JP2012119030A - Magnetic particle powder and magnetic recording medium - Google Patents

Magnetic particle powder and magnetic recording medium Download PDF

Info

Publication number
JP2012119030A
JP2012119030A JP2010267543A JP2010267543A JP2012119030A JP 2012119030 A JP2012119030 A JP 2012119030A JP 2010267543 A JP2010267543 A JP 2010267543A JP 2010267543 A JP2010267543 A JP 2010267543A JP 2012119030 A JP2012119030 A JP 2012119030A
Authority
JP
Japan
Prior art keywords
particle powder
magnetic
magnetic recording
hexagonal ferrite
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010267543A
Other languages
Japanese (ja)
Inventor
Shinji Horie
真司 堀江
Angyoku Sho
安玉 章
Hiroko Morii
弘子 森井
Kazuyuki Hayashi
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2010267543A priority Critical patent/JP2012119030A/en
Publication of JP2012119030A publication Critical patent/JP2012119030A/en
Abandoned legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic particle powder, particularly a hexagonal ferrite particle powder excellent in magnetic characteristics and effective for noise reduction in a magnetic recording medium.SOLUTION: The magnetic particle powder comprises a hexagonal ferrite particle powder having an average plate surface diameter of 10 to 30 nm and a coercive force (Hc) of 95.5 kA/m or more. A Co compound is present on a particle surface of the hexagonal ferrite particle powder and the amount of Co present on the particle surface and in the particle of the hexagonal ferrite particle powder is 0.1 to 2 wt.% in terms of Co. The total amount of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) included in the hexagonal ferrite particle powder is 10 ppm or less.

Description

本発明は、磁気記録媒体に用いる磁性粒子粉末に関するものであり、詳しくは、六方晶フェライト粒子粉末からなり、平均板面径が10〜30nmであり、六方晶フェライト粒子粉末の粒子表面にCo化合物が存在する、優れた磁気特性を有するとともに、磁気記録層を構成するビヒクル中への分散性に優れた六方晶フェライト粒子粉末からなる磁性粒子粉末に関するものである。   The present invention relates to a magnetic particle powder for use in a magnetic recording medium, and more specifically, a hexagonal ferrite particle powder having an average plate surface diameter of 10 to 30 nm, and a Co compound on the surface of the hexagonal ferrite particle powder. The present invention relates to a magnetic particle powder comprising hexagonal ferrite particle powder having excellent magnetic properties and having excellent dispersibility in a vehicle constituting a magnetic recording layer.

磁気記録技術は、従来、オーディオ用、ビデオ用、コンピューター用等をはじめとしてさまざまな分野で幅広く用いられている。近年、機器の小型軽量化、記録の長時間化及び記録容量の増大等が求められており、記録媒体に対しては、記録密度のより一層の向上が望まれている。   Conventionally, magnetic recording technology has been widely used in various fields including audio, video, and computer. In recent years, there has been a demand for smaller and lighter devices, longer recording time, increased recording capacity, and the like, and further improvement in recording density is desired for recording media.

従来の磁気記録媒体に対してより高密度記録を行うためには、高いC/N比が必要であり、ノイズ(N)が低く、再生出力(C)が高いことが求められている。近年では、これまで用いられていた誘導型磁気ヘッドに替わり、磁気抵抗型ヘッド(MRヘッド)や巨大磁気抵抗型ヘッド(GMRヘッド)等の高感度ヘッドが開発されており、これらは誘導型磁気ヘッドに比べて再生出力が得られやすいことから、高いC/N比を得るためには、出力を上げるよりもノイズを低減する方が重要となってきている。   In order to perform high-density recording on a conventional magnetic recording medium, a high C / N ratio is required, noise (N) is low, and reproduction output (C) is required to be high. In recent years, high-sensitivity heads such as magnetoresistive heads (MR heads) and giant magnetoresistive heads (GMR heads) have been developed in place of the inductive magnetic heads used so far. Since it is easy to obtain a reproduction output as compared with the head, in order to obtain a high C / N ratio, it is more important to reduce the noise than to increase the output.

磁気記録媒体のノイズは、粒子性ノイズと磁気記録媒体の表面性に起因して発生する表面性ノイズに大別される。粒子性ノイズの場合、粒子サイズの影響が大きく、微粒子であるほどノイズ低減に有利であることから、磁気記録媒体に用いる磁性粒子粉末の粒子サイズはできるだけ小さいことが求められている。   The noise of the magnetic recording medium is roughly classified into particulate noise and surface noise generated due to the surface property of the magnetic recording medium. In the case of particulate noise, the influence of the particle size is large, and the finer the particle, the more advantageous the noise reduction. Therefore, the particle size of the magnetic particle powder used for the magnetic recording medium is required to be as small as possible.

一方、表面性ノイズの場合、磁気記録媒体の表面平滑性を改良することが重要であり、磁気記録層中に配合される磁性粒子粉末に対しては、磁気記録層を構成するビヒクル中への分散性改善が求められている。   On the other hand, in the case of surface noise, it is important to improve the surface smoothness of the magnetic recording medium. For the magnetic particle powder blended in the magnetic recording layer, it is necessary to improve the surface smoothness of the magnetic recording layer. There is a need for improved dispersibility.

一般に、微粒子、且つ、高保磁力値を有する磁性粒子粉末としては、鉄を主成分とする金属磁性粒子粉末及び六方晶フェライト粒子粉末等が知られており、六方晶フェライト粒子粉末は針状の金属磁性粒子粉末に比べ短波長領域で高い出力が得られるという特徴があり、再生にMRヘッドやGMRヘッドを用いた高密度記録の磁気記録媒体用磁性粉末として非常に有望である。   Generally, as magnetic particles having fine particles and a high coercive force value, metal magnetic particle powders mainly composed of iron, hexagonal ferrite particle powders, and the like are known, and hexagonal ferrite particle powders are acicular metal. Compared with magnetic particle powder, it has a feature that a high output can be obtained in a short wavelength region, and is very promising as a magnetic powder for high-density recording magnetic recording media using an MR head or GMR head for reproduction.

六方晶フェライト粒子粉末は、従来、磁気特性改善、電気抵抗低減等を目的として、六方晶フェライト粒子粉末とコバルト塩及び第一鉄塩とを加熱処理することにより、六方晶フェライト粒子表面にCoスピネルフェライト被膜を形成する方法(特許文献1乃至特許文献7)等が知られている。   The hexagonal ferrite particle powder has been conventionally treated with heat treatment of the hexagonal ferrite particle powder, cobalt salt and ferrous salt for the purpose of improving magnetic properties, reducing electrical resistance, etc. Methods for forming a ferrite coating (Patent Documents 1 to 7) are known.

特開昭59−102823号公報JP 59-102823 特開昭62−139122号公報JP-A-62-139122 特開昭64−23502号公報JP-A 64-23502 特開平2−33723号公報JP-A-2-33723 特開平2−87606号公報JP-A-2-87606 特開平6−77034号公報JP-A-6-77034 特開平8−191009号公報Japanese Patent Application Laid-Open No. 8-191009

前出特許文献1乃至7には、六方晶フェライト粒子粉末とコバルト塩及び第一鉄塩とを加熱処理することにより、粒子表面にCoスピネルフェライト被膜が形成された六方晶フェライト粒子粉末が記載されているが、いずれも保磁力は高くなっているものの、実施例に記載の六方晶フェライト粒子粉末の保磁力はいずれも31.8〜87.5kA/m(400〜1100Oe)程度であり、被処理粒子である未処理の六方晶フェライト粒子粉末の保磁力が95.5kA/m未満であればCoスピネルフェライト被膜を形成することによって保磁力を向上させることは可能であるが、95.5kA/m以上の保磁力を有する六方晶フェライト粒子粉末の場合、後出比較例に示す通り、Coスピネルフェライト被膜を形成することで逆に保磁力は低下する。   The aforementioned Patent Documents 1 to 7 describe hexagonal ferrite particle powder in which a Co spinel ferrite film is formed on the particle surface by heat treatment of hexagonal ferrite particle powder, cobalt salt and ferrous salt. However, although the coercive force is high in all cases, the coercive force of the hexagonal ferrite particle powders described in the examples is about 31.8 to 87.5 kA / m (400 to 1100 Oe). If the coercive force of the untreated hexagonal ferrite particles, which are the treated particles, is less than 95.5 kA / m, it is possible to improve the coercive force by forming a Co spinel ferrite coating, but 95.5 kA / In the case of hexagonal ferrite particle powder having a coercive force of m or more, the coercive force is conversely reduced by forming a Co spinel ferrite film as shown in a comparative example. To below.

そこで、本発明は、六方晶フェライト粒子粉末からなり、平均板面径が10〜30nmであり、六方晶フェライト粒子粉末の粒子表面にCo化合物が存在する、優れた磁気特性を有するとともに、磁気特性を損なうことなく磁気記録層を構成するビヒクル中への分散性に優れた磁性粒子粉末を得ることを技術的課題とする。   Therefore, the present invention consists of hexagonal ferrite particle powder, has an average plate surface diameter of 10 to 30 nm, has a Co compound on the particle surface of the hexagonal ferrite particle powder, has excellent magnetic properties, and magnetic properties. It is a technical problem to obtain a magnetic particle powder excellent in dispersibility in a vehicle constituting a magnetic recording layer without impairing the magnetic recording layer.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、平均板面径が10〜30nmであり、保磁力(Hc)が95.5kA/m以上である六方晶フェライト粒子粉末からなり、該六方晶フェライト粒子粉末の粒子表面にCo化合物が存在するとともに、該六方晶フェライト粒子粉末の粒子表面及び粒子中に存在するCo量がCo換算で0.1〜2重量%であり、且つ、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下であることを特徴とする磁性粒子粉末である(本発明1)。   That is, the present invention comprises a hexagonal ferrite particle powder having an average plate surface diameter of 10 to 30 nm and a coercive force (Hc) of 95.5 kA / m or more. A platinum is contained in the hexagonal ferrite particle powder in the presence of the compound, the amount of Co present in the particle surface and in the particle of the hexagonal ferrite particle powder is 0.1 to 2% by weight in terms of Co A magnetic particle powder characterized in that the total amount of each element of group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) is 10 ppm or less (Invention 1).

また、本発明は、粉体の保磁力分布(SFD)が1.6以下である本発明1の磁性粒子粉末である(本発明2)。   Moreover, this invention is the magnetic particle powder of this invention 1 whose coercive force distribution (SFD) of powder is 1.6 or less (this invention 2).

また、本発明は、非磁性支持体上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記磁性粒子粉末として本発明1又は本発明2のいずれかに記載の磁性粒子粉末を用いることを特徴とする磁気記録媒体である(本発明3)。   The present invention also provides a magnetic recording medium comprising a magnetic recording layer comprising a magnetic particle powder and a binder resin formed on a nonmagnetic support, wherein the magnetic particle powder is either of the present invention 1 or the present invention 2. A magnetic recording medium characterized by using the magnetic particle powder described in (3).

本発明に係る磁性粒子粉末は、平均板面径が10〜30nmであり、六方晶フェライト粒子粉末の粒子表面にCo化合物が存在することにより、磁気記録媒体のノイズをより低減し、優れた磁気特性を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体の磁性粒子粉末として好適である。   The magnetic particle powder according to the present invention has an average plate surface diameter of 10 to 30 nm, and the presence of a Co compound on the particle surface of the hexagonal ferrite particle powder further reduces the noise of the magnetic recording medium, and exhibits excellent magnetic properties. Since a magnetic recording medium having characteristics can be obtained, it is suitable as a magnetic particle powder for a high-density magnetic recording medium.

本発明に係る磁気記録媒体は、本発明に係る上記磁性粒子粉末を用いることにより、磁気記録媒体のノイズをより低減し、優れた磁気特性を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体として好適である。   Since the magnetic recording medium according to the present invention uses the magnetic particle powder according to the present invention, the noise of the magnetic recording medium can be further reduced and a magnetic recording medium having excellent magnetic properties can be obtained. It is suitable as a magnetic recording medium.

本発明の構成をより詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る磁性粒子粉末について述べる。   First, the magnetic particle powder according to the present invention will be described.

本発明に係る磁性粒子粉末は、平均板面径が10〜30nmであり、保磁力(Hc)が95.5kA/m以上である六方晶フェライト粒子粉末からなり、該六方晶フェライト粒子粉末の粒子表面にCo化合物が存在するとともに、該六方晶フェライト粒子粉末の粒子表面及び粒子中に存在するCo量がCo換算で0.1〜2重量%であり、且つ、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下である。   The magnetic particle powder according to the present invention comprises a hexagonal ferrite particle powder having an average plate surface diameter of 10 to 30 nm and a coercive force (Hc) of 95.5 kA / m or more. A Co compound is present on the surface, and the amount of Co present in the surface of the hexagonal ferrite particle powder and in the particle is 0.1 to 2% by weight in terms of Co, and is contained in the hexagonal ferrite particle powder. The total amount of each element of the platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum) is 10 ppm or less.

本発明に係る磁性粒子粉末は、Ba、Sr及びCaから選ばれる1種又は2種以上の元素を含有するマグネトプランバイト型(M型)フェライト微粒子粉末又はW型フェライト微粒子粉末、あるいはFeもしくはBa、Sr及びCaの原子の一部が他の元素で置換された六方晶フェライト粒子粉末からなる。置換元素としては、具体的にはCo、Ni、Zn、Mn、Mg、Ti、Sn、Zr、Cu、Mo、La、Ce、V、Si、Sc、Sb、Y、Rh、Pd、Nd、Nb、B、P、Ge、Al、Ru、Pr、Bi、W、Re等の元素の1種又は2種以上を用いることができる。   The magnetic particle powder according to the present invention is a magnetoplumbite type (M type) ferrite fine particle powder or W type ferrite fine particle powder containing Fe, Ba, or one or more elements selected from Ba, Sr and Ca, or Fe or Ba. , Sr and Ca are composed of hexagonal ferrite particles in which some of the atoms are substituted with other elements. Specific examples of substitution elements include Co, Ni, Zn, Mn, Mg, Ti, Sn, Zr, Cu, Mo, La, Ce, V, Si, Sc, Sb, Y, Rh, Pd, Nd, and Nb. , B, P, Ge, Al, Ru, Pr, Bi, W, Re, and the like can be used alone or in combination.

本発明に係る磁性粒子粉末の平均板面径は10〜30nmであり、好ましくは10〜28nm、より好ましくは10〜25nmである。磁性粒子粉末の平均板面径が30nmを超える場合には、粒子サイズが大きいため、粒子性ノイズをより低減することが難しく、高いC/N比を有する磁気記録媒体を得ることが困難となる。また、平均板面径が10nm未満である場合には、磁性粒子粉末の微細化に伴う熱揺らぎの影響が大きくなるため好ましくない。   The average plate surface diameter of the magnetic particle powder according to the present invention is 10 to 30 nm, preferably 10 to 28 nm, and more preferably 10 to 25 nm. When the average plate surface diameter of the magnetic particle powder exceeds 30 nm, since the particle size is large, it is difficult to further reduce particulate noise and to obtain a magnetic recording medium having a high C / N ratio. . Moreover, when the average plate surface diameter is less than 10 nm, the influence of thermal fluctuation accompanying the miniaturization of the magnetic particle powder increases, which is not preferable.

本発明に係る磁性粒子粉末の板状比(平均板面径と平均厚みの比)(以下、「板状比」という。)は1.5〜10.0が好ましく、より好ましくは1.75〜8.0、更により好ましくは2.0〜6.0である。板状比が10を超える場合には、粒子間のスタッキングが多くなり、磁性塗料の製造時におけるビヒクル中への分散性が低下すると共に、粘度が増加する場合があるため好ましくない。   The plate ratio of the magnetic particle powder according to the present invention (ratio of average plate surface diameter to average thickness) (hereinafter referred to as “plate ratio”) is preferably 1.5 to 10.0, more preferably 1.75. ˜8.0, even more preferably 2.0 to 6.0. When the plate ratio exceeds 10, stacking between particles increases, dispersibility in the vehicle during production of the magnetic coating material decreases, and viscosity may increase, which is not preferable.

本発明に係る磁性粒子粉末のBET比表面積値は20〜200m/gが好ましく、より好ましくは25〜200m/g、更により好ましくは30〜150m/gである。BET比表面積値が20m/g未満の場合には、磁性粒子粉末が粗大であるため、これを用いて得られた磁気記録媒体の表面平滑性が低下し、それに起因して出力も向上し難くなる。また、短波長領域における飽和磁化値や保磁力値が低下すると共に粒子性ノイズが増大するため好ましくない。BET比表面積値が200m/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、磁性塗料の製造時におけるビヒクル中への分散性が低下する。 BET specific surface area of the magnetic particles according to the present invention is preferably from 20 to 200 m 2 / g, more preferably 25~200m 2 / g, still more preferably 30 to 150 m 2 / g. When the BET specific surface area value is less than 20 m 2 / g, the magnetic particle powder is coarse, so that the surface smoothness of the magnetic recording medium obtained using this decreases, and the output is also improved due to this. It becomes difficult. In addition, the saturation magnetization value and the coercive force value in the short wavelength region are decreased, and particle noise is increased, which is not preferable. When the BET specific surface area value exceeds 200 m 2 / g, aggregation is likely to occur due to an increase in intermolecular force due to finer particles, so that the dispersibility in the vehicle during the production of the magnetic coating material is reduced.

本発明に係る磁性粒子粉末の粒子表面に存在するCo化合物としては、非磁性成分であり、水酸化コバルトもしくは水酸化コバルトの水和物である。   The Co compound present on the particle surface of the magnetic particle powder according to the present invention is a nonmagnetic component and is cobalt hydroxide or cobalt hydroxide hydrate.

本発明に係る磁性粒子粉末は、粒子表面及び粒子中に存在するCo量がCo換算で0.1〜2重量%であり、好ましくは0.1〜1.5重量%、より好ましくは0.1〜1重量%である。磁性粒子粉末の粒子表面及び粒子中に存在するCo化合物がCo換算で2重量%を超える場合には、保磁力(Hc)が低下するため好ましくない。0.1重量%未満の場合には、磁気記録層を構成するビヒクル中への分散性改善効果が得られない。   In the magnetic particle powder according to the present invention, the amount of Co present on the particle surface and in the particle is 0.1 to 2% by weight in terms of Co, preferably 0.1 to 1.5% by weight, more preferably 0.8. 1-1% by weight. When the Co compound present on the particle surface of the magnetic particle powder and in the particle exceeds 2% by weight in terms of Co, the coercive force (Hc) decreases, which is not preferable. If it is less than 0.1% by weight, the effect of improving the dispersibility in the vehicle constituting the magnetic recording layer cannot be obtained.

本発明に係る磁性粒子粉末が含有する白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計は10ppm以下であり、好ましくは8ppm以下、より好ましくは5ppm以下である。白金族元素の含有量が10ppmを超える場合には、これを用いて作製した磁性塗料や磁気記録媒体中に含まれる有機溶剤や樹脂が、白金等の触媒活性のある金属により劣化しやすいため好ましくない。   The total of each element of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) contained in the magnetic particle powder according to the present invention is 10 ppm or less, preferably 8 ppm or less, more preferably 5 ppm or less. When the content of the platinum group element exceeds 10 ppm, it is preferable because an organic solvent or a resin contained in a magnetic paint or a magnetic recording medium produced using the platinum group element is easily deteriorated by a metal having catalytic activity such as platinum. Absent.

本発明に係る磁性粒子粉末の磁気特性は、保磁力(Hc)が95.5〜397.9kA/mが好ましく、より好ましくは119.4〜318.3kA/mであり、飽和磁化値が40〜70Am/kgが好ましく、より好ましくは45〜70Am/kgである。また、粉体SFD(Switching Field Distribution)は1.6以下であることが好ましく、より好ましくは1.5以下である。粉体SFDが1.6を超える場合には、保磁力(Hc)のバラツキが大きいため、好ましくない。 As for the magnetic properties of the magnetic particle powder according to the present invention, the coercive force (Hc) is preferably 95.5 to 397.9 kA / m, more preferably 119.4 to 318.3 kA / m, and the saturation magnetization value is 40. -70 Am < 2 > / kg is preferable, More preferably, it is 45-70 Am < 2 > / kg. Further, the powder SFD (Switching Field Distribution) is preferably 1.6 or less, and more preferably 1.5 or less. When the powder SFD exceeds 1.6, the coercive force (Hc) varies greatly, which is not preferable.

本発明に係る磁性粒子粉末は、必要により、Co化合物による被覆処理前あるいは被覆処理後の六方晶フェライト粒子粉末の粒子表面を、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれた1種又は2種以上の化合物(以下、「アルミニウムの水酸化物等」という。)で被覆しておいてもよい。アルミニウムの水酸化物等で被覆処理を行うことにより、磁気記録媒体の塗膜強度が向上する傾向にある。   If necessary, the magnetic particle powder according to the present invention may be formed by subjecting the surface of the hexagonal ferrite particle powder before or after the coating treatment with the Co compound to aluminum hydroxide, aluminum oxide, silicon hydroxide, and You may coat | cover with 1 type, or 2 or more types of compounds (henceforth "aluminum hydroxide etc.") chosen from the oxide of silicon. The coating strength of the magnetic recording medium tends to be improved by coating with aluminum hydroxide or the like.

次に、本発明に係る磁気記録媒体について述べる。   Next, the magnetic recording medium according to the present invention will be described.

本発明に係る磁気記録媒体は、本発明に係る磁性粒子粉末と結合剤樹脂とを含む磁気記録層が非磁性支持体上に形成されてなる。また、必要に応じて、非磁性支持体と磁気記録層との間に非磁性下地層を形成してもよく、更に、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成させてもよい。殊に、コンピューター記録用のバックアップテープの場合には、巻き乱れの防止や走行耐久性向上の点から、非磁性下地層やバックコート層を設けることが好ましい。   The magnetic recording medium according to the present invention is formed by forming a magnetic recording layer containing the magnetic particle powder according to the present invention and a binder resin on a nonmagnetic support. Further, if necessary, a nonmagnetic underlayer may be formed between the nonmagnetic support and the magnetic recording layer, and further, with respect to the magnetic recording layer formed on one surface of the nonmagnetic support, A back coat layer may be formed on the other surface of the nonmagnetic support. In particular, in the case of a backup tape for computer recording, it is preferable to provide a nonmagnetic underlayer or a backcoat layer from the viewpoint of preventing winding disturbance and improving running durability.

本発明における非磁性支持体としては、現在、磁気記録媒体に汎用されているポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリイミド、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリアミドイミド、ポリスルフォン、セルローストリアセテート、ポリベンゾオキサゾール等の合成樹脂フィルム、アルミニウム、ステンレス等金属の箔や板及び各種の紙を使用することができる。   As the nonmagnetic support in the present invention, polyesters such as polyethylene terephthalate and polyethylene naphthalate that are currently widely used in magnetic recording media, polyolefins such as polyethylene and polypropylene, polycarbonate, polyamide, polyamideimide, polyimide, aromatic Synthetic resin films such as polyamide, aromatic polyimide, aromatic polyamideimide, polysulfone, cellulose triacetate, and polybenzoxazole, metal foils and plates such as aluminum and stainless steel, and various papers can be used.

結合剤樹脂としては、磁気記録媒体の製造にあたって汎用されている熱可塑性樹脂、熱硬化性樹脂、電子線硬化型樹脂等を単独又は組み合わせて用いることができる。   As the binder resin, a thermoplastic resin, a thermosetting resin, an electron beam curable resin, etc. that are widely used in the production of magnetic recording media can be used alone or in combination.

本発明の磁気記録媒体において、非磁性支持体と磁気記録層との間に非磁性下地層を形成する場合、非磁性下地層中には非磁性粒子粉末と結合剤が含まれている。   In the magnetic recording medium of the present invention, when a nonmagnetic underlayer is formed between the nonmagnetic support and the magnetic recording layer, the nonmagnetic underlayer contains nonmagnetic particle powder and a binder.

非磁性下地層に用いられる非磁性粒子粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等を、単独又は組合せて用いることができる。好ましくはヘマタイト、ゲータイト、酸化チタンであり、より好ましくはヘマタイトである。   Nonmagnetic particle powders used for the nonmagnetic underlayer include alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, and barium sulfate. Can be used alone or in combination. Hematite, goethite and titanium oxide are preferred, and hematite is more preferred.

前記非磁性粒子粉末の粒子形状は、針状、紡錘状、米粒状、球状、粒状、多面体状、フレーク状、鱗片状及び板状等のいずれの形状であってもよい。粒子サイズは、好ましくは0.005〜0.30μmであり、より好ましくは0.010〜0.25μmである。また、必要により、粒子表面をアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれた1種又は2種以上の化合物で被覆してもよく、化合物で被覆しない場合に比べ、非磁性塗料中での分散性を改善することができる。   The particle shape of the non-magnetic particle powder may be any shape such as needle shape, spindle shape, rice grain shape, spherical shape, granular shape, polyhedron shape, flake shape, scale shape and plate shape. The particle size is preferably 0.005 to 0.30 μm, more preferably 0.010 to 0.25 μm. If necessary, the particle surface may be coated with one or more compounds selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. Compared with the case of not coating, dispersibility in the nonmagnetic paint can be improved.

結合剤樹脂としては、前記磁気記録層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the magnetic recording layer can be used.

本発明の磁気記録媒体において、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成する場合、バックコート層中には、結合剤樹脂と共に、バックコート層の表面電気抵抗値及び強度向上を目的として、帯電防止剤及び無機粒子粉末を含有させることが好ましい。   In the magnetic recording medium of the present invention, when a backcoat layer is formed on the other surface of the nonmagnetic support relative to the magnetic recording layer formed on one surface of the nonmagnetic support, It is preferable to contain an antistatic agent and inorganic particle powder together with the binder resin for the purpose of improving the surface electrical resistance value and strength of the backcoat layer.

無機粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等から選ばれる1種又は2種以上を用いることができる。粒子サイズは、好ましくは0.005〜1.0μmであり、より好ましくは0.010〜0.5μmである。   As the inorganic powder, one or more selected from alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, barium sulfate, etc. Can be used. The particle size is preferably 0.005 to 1.0 [mu] m, more preferably 0.010 to 0.5 [mu] m.

帯電防止剤としては、カーボンブラック、グラファイト、酸化スズ、酸化チタン−酸化スズ−酸化アンチモン等の導電性粉末及び界面活性剤等を用いることができる。帯電防止の他に、摩擦係数低減、磁気記録媒体の強度向上といった効果が期待できることから、帯電防止剤としては、カーボンブラックを用いることが好ましい。   As the antistatic agent, conductive powder such as carbon black, graphite, tin oxide, titanium oxide-tin oxide-antimony oxide, a surfactant, and the like can be used. In addition to antistatic properties, carbon black is preferably used as the antistatic agent since effects such as reduction of the friction coefficient and improvement of the strength of the magnetic recording medium can be expected.

結合剤樹脂としては、前記磁気記録層、及び非磁性下地層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the magnetic recording layer and the nonmagnetic underlayer can be used.

本発明における磁気記録層、非磁性下地層及びバックコート層中には、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、分散剤、帯電防止剤等を添加してもよい。   In the magnetic recording layer, nonmagnetic underlayer and backcoat layer in the present invention, lubricants, abrasives, dispersants, antistatic agents, etc., which are usually used in the production of magnetic recording media are added as necessary. May be.

本発明に係る磁気記録媒体は、保磁力値が95.5〜397.9kA/m、好ましくは119.4〜318.3kA/m、保磁力分布SFD(Switching Field Distribution)が、0.70以下、好ましくは0.68以下である。   The magnetic recording medium according to the present invention has a coercive force value of 95.5 to 397.9 kA / m, preferably 119.4 to 318.3 kA / m, and a coercive force distribution SFD (Switching Field Distribution) of 0.70 or less. , Preferably 0.68 or less.

次に、本発明に係る磁性粒子粉末の製造法について述べる。   Next, the manufacturing method of the magnetic particle powder according to the present invention will be described.

本発明に係る磁性粒子粉末は、被処理粒子粉末である六方晶フェライト粒子粉末の粒子表面をCo化合物によって被覆することにより得ることができる。   The magnetic particle powder according to the present invention can be obtained by coating the surface of the hexagonal ferrite particle powder, which is the particle powder to be treated, with a Co compound.

本発明における被処理粒子粉末である六方晶フェライト粒子粉末の製造法としては特に限定されないが、ガラス結晶化法は、溶融の際に通常、白金からなるるつぼを用いるため、得られる六方晶フェライト粒子粉末の白金族元素の含有量が10ppmを超えるので好ましくない。好ましくは、水熱合成法、共沈−焼成法等の湿式法である。   The method for producing the hexagonal ferrite particle powder that is the particle powder to be treated in the present invention is not particularly limited. However, since the glass crystallization method usually uses a crucible made of platinum at the time of melting, the obtained hexagonal ferrite particles Since the content of the platinum group element in the powder exceeds 10 ppm, it is not preferable. Preferred are wet methods such as a hydrothermal synthesis method and a coprecipitation-calcination method.

本発明に係る磁性粒子粉末は、六方晶フェライト粒子粉末を水に分散させて水分散スラリーとした後、Co化合物の水溶液を添加し、次いで、アルカリ水溶液添加後、20〜100℃の温度範囲にて30分〜6時間攪拌し、水洗・ろ過・乾燥を行うことにより得ることができる。   The magnetic particle powder according to the present invention is obtained by dispersing hexagonal ferrite particle powder in water to form a water-dispersed slurry, adding an aqueous solution of a Co compound, and then adding an aqueous alkali solution to a temperature range of 20 to 100 ° C. For 30 minutes to 6 hours, followed by washing with water, filtration and drying.

本発明におけるCo化合物としては、水酸化コバルトもしくは水溶性のCo化合物から生成するコバルトの水酸化物を用いることができ、水溶性のCo化合物としては、具体的には、塩化コバルト、硝酸コバルト、臭化コバルト、ヨウ化コバルト、酢酸コバルト及びこれらの水和物を用いることができる。   As the Co compound in the present invention, a cobalt hydroxide produced from cobalt hydroxide or a water-soluble Co compound can be used. Specific examples of the water-soluble Co compound include cobalt chloride, cobalt nitrate, Cobalt bromide, cobalt iodide, cobalt acetate and hydrates thereof can be used.

アルカリ水溶液としては、水酸化アルカリ水溶液を用いることができ、具体的には水酸化ナトリウム水溶液、水酸化カリウム水溶液又はアンモニア水を用いることができ、好ましくは水酸化ナトリウムである。アルカリ水溶液は、反応に関与しないフリーのアルカリが反応スラリー中に0.3mol/L以上存在する量を添加することが好ましく、0.5mol/L以上となる量を添加することがより好ましい。過剰のアルカリ水溶液を添加して反応溶液のフリーのアルカリの濃度を上げることにより、塩化コバルトから生成するコバルトの水酸化物が安定して存在するため、より均一な六方晶フェライト粒子粉末の粒子表面へのCo化合物による被覆処理を行うことができる。フリーのアルカリの量の上限は特にないが、コスト等の工業的な生産性を考慮すれば、好ましくは10mol/Lであり、より好ましくは9mol/Lである。   As the aqueous alkali solution, an aqueous alkali hydroxide solution can be used. Specifically, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution or aqueous ammonia can be used, and sodium hydroxide is preferred. The aqueous alkaline solution is preferably added in such an amount that free alkali not involved in the reaction is present in the reaction slurry in an amount of 0.3 mol / L or more, and more preferably in an amount of 0.5 mol / L or more. By adding an excess of alkaline aqueous solution to increase the concentration of free alkali in the reaction solution, there is stable presence of cobalt hydroxide generated from cobalt chloride. A coating treatment with a Co compound can be performed. The upper limit of the amount of free alkali is not particularly limited, but is preferably 10 mol / L, more preferably 9 mol / L in view of industrial productivity such as cost.

アルカリ水溶液添加後の反応は、20〜100℃の温度範囲で行うことが好ましく、より好ましくは30〜100℃である。また、反応時間は30分〜6時間の範囲で行うことが好ましく、より好ましくは1〜5時間である。   The reaction after addition of the aqueous alkali solution is preferably carried out in the temperature range of 20 to 100 ° C, more preferably 30 to 100 ° C. The reaction time is preferably 30 minutes to 6 hours, more preferably 1 to 5 hours.

次に、本発明における磁気記録媒体の製造法について述べる。   Next, a method for manufacturing a magnetic recording medium in the present invention will be described.

前記非磁性下地層、磁気記録層、及びバックコート層の形成にあたって用いる溶剤としては、磁気記録媒体に汎用されているアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びテトラヒドロフラン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール及びイソプロピルアルコール等のアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル及び酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル及びジオキサン等のグリコールエーテル類及びその混合物等を使用することができる。   Solvents used in forming the nonmagnetic underlayer, magnetic recording layer, and backcoat layer include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and tetrahydrofuran, toluene, xylene, and the like that are widely used in magnetic recording media. Aromatic hydrocarbons, alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol and isopropyl alcohol, esters such as methyl acetate, butyl acetate, isobutyl acetate and glycol acetate, glycol dimethyl ether, glycol monoethyl ether and dioxane Glycol ethers and mixtures thereof can be used.

非磁性下地層、磁気記録層、バックコート層は、各層を構成する成分及び溶剤を一般に使用される混練機及び分散機により混練・分散処理を行い、各塗料を作製する。該各塗料を用いて、非磁性支持体上の一面に非磁性下地層、磁気記録層の順に塗布、乾燥後、カレンダー処理を行う。その際の塗布方法としては、磁性層と非磁性層をほぼ同時に塗布するWet on Wet法でも、非磁性下地層を塗布・乾燥後、その上に磁気記録層を塗布するWet on Dry法のどちらでもよい。また、必要により、バックコート層を設ける場合には、非磁性下地層及び磁気記録層とは反対面の非磁性支持体上にバックコート層用塗料を塗布、乾燥後、カレンダー処理を行い、磁気記録媒体を得る。   The nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer are kneaded and dispersed with a kneader and a disperser that generally use components and solvents that constitute each layer, thereby preparing each paint. Using each of the coating materials, a nonmagnetic underlayer and a magnetic recording layer are applied in this order on one surface of the nonmagnetic support, dried, and then calendared. As a coating method at that time, either the Wet on Wet method in which the magnetic layer and the nonmagnetic layer are applied almost simultaneously, or the Wet on Dry method in which the nonmagnetic underlayer is applied and dried and then the magnetic recording layer is applied thereon. But you can. If necessary, if a backcoat layer is provided, a backcoat layer coating is applied on the nonmagnetic support opposite to the nonmagnetic underlayer and the magnetic recording layer, dried, calendered, and magnetically treated. A recording medium is obtained.

<作用>
本発明において最も重要な点は、本発明に係る磁性粒子粉末は、六方晶フェライト粒子粉末からなり、平均板面径が10〜30nmであり、該六方晶フェライト粒子粉末の粒子表面にCo化合物が存在するとともに、該六方晶フェライト粒子粉末の粒子表面及び粒子中に存在するCo量がCo換算で0.1〜2重量%であり、且つ、保磁力(Hc)が95.5kA/m以上であることにより、磁気記録媒体のノイズをより低減し、優れた磁気特性を有する磁気記録媒体を得ることができるという事実である。
<Action>
The most important point in the present invention is that the magnetic particle powder according to the present invention consists of hexagonal ferrite particle powder, the average plate surface diameter is 10 to 30 nm, and the Co compound is present on the particle surface of the hexagonal ferrite particle powder. And the amount of Co present in the surface of the hexagonal ferrite particles and in the particles is 0.1 to 2% by weight in terms of Co, and the coercive force (Hc) is 95.5 kA / m or more. The fact is that the noise of the magnetic recording medium can be further reduced and a magnetic recording medium having excellent magnetic properties can be obtained.

本発明に係る磁性粒子粉末を用いることにより、磁気記録媒体のノイズをより低減し、優れた磁気特性を有する磁気記録媒体を得ることができる理由について、本発明者は次のように考えている。Co化合物が粒子表面に存在することで磁気記録層を構成するビヒクル中への分散性が改善される理由は不明であるが、Coスピネルフェライトは一般に飽和磁化値(σs)は高いものの、保磁力(Hc)が低く、従来技術のように保磁力が95.5kA/m未満の六方晶フェライト粒子粉末に対しては保磁力を維持・向上効果が認められるが、本発明の目的とする95.5kA/m以上の高い保磁力を有する六方晶フェライト粒子粉末に対しては、粒子表面にCoスピネルフェライト被膜が形成されることにより、むしろ保磁力(Hc)を低下させることとなる。本発明においては、被処理粒子となる六方晶フェライト粒子粉末の粒子表面にCoスピネルフェライトを生成させることなくCo化合物による被覆層を形成することにより、六方晶フェライト粒子粉末の磁気特性を低下させることなく磁気記録層を構成するビヒクル中への分散性を改善できたものと考えている。   The present inventor considers the reason why the magnetic recording medium according to the present invention can be used to further reduce the noise of the magnetic recording medium and obtain a magnetic recording medium having excellent magnetic properties as follows. . The reason why the dispersibility in the vehicle constituting the magnetic recording layer is improved by the presence of the Co compound on the particle surface is unknown, but Co spinel ferrite generally has a high saturation magnetization value (σs), but has a coercive force. The hexagonal ferrite particle powder having a low (Hc) and a coercive force of less than 95.5 kA / m as in the prior art has an effect of maintaining and improving the coercive force. For the hexagonal ferrite particle powder having a high coercive force of 5 kA / m or more, the Co spinel ferrite film is formed on the particle surface, so that the coercive force (Hc) is rather lowered. In the present invention, the magnetic properties of the hexagonal ferrite particle powder are reduced by forming a coating layer of the Co compound without forming Co spinel ferrite on the surface of the hexagonal ferrite particle powder to be treated. It is considered that the dispersibility in the vehicle constituting the magnetic recording layer can be improved.

以下に、本発明における実施例を示し、本発明を具体的に説明する。   Examples of the present invention are shown below, and the present invention will be specifically described.

被処理粒子である六方晶フェライト粒子粉末及び磁性粒子粉末の平均板面径及び平均厚さは、透過型電子顕微鏡を用いて複数の視野において粒子の写真を撮影し、該写真を用いて粒子360個以上について板面径、厚さをそれぞれ測定し、その平均値で粒子の平均板面径及び平均厚さを示した。なお、平均板面径及び平均厚さを求める際の粒子の選定基準としては、粒子同士が重なっており、境界がはっきりしていないものは測定を行わないものとした。   The average plate surface diameter and average thickness of the hexagonal ferrite particle powder and the magnetic particle powder, which are the particles to be processed, are obtained by taking a photograph of the particles in a plurality of fields using a transmission electron microscope, and using the photographs 360 The plate surface diameter and thickness of each of the particles were measured, and the average plate surface diameter and average thickness of the particles were shown as average values. In addition, as selection criteria of the particle | grains at the time of calculating | requiring an average board surface diameter and average thickness, the particle | grains have overlapped and the thing where the boundary is not clear shall not be measured.

板状比は、平均板面径と平均厚さとの比で示した。   The plate ratio was shown as the ratio between the average plate surface diameter and the average thickness.

比表面積は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。   The specific surface area was shown by the value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

被処理粒子である六方晶フェライト粒子粉末及び磁性粒子粉末に含有される各種元素の含有量は、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。   The content of various elements contained in the hexagonal ferrite particle powder and magnetic particle powder, which are the particles to be processed, is measured using a “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.) according to JIS K0119 “ The measurement was performed according to the "General X-ray fluorescence analysis rules".

磁性粒子粉末の粒子表面に存在するCo化合物からなる被覆層の確認は、下記の方法により行った。
即ち、試料0.2gと塩酸10mlとを100mlのフッ素樹脂製ビーカーへ入れて攪拌し、150℃で20分保持して磁性粒子粉末の粒子表面に被覆されているCo化合物層に相当する部分を酸溶解した(酸溶解液1)。得られた酸溶解液1を0.1μmのメンブランフィルターを用いて吸引濾過を行い、得られた濾液中のCo量(ppm)を「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定した。
一方、前述と同様に、試料0.2gと王水10mlとを100mlのフッ素樹脂製ビーカーへ入れて攪拌し、240℃で20分保持して磁性粒子粉末が完全に溶解するまで攪拌した(酸溶解液2)。前述と同様に、酸溶解液2を0.1μmのメンブランフィルターを用いて吸引濾過を行い、得られた濾液中のCo量(ppm)を「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定した。酸溶解液1と酸溶解液2に含有されるCo量の違いから、粒子表面にCo化合物からなる被覆層が形成されていることを確認した。
The coating layer made of a Co compound present on the particle surface of the magnetic particle powder was confirmed by the following method.
That is, 0.2 g of a sample and 10 ml of hydrochloric acid were placed in a 100 ml fluororesin beaker and stirred, and held at 150 ° C. for 20 minutes to obtain a portion corresponding to the Co compound layer coated on the particle surface of the magnetic particle powder. The acid was dissolved (acid solution 1). The obtained acid-dissolved solution 1 was subjected to suction filtration using a 0.1 μm membrane filter, and the amount of Co (ppm) in the obtained filtrate was determined as “Inductively coupled plasma emission spectrometer SPS4000” (Seiko Electronics Co., Ltd.). ).
On the other hand, in the same manner as described above, 0.2 g of the sample and 10 ml of aqua regia were placed in a 100 ml fluororesin beaker and stirred, and kept at 240 ° C. for 20 minutes until the magnetic particle powder was completely dissolved (acid). Solution 2). In the same manner as described above, the acid solution 2 was subjected to suction filtration using a 0.1 μm membrane filter, and the amount of Co (ppm) in the obtained filtrate was determined as “inductively coupled plasma emission spectrometer SPS4000” (Seiko Electronics Co., Ltd.). Measured using a product manufactured by Co., Ltd. From the difference in the amount of Co contained in the acid solution 1 and the acid solution 2, it was confirmed that a coating layer made of a Co compound was formed on the particle surface.

磁性粒子粉末のCoスピネルフェライト生成の有無の確認は、X線回折装置「RINT2500」(株式会社リガク製)を用いて、CuのKα線を線源としてCoスピネルフェライトの面指数(3,1,1)面のピークの有無によって判定した。   The presence or absence of Co spinel ferrite formation in the magnetic particle powder was confirmed by using an X-ray diffractometer “RINT2500” (manufactured by Rigaku Corporation) and using a Cu Kα ray as a radiation source and a surface index (3, 1, 1) Judgment was made based on the presence or absence of a surface peak.

六方晶フェライト粒子粉末に含有される白金族元素の含有量は、試料0.2gと王水10mlとを100mlのフッ素樹脂製ビーカーへ入れて攪拌し、240℃で20分保持して溶解させ、この溶液を「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定した。   The content of the platinum group element contained in the hexagonal ferrite particle powder is 0.2 g of sample and 10 ml of aqua regia placed in a 100 ml fluororesin beaker and stirred, and held at 240 ° C. for 20 minutes to dissolve, This solution was measured using an “inductively coupled plasma optical emission spectrometer SPS4000” (manufactured by Seiko Denshi Kogyo Co., Ltd.).

六方晶フェライト粒子粉末及び磁気テープの磁気特性は、「振動試料型磁力計VSM SSM−5−15」(東英工業株式会社製)を用いて外部磁場1193.7kA/mの条件で測定した。また、粉体SFD及び磁気テープのSFDは、印加磁場が0〜397.9kA/mの範囲ではスイープ速度を79.6(kA/m)/分とし、397.9〜1,193.7kA/mの範囲ではスイープ速度を397.9(kA/m)/分として測定した。   The magnetic properties of the hexagonal ferrite particle powder and the magnetic tape were measured using a “vibrating sample magnetometer VSM SSM-5-15” (manufactured by Toei Kogyo Co., Ltd.) under an external magnetic field of 1193.7 kA / m. The powder SFD and the SFD of the magnetic tape have a sweep speed of 79.6 (kA / m) / min when the applied magnetic field is in the range of 0 to 397.9 kA / m, and is 397.9 to 1,193.7 kA / min. In the range of m, the sweep rate was measured as 397.9 (kA / m) / min.

磁気テープの塗膜表面の光沢度は、「グロスメーター UGV−5D」(スガ試験機株式会社製)を用いて入射角45°で測定した値であり、標準板光沢を86.3%とした時の値を%で示したものである。   The glossiness of the coating film surface of the magnetic tape is a value measured at an incident angle of 45 ° using “Gloss meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.), and the standard plate gloss is 86.3%. The hour value is shown in%.

表面粗度Raは、「ZYGO NewView600S」(ZYGO株式会社製)を用いて塗膜の中心線平均粗さを測定した。   Surface roughness Ra measured the centerline average roughness of the coating film using "ZYGO NewView600S" (made by ZYGO Corporation).

磁気記録媒体を構成する非磁性支持体及び磁気記録層の各層の厚みは、デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて測定した。   The thickness of each layer of the nonmagnetic support and the magnetic recording layer constituting the magnetic recording medium was measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.).

磁気テープの電磁変換特性は、ドラムテスターを用い、記録ヘッドにはMIGヘッドを、再生用ヘッドにはMRヘッドを用いて測定を行った。ヘッドと磁気テープとの相対速度は2.5m/secとし、記録周波数10MHzにおける再生信号出力(C)及び記録周波数9MHzにおける出力をノイズ信号出力(N)を、それぞれ後出比較例2−1を0dB(基準テープ)として、基準テープに対する相対値として求めた。またC/Nはこれら再生信号出力(C)とノイズ信号出力(N)を用いて示した。   The electromagnetic conversion characteristics of the magnetic tape were measured using a drum tester, a MIG head as a recording head, and an MR head as a reproducing head. The relative speed between the head and the magnetic tape is 2.5 m / sec. The reproduction signal output (C) at a recording frequency of 10 MHz and the output at a recording frequency of 9 MHz are noise signal outputs (N). The relative value with respect to the reference tape was determined as 0 dB (reference tape). C / N is shown using these reproduction signal output (C) and noise signal output (N).

磁気テープの劣化は、磁気テープを温度60℃、相対湿度90%の環境下で14日間保存し、保存前と保存後の磁気テープそれぞれについて、前述の電磁変換特性を測定したときと同様の条件で得られるエンベロープより、単位時間当たりのドロップアウトの個数をカウントし、保存前に対する保存後のドロップアウトの増加量で示した。   The deterioration of the magnetic tape is the same condition as when the magnetic tape was stored for 14 days in an environment of a temperature of 60 ° C. and a relative humidity of 90%, and the electromagnetic conversion characteristics were measured for each of the magnetic tape before and after storage. From the envelope obtained in step 1, the number of dropouts per unit time was counted and indicated by the amount of increase in dropout after storage compared to before storage.

六方晶フェライト粒子1〜5:
被処理粒子粉末として表1に示す特性を有する六方晶フェライト粒子粉末を用意した。
Hexagonal ferrite particles 1-5:
Hexagonal ferrite particle powder having the characteristics shown in Table 1 was prepared as the particle powder to be treated.

Figure 2012119030
Figure 2012119030

<実施例1−1:Co化合物被覆された磁性粒子粉末の製造>
六方晶フェライト粒子粉末(被処理粒子1)(粒子形状:板状、平均板面径:17.6μm、板状比:3.0、BET比表面積値:86.4m/g、保磁力(Hc):168.8kA/m、飽和磁化値(σs):47.0Am/kg、粉体SFD:0.98、白金族の含有量:1ppm)0.5モルを純水に分散させてラインミル、ビーズミルを通して8Lの水分散スラリーを得た。次いで、六方晶フェライト粒子1モルに対してCo換算で0.0475モルの塩化コバルト水溶液を添加し、10分間攪拌後、18.55mol/LのNaOH水溶液1.08L(反応に関与しないフリーのアルカリは1.99mol/L)を攪拌させながら前記混合溶液中に添加して混合溶液の全量を約10Lとし、30分間攪拌後、100℃まで昇温し、3時間反応を行った。
<Example 1-1: Production of Co compound-coated magnetic particle powder>
Hexagonal ferrite particle powder (treated particle 1) (particle shape: plate shape, average plate surface diameter: 17.6 μm, plate shape ratio: 3.0, BET specific surface area value: 86.4 m 2 / g, coercive force ( Hc): 168.8 kA / m, saturation magnetization value (σs): 47.0 Am 2 / kg, powder SFD: 0.98, platinum group content: 1 ppm) 0.5 mol was dispersed in pure water. An 8 L aqueous dispersion slurry was obtained through a line mill and a bead mill. Next, 0.0475 mol of cobalt chloride aqueous solution in terms of Co was added to 1 mol of hexagonal ferrite particles, and after stirring for 10 minutes, 1.08 L of 18.55 mol / L NaOH aqueous solution (free alkali not involved in the reaction) Was added to the above mixed solution while stirring to make the total amount of the mixed solution about 10 L, stirred for 30 minutes, heated to 100 ° C., and reacted for 3 hours.

次いで、得られた反応生成物をpH値が12以下になるまで水洗後、酢酸を用いてpH9に調整後、更に水洗・ろ過・乾燥・粉砕して、実施例1−1の磁性粒子粉末を得た。   Next, the obtained reaction product was washed with water until the pH value became 12 or less, adjusted to pH 9 with acetic acid, further washed with water, filtered, dried and pulverized to obtain the magnetic particle powder of Example 1-1. Obtained.

得られた磁性粒子粉末は板状であり、平均板面径は17.6nm、平均厚みは5.8nm、板状比は3.1、BET比表面積値は86.2m/g、Coの含有量は0.50重量%であり、保磁力(Hc)は165.0kA/m、飽和磁化値(σs)は48.1Am/kg、粉体SFDは0.99であった。なお、磁性粒子粉末のCo被覆層のみを溶解した場合のCo量は71,800ppmであり、磁性粒子粉末全量を溶解した場合のCo量は5,031ppmであったことから、Co元素を含む化合物が磁性粒子表面に局在していることが推定できる。また、X線回折により、Coスピネルフェライトの存在を示す(3,1,1)面のピークは認められなかった。 The obtained magnetic particle powder has a plate shape, an average plate surface diameter of 17.6 nm, an average thickness of 5.8 nm, a plate ratio of 3.1, a BET specific surface area value of 86.2 m 2 / g, Co The content was 0.50% by weight, the coercive force (Hc) was 165.0 kA / m, the saturation magnetization (σs) was 48.1 Am 2 / kg, and the powder SFD was 0.99. The amount of Co when only the Co coating layer of the magnetic particle powder was dissolved was 71,800 ppm, and the amount of Co when the total amount of the magnetic particle powder was dissolved was 5,031 ppm. Can be estimated to be localized on the surface of the magnetic particles. Moreover, the peak of the (3, 1, 1) plane which shows presence of Co spinel ferrite was not recognized by X-ray diffraction.

<実施例2−1:磁気記録媒体の製造>
非磁性下地層形成用の非磁性塗料組成
非磁性下地層用ヘマタイト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 11.8重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 11.8重量部、
シクロヘキサノン 78.3重量部、
メチルエチルケトン 195.8重量部、
トルエン 117.5重量部、
硬化剤(ポリイソシアネート) 3.0重量部、
潤滑剤(ブチルステアレート) 1.0重量部。
<Example 2-1: Production of magnetic recording medium>
Nonmagnetic coating composition for nonmagnetic underlayer formation 100.0 parts by weight of hematite particle powder for nonmagnetic underlayer,
11.8 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
11.8 parts by weight of a polyurethane resin having a sodium sulfonate group,
78.3 parts by weight of cyclohexanone,
195.8 parts by weight of methyl ethyl ketone,
117.5 parts by weight of toluene,
Curing agent (polyisocyanate) 3.0 parts by weight,
Lubricant (butyl stearate) 1.0 part by weight.

非磁性下地層用ヘマタイト粒子粉末と結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が72wt%となるよう混合し、自動乳鉢を用いて30分間混練して混練物を得た。   A non-magnetic underlayer hematite particle powder, a binder resin solution (vinyl chloride copolymer resin having potassium sulfonate group 30 wt% and cyclohexanone 70 wt%) and cyclohexanone are mixed so that the solid content is 72 wt%; A kneaded product was obtained by kneading for 30 minutes using an automatic mortar.

次いで、上記非磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、非磁性下地層用非磁性塗料を調整した。   Next, the kneaded product and an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) so that the nonmagnetic coating composition is obtained. , Cyclohexanone, methyl ethyl ketone and 95 g of toluene 1.5 mmφ glass beads were added to a 140 ml glass bottle and mixed and dispersed for 6 hours with a paint shaker to obtain a nonmagnetic coating composition. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a nonmagnetic paint for a nonmagnetic underlayer.

上記非磁性下地層用非磁性塗料を厚さ4.5μmの芳香族ポリアミドフィルム上に塗布し、次いで、乾燥させることにより非磁性下地層を形成した。   The nonmagnetic coating for the nonmagnetic underlayer was applied onto an aromatic polyamide film having a thickness of 4.5 μm, and then dried to form a nonmagnetic underlayer.

磁気記録層形成用の磁性塗料組成
磁性粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 12.5重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 7.5重量部、
研磨剤(AKP−50) 5.0重量部、
カーボンブラック 2.0重量部、
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部、
硬化剤(ポリイソシアネート) 5.0重量部、
シクロヘキサノン 170.0重量部、
メチルエチルケトン 170.0重量部。
Magnetic coating composition for forming magnetic recording layer 100.0 parts by weight of magnetic particle powder,
12.5 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
7.5 parts by weight of a polyurethane resin having a sodium sulfonate group,
Abrasive (AKP-50) 5.0 parts by weight,
2.0 parts by weight of carbon black,
Lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight,
Curing agent (polyisocyanate) 5.0 parts by weight,
170.0 parts by weight of cyclohexanone,
170.0 parts by weight of methyl ethyl ketone.

磁性粒子粉末と研磨剤、カーボンブラック、結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が76wt%となるよう混合し、自動乳鉢を用いて40分間混練して混練物を得た。   Magnetic particle powder, abrasive, carbon black, binder resin solution (vinyl chloride copolymer resin having potassium sulfonate group 30% by weight and cyclohexanone 70% by weight) and cyclohexanone are mixed so that the solid content is 76 wt%. A kneaded product was obtained by kneading for 40 minutes using an automatic mortar.

次いで、上記磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、磁気記録層用磁性塗料を調整した。   Next, the kneaded product and an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) so that the magnetic coating composition is obtained, A magnetic coating composition was obtained by adding to a 140 ml glass bottle together with 95 g of cyclohexanone, methyl ethyl ketone and toluene 1.5 mmφ glass beads, and mixing and dispersing for 6 hours with a paint shaker. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a magnetic coating material for a magnetic recording layer.

上記磁気記録層用塗料を、乾燥後の厚さが1.5μmになるよう前記非磁性下地層の上に塗布した後、磁場中において配向・乾燥した。その後、60℃で24時間硬化反応を行い、12.7mm幅にスリットして磁気記録媒体を得た。   The magnetic recording layer coating composition was applied on the nonmagnetic underlayer so that the thickness after drying was 1.5 μm, and then oriented and dried in a magnetic field. Thereafter, a curing reaction was performed at 60 ° C. for 24 hours, and a magnetic recording medium was obtained by slitting to a width of 12.7 mm.

得られた磁気記録媒体は、保磁力値Hcが172.3kA/m、Br/Bmが0.82、保磁力分布SFDが0.66、光沢度が177%、表面粗度Raが9.8nmであり、再生出力(C)が+0.7dB、C/Nが2.1dB、ドロップアウトの増加量が2個/msecであった。   The obtained magnetic recording medium had a coercive force value Hc of 172.3 kA / m, a Br / Bm of 0.82, a coercive force distribution SFD of 0.66, a glossiness of 177%, and a surface roughness Ra of 9.8 nm. The reproduction output (C) was +0.7 dB, C / N was 2.1 dB, and the amount of increase in dropout was 2 / msec.

前記実施例1−1及び実施例2−1に従って磁性粒子粉末及び磁気記録媒体を作製した。各製造条件及び得られた磁性粒子粉末及び磁気記録媒体の諸特性を示す。   Magnetic particle powder and a magnetic recording medium were prepared according to Example 1-1 and Example 2-1. Various characteristics of each manufacturing condition and the obtained magnetic particle powder and magnetic recording medium are shown.

実施例1−2〜1−3及び比較例1−1〜1−4
Co化合物による被覆工程における六方晶フェライト粒子の種類、Co化合物の種類、添加量、水酸化アルカリの種類、添加量及び反応温度、反応時間を変化させた以外は、前記実施例1−1と同様にしてCo化合物により被覆された磁性粒子粉末を得た。
Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-4
The same as Example 1-1 except that the type of hexagonal ferrite particles, the type of Co compound, the amount added, the type of alkali hydroxide, the amount added, the reaction temperature, and the reaction time were changed in the coating step with the Co compound. Thus, magnetic particle powder coated with a Co compound was obtained.

なお、実施例1−2〜1−3及び比較例1−1〜1−4のいずれの試料においても、X線回折により、Coスピネルフェライトの存在を示す(3,1,1)面のピークは認められなかった。   In any sample of Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-4, the peak of the (3, 1, 1) plane indicating the presence of Co spinel ferrite by X-ray diffraction. Was not recognized.

このときの製造条件を表2に、得られた磁性粒子粉末の諸特性を表3に示した。   The production conditions at this time are shown in Table 2, and various characteristics of the obtained magnetic particle powder are shown in Table 3.

実施例1−4:
実施例1−1の磁性粒子粉末200gと水1500mlとを用いて分散スラリーを調整し、水酸化ナトリウム水溶液を添加してpH値を9とした後、該スラリーに水を加えスラリー濃度を98g/lとした。このスラリー150Lを加熱して60℃とし、このスラリー中に1.0mol/lのアルミン酸ナトリウム溶液54.44ml(六方晶フェライト粒子粉末に対してAl換算で1.2重量%に相当する)を加え、30分間保持した後、酢酸を用いてpH値を9に調整した。この状態で30分間保持した後、濾過・水洗・乾燥・粉砕し、粒子表面がアルミニウムの水酸化物等により被覆されている実施例1−5の磁性粒子粉末を得た。得られた粒子表面がアルミニウムの水酸化物等により被覆されている磁性粒子粉末の諸特性を表3に示す。
Example 1-4:
A dispersion slurry was prepared using 200 g of the magnetic particle powder of Example 1-1 and 1500 ml of water, and after adding a sodium hydroxide aqueous solution to adjust the pH value to 9, water was added to the slurry to obtain a slurry concentration of 98 g / l. 150 L of this slurry was heated to 60 ° C., and 54.44 ml of 1.0 mol / l sodium aluminate solution (corresponding to 1.2% by weight in terms of Al with respect to hexagonal ferrite particle powder) was added to this slurry. In addition, after maintaining for 30 minutes, the pH value was adjusted to 9 using acetic acid. After maintaining in this state for 30 minutes, the magnetic particle powder of Example 1-5 in which the particle surface was coated with aluminum hydroxide or the like was obtained by filtration, washing with water, drying and pulverization. Table 3 shows various characteristics of the magnetic particle powder in which the obtained particle surface is coated with aluminum hydroxide or the like.

比較例1−5:特開昭59−102823号公報の実施例1の追試実験
六方晶フェライト粒子粉末(被処理粒子1)200gを0.4%の塩化コバルト水溶液(六方晶フェライト粒子粉末に対してCo換算で0.5重量%)1000mLに分散させ、10分間攪拌処理を行った後、得られた反応性生物を水洗・ろ過・乾燥・粉砕して、比較例1−4の磁性粒子粉末を得た。得られた磁性粒子粉末の諸特性を表3に示す。
Comparative Example 1-5: Additional Test of Example 1 of JP-A-59-102823 200 g of hexagonal ferrite particle powder (treated particle 1) was added to 0.4% cobalt chloride aqueous solution (based on hexagonal ferrite particle powder). After dispersing in 1000 mL and stirring for 10 minutes, the obtained reactive organisms were washed with water, filtered, dried and pulverized, and the magnetic particle powder of Comparative Example 1-4 Got. Table 3 shows various characteristics of the obtained magnetic particle powder.

比較例1−6: 特開平8−191009号公報の実施例3の追試実験
六方晶フェライト粒子粉末(被処理粒子1)0.1モルを加えた水に、Coスピネルフェライト(化学式Co1+x Fe2−x においてx=0.026としたもので表される組成を有する)0.1モルに相当するCoとFeとを含むCoClとFeClの水溶液をさらに加え、撹拌混合した。得られた混合液に水酸化ナトリウム水溶液を混合し、pH13のもとで、六方晶フェライト粒子粉末上にスピネルフェライト成分を共沈させた。その後チッソバブリングを施しながら、このスラリーの温度を約90℃まで昇温した後、チッソバブリングを酸素バブリングに切り替えて4時間反応させた。その後、得られたこのスラリーを水洗いしてアルカリを除去し、次いで乾燥させることにより磁性粒子粉末を得た。得られた磁性粒子粉末の諸特性を表3に示す。
Comparative Example 1-6: Additional Test of Example 3 of JP-A-8-191090 Hexagonal Ferrite Particle Powder (Processed Particle 1) 0.1 mol of water and Co spinel ferrite (chemical formula Co 1 + x Fe 2 -x in O 4 having a composition represented by those with x = 0.026) further adding an aqueous solution of CoCl 2 and FeCl 2 containing Co and Fe, which corresponds to 0.1 mole, it was mixed with stirring. A sodium hydroxide aqueous solution was mixed with the obtained mixed solution, and a spinel ferrite component was coprecipitated on the hexagonal ferrite particle powder at pH 13. Thereafter, the temperature of the slurry was raised to about 90 ° C. while performing nitrogen bubbling, and then the nitrogen bubble bubbling was switched to oxygen bubbling to react for 4 hours. Thereafter, the obtained slurry was washed with water to remove alkali, and then dried to obtain a magnetic particle powder. Table 3 shows various characteristics of the obtained magnetic particle powder.

Figure 2012119030
Figure 2012119030

Figure 2012119030
Figure 2012119030

<磁気記録媒体の製造>
実施例2−2〜2−4、比較例2−1〜2−6:
磁性粒子粉末の種類を種々変化させた以外は、前記実施例2−1の磁気記録媒体の作製方法に従って磁気テープを製造した。
<Manufacture of magnetic recording media>
Examples 2-2 to 2-4, comparative examples 2-1 to 2-6:
A magnetic tape was manufactured according to the method for manufacturing a magnetic recording medium of Example 2-1 except that the type of magnetic particle powder was changed variously.

得られた磁気テープの諸特性を表4に示す。   Table 4 shows various properties of the obtained magnetic tape.

Figure 2012119030
Figure 2012119030

上記実施例より、本発明によって得られた磁性粒子粉末は、平均板面径が10〜30nmであり、六方晶フェライト粒子粉末の粒子表面にCo化合物が存在することにより、磁気特性が低下することなく分散性を改善することができるため、これらを用いて得られた磁気記録媒体は、優れた磁気特性を有するとともに、ノイズがより低減されていることがわかる。   From the above examples, the magnetic particle powder obtained according to the present invention has an average plate surface diameter of 10 to 30 nm, and the magnetic properties are reduced due to the presence of the Co compound on the particle surface of the hexagonal ferrite particle powder. Since the dispersibility can be improved, the magnetic recording medium obtained using these has excellent magnetic properties and noise is further reduced.

本発明に係る磁性粒子粉末は、平均板面径が10〜30nmであり、六方晶フェライト粒子粉末の粒子表面にCo化合物が存在することにより、磁気記録媒体のノイズをより低減し、優れた磁気特性を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体の磁性粒子粉末として好適である。   The magnetic particle powder according to the present invention has an average plate surface diameter of 10 to 30 nm, and the presence of a Co compound on the particle surface of the hexagonal ferrite particle powder further reduces the noise of the magnetic recording medium, and exhibits excellent magnetic properties. Since a magnetic recording medium having characteristics can be obtained, it is suitable as a magnetic particle powder for a high-density magnetic recording medium.

本発明に係る磁気記録媒体は、本発明に係る上記磁性粒子粉末を用いることにより、磁気記録媒体のノイズをより低減し、優れた磁気特性を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体として好適である。
Since the magnetic recording medium according to the present invention uses the magnetic particle powder according to the present invention, the noise of the magnetic recording medium can be further reduced and a magnetic recording medium having excellent magnetic properties can be obtained. It is suitable as a magnetic recording medium.

Claims (3)

平均板面径が10〜30nmであり、保磁力(Hc)が95.5kA/m以上である六方晶フェライト粒子粉末からなり、該六方晶フェライト粒子粉末の粒子表面にCo化合物が存在するとともに、該六方晶フェライト粒子粉末の粒子表面及び粒子中に存在するCo量がCo換算で0.1〜2重量%であり、且つ、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下であることを特徴とする磁性粒子粉末。 The hexagonal ferrite particle powder has an average plate surface diameter of 10 to 30 nm and a coercive force (Hc) of 95.5 kA / m or more, and a Co compound is present on the particle surface of the hexagonal ferrite particle powder. The amount of Co present in the particle surface and in the particles of the hexagonal ferrite particle powder is 0.1 to 2% by weight in terms of Co, and a platinum group element (ruthenium, rhodium contained in the hexagonal ferrite particle powder) , Palladium, osmium, iridium and platinum), and the total amount of each element is 10 ppm or less. 粉体の保磁力分布(SFD)が1.6以下である請求項1記載の磁性粒子粉末。 The magnetic particle powder according to claim 1, wherein the coercive force distribution (SFD) of the powder is 1.6 or less. 非磁性支持体上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記磁性粒子粉末として請求項1又は請求項2のいずれかに記載の磁性粒子粉末を用いることを特徴とする磁気記録媒体。 3. The magnetic particle powder according to claim 1, wherein the magnetic particle powder is a magnetic recording medium comprising a magnetic recording layer comprising a magnetic particle powder and a binder resin formed on a nonmagnetic support. A magnetic recording medium characterized by using.
JP2010267543A 2010-11-30 2010-11-30 Magnetic particle powder and magnetic recording medium Abandoned JP2012119030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267543A JP2012119030A (en) 2010-11-30 2010-11-30 Magnetic particle powder and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267543A JP2012119030A (en) 2010-11-30 2010-11-30 Magnetic particle powder and magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2012119030A true JP2012119030A (en) 2012-06-21

Family

ID=46501681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267543A Abandoned JP2012119030A (en) 2010-11-30 2010-11-30 Magnetic particle powder and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2012119030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139451A (en) * 2015-01-22 2016-08-04 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101582A (en) * 2003-08-28 2005-04-14 Dowa Mining Co Ltd Magnetic powder and its production method
JP2007193917A (en) * 2006-01-20 2007-08-02 Toda Kogyo Corp Compound nonmagnetic particle powder for nonmagnetic under layer of magnetic recording medium, nonmagnetic coating, and magnetic recording medium
JP2009099240A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Method for manufacturing magnetic recording medium, and magnetic recording medium
JP2010080608A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium, and method of manufacturing the same
JP2010254957A (en) * 2009-03-30 2010-11-11 Fujifilm Corp Lubricant composition, lubricating film for metal surface, friction reducer for metal surface, magnetic recording medium, and novel polyether compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101582A (en) * 2003-08-28 2005-04-14 Dowa Mining Co Ltd Magnetic powder and its production method
JP2007193917A (en) * 2006-01-20 2007-08-02 Toda Kogyo Corp Compound nonmagnetic particle powder for nonmagnetic under layer of magnetic recording medium, nonmagnetic coating, and magnetic recording medium
JP2009099240A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Method for manufacturing magnetic recording medium, and magnetic recording medium
JP2010080608A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium, and method of manufacturing the same
JP2010254957A (en) * 2009-03-30 2010-11-11 Fujifilm Corp Lubricant composition, lubricating film for metal surface, friction reducer for metal surface, magnetic recording medium, and novel polyether compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139451A (en) * 2015-01-22 2016-08-04 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording medium

Similar Documents

Publication Publication Date Title
JP5403278B2 (en) Hexagonal ferrite particle powder and magnetic recording medium
JP2019172553A (en) PARTICLE OF β-IRON OXYHYDROXIDE COMPOUND AND MANUFACTURING METHOD THEREFOR, PARTICLE OF ε-IRON OXIDE COMPOUND AND MANUFACTURING METHOD THEREFOR, AND MANUFACTURING METHOD OF MAGNETIC RECORDING MEDIUM
JP5589348B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
JP5454037B2 (en) Method for producing hexagonal ferrite particle powder and magnetic recording medium
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5439861B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP5311074B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP2012119030A (en) Magnetic particle powder and magnetic recording medium
JP5446527B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5446478B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5754091B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP6164396B2 (en) Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5305037B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5316522B2 (en) Magnetic particle powder
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP5625364B2 (en) Method for producing hexagonal ferrite particle powder, hexagonal ferrite particle powder, and magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP2011227975A (en) Magnetic recording medium
JP2011018423A (en) Hexagonal ferrite particle powder for magnetic recording medium
JP3661733B2 (en) Magnetic recording medium
JP2011129172A (en) Iron nitride-based magnetic powder and magnetic recording medium using the same
JP3654406B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20140818