JP6164396B2 - Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium - Google Patents

Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium Download PDF

Info

Publication number
JP6164396B2
JP6164396B2 JP2013012640A JP2013012640A JP6164396B2 JP 6164396 B2 JP6164396 B2 JP 6164396B2 JP 2013012640 A JP2013012640 A JP 2013012640A JP 2013012640 A JP2013012640 A JP 2013012640A JP 6164396 B2 JP6164396 B2 JP 6164396B2
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
spinel
particle powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013012640A
Other languages
Japanese (ja)
Other versions
JP2014146387A (en
Inventor
真司 堀江
真司 堀江
安玉 章
安玉 章
森井 弘子
弘子 森井
林 一之
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2013012640A priority Critical patent/JP6164396B2/en
Priority to PCT/JP2014/051490 priority patent/WO2014115836A1/en
Publication of JP2014146387A publication Critical patent/JP2014146387A/en
Application granted granted Critical
Publication of JP6164396B2 publication Critical patent/JP6164396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Description

本発明は、磁気記録媒体用スピネル型フェリ磁性粒子粉末に関するものであり、詳しくは、平均粒子径が5〜70nmと微細であるにもかかわらず、粉体SFDが1.4以下である、磁気記録媒体のノイズ低減に効果的なスピネル型フェリ磁性粒子粉末および該スピネル型フェリ磁性粒子粉末を用いた磁気記録媒体に関する。   The present invention relates to a spinel-type ferrimagnetic particle powder for magnetic recording media, and more specifically, a magnetic powder having an average particle size of 5 to 70 nm and a powder SFD of 1.4 or less. The present invention relates to a spinel-type ferrimagnetic particle powder effective for reducing noise in a recording medium and a magnetic recording medium using the spinel-type ferrimagnetic particle powder.

磁気記録技術は、従来、オーディオ用、ビデオ用、コンピューター用等をはじめとしてさまざまな分野で幅広く用いられている。近年、機器の小型軽量化、記録の長時間化及び記録容量の増大等が求められており、記録媒体に対しては、記録密度のより一層の向上が望まれている。   Conventionally, magnetic recording technology has been widely used in various fields including audio, video, and computer. In recent years, there has been a demand for smaller and lighter devices, longer recording time, increased recording capacity, and the like, and further improvement in recording density is desired for recording media.

従来の磁気記録媒体に対してより高密度記録を行うためには、高いC/N比が必要であり、ノイズ(N)が低く、再生出力(C)が高いことが求められている。近年では、これまで用いられていた誘導型磁気ヘッドに替わり、磁気抵抗型ヘッド(MRヘッド)や巨大磁気抵抗型ヘッド(GMRヘッド)等の高感度ヘッドが開発されており、これらは誘導型磁気ヘッドに比べて再生出力が得られやすいことから、高いC/N比を得るためには、出力を上げるよりもノイズを低減する方が重要となってきている。   In order to perform high-density recording on a conventional magnetic recording medium, a high C / N ratio is required, noise (N) is low, and reproduction output (C) is required to be high. In recent years, high-sensitivity heads such as magnetoresistive heads (MR heads) and giant magnetoresistive heads (GMR heads) have been developed in place of the inductive magnetic heads used so far. Since it is easy to obtain a reproduction output as compared with the head, in order to obtain a high C / N ratio, it is more important to reduce the noise than to increase the output.

磁気記録媒体のノイズは、粒子性ノイズと磁気記録媒体の表面性に起因して発生する表面性ノイズとに大別される。粒子性ノイズの場合、粒子サイズの影響が大きく、微粒子であるほどノイズ低減に有利であることから、磁気記録媒体に用いる磁性粒子粉末の粒子サイズはできるだけ小さいことが必要となるが、磁性粒子粉末は微細化することによって粒子体積が小さくなるため、磁化の熱的安定性を表す磁気異方性エネルギーと熱エネルギーとの比(KuV/kT)(Ku:磁気異方性定数、V:粒子体積、k:ボルツマン定数、T:絶対温度)が小さくなり、熱揺らぎの影響を受けやすくなる。   The noise of the magnetic recording medium is roughly divided into particulate noise and surface noise generated due to the surface property of the magnetic recording medium. In the case of particulate noise, the influence of the particle size is large, and the finer the particle, the better the noise reduction. Therefore, the magnetic particle powder used in the magnetic recording medium needs to be as small as possible. Since the particle volume is reduced by miniaturization, the ratio of magnetic anisotropy energy and thermal energy (KuV / kT) representing the thermal stability of magnetization (Ku: magnetic anisotropy constant, V: particle volume) , K: Boltzmann constant, T: absolute temperature) becomes small, and is susceptible to thermal fluctuations.

