery, electronic equipment using secondary battery and transportation equipment
WO2015151145A1 (en) All-solid lithium secondary cell
CN112490500A (en) Electrolyte for electricity storage device, and method for manufacturing electricity storage device
JP2016181457A (en) Flat plate type laminate battery and battery pack thereof
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6922101B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020213268A1 (en) Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery
JP6789138B2 (en) Negative electrode material for storage batteries, negative electrode for storage batteries and storage batteries
JP2018067482A (en) Lithium ion secondary battery and method for manufacturing the same
WO2015118676A1 (en) MATERIAL FOR Li BATTERIES
JP2016081708A (en) Negative electrode active material for lithium ion secondary battery, negative electrode including the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees