JP6103172B2 - Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium - Google Patents

Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium Download PDF

Info

Publication number
JP6103172B2
JP6103172B2 JP2012082445A JP2012082445A JP6103172B2 JP 6103172 B2 JP6103172 B2 JP 6103172B2 JP 2012082445 A JP2012082445 A JP 2012082445A JP 2012082445 A JP2012082445 A JP 2012082445A JP 6103172 B2 JP6103172 B2 JP 6103172B2
Authority
JP
Japan
Prior art keywords
nonmagnetic
particle powder
magnetic recording
recording medium
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012082445A
Other languages
Japanese (ja)
Other versions
JP2013211085A (en
Inventor
石谷 誠治
誠治 石谷
弘文 西川
弘文 西川
森井 弘子
弘子 森井
林 一之
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2012082445A priority Critical patent/JP6103172B2/en
Publication of JP2013211085A publication Critical patent/JP2013211085A/en
Application granted granted Critical
Publication of JP6103172B2 publication Critical patent/JP6103172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

本発明は、非磁性下地層用塗料における分散性に優れると共に非磁性下地層中における充填性に優れた非磁性下地層用非磁性粒子粉末、並びに、該非磁性下地層用非磁性粒子粉末を用いて得られる表面平滑性及び塗膜強度に優れた磁気記録媒体に関する。   The present invention uses a nonmagnetic particle powder for a nonmagnetic underlayer excellent in dispersibility in a coating for a nonmagnetic underlayer and excellent in filling property in the nonmagnetic underlayer, and the nonmagnetic particle powder for the nonmagnetic underlayer It is related with the magnetic recording medium excellent in the surface smoothness and coating-film strength obtained by this.

磁気記録技術は、オーディオ用、ビデオ用、コンピューター用等をはじめとしてさまざまな分野で幅広く用いられている。近年、機器の小型軽量化、記録の長時間化及び記録容量の増大等が求められており、記録媒体に対しては、記録密度のより一層の向上が望まれている。   Magnetic recording technology is widely used in various fields including audio, video, and computer. In recent years, there has been a demand for smaller and lighter devices, longer recording time, increased recording capacity, and the like, and further improvement in recording density is desired for recording media.

従来の磁気記録媒体に対してより高密度記録を行うためには、高いC/N比が必要であり、ノイズ(N)が低く、再生出力(C)が高いことが求められている。近年では、これまで用いられていた誘導型磁気ヘッドに代わり、磁気抵抗型ヘッド(MRヘッド)や巨大磁気抵抗型ヘッド(GMRヘッド)等の高感度ヘッドが開発されており、これらは誘導型磁気ヘッドに比べて再生出力が得られやすいことから、高いC/N比を得るためには、出力を上げるよりもノイズを低減する方が重要となってきている。   In order to perform high-density recording on a conventional magnetic recording medium, a high C / N ratio is required, noise (N) is low, and reproduction output (C) is required to be high. In recent years, high-sensitivity heads such as magnetoresistive heads (MR heads) and giant magnetoresistive heads (GMR heads) have been developed in place of the inductive magnetic heads used so far. Since it is easy to obtain a reproduction output as compared with the head, in order to obtain a high C / N ratio, it is more important to reduce the noise than to increase the output.

磁気記録媒体のノイズは、粒子性ノイズと磁気記録媒体の表面性に起因して発生する表面性ノイズに大別される。粒子性ノイズの場合、粒子サイズの影響が大きく、微粒子であるほどノイズ低減に有利であることから、磁気記録媒体に用いる磁性粒子粉末の粒子サイズはできるだけ小さいことが必要となる。   The noise of the magnetic recording medium is roughly classified into particulate noise and surface noise generated due to the surface property of the magnetic recording medium. In the case of particulate noise, the influence of the particle size is large, and the finer the particle, the better the noise reduction. Therefore, the particle size of the magnetic particle powder used for the magnetic recording medium needs to be as small as possible.

しかしながら、磁性粒子粉末の微粒子化は、磁気記録層の薄層化を伴うものであり、磁気記録層が薄層化することによって、磁気記録層の表面平滑化が困難になること及び塗膜強度の低下が問題となるため、上記磁気記録層の薄層化に対しては、ベースフィルム等の非磁性支持体上にヘマタイト粒子粉末等の非磁性粒子粉末を結合剤樹脂中に分散させてなる下地層(以下、「非磁性下地層」という。)を少なくとも一層設けることにより、磁気記録媒体の表面平滑性及び強度向上を図っている。   However, micronization of magnetic particle powder is accompanied by thinning of the magnetic recording layer, and it is difficult to smooth the surface of the magnetic recording layer due to the thinning of the magnetic recording layer and the strength of the coating film. In order to reduce the thickness of the magnetic recording layer, nonmagnetic particle powder such as hematite particle powder is dispersed in a binder resin on a nonmagnetic support such as a base film. By providing at least one underlayer (hereinafter referred to as “nonmagnetic underlayer”), surface smoothness and strength of the magnetic recording medium are improved.

一方、表面性ノイズの場合、磁気記録媒体の表面平滑性を改良することが重要であるが、磁気記録層が薄層化することによって、非磁性下地層の表面平滑性がそのまま上層の磁気記録層の表面平滑性に影響を及ぼすこととなる。   On the other hand, in the case of surface noise, it is important to improve the surface smoothness of the magnetic recording medium. However, by making the magnetic recording layer thinner, the surface smoothness of the nonmagnetic underlayer remains as it is. It will affect the surface smoothness of the layer.

また、単位体積当たりの記録密度を向上させるために、磁気記録媒体自体を薄層化することが試みられている。   In addition, in order to improve the recording density per unit volume, attempts have been made to reduce the thickness of the magnetic recording medium itself.

従って、非磁性下地層には、平滑な表面と高い塗膜強度と共に、より一層の薄層化が求められており、このような非磁性下地層を形成するために、非磁性下地層中に配合される非磁性粒子粉末に対しては、非磁性下地層用塗料における優れた分散性と共に非磁性下地層中における充填性の向上が求められている。 Therefore, the nonmagnetic underlayer is required to have a thinner layer with a smooth surface and high coating strength. In order to form such a nonmagnetic underlayer, The nonmagnetic particle powder to be blended is required to improve the filling property in the nonmagnetic underlayer as well as the excellent dispersibility in the coating for the nonmagnetic underlayer.

表面平滑性、強度、磁気特性、保存安定性、耐候性がともに優れた、電磁変換特性の良好な磁気記録媒体を得ることを目的として、平均長軸長が0.01〜0.5μmの針状オキシ水酸化鉄を用いた磁気記録媒体(特許文献1)が開示されている。   A needle having an average major axis length of 0.01 to 0.5 μm for the purpose of obtaining a magnetic recording medium having excellent surface smoothness, strength, magnetic characteristics, storage stability, and weather resistance and good electromagnetic conversion characteristics. A magnetic recording medium (Patent Document 1) using a hydrated iron oxyhydroxide is disclosed.

特開2007−18696号公報JP 2007-18696 A

前出特許文献1では、非磁性下地層に用いられる非磁性粉末の結晶子径は記載されているものの、単結晶化度[平均長軸径(DTEM)と結晶子径(D)の比(DTEM/D)]については考慮されておらず、また、表より求められるヘマタイト粒子粉末の単結晶化度は8.8と高いものであり、非磁性下地層中における充填性に優れた非磁性下地層用非磁性粒子粉末を得ることは困難である。 In the above-mentioned patent document 1, although the crystallite diameter of the nonmagnetic powder used for the nonmagnetic underlayer is described, the single crystallinity [average major axis diameter (D TEM ) and crystallite diameter (D X ) The ratio (D TEM / D X )] is not taken into consideration, and the single crystallinity of the hematite particle powder obtained from the table is as high as 8.8. It is difficult to obtain an excellent nonmagnetic particle powder for a nonmagnetic underlayer.

本発明は、表面平滑性及び耐久性に優れた磁気記録媒体を得ることのできる、非磁性下地層用塗料における分散性及び非磁性下地層中における充填性に優れた非磁性下地層用非磁性粒子粉末を提供することを技術的課題とする。   The present invention is capable of obtaining a magnetic recording medium excellent in surface smoothness and durability, and is nonmagnetic for nonmagnetic underlayer excellent in dispersibility in nonmagnetic underlayer paints and in filling property in nonmagnetic underlayer. Providing particle powder is a technical problem.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、ヘマタイト粒子粉末からなる非磁性粒子粉末において、平均長軸径が1〜300nmであり、単結晶化度[平均長軸径(DTEM)と結晶子径(D)の比(DTEM/D)]が8.0以下であることを特徴とする磁気記録媒体の非磁性下地層用非磁性粒子粉末である(本発明1)。 That is, according to the present invention, in the nonmagnetic particle powder made of hematite particle powder, the average major axis diameter is 1 to 300 nm, and the single crystallinity [average major axis diameter (D TEM ) and crystallite diameter (D X ) The ratio (D TEM / D X )] is 8.0 or less, which is a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium (Invention 1).