一般に、微粒子、且つ、高保磁力値を有する磁性粒子粉末としては、鉄を主成分とする金属磁性粒子粉末、六方晶フェライト粒子粉末及びスピネル型フェリ磁性粒子粉末等が知られている。   In general, as magnetic particles having fine particles and a high coercive force value, metal magnetic particle powder containing iron as a main component, hexagonal ferrite particle powder, spinel ferrimagnetic particle powder, and the like are known.

しかしながら、鉄を主成分とする金属磁性粒子粉末は、磁化の発現メカニズムが形状磁気異方性に由来しているため、粒子サイズが小さくなると保磁力(Hc)および飽和磁化値(σs)が低下する傾向にある。また、六方晶フェライト粒子粉末は、σs(飽和磁化値)が金属磁性粒子粉末の約1/2程度であり、Ku(Kuは、Hk・σs/2で求められる)(Hk:異方性磁界)を大きくすることが難しく、熱揺らぎの影響は金属磁性粒子粉末と比べて大きくなる傾向にある。更に、六方晶フェライト粒子粉末の場合、微粒子化を図るために結晶化温度を低く設定することで結晶成長を抑制するため、SFDが大きくなる傾向にあり、自己減磁の影響のため高い出力が得にくいことが知られている。   However, in the magnetic metal particle powder mainly composed of iron, the coercive force (Hc) and the saturation magnetization value (σs) decrease as the particle size decreases because the mechanism of magnetization is derived from shape magnetic anisotropy. Tend to. Further, the hexagonal ferrite particle powder has σs (saturation magnetization value) of about ½ of that of the metal magnetic particle powder, and Ku (Ku is obtained by Hk · σs / 2) (Hk: anisotropic magnetic field) ) Is difficult to increase, and the influence of thermal fluctuation tends to be larger than that of metal magnetic particle powder. Furthermore, in the case of hexagonal ferrite particle powder, the SFD tends to increase because the crystal growth is suppressed by setting the crystallization temperature low in order to reduce the particle size, and the high output due to the influence of self-demagnetization. It is known that it is difficult to obtain.

これまでに、高密度磁気記録材料として、粒子径が微細でありながら、高い保磁力(Hc)と大きな飽和磁化値(σs)を有する分散性および化学的安定性に優れたスピネル型フェリ磁性粒子が知られている(特許文献1乃至3)。   Up to now, spinel ferrimagnetic particles with high dispersibility and chemical stability having high coercive force (Hc) and large saturation magnetization value (σs) as a high-density magnetic recording material, although the particle diameter is fine Are known (Patent Documents 1 to 3).

特開2004−231460号公報JP 2004-231460 A 国際公開WO2004/100190号公報International Publication WO 2004/100190 特開2006−229037号公報JP 2006-229037 A

前出特許文献1乃至3には、粒子表面がSi,Al,P及びZnの群から選ばれる1種以上の金属の水酸化物で被覆された平均粒子径が5〜30nmのスピネル型フェリ磁性粒子粉末が記載されているが、後出比較例に示す通り、粉体SFDが大きく、磁気記録媒体のノイズが高くなるため、優れた出力特性を得ることが困難である。   In the above-mentioned patent documents 1 to 3, spinel ferrimagnetism having an average particle diameter of 5 to 30 nm in which the particle surface is coated with a hydroxide of one or more metals selected from the group of Si, Al, P and Zn. Although particle powder is described, it is difficult to obtain excellent output characteristics because the powder SFD is large and the noise of the magnetic recording medium is high, as shown in a comparative example.

そこで、本発明は、平均粒子径が5〜70nmであり、且つ、粉体SFDが1.4以下である、磁気記録媒体のノイズ低減に効果的なスピネル型フェリ磁性粒子粉末を得ることを技術的課題とする。   Therefore, the present invention provides a technique for obtaining a spinel-type ferrimagnetic particle powder having an average particle diameter of 5 to 70 nm and a powder SFD of 1.4 or less, which is effective for reducing noise in a magnetic recording medium. As an objective.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、下記一般式で表されるスピネル型フェリ磁性粒子からなり、平均粒子径が5〜70nmであり、且つ、粉体SFDが1.4以下であることを特徴とする磁気記録媒体用スピネル型フェリ磁性粒子粉末である(本発明1)。
(CoO)(NiO)(MO)・n/2(Fe
(M:2価乃至5価の金属元素)(2.05≦n≦3.0)
(x:0.15〜0.60、y:0.15〜0.60、z:0〜0.3)
(x+y+az/2=1)(a:金属元素の価数)
That is, the present invention is a magnetic recording comprising spinel-type ferrimagnetic particles represented by the following general formula, having an average particle diameter of 5 to 70 nm, and a powder SFD of 1.4 or less. It is a spinel type ferrimagnetic particle powder for a medium (Invention 1).
(CoO) x (NiO) y (MO) z · n / 2 (Fe 2 O 3)
(M: divalent to pentavalent metal element) (2.05 ≦ n ≦ 3.0)
(X: 0.15 to 0.60, y: 0.15 to 0.60, z: 0 to 0.3)
(X + y + az / 2 = 1) (a: valence of metal element)

また、本発明は、2価乃至5価の金属元素MがZn,Mn,Mg,Sn,Cu,Si,Pd,Cr,Al,La,Ce,Y,Sc,Sb,Rh,Nd,B,Ru,Pr,Bi,Zr,Ti,Ge,Mo,Nb,P,Reの群から選ばれる1種又は2種以上からなる本発明1の磁気記録媒体用スピネル型フェリ磁性粒子粉末である(本発明2)。   In the present invention, the divalent to pentavalent metal element M is Zn, Mn, Mg, Sn, Cu, Si, Pd, Cr, Al, La, Ce, Y, Sc, Sb, Rh, Nd, B, It is a spinel type ferrimagnetic particle powder for a magnetic recording medium according to the first aspect of the present invention comprising one or more selected from the group of Ru, Pr, Bi, Zr, Ti, Ge, Mo, Nb, P and Re. Invention 2).

また、本発明は、保磁力(Hc)が159.2〜397.9kA/mであり、飽和磁化値(σs)が40〜70Am/kgである本発明1又は本発明2のスピネル型フェリ磁性粒子粉末である(本発明3)。 In addition, the present invention provides the spinel ferrimagnetic material of the present invention 1 or the present invention 2 having a coercive force (Hc) of 159.2 to 397.9 kA / m and a saturation magnetization value (σs) of 40 to 70 Am 2 / kg. Magnetic particle powder (Invention 3).

また、本発明は、非磁性支持体上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記磁性粒子粉末として本発明1から本発明3のいずれかにの磁気記録媒体用スピネル型フェリ磁性粒子粉末を用いる磁気記録媒体である(本発明4)。   The present invention also provides a magnetic recording medium comprising a magnetic recording layer comprising a magnetic particle powder and a binder resin formed on a nonmagnetic support, wherein the magnetic particle powder is any one of the present inventions 1 to 3. 2 is a magnetic recording medium using spinel-type ferrimagnetic particle powder for magnetic recording medium (invention 4).

本発明に係るスピネル型フェリ磁性粒子粉末は、平均粒子径が5〜70nmと微細であるにもかかわらず、粉体SFDが1.4以下であることにより、磁気記録媒体のノイズをより低減できるため、高密度磁気記録媒体の磁性粒子粉末として好適である。   The spinel-type ferrimagnetic particle powder according to the present invention can further reduce noise of the magnetic recording medium because the powder SFD is 1.4 or less despite the fine average particle diameter of 5 to 70 nm. Therefore, it is suitable as a magnetic particle powder for a high-density magnetic recording medium.

本発明の構成をより詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末について述べる。   First, the spinel ferrimagnetic particle powder for magnetic recording media according to the present invention will be described.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末は、下記一般式で表されるスピネル型フェリ磁性粒子粉末からなり、平均粒子径が5〜70nmであり、且つ、粉体SFDが1.4以下であることを特徴とする。
(CoO)(NiO)(MO)・n/2(Fe
(M:2価乃至5価の金属元素)(2.05≦n≦3.0)
(x:0.15〜0.60、y:0.15〜0.60、z:0〜0.3)
(x+y+az/2=1)(a:金属元素の価数)
The spinel-type ferrimagnetic particle powder for magnetic recording media according to the present invention comprises a spinel-type ferrimagnetic particle powder represented by the following general formula, has an average particle diameter of 5 to 70 nm, and a powder SFD of 1. 4 or less.
(CoO) x (NiO) y (MO) z · n / 2 (Fe 2 O 3)
(M: divalent to pentavalent metal element) (2.05 ≦ n ≦ 3.0)
(X: 0.15 to 0.60, y: 0.15 to 0.60, z: 0 to 0.3)
(X + y + az / 2 = 1) (a: valence of metal element)

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の組成は、式:(CoO)(NiO)(MO)・n/2(Fe)で示される。式中、Mは、2価〜5価の金属元素であり、具体的には、Zn,Mn,Mg,Sn,Cu,Si,Pd,Cr,Al,La,Ce,Y,Sc,Sb,Rh,Nd,B,Ru,Pr,Bi,Zr,Ti,Ge,Mo,Nb,P及びReの群から選ばれる1種又は2種以上の金属元素である。得られるスピネル型フェリ磁性粒子粉末の磁気特性を考慮すれば、Mは2価の金属元素であることが好ましく、より好ましくはZn,Mn,及びCuである。 The composition of the spinel type ferrimagnetic particle powder for magnetic recording media according to the present invention is represented by the formula: (CoO) x (NiO) y (MO) z · n / 2 (Fe 2 O 3 ). In the formula, M is a divalent to pentavalent metal element, specifically, Zn, Mn, Mg, Sn, Cu, Si, Pd, Cr, Al, La, Ce, Y, Sc, Sb, One or more metal elements selected from the group of Rh, Nd, B, Ru, Pr, Bi, Zr, Ti, Ge, Mo, Nb, P and Re. Considering the magnetic properties of the obtained spinel ferrimagnetic particle powder, M is preferably a divalent metal element, more preferably Zn, Mn, and Cu.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の上記組成式におけるnは、スピネル型フェライトの化学量論量より大きい値であり、具体的には、2.05〜3.0の範囲であることが好ましい。nが上記範囲を外れる場合は、保磁力(Hc)が著しく低下するため好ましくない。より好ましいnの値は2.1〜2.9である。   In the above composition formula of the spinel type ferrimagnetic particle powder for magnetic recording media according to the present invention, n is a value larger than the stoichiometric amount of the spinel type ferrite, specifically, a range of 2.05 to 3.0. It is preferable that When n is out of the above range, the coercive force (Hc) is remarkably lowered, which is not preferable. A more preferable value of n is 2.1 to 2.9.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の上記組成式におけるx、y、zは、x が通常0.15〜0.60、好ましくは0.20〜0.55であり、y が通常0.15〜0.60、好ましくは0.20〜0.55であり、z
が通常0〜0.3、好ましくは0.01〜0.3であり、x + y +az/2 = 1である。
In the above composition formula of the spinel-type ferrimagnetic particle powder for magnetic recording media according to the present invention, x, y and z are usually 0.15 to 0.60, preferably 0.20 to 0.55, y Is usually 0.15 to 0.60, preferably 0.20 to 0.55, and z
Is usually 0 to 0.3, preferably 0.01 to 0.3, and x + y + az / 2 = 1.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の平均粒子径は、5〜70nm、好ましくは9〜60nm、より好ましくは10〜50nmである。平均粒子径が5nm未満の場合は、スピネル型フェリ磁性粒子粉末の飽和磁化値が低くなり、磁性材料として十分な特性を得ることが困難となる。また、磁性粒子粉末の微細化に伴う熱揺らぎの影響が大きくなるため好ましくない。70nmを超える合は、粒子サイズが大きいため粒子性ノイズをより低減することが難しく、高いC/N比を有する磁気記録媒体を得ることが困難となる。   The average particle diameter of the spinel type ferrimagnetic particle powder for magnetic recording media according to the present invention is 5 to 70 nm, preferably 9 to 60 nm, and more preferably 10 to 50 nm. When the average particle diameter is less than 5 nm, the saturation magnetization value of the spinel ferrimagnetic particle powder becomes low, and it becomes difficult to obtain sufficient characteristics as a magnetic material. Moreover, since the influence of the thermal fluctuation accompanying refinement | miniaturization of magnetic particle powder becomes large, it is not preferable. If it exceeds 70 nm, it is difficult to reduce the particle noise because the particle size is large, and it becomes difficult to obtain a magnetic recording medium having a high C / N ratio.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末のBET比表面積値は15〜250m2/gが好ましく、より好ましくは20〜150m2/g、更により好ましくは25〜130m2/gである。BET比表面積値が15m2/g未満の場合には、磁気記録媒体用磁性微粒子粉末が粗大であるため、これを用いて得られた磁気記録媒体の表面平滑性が低下すると共に、粒子性ノイズが増大するため好ましくない。また、BET比表面積値が250m2/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、磁性塗料の製造時におけるビヒクル中への分散性が低下する。 BET specific surface area of the magnetic recording medium for the spinel-type ferrimagnetic particles according to the present invention is preferably 15~250m 2 / g, more preferably 20~150m 2 / g, even more preferably at 25~130m 2 / g is there. When the BET specific surface area value is less than 15 m 2 / g, the magnetic fine particle powder for a magnetic recording medium is coarse, so that the surface smoothness of the magnetic recording medium obtained using this decreases, and the particulate noise Is unfavorable because of an increase. On the other hand, when the BET specific surface area value exceeds 250 m 2 / g, aggregation is likely to occur due to an increase in intermolecular force due to finer particles, so that the dispersibility in the vehicle during the production of the magnetic coating material is lowered.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の磁気特性は、保磁力(Hc)が159.2〜397.9kA/mが好ましく、より好ましくは159.2〜358.1kA/mであり、飽和磁化値が40〜70Am/kgが好ましく、より好ましくは45〜70Am/kgである。 The magnetic properties of the spinel-type ferrimagnetic particle powder for magnetic recording media according to the present invention are preferably such that the coercive force (Hc) is 159.2 to 397.9 kA / m, more preferably 159.2 to 358.1 kA / m. The saturation magnetization value is preferably 40 to 70 Am 2 / kg, more preferably 45 to 70 Am 2 / kg.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の粉体SFDは、1.4以下である。粉体SFDが1.4を超える場合、粉体SFDが大きく磁気記録媒体のノイズが高くなるため、優れた出力特性を得ることが困難である。好ましい粉体SFDは1.2以下である。   The powder SFD of the spinel ferrimagnetic particle powder for magnetic recording media according to the present invention is 1.4 or less. When the powder SFD exceeds 1.4, since the powder SFD is large and the noise of the magnetic recording medium is high, it is difficult to obtain excellent output characteristics. A preferable powder SFD is 1.2 or less.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末は、必要により、スピネル型フェリ磁性粒子粉末の粒子表面を、Si,Al,P及びZnの群から選ばれる1種以上の水酸化物又は酸化物で被覆しておいてもよい。Si,Al,P及びZnの群から選ばれる1種以上の水酸化物又は酸化物で被覆処理を行うことにより、磁性塗料中に分散させた場合に、結合剤樹脂とのなじみがよく、所望の分散度がより得られ易い。   The spinel-type ferrimagnetic particle powder for magnetic recording media according to the present invention, if necessary, the surface of the spinel-type ferrimagnetic particle powder is one or more hydroxides selected from the group of Si, Al, P and Zn, or You may coat | cover with an oxide. When it is dispersed in a magnetic paint by coating with one or more hydroxides or oxides selected from the group consisting of Si, Al, P, and Zn, it has good compatibility with the binder resin. The degree of dispersion is more easily obtained.

次に、本発明に係る磁気記録媒体について述べる。   Next, the magnetic recording medium according to the present invention will be described.

本発明に係る磁気記録媒体は、本発明に係るスピネル型フェリ磁性粒子粉末と結合剤樹脂とを含む磁気記録層が非磁性支持体上に形成されてなる。また、必要に応じて、非磁性支持体と磁気記録層との間に非磁性下地層を形成してもよく、更に、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成させてもよい。殊に、コンピューター記録用のバックアップテープの場合には、巻き乱れの防止や走行耐久性向上の点から、非磁性下地層やバックコート層を設けることが好ましい。   The magnetic recording medium according to the present invention has a magnetic recording layer containing the spinel-type ferrimagnetic particle powder according to the present invention and a binder resin formed on a nonmagnetic support. Further, if necessary, a nonmagnetic underlayer may be formed between the nonmagnetic support and the magnetic recording layer, and further, with respect to the magnetic recording layer formed on one surface of the nonmagnetic support, A back coat layer may be formed on the other surface of the nonmagnetic support. In particular, in the case of a backup tape for computer recording, it is preferable to provide a nonmagnetic underlayer or a backcoat layer from the viewpoint of preventing winding disturbance and improving running durability.

本発明における非磁性支持体としては、現在、磁気記録媒体に汎用されているポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリイミド、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリアミドイミド、ポリスルフォン、セルローストリアセテート、ポリベンゾオキサゾール等の合成樹脂フィルム、アルミニウム、ステンレス等金属の箔や板及び各種の紙を使用することができる。   As the nonmagnetic support in the present invention, polyesters such as polyethylene terephthalate and polyethylene naphthalate that are currently widely used in magnetic recording media, polyolefins such as polyethylene and polypropylene, polycarbonate, polyamide, polyamideimide, polyimide, aromatic Synthetic resin films such as polyamide, aromatic polyimide, aromatic polyamideimide, polysulfone, cellulose triacetate, and polybenzoxazole, metal foils and plates such as aluminum and stainless steel, and various papers can be used.

結合剤樹脂としては、磁気記録媒体の製造にあたって汎用されている熱可塑性樹脂、熱硬化性樹脂、電子線硬化型樹脂等を単独又は組み合わせて用いることができる。   As the binder resin, a thermoplastic resin, a thermosetting resin, an electron beam curable resin, etc. that are widely used in the production of magnetic recording media can be used alone or in combination.

本発明の磁気記録媒体において、非磁性支持体と磁気記録層との間に非磁性下地層を形成する場合、非磁性下地層中には非磁性粒子粉末と結合剤が含まれている。   In the magnetic recording medium of the present invention, when a nonmagnetic underlayer is formed between the nonmagnetic support and the magnetic recording layer, the nonmagnetic underlayer contains nonmagnetic particle powder and a binder.

非磁性下地層に用いられる非磁性粒子粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等を、単独又は組合せて用いることができる。好ましくはヘマタイト、ゲータイト、酸化チタンであり、より好ましくはヘマタイトである。   Nonmagnetic particle powders used for the nonmagnetic underlayer include alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, and barium sulfate. Can be used alone or in combination. Hematite, goethite and titanium oxide are preferred, and hematite is more preferred.

前記非磁性粒子粉末の粒子形状は、針状、紡錘状、米粒状、球状、粒状、多面体状、フレーク状、鱗片状及び板状等のいずれの形状であってもよい。粒子サイズは、好ましくは0.005〜0.30μmであり、より好ましくは0.010〜0.25μmである。また、必要により、粒子表面をアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれた1種又は2種以上の化合物で被覆してもよく、化合物で被覆しない場合に比べ、非磁性塗料中での分散性を改善することができる。   The particle shape of the non-magnetic particle powder may be any shape such as needle shape, spindle shape, rice grain shape, spherical shape, granular shape, polyhedron shape, flake shape, scale shape and plate shape. The particle size is preferably 0.005 to 0.30 μm, more preferably 0.010 to 0.25 μm. If necessary, the particle surface may be coated with one or more compounds selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. Compared with the case of not coating, dispersibility in the nonmagnetic paint can be improved.