また、本発明は、非磁性粒子粉末のタップ密度(ρt)が0.60g/cm以上である本発明1の磁気記録媒体の非磁性下地層用非磁性粒子粉末である(本発明2)。 The present invention also relates to a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium of the present invention 1 wherein the tap density (ρt) of the nonmagnetic particle powder is 0.60 g / cm 3 or more (Invention 2). .

平均長軸径が1〜50nmである本発明1又は本発明2の磁気記録媒体の非磁性下地層用非磁性粒子粉末である(本発明3)。 This is a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium of Invention 1 or Invention 2 having an average major axis diameter of 1 to 50 nm (Invention 3).

また、本発明は、非磁性支持体、該非磁性支持体上に形成される非磁性粒子粉末と結合剤樹脂とを含む非磁性下地層及び該非磁性下地層の上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記非磁性粒子粉末が本発明1から本発明3のいずれかに記載の磁気記録媒体の非磁性下地層用非磁性粒子粉末であることを特徴とする磁気記録媒体である(本発明4)。   The present invention also provides a nonmagnetic support, a nonmagnetic underlayer comprising a nonmagnetic particle powder and a binder resin formed on the nonmagnetic support, and a magnetic particle powder formed on the nonmagnetic underlayer. In a magnetic recording medium comprising a magnetic recording layer containing a binder resin, the nonmagnetic particle powder is a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium according to any one of the first to third aspects of the present invention. This is a magnetic recording medium (Invention 4).

本発明に係る磁気記録媒体の非磁性下地層用非磁性粒子粉末は単結晶化度[平均長軸径(DTEM)と結晶子径(D)の比(DTEM/D)]が8.0以下であり、非磁性下地層用塗料における分散性及び非磁性下地層中における充填性に優れているため、高密度磁気記録媒体の非磁性下地層用非磁性粒子粉末として好適である。 The nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium according to the present invention has a single crystallinity [ratio of average major axis diameter (D TEM ) to crystallite diameter (D X ) (D TEM / D X )]. It is 8.0 or less and is excellent as a nonmagnetic particle powder for a nonmagnetic underlayer of a high-density magnetic recording medium because it is excellent in dispersibility in a coating for a nonmagnetic underlayer and in a filling property in the nonmagnetic underlayer. .

また、本発明に係る磁気記録媒体は、上述の非磁性粒子粉末を磁気記録媒体の非磁性下地層用非磁性粒子粉末として用いることにより、高い表面平滑性と優れた塗膜強度を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体として好適である。   In addition, the magnetic recording medium according to the present invention uses the above-mentioned nonmagnetic particle powder as a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium, so that the magnetic recording has high surface smoothness and excellent coating strength. Since a medium can be obtained, it is suitable as a high-density magnetic recording medium.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る非磁性下地層用非磁性粒子粉末について述べる。   First, the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention will be described.

本発明に係る非磁性下地層用非磁性粒子粉末はヘマタイト粒子粉末である。また、前記ヘマタイト粒子は、粒子内部にZr、Ti、P、Sn、Sb、Y、Nb又はMn等の異種元素を含有させてもよい。   The nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention is a hematite particle powder. The hematite particles may contain different elements such as Zr, Ti, P, Sn, Sb, Y, Nb or Mn inside the particles.

本発明に係る非磁性下地層用非磁性粒子粉末の粒子形状は、針状、紡錘状、米粒状、球状、粒状、多面体状、フレーク状、鱗片状及び板状等のいずれの形状であってもよい。   The particle shape of the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention is any shape such as a needle shape, a spindle shape, a rice grain shape, a spherical shape, a granular shape, a polyhedron shape, a flake shape, a scale shape, and a plate shape. Also good.

本発明に係る非磁性下地層用非磁性粒子粉末の平均長軸径は1〜300nmであり、より好ましくは5〜250nm、更により好ましくは5〜200nmである。非磁性粒子粉末の平均長軸径が300nmを超える場合は、これを用いて非磁性下地層を形成した場合、塗膜の表面平滑性が損なわれやすい。また、平均長軸径が1nm未満の場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、非磁性塗料中での分散が困難となる。   The average major axis diameter of the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention is 1 to 300 nm, more preferably 5 to 250 nm, and still more preferably 5 to 200 nm. When the average major axis diameter of the nonmagnetic particle powder exceeds 300 nm, the surface smoothness of the coating film tends to be impaired when the nonmagnetic underlayer is formed using this. In addition, when the average major axis diameter is less than 1 nm, aggregation is likely to occur due to an increase in intermolecular force due to the refinement of particles, so that dispersion in a nonmagnetic paint becomes difficult.

また、本発明に係る非磁性下地層用非磁性粒子粉末のより好ましい形態としては、平均長軸径は1〜50nmであり、より好ましくは5〜40nmである。非磁性粒子粉末の平均長軸径が50nmを超える場合でも、従来の磁気記録媒体の非磁性下地層用非磁性粒子粉末として用いることは可能である。しかしながら、より一層の薄層化が望まれる磁気記録媒体においては、非磁性粒子粉末が50nm以下の微粒子であることによって非磁性下地層をより薄層化できると共に、非磁性粒子粉末を塗膜中により高充填することができるため、優れた表面平滑性と強度を有する磁気記録媒体を得ることが可能となる。   Moreover, as a more preferable form of the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention, the average major axis diameter is 1 to 50 nm, more preferably 5 to 40 nm. Even when the average major axis diameter of the nonmagnetic particle powder exceeds 50 nm, it can be used as a nonmagnetic particle powder for a nonmagnetic underlayer of a conventional magnetic recording medium. However, in a magnetic recording medium in which a further thinner layer is desired, the nonmagnetic underlayer can be made thinner because the nonmagnetic particle powder is a fine particle of 50 nm or less, and the nonmagnetic particle powder is contained in the coating film. Therefore, a magnetic recording medium having excellent surface smoothness and strength can be obtained.

本発明に係る非磁性下地層用非磁性粒子粉末の軸比(長軸径と短軸径の比)(以下、「軸比」という。)は1.0以上であり、好ましくは1.0〜10.0、より好ましくは1.0〜8.0である。   The axial ratio (ratio of major axis diameter to minor axis diameter) (hereinafter referred to as “axial ratio”) of the nonmagnetic particle powder for nonmagnetic underlayer according to the present invention is 1.0 or more, preferably 1.0. ˜10.0, more preferably 1.0 to 8.0.

本発明に係る非磁性下地層用非磁性粒子粉末のBET比表面積値は10〜200m/gが好ましく、より好ましくは15〜180m/g、更により好ましくは20〜160m/gである。BET比表面積値が10m/g未満の場合には、これを用いて磁気記録層を形成した場合に、塗膜の表面平滑性が損なわれやすい。BET比表面積値が200m/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、ビヒクル中での分散が困難となる。 BET specific surface area of the non-magnetic undercoat layer for magnetic particles according to the present invention is preferably 10 to 200 m 2 / g, more preferably 15~180m 2 / g, even more preferably is 20~160m 2 / g . When the BET specific surface area value is less than 10 m 2 / g, when the magnetic recording layer is formed using this, the surface smoothness of the coating film tends to be impaired. When the BET specific surface area value exceeds 200 m 2 / g, aggregation tends to occur due to an increase in intermolecular force due to particle miniaturization, and thus dispersion in the vehicle becomes difficult.

本発明に係る非磁性下地層用非磁性粒子粉末の単結晶化度[平均長軸径(DTEM)と結晶子径(D)の比(DTEM/D)]は8.0以下であり、好ましくは7.0以下、より好ましくは6.5以下である。非磁性下地層用非磁性粒子粉末の単結晶化度を8.0以下とすることにより、非磁性粒子粉末を塗膜中により高充填することができるため、優れた表面平滑性と塗膜強度を有する磁気記録媒体を得ることが可能となる。 The single crystallinity [ratio of average major axis diameter (D TEM ) to crystallite diameter (D X ) (D TEM / D X )] of the non-magnetic particle powder for non-magnetic underlayer according to the present invention is 8.0 or less. Preferably, it is 7.0 or less, More preferably, it is 6.5 or less. By setting the single crystallinity of the nonmagnetic particle powder for the nonmagnetic underlayer to 8.0 or less, the nonmagnetic particle powder can be filled more highly into the coating film. It is possible to obtain a magnetic recording medium having

本発明に係る非磁性下地層用非磁性粒子粉末のタップ密度(ρt)は0.60g/cm以上であり、好ましくは0.65〜1.80g/cm、より好ましくは0.70〜1.50g/cmである。タップ密度(ρt)が0.60g/cm未満の場合には、粒子粉末中に含まれる空気が多いため、非磁性塗料作製時の非磁性粒子粉末を混練・分散する際に、強力なせん断力を混練物にかけることが難しく、塗膜中に非磁性粒子粉末高充填することができないため、結果、優れた表面平滑性を有する磁気記録媒体を得ることが困難となる。 The tap density (ρt) of the nonmagnetic particle powder for nonmagnetic underlayer according to the present invention is 0.60 g / cm 3 or more, preferably 0.65 to 1.80 g / cm 3 , more preferably 0.70. 1.50 g / cm 3 . When the tap density (ρt) is less than 0.60 g / cm 3 , since the air contained in the particle powder is large, strong shear is applied when the nonmagnetic particle powder is kneaded and dispersed at the time of preparing the nonmagnetic coating material. It is difficult to apply a force to the kneaded product, and the non-magnetic particle powder cannot be highly filled in the coating film. As a result, it is difficult to obtain a magnetic recording medium having excellent surface smoothness.

本発明に係る非磁性下地層用非磁性粒子粉末は、アルミニウム、シリカ、チタン、亜鉛、リン、ホウ素、スカンジウム、イットリウム及び希土類元素(ランタン、セリウム、プラセオジム、ネオジム、サマリウム)から選ばれる元素からなる一種又は二種以上の化合物により焼結防止処理又は/及び表面処理されていてもよい。粒子表面が前述の化合物により被覆されている非磁性粒子粉末は、非磁性塗料中に分散させた場合に、結合剤樹脂とのなじみがよく、所望の分散度がより得られ易い。   The nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention comprises an element selected from aluminum, silica, titanium, zinc, phosphorus, boron, scandium, yttrium, and rare earth elements (lanthanum, cerium, praseodymium, neodymium, samarium). Sintering prevention treatment and / or surface treatment may be performed with one or more compounds. The non-magnetic particle powder whose particle surface is coated with the above-mentioned compound has a good affinity with the binder resin when dispersed in a non-magnetic coating material, and a desired degree of dispersion is more easily obtained.

次に、本発明に係る磁気記録媒体について述べる。   Next, the magnetic recording medium according to the present invention will be described.

本発明に係る磁気記録媒体は、非磁性支持体、該非磁性支持体上に形成された非磁性下地層及び該非磁性下地層上に形成された磁気記録層とからなる。また、必要に応じて、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成させてもよい。殊に、コンピューター記録用のバックアップテープの場合には、巻き乱れの防止や走行耐久性向上の点から、バックコート層を設けることが好ましい。   The magnetic recording medium according to the present invention comprises a nonmagnetic support, a nonmagnetic underlayer formed on the nonmagnetic support, and a magnetic recording layer formed on the nonmagnetic underlayer. If necessary, a back coat layer may be formed on the other surface of the nonmagnetic support with respect to the magnetic recording layer formed on one surface of the nonmagnetic support. In particular, in the case of a backup tape for computer recording, it is preferable to provide a backcoat layer from the viewpoint of preventing winding disturbance and improving running durability.

本発明における非磁性支持体としては、現在、磁気記録媒体に汎用されているポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリイミド、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリアミドイミド、ポリスルフォン、セルローストリアセテート、ポリベンゾオキサゾール等の合成樹脂フィルム、アルミニウム、ステンレス等金属の箔や板及び各種の紙を使用することができる。得られる磁気記録媒体の強度を考慮すれば、ポリエステル類、ポリアミド又は芳香族ポリアミドが好ましい。   As the nonmagnetic support in the present invention, polyesters such as polyethylene terephthalate and polyethylene naphthalate that are currently widely used in magnetic recording media, polyolefins such as polyethylene and polypropylene, polycarbonate, polyamide, polyamideimide, polyimide, aromatic Synthetic resin films such as polyamide, aromatic polyimide, aromatic polyamideimide, polysulfone, cellulose triacetate, and polybenzoxazole, metal foils and plates such as aluminum and stainless steel, and various papers can be used. Considering the strength of the magnetic recording medium to be obtained, polyesters, polyamides or aromatic polyamides are preferable.

次に、本発明における非磁性下地層について述べる。   Next, the nonmagnetic underlayer in the present invention will be described.

本発明における非磁性下地層は、本発明に係る非磁性下地層用非磁性粒子粉末、及び結合剤樹脂とからなる。また、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、帯電防止剤等を添加してもよい。   The nonmagnetic underlayer in the present invention comprises the nonmagnetic particle powder for nonmagnetic underlayer according to the present invention and a binder resin. Further, if necessary, a lubricant, an abrasive, an antistatic agent, etc. that are usually used in the production of magnetic recording media may be added.

結合剤樹脂としては、磁気記録媒体の製造にあたって汎用されている熱可塑性樹脂、熱硬化性樹脂、電子線硬化型樹脂等を単独又は組み合わせて用いることができる。   As the binder resin, a thermoplastic resin, a thermosetting resin, an electron beam curable resin, etc. that are widely used in the production of magnetic recording media can be used alone or in combination.

帯電防止剤としては、カーボンブラック、グラファイト、酸化スズ、酸化チタン−酸化スズ−酸化アンチモン等の導電性粉末及び界面活性剤等を用いることができる。帯電防止の他に、摩擦係数低減、磁気記録媒体の強度向上といった効果が期待できることから、帯電防止剤としては、カーボンブラックを用いることが好ましい。   As the antistatic agent, conductive powder such as carbon black, graphite, tin oxide, titanium oxide-tin oxide-antimony oxide, a surfactant, and the like can be used. In addition to antistatic properties, carbon black is preferably used as the antistatic agent since effects such as reduction of the friction coefficient and improvement of the strength of the magnetic recording medium can be expected.

本発明における非磁性下地層用非磁性粒子粉末を用いて得られた非磁性下地層は、塗膜の光沢度が170〜280%、好ましくは175〜280%、より好ましくは180〜280%であって、塗膜の表面粗度Raが10.0nm以下、好ましくは9.5nm以下、より好ましくは9.0nm以下である。   The nonmagnetic underlayer obtained using the nonmagnetic particle powder for nonmagnetic underlayer in the present invention has a coating film with a glossiness of 170 to 280%, preferably 175 to 280%, more preferably 180 to 280%. The surface roughness Ra of the coating film is 10.0 nm or less, preferably 9.5 nm or less, more preferably 9.0 nm or less.

次に、本発明における磁気記録層について述べる。   Next, the magnetic recording layer in the present invention will be described.

本発明における磁気記録層は、磁性粒子粉末と結合剤樹脂とを含んでいる。また、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、帯電防止剤等を添加してもよい。   The magnetic recording layer in the present invention contains magnetic particle powder and a binder resin. Further, if necessary, a lubricant, an abrasive, an antistatic agent, etc. that are usually used in the production of magnetic recording media may be added.

磁性粒子粉末としては、鉄を主成分とする金属磁性粒子粉末、鉄以外のCo、Al、Ni、P、Zn、Si、B、希土類金属等を含有する鉄合金磁性粒子粉末、Ba、Sr及びCaから選ばれる1種又は2種以上の元素を含有するマグネトプランバイト型(M型)フェライト微粒子粉末又はW型フェライト微粒子粉末、あるいはそれらの原子の一部が他の元素(Co、Ni、Zn、Mn、Mg、Ti、Sn、Zr、Cu、Mo、La、Ce、V、Si、S、Sc、Sb、Y、Rh、Pd、Nd、Nb、B、P、Ge、Al、Ag、Au、Ru、Pr、Bi、W、Re、Te等)で置換された六方晶フェライト粒子粉末並びに窒化鉄等のいずれをも用いることができる。   As magnetic particle powder, metal magnetic particle powder containing iron as a main component, iron alloy magnetic particle powder containing Co, Al, Ni, P, Zn, Si, B, rare earth metal, etc. other than iron, Ba, Sr and Magnetoplumbite-type (M-type) ferrite fine particle powder or W-type ferrite fine particle powder containing one or more elements selected from Ca, or a part of the atoms of other elements (Co, Ni, Zn) , Mn, Mg, Ti, Sn, Zr, Cu, Mo, La, Ce, V, Si, S, Sc, Sb, Y, Rh, Pd, Nd, Nb, B, P, Ge, Al, Ag, Au , Ru, Pr, Bi, W, Re, Te, etc.) and any of hexagonal ferrite particle powder and iron nitride can be used.

磁性粒子粉末は、平均長軸径もしくは平均粒子径が5〜150nmであることが好ましく、より好ましくは10〜100nmである。   The magnetic particle powder preferably has an average major axis diameter or average particle diameter of 5 to 150 nm, more preferably 10 to 100 nm.

磁性粒子粉末の磁気特性は、保磁力(Hc)が95.5〜397.9kA/mが好ましく、より好ましくは119.4〜318.3kA/mであり、飽和磁化値が40〜200Am2/kgが好ましく、より好ましくは42〜180Am2/kgである。 As for the magnetic properties of the magnetic particle powder, the coercive force (Hc) is preferably 95.5 to 397.9 kA / m, more preferably 119.4 to 318.3 kA / m, and the saturation magnetization value is 40 to 200 Am 2 / m. kg is preferred, more preferably 42 to 180 Am 2 / kg.

結合剤樹脂としては、前記非磁性下地層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the nonmagnetic underlayer can be used.

本発明におけるバックコート層中には、結合剤樹脂と共に、バックコート層の表面電気抵抗値低減及び強度向上を目的として、帯電防止剤及び無機粒子粉末を含有させることが好ましい。また、必要に応じて、通常の磁気記録媒体の製造に用いられる潤滑剤、研磨剤等が含まれていてもよい。   The back coat layer in the present invention preferably contains an antistatic agent and inorganic particle powder together with the binder resin for the purpose of reducing the surface electrical resistance value and improving the strength of the back coat layer. Further, if necessary, a lubricant, an abrasive and the like used for production of a normal magnetic recording medium may be contained.

結合剤樹脂及び帯電防止剤としては、前記非磁性下地層、及び磁気記録層を作製するために用いた結合剤樹脂及び帯電防止剤を使用することができる。   As the binder resin and the antistatic agent, the binder resin and the antistatic agent used for producing the nonmagnetic underlayer and the magnetic recording layer can be used.

無機粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等から選ばれる1種又は2種以上を用いることができる。   As the inorganic powder, one or more selected from alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, barium sulfate, etc. Can be used.

本発明に係る磁気記録媒体は、保磁力(Hc)は95.5〜397.9kA/mが好ましく、より好ましくは119.4〜318.3kA/m、塗膜の光沢度は185〜300%が好ましく、より好ましくは190〜300%、更により好ましくは195〜300%、塗膜の表面粗度Raは8.0nm以下が好ましく、より好ましくは7.5nm以下、更により好ましくは7.0nm以下である。   In the magnetic recording medium according to the present invention, the coercive force (Hc) is preferably 95.5 to 397.9 kA / m, more preferably 119.4 to 318.3 kA / m, and the glossiness of the coating film is 185 to 300%. More preferably 190 to 300%, still more preferably 195 to 300%, and the surface roughness Ra of the coating film is preferably 8.0 nm or less, more preferably 7.5 nm or less, and even more preferably 7.0 nm. It is as follows.

次に、本発明に係る非磁性下地層用非磁性粒子粉末の製造法について述べる。   Next, a method for producing a nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention will be described.

本発明に係る非磁性下地層用非磁性粒子粉末は、第一鉄塩水溶液とアルカリ水溶液との混合溶液を、40〜50℃の温度範囲にて非酸化性雰囲気下で30〜360分間維持攪拌してエイジングを行うことで鉄含有沈澱物を含む懸濁液とし、次いで、当該懸濁液に酸化剤を添加した後、40〜60℃の温度範囲にて酸化反応を行うことにより生成した含水酸化鉄粒子スラリーを、濾別、水洗し、焼結防止処理を行った後融剤を添加し、濾別・乾燥後、200〜400℃の温度範囲で加熱脱水して低密度ヘマタイト粒子粉末とした後、更に400〜750℃の温度範囲で加熱焼成することにより得ることができる。   The nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention comprises a mixed solution of a ferrous salt aqueous solution and an alkaline aqueous solution maintained and stirred for 30 to 360 minutes in a nonoxidizing atmosphere at a temperature range of 40 to 50 ° C. Then, aging is performed to obtain a suspension containing an iron-containing precipitate, and then an oxidant is added to the suspension, followed by an oxidation reaction in a temperature range of 40 to 60 ° C. After the iron oxide particle slurry is filtered, washed with water, subjected to sintering prevention treatment, a flux is added, and after filtering and drying, heat dehydration is performed in a temperature range of 200 to 400 ° C. to obtain a low density hematite particle powder. Then, it can be obtained by further heating and baking in a temperature range of 400 to 750 ° C.

本発明における酸化剤としては、過硫酸アンモニウム、過酸化水素水等を用いることができるが、得られるゲータイト粒子粉末の均一性を考慮すれば、過硫酸アンモニウムが好ましい。酸化剤の添加量は、Fe 1モルに対して0.5〜10モル%が好ましく、より好ましくは1〜7モル%である。添加量が少なすぎる場合には、ゲータイト粒子の核晶発生にムラができ、成長成分が残存することになるため粒子が不均一に成長し、粒度分布の良いが均整な粒子が得られなくなる。   As the oxidizing agent in the present invention, ammonium persulfate, hydrogen peroxide solution, and the like can be used, but ammonium persulfate is preferable in view of the uniformity of the obtained goethite particle powder. The addition amount of the oxidizing agent is preferably 0.5 to 10 mol%, more preferably 1 to 7 mol% with respect to 1 mol of Fe. If the amount added is too small, the generation of nuclei of goethite particles will be uneven and the growth components will remain, so that the particles will grow non-uniformly and it will not be possible to obtain uniform particles with good particle size distribution.

前記エイジングは、非酸化性雰囲気下、40〜50℃の温度範囲で行うことが好ましい。50℃を超える場合には、マグネタイトが混在しやすくなるため好ましくない。また、攪拌の保持時間は30〜600分であり、好ましくは60〜480分である。   The aging is preferably performed in a temperature range of 40 to 50 ° C. in a non-oxidizing atmosphere. When it exceeds 50 ° C., magnetite tends to be mixed, which is not preferable. The holding time for stirring is 30 to 600 minutes, preferably 60 to 480 minutes.

前記酸化反応は常法に従って行えばよく、例えば、前記懸濁液中に酸素含有ガスを通気する等の方法により行うことができる。酸化反応の温度範囲は40〜60℃で行うことが好ましく、60℃を超える場合には、マグネタイトが混在しやすくなるため好ましくない。   The oxidation reaction may be performed according to a conventional method, for example, by a method of ventilating an oxygen-containing gas into the suspension. The temperature range of the oxidation reaction is preferably 40 to 60 ° C, and when it exceeds 60 ° C, magnetite tends to be mixed, which is not preferable.

なお、前記酸化反応(エイジング)の前後に、粒子形状のコントロール及び諸特性向上を目的として、Si、Al、Zr、Ti、P、Sn、Sb、Y、Nb又はMn等の異種元素が添加されてもよい。また、粒子サイズのコントロールを目的としてエイジング前にアスコルビン酸又はエリソルビン酸等を添加してもよい。   Before and after the oxidation reaction (aging), different elements such as Si, Al, Zr, Ti, P, Sn, Sb, Y, Nb or Mn are added for the purpose of controlling the particle shape and improving various properties. May be. Further, ascorbic acid or erythorbic acid may be added before aging for the purpose of controlling the particle size.

本発明においては、加熱脱水処理を行う前に、あらかじめ含水酸化鉄粒子粉末の粒子表面を焼結防止剤で被覆しておくことが好ましい。焼結防止剤による被覆処理は、出発原料である含水酸化鉄粒子粉末を含む懸濁液中に焼結防止剤を添加し、均一になるように混合攪拌した後、含水酸化鉄粒子表面に焼結防止剤が被覆できるよう、適切なpH調整を行って表面を被覆する。   In the present invention, it is preferable to coat the particle surface of the hydrous iron oxide particle powder with a sintering inhibitor in advance before performing the heat dehydration treatment. In the coating treatment with the sintering inhibitor, the sintering inhibitor is added to the suspension containing the hydrous iron oxide particle powder, which is the starting material, mixed and stirred uniformly, and then sintered onto the hydrous iron oxide particle surface. The surface is coated with appropriate pH adjustment so that the anti-caking agent can be coated.

前記焼結防止剤としては、通常使用されるヘキサメタリン酸ナトリウム、ポリリン酸、オルトリン酸等のリン化合物、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、コロイダルシリカ等のケイ素化合物、ホウ酸等のホウ素化合物、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ソーダ等のアルミン酸アルカリ塩、アルミナゾル、水酸化アルミニウム等のアルミニウム化合物、オキシ硫酸チタン等のチタン化合物、スカンジウム、イットリウム、希土類元素(ランタン、セリウム、プラセオジウム、ネオジウム、サマリウム)から選ばれる元素を含む硫酸塩、塩化物、硝酸塩等の一種又は二種以上を使用することができる。   Examples of the sintering inhibitor include commonly used phosphorus compounds such as sodium hexametaphosphate, polyphosphoric acid and orthophosphoric acid, No. 3 water glass, sodium orthosilicate, sodium metasilicate, colloidal silica and other silicon compounds, boric acid and the like. Boron compounds, aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride, and aluminum nitrate, alkali aluminates such as sodium aluminate, aluminum compounds such as alumina sol and aluminum hydroxide, titanium compounds such as titanium oxysulfate, scandium, One or more of sulfates, chlorides, nitrates and the like containing an element selected from yttrium and rare earth elements (lanthanum, cerium, praseodymium, neodymium, samarium) can be used.

得られた焼結防止剤によって被覆された含水酸化鉄粒子粉末のスラリーは、融剤を添加して攪拌・混合する。融剤としては、塩化ナトリウム及び塩化バリウム等の塩化物を用いることが好ましく、好ましくは塩化ナトリウムである。また、融剤の添加量は含水酸化鉄粒子粉末に対して1〜100重量%であり、好ましくは5〜50重量%である。   The resulting slurry of hydrous iron oxide powder powder coated with the sintering inhibitor is added with a flux and stirred and mixed. As the flux, it is preferable to use chlorides such as sodium chloride and barium chloride, preferably sodium chloride. Moreover, the addition amount of a flux is 1 to 100 weight% with respect to a hydrous iron oxide particle powder, Preferably it is 5 to 50 weight%.

含水酸化鉄粒子粉末の加熱脱水温度は200〜400℃であり、好ましくは250〜400℃である。加熱脱水温度が200℃未満の場合には、脱水反応に長時間を要するために好ましくない。また、低温加熱脱水温度が400℃を超える場合には、脱水反応が急激に生起し、粒子の形状が崩れやすくなったり、粒子相互間の焼結を引き起こしたりする可能性がある。   The heat dehydration temperature of the hydrous iron oxide particle powder is 200 to 400 ° C, preferably 250 to 400 ° C. A heating dehydration temperature of less than 200 ° C. is not preferable because a long time is required for the dehydration reaction. In addition, when the low temperature heating dehydration temperature exceeds 400 ° C., the dehydration reaction may occur rapidly, and the shape of the particles may be easily lost, or sintering between the particles may be caused.

加熱脱水後の低密度ヘマタイト粒子粉末の加熱焼成温度は400〜750℃であり、好ましくは400〜700℃である。加熱処理温度が400℃未満の場合には、高密度化が不十分であるためヘマタイト粒子の粒子内部及び粒子表面に脱水孔が多数存在しており、非磁性塗料中における分散が難しく、非磁性下地層を形成した時、表面平滑な塗膜が得られにくい。750℃を超える場合には、ヘマタイト粒子の高密度化は十分なされているが、粒子及び粒子相互間の焼結が生じるため、粒子径が増大し、同様に表面平滑な塗膜は得られにくい。   The heating and firing temperature of the low-density hematite particle powder after heat dehydration is 400 to 750 ° C, preferably 400 to 700 ° C. When the heat treatment temperature is less than 400 ° C., the densification is insufficient, and there are a large number of dehydration holes inside and on the surface of the hematite particles, making it difficult to disperse in the non-magnetic paint, and non-magnetic When the underlayer is formed, it is difficult to obtain a coating film having a smooth surface. When the temperature exceeds 750 ° C., the density of the hematite particles is sufficiently increased. However, since sintering occurs between the particles and the particles, the particle diameter increases, and similarly, a coating film having a smooth surface is difficult to obtain. .

本発明に係る非磁性下地層用非磁性粒子粉末は、アルミニウム、シリカ、チタン、亜鉛、リン、スカンジウム、イットリウム及び希土類元素(ランタン、セリウム、プラセオジウム、ネオジウム、サマリウム)から選ばれる元素からなる一種又は二種以上の化合物により表面処理されていてもよい。   The nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention is a kind of an element selected from aluminum, silica, titanium, zinc, phosphorus, scandium, yttrium, and rare earth elements (lanthanum, cerium, praseodymium, neodymium, samarium) or The surface may be treated with two or more compounds.

上記表面処理は、非磁性粒子粉末を分散して得られる水懸濁液に、アルミニウム、シリカ、チタン、亜鉛、リン、スカンジウム、イットリウム及び希土類元素(ランタン、セリウム、プラセオジウム、ネオジウム、サマリウム)から選ばれる元素からなる一種又は二種以上の化合物を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整することにより、前記非磁性粒子粉末の粒子表面を被覆し、次いで、濾別、水洗、乾燥、粉砕する。必要により、更に、脱気・圧密処理等を施してもよい。   The surface treatment is selected from aluminum, silica, titanium, zinc, phosphorus, scandium, yttrium, and rare earth elements (lanthanum, cerium, praseodymium, neodymium, samarium) in an aqueous suspension obtained by dispersing nonmagnetic particle powder. The surface of the non-magnetic particle powder is coated by adding one or two or more compounds comprising the above elements and mixing and stirring, or, if necessary, adjusting the pH value after mixing and stirring. Filter, wash, dry and grind. If necessary, a deaeration / consolidation process may be further performed.

次に、本発明における磁気記録媒体の製造法について述べる。   Next, a method for manufacturing a magnetic recording medium in the present invention will be described.

前記非磁性下地層、磁気記録層、及びバックコート層の形成にあたって用いる溶剤としては、磁気記録媒体に汎用されているアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びテトラヒドロフラン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール及びイソプロピルアルコール等のアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル及び酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル及びジオキサン等のグリコールエーテル類及びその混合物等を使用することができる。   Solvents used in forming the nonmagnetic underlayer, magnetic recording layer, and backcoat layer include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and tetrahydrofuran, toluene, xylene, and the like that are widely used in magnetic recording media. Aromatic hydrocarbons, alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol and isopropyl alcohol, esters such as methyl acetate, butyl acetate, isobutyl acetate and glycol acetate, glycol dimethyl ether, glycol monoethyl ether and dioxane Glycol ethers and mixtures thereof can be used.

非磁性下地層、磁気記録層、バックコート層は、各層を構成する成分及び溶剤を一般に使用される混練機及び分散機により混練・分散処理を行い、各塗料を作製する。該各塗料を用いて、非磁性支持体上の一面に非磁性下地層、磁気記録層の順に塗布、乾燥後、カレンダー処理を行う。その際の塗布方法としては、磁性層と非磁性層をほぼ同時に塗布するWet on Wet法でも、非磁性下地層を塗布・乾燥後、その上に磁気記録層を塗布するWet on Dry法のどちらでもよい。また、必要により、バックコート層を設ける場合には、非磁性下地層及び磁気記録層とは反対面の非磁性支持体上にバックコート層用塗料を塗布、乾燥後、カレンダー処理を行い、磁気記録媒体を得る。   The nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer are kneaded and dispersed with a kneader and a disperser that generally use components and solvents that constitute each layer, thereby preparing each paint. Using each of the coating materials, a nonmagnetic underlayer and a magnetic recording layer are applied in this order on one surface of the nonmagnetic support, dried, and then calendared. As a coating method at that time, either the Wet on Wet method in which the magnetic layer and the nonmagnetic layer are applied almost simultaneously, or the Wet on Dry method in which the nonmagnetic underlayer is applied and dried and then the magnetic recording layer is applied thereon. But you can. If necessary, if a backcoat layer is provided, a backcoat layer coating is applied on the nonmagnetic support opposite to the nonmagnetic underlayer and the magnetic recording layer, dried, calendered, and magnetically treated. A recording medium is obtained.

以下に、本発明における実施例を示し、本発明を具体的に説明する。   Examples of the present invention are shown below, and the present invention will be specifically described.

粒子の平均長軸径、平均短軸径及び平均厚みは、以下の手順で測定を行った。まず、透過型電子顕微鏡を用いて粒子を観察し、個々の粒子が重ならず、ばらばらに分散している視野において、粒子約400個が存在するように倍率を調整し、写真を撮影した。次に得られた写真を縦横4倍に拡大した後に、粒子約350個について長軸径、短軸径、粒子径、又は厚みを、DIGITIZER(型式:KD 4620、グラフテック株式会社製)を用いてそれぞれ測定し、その平均値で粒子の平均長軸径、平均短軸径及び平均厚みを示した。写真上において、粒子の輪郭がはっきりしないものや、粒子同士が重なって個々の粒子を判別しにくいものは粒子径の測定から除外した。   The average major axis diameter, average minor axis diameter and average thickness of the particles were measured by the following procedure. First, the particles were observed using a transmission electron microscope. The magnification was adjusted so that about 400 particles existed in a field where the individual particles did not overlap and were dispersed, and a photograph was taken. Next, after enlarging the obtained photograph four times in length and width, the major axis diameter, the minor axis diameter, the particle diameter, or the thickness of about 350 particles were measured using DIGITIZER (model: KD 4620, manufactured by Graphtec Corporation). Each of them was measured, and the average major axis diameter, average minor axis diameter and average thickness of the particles were shown by the average value. In the photograph, particles whose outline was not clear or particles that overlapped each other and were difficult to distinguish individual particles were excluded from the particle diameter measurement.

軸比は長軸径と短軸径との比の平均値で示し、板状比は粒子径と厚みの比の平均値で示した。   The axial ratio is shown as an average value of the ratio between the major axis diameter and the minor axis diameter, and the plate ratio is shown as an average value of the ratio of the particle diameter to the thickness.

比表面積値は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。   The specific surface area value was represented by a value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

非磁性粒子粉末の粒子内部や粒子表面に存在する各種焼結防止剤、表面処理剤に含有される元素量のそれぞれは、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。また、六方晶フェライト粒子粉末のTi量、Al量及びFe量は、上記と同様にして測定した。   For the amount of elements contained in various sintering inhibitors and surface treatment agents present inside the particle surface and the surface of the nonmagnetic particle powder, the “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.) And measured in accordance with JIS K0119 “General Rules for Fluorescence X-ray Analysis”. Further, the Ti amount, Al amount and Fe amount of the hexagonal ferrite particle powder were measured in the same manner as described above.

非磁性粒子粉末の単結晶化度は、X線回折装置「RINT2500」(株式会社リガク製)を用いて、CuのKα線を線源とした面指数(1,1,0)面ピークの半値幅を求め、Scherrerの式より結晶子径(D)を計算し、平均板面径(DTEM)と結晶子径(D)の比(DTEM/D)で示した。 The single crystallinity of the non-magnetic particle powder is half of the plane index (1,1,0) plane peak using Cu Kα ray as a radiation source using an X-ray diffractometer “RINT2500” (manufactured by Rigaku Corporation). The value width was determined, the crystallite diameter (D X ) was calculated from the Scherrer equation, and the ratio was expressed as the ratio of the average plate surface diameter (D TEM ) to the crystallite diameter (D X ) (D TEM / D X ).

磁性粒子粉末及び磁気記録媒体の磁気特性は、「振動試料型磁力計VSM−3S−15」(東英工業株式会社製)を用いて外部磁場795.8kA/mの条件で測定した。   The magnetic characteristics of the magnetic particle powder and the magnetic recording medium were measured using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Kogyo Co., Ltd.) under an external magnetic field of 795.8 kA / m.

塗料粘度は、得られた塗料の25℃における塗料粘度を、E型粘度計EMD−R(株式会社東京計器製)を用いて測定し、ずり速度D=1.92sec−1における値で示した。 The coating viscosity at 25 ° C. of the obtained coating was measured using an E-type viscometer EMD-R (manufactured by Tokyo Keiki Co., Ltd.) and indicated by a value at a shear rate D = 1.92 sec −1 . .

塗膜表面の光沢度は、「グロスメーター UGV−5D」(スガ試験機株式会社製)を用いて入射角45°で測定した値であり、標準板光沢を86.3%としたときの値を%で示したものである。   The glossiness of the coating surface is a value measured at an incident angle of 45 ° using “Glossmeter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.), and is a value when the standard plate gloss is 86.3%. In%.

表面粗度Raは、「ZYGO NewView600S」(ZYGO株式会社製)を用いて塗膜の中心線平均粗さを測定した。   Surface roughness Ra measured the centerline average roughness of the coating film using "ZYGO NewView600S" (made by ZYGO Corporation).

塗膜の強度は、「オートグラフ」(株式会社島津製作所製)を用いて塗膜のヤング率を測定し、市販ビデオテープ「AV T−120(日本ビクター株式会社製)」のヤング率との相対値で表した。相対値が高いほど塗膜の強度が良好であることを示す。   The strength of the coating film was determined by measuring the Young's modulus of the coating film using “Autograph” (manufactured by Shimadzu Corporation) and the Young's modulus of the commercially available video tape “AV T-120 (manufactured by Victor Company of Japan)”. Expressed as a relative value. It shows that the intensity | strength of a coating film is so favorable that a relative value is high.

磁気記録媒体を構成する非磁性支持体、非磁性下地層、磁気記録層及びバックコート層の各層の厚みは、デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて測定した。   The thickness of each of the nonmagnetic support, the nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer constituting the magnetic recording medium was measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.).

<実施例1−1:ヘマタイト粒子粉末の製造>
水酸化ナトリウムと炭酸ナトリウムの混合アルカリ水溶液(Fe2+に対するアルカリの総和量(2OH/Fe2+):1.5)に、硫酸第一鉄水溶液(反応濃度:0.4mol/L)を添加した後、温度43℃、非酸化性雰囲気下で120分間攪拌することでエイジングを行い、鉄含有沈澱物を含む懸濁液を得た。次いで、当該懸濁液に過硫酸アンモニウム(Fe 1モルに対し1モル%)を添加した後、Airを通気しながら52℃で酸化反応を行い、生成した粒子を、常法により濾別、水洗することにより含水酸化鉄粒子を含むスラリーを得た。
<Example 1-1: Production of hematite particle powder>
After adding ferrous sulfate aqueous solution (reaction concentration: 0.4 mol / L) to mixed alkali aqueous solution of sodium hydroxide and sodium carbonate (total amount of alkali with respect to Fe 2+ (2OH / Fe 2+ ): 1.5) Aging was performed by stirring for 120 minutes in a non-oxidizing atmosphere at a temperature of 43 ° C. to obtain a suspension containing an iron-containing precipitate. Next, ammonium persulfate (1 mol% with respect to 1 mol of Fe) is added to the suspension, and then an oxidation reaction is performed at 52 ° C. while aerating the air, and the generated particles are separated by filtration and washed with water by a conventional method. Thus, a slurry containing hydrous iron oxide particles was obtained.

次いで、得られた含水酸化鉄粒子を含むスラリー(固形分濃度31g/L)550Lを加熱して温度を60℃とし、0.1mol/LのNaOH水溶液を加えて該スラリーのpH値を10.0に調整した。   Next, 550 L of the obtained slurry containing hydrous iron oxide particles (solid content concentration 31 g / L) was heated to 60 ° C., and 0.1 mol / L NaOH aqueous solution was added to adjust the pH value of the slurry to 10. Adjusted to zero.

次に、上記スラリー中に、焼結防止剤として3号水ガラス 597gを徐々に加え、添加が終わった後、60分間熟成を行った。次に、このスラリーに0.1mol/Lの酢酸溶液を加え、スラリーのpH値を6.5に調整した。その後、該スラリー中に塩化ナトリウムを添加し、20分間攪拌を行った後、常法により、濾過、乾燥を行い、焼結防止処理された含水酸化鉄粒子粉末を得た。このとき、含水酸化鉄粒子粉末中に融剤として残存している塩化ナトリウムは30重量%であった。   Next, 597 g of No. 3 water glass was gradually added to the slurry as a sintering inhibitor. After the addition was completed, the slurry was aged for 60 minutes. Next, a 0.1 mol / L acetic acid solution was added to the slurry, and the pH value of the slurry was adjusted to 6.5. Thereafter, sodium chloride was added to the slurry and stirred for 20 minutes, followed by filtration and drying by a conventional method to obtain a sintered iron oxide hydrous powder. At this time, sodium chloride remained as a flux in the hydrous iron oxide powder was 30% by weight.

次いで、上記で得られた焼結防止処理された含水酸化鉄粒子粉末をセラミック製の回転炉に入れ、回転駆動させながら空気中300℃で60分間加熱脱水処理を行い、含水酸化鉄粒子粉末を脱水して、低密度ヘマタイト粒子粉末を得た。   Next, the sintered anti-oxidized hydrous iron oxide powder obtained above is placed in a ceramic rotary furnace, and heated and dehydrated at 300 ° C. for 60 minutes in the air while being driven to rotate. Dehydration gave a low density hematite particle powder.

次に、上記低密度ヘマタイト粒子粉末13kgをセラミック製の回転炉に再度投入し、回転駆動させながら空気中600℃で30分間熱処理を行い、脱水孔の封孔処理をすることにより、実施例1−1のヘマタイト粒子粉末を得た。   Next, 13 kg of the above low-density hematite particle powder was again put into a ceramic rotary furnace, heat-treated at 600 ° C. for 30 minutes in the air while being driven to rotate, and sealing of the dewatering holes was performed. -1 hematite particle powder was obtained.

得られた実施例1−1のヘマタイト粒子粉末は、粒子形状が針状であり、平均長軸径が91.8nm、平均短軸径が14.8nm、軸比が6.2、BET比表面積値が51.2m/g、単結晶化度が3.8、タップ密度(ρt)が0.96g/cmであった。 The obtained hematite particle powder of Example 1-1 has a needle shape, an average major axis diameter of 91.8 nm, an average minor axis diameter of 14.8 nm, an axial ratio of 6.2, and a BET specific surface area. The value was 51.2 m 2 / g, the single crystallinity was 3.8, and the tap density (ρt) was 0.96 g / cm 3 .

<非磁性下地層1:非磁性下地層の製造>
前記実施例1−1の非磁性下地層用ヘマタイト粒子粉末10gと結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分75%となるよう混合し、自動乳鉢を用いて30分間混練して混練物を得た。
<Nonmagnetic Underlayer 1: Production of Nonmagnetic Underlayer>
A solid content of 75 g of the hematite particle powder for nonmagnetic underlayer of Example 1-1, a binder resin solution (30% by weight of vinyl chloride copolymer resin having potassium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone was obtained. %, And kneaded for 30 minutes using an automatic mortar to obtain a kneaded product.

0.35mmφガラスビーズ105gと、上記で得られた混練物及び追加の結合剤樹脂溶液((スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及び(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1))70重量%)を下記の配合割合となるよう140mlガラス瓶に添加し、ペイントシェーカーで12時間混合・分散を行った後のずり速度D=1.92sec−1における塗料粘度が800〜1,200mPa・sとなるよう、シクロヘキサノン、メチルエチルケトン及びトルエンを加えて固形分濃度を調整し、ペイントシェーカーで12時間混合・分散を行って塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、非磁性下地層用非磁性塗料を調整した。 0.35 mmφ glass beads 105 g, the kneaded material obtained above and an additional binder resin solution ((30% by weight of vinyl chloride copolymer resin having potassium sulfonate group and 70% by weight of cyclohexanone) and (sodium sulfonate) After adding 30% by weight of a polyurethane resin having a group and 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) to a 140 ml glass bottle and mixing and dispersing with a paint shaker for 12 hours. The solid content concentration was adjusted by adding cyclohexanone, methyl ethyl ketone and toluene so that the coating viscosity at a shear rate D = 1.92 sec −1 would be 800 to 1,200 mPa · s, and mixing and dispersion were performed for 12 hours with a paint shaker. Thus, a coating composition was obtained. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a nonmagnetic paint for a nonmagnetic underlayer.

得られた非磁性下地層用非磁性塗料の組成は、下記の通りであった。   The composition of the obtained nonmagnetic coating material for the nonmagnetic underlayer was as follows.

非磁性下地層用ヘマタイト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 13.2重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 8.2重量部、
硬化剤(ポリイソシアネート) 3.0重量部、
潤滑剤(ブチルステアレート) 1.0重量部。
100.0 parts by weight of hematite particle powder for nonmagnetic underlayer,
13.2 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
8.2 parts by weight of a polyurethane resin having a sodium sulfonate group,
Curing agent (polyisocyanate) 3.0 parts by weight,
Lubricant (butyl stearate) 1.0 part by weight.

得られた非磁性下地層用非磁性塗料の粘度は910mPa・sであり、固形分は28%であった。   The viscosity of the obtained nonmagnetic coating material for a nonmagnetic underlayer was 910 mPa · s, and the solid content was 28%.

上記非磁性下地層用非磁性塗料を厚さ4.5μmの芳香族ポリアミドフィルム上に塗布し、次いで、乾燥させることにより非磁性下地層を形成した。非磁性下地層の特性を評価するために、得られた塗布片の半分に対してカレンダー処理を行った後、60℃で24時間硬化反応を行った。   The nonmagnetic coating for the nonmagnetic underlayer was applied onto an aromatic polyamide film having a thickness of 4.5 μm, and then dried to form a nonmagnetic underlayer. In order to evaluate the characteristics of the nonmagnetic underlayer, the half of the obtained coated piece was calendered and then cured at 60 ° C. for 24 hours.

得られた非磁性下地層1は、膜厚が1.3μm、塗膜の光沢度が236%、表面粗度Raが6.0nmであった。   The obtained nonmagnetic underlayer 1 had a film thickness of 1.3 μm, a coating film glossiness of 236%, and a surface roughness Ra of 6.0 nm.

<実施例2−1:磁気記録媒体の製造>
磁性粒子(1)(種類:鉄を主成分とする金属磁性粒子、粒子形状:針状、平均一次長軸径:62.2nm、平均一次短軸径:13.5nm、軸比:4.6、BET比表面積値:63.4m/g、保磁力:197.6kA/m、飽和磁化値:125.6Am/kg)12g、研磨剤(商品名:AKP−50、住友化学株式会社製)1.2g、カーボンブラック 0.12g、結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合し、自動乳鉢を用いて30分間混練して混練物を得た。
<Example 2-1: Production of magnetic recording medium>
Magnetic Particle (1) (Type: Metallic magnetic particles containing iron as a main component, particle shape: needle shape, average primary major axis diameter: 62.2 nm, average primary minor axis diameter: 13.5 nm, axial ratio: 4.6 , BET specific surface area value: 63.4 m 2 / g, coercive force: 197.6 kA / m, saturation magnetization value: 125.6 Am 2 / kg) 12 g, abrasive (trade name: AKP-50, manufactured by Sumitomo Chemical Co., Ltd.) ) 1.2 g, carbon black 0.12 g, binder resin solution (vinyl chloride copolymer resin having potassium sulfonate group 30% by weight and cyclohexanone 70% by weight) and cyclohexanone are mixed, and 30 using an automatic mortar. A kneaded product was obtained by kneading for a minute.

この混練物を0.35mmφガラスビーズ105g、追加結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンと共に140mlガラス瓶に添加し、ペイントシェーカーで12時間混合・分散を行って磁性塗料を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、磁気記録層用磁性塗料を調整した。   This kneaded product was mixed with 105 g of 0.35 mmφ glass beads, an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)), cyclohexanone, methyl ethyl ketone and toluene. It was added to a 140 ml glass bottle and mixed and dispersed for 12 hours with a paint shaker to obtain a magnetic paint. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a magnetic coating material for a magnetic recording layer.

得られた磁気記録層用磁性塗料の組成は下記の通りであった。   The composition of the obtained magnetic coating material for the magnetic recording layer was as follows.

鉄を主成分とする金属磁性粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 10.0重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 10.0重量部、
研磨剤(AKP−50) 10.0重量部、
カーボンブラック 1.0重量部、
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部、
硬化剤(ポリイソシアネート) 5.0重量部、
シクロヘキサノン 65.8重量部、
メチルエチルケトン 164.5重量部、
トルエン 98.7重量部。
100.0 parts by weight of metal magnetic particle powder containing iron as a main component,
10.0 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
10.0 parts by weight of a polyurethane resin having a sodium sulfonate group,
Abrasive (AKP-50) 10.0 parts by weight,
1.0 part by weight of carbon black,
Lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight,
Curing agent (polyisocyanate) 5.0 parts by weight,
65.8 parts by weight of cyclohexanone,
164.5 parts by weight of methyl ethyl ketone,
98.7 parts by weight of toluene.

磁気記録層用塗料を前記非磁性下地層の上に塗布した後、磁場中において配向・乾燥した。その後、60℃で24時間硬化反応を行い、12.7mm幅にスリットして実施例2−1の磁気記録媒体を得た。   A magnetic recording layer coating was applied on the nonmagnetic underlayer, and then oriented and dried in a magnetic field. Thereafter, a curing reaction was carried out at 60 ° C. for 24 hours, and slitting to a width of 12.7 mm gave a magnetic recording medium of Example 2-1.

得られた磁気記録媒体は、磁気記録層の膜厚が0.27μm、保磁力が199.2kA/m、光沢度が224%、表面粗度Raが5.8nm、ヤング率が132であった。   The obtained magnetic recording medium had a magnetic recording layer thickness of 0.27 μm, a coercive force of 199.2 kA / m, a glossiness of 224%, a surface roughness Ra of 5.8 nm, and a Young's modulus of 132. .

前記実施例1−1、非磁性下地層1及び実施例2−1に従って、前駆体である含水酸化鉄粒子粉末、非磁性下地層用非磁性粒子粉末、非磁性下地層及び磁気記録媒体を作製した。各製造条件及び得られた前駆体、非磁性下地層用非磁性粒子粉末、非磁性下地層及び磁気記録媒体の諸特性を示す。   In accordance with Example 1-1, nonmagnetic underlayer 1 and Example 2-1, a precursor of hydrous iron oxide particle powder, nonmagnetic underlayer powder for nonmagnetic underlayer, nonmagnetic underlayer and magnetic recording medium were prepared. did. Various characteristics of each production condition and the obtained precursor, nonmagnetic particle powder for nonmagnetic underlayer, nonmagnetic underlayer and magnetic recording medium are shown.

<非磁性下地層用非磁性粒子粉末の製造>
実施例1−2〜1−6及び比較例1−1:
含水酸化鉄粒子粉末を製造する際の条件及びヘマタイト粒子粉末を製造する際の条件を種々変化させた以外は、実施例1−1と同様にして非磁性粒子粉末を得た。
<Manufacture of nonmagnetic particle powder for nonmagnetic underlayer>
Examples 1-2 to 1-6 and Comparative Example 1-1
A nonmagnetic particle powder was obtained in the same manner as in Example 1-1 except that the conditions for producing the hydrous iron oxide particle powder and the conditions for producing the hematite particle powder were variously changed.

このときの製造条件を表1、2に、得られた非磁性下地層用非磁性粒子粉末の諸特性を表3に示す。   Manufacturing conditions at this time are shown in Tables 1 and 2, and various properties of the obtained nonmagnetic particle powder for nonmagnetic underlayer are shown in Table 3.

Figure 0006103172
Figure 0006103172

Figure 0006103172
Figure 0006103172

Figure 0006103172
Figure 0006103172

<表面処理された非磁性下地層用非磁性粒子粉末の製造>
実施例1−9:
実施例1−1で得られたヘマタイト粒子粉末12kgを、凝集を解きほぐすために、純水70Lに攪拌機を用いて邂逅し、更に、「TKパイプラインホモミクサー」(製品名、特殊機化工業株式会社製)を3回通して実施例1−1のヘマタイト粒子粉末を含むスラリーを得た。
<Production of surface-treated nonmagnetic particle powder for nonmagnetic underlayer>
Example 1-9:
12 kg of the hematite particle powder obtained in Example 1-1 was sprinkled with 70 L of pure water using a stirrer to break up the agglomeration, and “TK Pipeline Homomixer” (product name, Special Machine Industries Co., Ltd.) The slurry containing the hematite particle powder of Example 1-1 was obtained.

続いて、この実施例1−1のヘマタイト粒子粉末を含むスラリーを横型サンドグラインダー「マイティーミルMHG−1.5L」(製品名、井上製作所株式会社製)を用いて、軸回転数2000rpmにおいて5回パスさせて、実施例1−1のヘマタイト粒子粉末を含む分散スラリーを得た。   Subsequently, the slurry containing the hematite particle powder of Example 1-1 was subjected to 5 times at a shaft rotational speed of 2000 rpm using a horizontal sand grinder “Mighty Mill MHG-1.5L” (product name, manufactured by Inoue Seisakusho Co., Ltd.). A dispersion slurry containing the hematite particle powder of Example 1-1 was obtained by passing.

得られた実施例1−1のヘマタイト粒子粉末を含む分散スラリー濃度を62g/Lとし、スラリーを180L採取した。このスラリーを攪拌しながら、6mol/LのNaOH水溶液を加えてスラリーのpH値を13.4に調整した。次に、このスラリーを攪拌しながら加熱して95℃まで昇温し、その温度で3時間保持した。   The dispersion slurry concentration containing the obtained hematite particle powder of Example 1-1 was 62 g / L, and 180 L of the slurry was collected. While stirring this slurry, a 6 mol / L NaOH aqueous solution was added to adjust the pH value of the slurry to 13.4. Next, this slurry was heated with stirring to a temperature of 95 ° C. and held at that temperature for 3 hours.

次に、このスラリーをデカンテーション法により水洗し、pH値が10.5のスラリーとした。この時点でのヘマタイト粒子粉末の重量は10.5kgであった。   Next, this slurry was washed with water by a decantation method to obtain a slurry having a pH value of 10.5. The weight of the hematite particle powder at this time was 10.5 kg.

次に、上記アルカリ性スラリー中に、アルミン酸ナトリウム 420gを徐々に加え、20分間熟成を行った。次に、このスラリーに0.1mol/Lの酢酸溶液を加え、スラリーのpH値を9.1に調整した。その後、常法により、濾別、水洗、乾燥を行い、表面処理された非磁性粒子粉末を得た。   Next, 420 g of sodium aluminate was gradually added to the alkaline slurry, followed by aging for 20 minutes. Next, a 0.1 mol / L acetic acid solution was added to the slurry to adjust the pH value of the slurry to 9.1. Thereafter, filtration, washing with water and drying were performed by a conventional method to obtain a surface-treated nonmagnetic particle powder.

このときの処理条件を表3に、得られた非磁性下地層用非磁性粒子粉末の諸特性を表3に示す。   Table 3 shows the treatment conditions at this time, and Table 3 shows various characteristics of the obtained nonmagnetic particle powder for nonmagnetic underlayer.

実施例1−10〜1−16:
非磁性粒子の種類、表面処理添加物の種類及び量を種々変化させた以外は、実施例1−9と同様にして非磁性下地層用非磁性粒子粉末を得た。
Examples 1-10 to 1-16:
A nonmagnetic particle powder for a nonmagnetic underlayer was obtained in the same manner as in Example 1-9 except that the type of nonmagnetic particles and the type and amount of the surface treatment additive were variously changed.

このときの製造条件を表4に、得られた非磁性下地層用非磁性粒子粉末の諸特性を表5に示す。   The production conditions at this time are shown in Table 4, and various characteristics of the obtained nonmagnetic particle powder for nonmagnetic underlayer are shown in Table 5.

Figure 0006103172
Figure 0006103172

Figure 0006103172
Figure 0006103172

<非磁性下地層の製造>
非磁性下地層2〜10及び比較非磁性下地層1:
非磁性下地層用非磁性粒子粉末の種類を種々変化させた以外は、非磁性下地層1と同様にして非磁性下地層を得た。
<Manufacture of nonmagnetic underlayer>
Nonmagnetic underlayers 2 to 10 and comparative nonmagnetic underlayer 1:
A nonmagnetic underlayer was obtained in the same manner as the nonmagnetic underlayer 1 except that the type of nonmagnetic particle powder for the nonmagnetic underlayer was variously changed.

このときの製造条件、及び得られた非磁性下地層の諸特性を表6に示す。   Table 6 shows the manufacturing conditions and various characteristics of the obtained nonmagnetic underlayer.

Figure 0006103172
Figure 0006103172

<磁気記録媒体の製造>
実施例2−2〜2−10及び比較例2−1:
非磁性下地層の種類及び磁性粒子の種類を種々変化させた以外は、前記実施例2−1と同様にして磁気記録媒体を製造した。
<Manufacture of magnetic recording media>
Examples 2-2 to 2-10 and Comparative Example 2-1
A magnetic recording medium was manufactured in the same manner as in Example 2-1 except that the type of the nonmagnetic underlayer and the type of the magnetic particles were variously changed.

尚、使用した磁性粒子(1)〜(3)の諸特性を表7に示す。   Table 7 shows various characteristics of the magnetic particles (1) to (3) used.

Figure 0006103172
Figure 0006103172

このときの製造条件及び得られた磁気記録媒体の諸特性を表8に示す。   Table 8 shows the manufacturing conditions and various characteristics of the obtained magnetic recording medium.

Figure 0006103172
Figure 0006103172

本発明に係る磁気記録媒体の非磁性下地層用非磁性粒子粉末は、単結晶化度[平均長軸径(DTEM)と結晶子径(D)の比(DTEM/D)]が8.0以下であり、非磁性下地層用塗料における分散性及び非磁性下地層中における充填性に優れているため、高密度磁気記録媒体の非磁性下地層用非磁性粒子粉末として好適である。 The nonmagnetic particle powder for the nonmagnetic underlayer of the magnetic recording medium according to the present invention has a single crystallinity [ratio of average major axis diameter (D TEM ) and crystallite diameter (D X ) (D TEM / D X )]. Is not more than 8.0, and is excellent in dispersibility in the coating for nonmagnetic underlayer and filling property in the nonmagnetic underlayer, so that it is suitable as nonmagnetic particle powder for nonmagnetic underlayer in high-density magnetic recording media. is there.

また、本発明に係る磁気記録媒体の非磁性下地層用非磁性粒子粉末のうち、平均長軸径が50nm以下の場合、単位体積当たりの記録密度を向上させることができるため、今後更に薄層化する傾向にある高密度磁気記録媒体の非磁性下地層用非磁性粒子粉末として好適である。   Further, among the nonmagnetic particle powders for the nonmagnetic underlayer of the magnetic recording medium according to the present invention, when the average major axis diameter is 50 nm or less, the recording density per unit volume can be improved. It is suitable as a non-magnetic particle powder for a non-magnetic underlayer of a high-density magnetic recording medium that tends to be transformed.

また、本発明に係る磁気記録媒体は、上述の非磁性粒子粉末を磁気記録媒体の非磁性下地層用非磁性粒子粉末として用いることにより、高い表面平滑性と優れた塗膜強度を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体として好適である。
In addition, the magnetic recording medium according to the present invention uses the above-mentioned nonmagnetic particle powder as a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium, so that the magnetic recording has high surface smoothness and excellent coating strength. Since a medium can be obtained, it is suitable as a high-density magnetic recording medium.

Claims (2)

ヘマタイト粒子粉末からなる非磁性粒子粉末において、平均長軸径が1〜50nmであり、タップ密度(ρt)が0.60g/cm 以上であり、単結晶化度[平均長軸径(DTEM)と結晶子径(D)の比(DTEM/D)]が8.0以下であることを特徴とする磁気記録媒体の非磁性下地層用非磁性粒子粉末。 In the nonmagnetic particle powder made of hematite particle powder, the average major axis diameter is 1 to 50 nm, the tap density (ρt) is 0.60 g / cm 3 or more, and the single crystallinity [average major axis diameter (D TEM ) And crystallite diameter (D X ) ratio (D TEM / D X )] is 8.0 or less, a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium. 非磁性支持体、該非磁性支持体上に形成される非磁性粒子粉末と結合剤樹脂とを含む非磁性下地層及び該非磁性下地層の上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記非磁性粒子粉末が請求項1に記載された磁気記録媒体の非磁性下地層用非磁性粒子粉末であることを特徴とする磁気記録媒体。
Nonmagnetic support, nonmagnetic underlayer containing nonmagnetic particle powder and binder resin formed on nonmagnetic support, and magnetic particle powder and binder resin formed on nonmagnetic underlayer A magnetic recording medium comprising a magnetic recording layer, wherein the nonmagnetic particle powder is a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium according to claim 1 .
JP2012082445A 2012-03-30 2012-03-30 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium Active JP6103172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082445A JP6103172B2 (en) 2012-03-30 2012-03-30 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082445A JP6103172B2 (en) 2012-03-30 2012-03-30 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2013211085A JP2013211085A (en) 2013-10-10
JP6103172B2 true JP6103172B2 (en) 2017-03-29

Family

ID=49528761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082445A Active JP6103172B2 (en) 2012-03-30 2012-03-30 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP6103172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210903A1 (en) * 2021-03-31 2022-10-06

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385481B2 (en) * 1992-10-21 2003-03-10 コニカ株式会社 Magnetic recording media
JPH08255337A (en) * 1995-03-16 1996-10-01 Konica Corp Magnetic recording medium and its production
JP3669520B2 (en) * 1995-03-17 2005-07-06 富士写真フイルム株式会社 Magnetic recording medium

Also Published As

Publication number Publication date
JP2013211085A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5403278B2 (en) Hexagonal ferrite particle powder and magnetic recording medium
JP5589348B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
JP5454037B2 (en) Method for producing hexagonal ferrite particle powder and magnetic recording medium
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5418754B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP5439861B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP5344139B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP5403241B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5418773B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5754091B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP5311074B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5446478B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5446527B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP5447767B2 (en) Method for producing ferromagnetic metal particle powder
JP5447768B2 (en) Method for producing ferromagnetic metal particle powder
JP5625364B2 (en) Method for producing hexagonal ferrite particle powder, hexagonal ferrite particle powder, and magnetic recording medium
JP5316522B2 (en) Magnetic particle powder
JP5305037B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5700191B2 (en) Method for producing ferromagnetic metal particle powder, magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6103172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250