結合剤樹脂としては、前記磁気記録層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the magnetic recording layer can be used.

本発明の磁気記録媒体において、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成する場合、バックコート層中には、結合剤樹脂と共に、バックコート層の表面電気抵抗値及び強度向上を目的として、帯電防止剤及び無機粒子粉末を含有させることが好ましい。   In the magnetic recording medium of the present invention, when a backcoat layer is formed on the other surface of the nonmagnetic support relative to the magnetic recording layer formed on one surface of the nonmagnetic support, It is preferable to contain an antistatic agent and inorganic particle powder together with the binder resin for the purpose of improving the surface electrical resistance value and strength of the backcoat layer.

無機粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等から選ばれる1種又は2種以上を用いることができる。粒子サイズは、好ましくは0.005〜1.0μmであり、より好ましくは0.010〜0.5μmである。   As the inorganic powder, one or more selected from alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, barium sulfate, etc. Can be used. The particle size is preferably 0.005 to 1.0 [mu] m, more preferably 0.010 to 0.5 [mu] m.

帯電防止剤としては、カーボンブラック、グラファイト、酸化スズ、酸化チタン−酸化スズ−酸化アンチモン等の導電性粉末及び界面活性剤等を用いることができる。帯電防止の他に、摩擦係数低減、磁気記録媒体の強度向上といった効果が期待できることから、帯電防止剤としては、カーボンブラックを用いることが好ましい。   As the antistatic agent, conductive powder such as carbon black, graphite, tin oxide, titanium oxide-tin oxide-antimony oxide, a surfactant, and the like can be used. In addition to antistatic properties, carbon black is preferably used as the antistatic agent since effects such as reduction of the friction coefficient and improvement of the strength of the magnetic recording medium can be expected.

結合剤樹脂としては、前記磁気記録層、及び非磁性下地層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the magnetic recording layer and the nonmagnetic underlayer can be used.

本発明における磁気記録層、非磁性下地層及びバックコート層中には、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、分散剤、帯電防止剤等を添加してもよい。   In the magnetic recording layer, nonmagnetic underlayer and backcoat layer in the present invention, lubricants, abrasives, dispersants, antistatic agents, etc., which are usually used in the production of magnetic recording media are added as necessary. May be.

本発明に係る磁気記録媒体は、保磁力値が159.2〜397.9kA/m、好ましくは159.2〜358.1kA/m、保磁力分布SFD(Switching Field Distribution)が、1.2以下、好ましくは1.1以下である。   The magnetic recording medium according to the present invention has a coercive force value of 159.2 to 397.9 kA / m, preferably 159.2 to 358.1 kA / m, and a coercive force distribution SFD (Switching Field Distribution) of 1.2 or less. , Preferably 1.1 or less.

次に、本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末の製造法について述べる。   Next, a method for producing a spinel ferrimagnetic particle powder for a magnetic recording medium according to the present invention will be described.

本発明における磁気記録媒体用スピネル型フェリ磁性粒子粉末の製造法は、(1)Fe含有水溶液とNi含有水溶液を含む、Fe、Ni含有原料水溶液と、Co含有原料水溶液をそれぞれ調製する原料水溶液の調製工程(ただし、2価乃至5価の金属元素Mは、必要に応じてM含有水溶液をFe,Ni含有原料水溶液、もしくはCo含有水溶液と混合する);(2)アルカリ水溶液に、Fe、Ni含有原料水溶液を添加するFe、Ni含有共沈沈殿物含有液の生成工程;(3)当該Fe、Ni含有共沈沈殿物含有液にCo含有原料水溶液を添加するFe、Ni、Co含有共沈沈殿物含有液の生成工程;(4)当該Fe、Ni、Co含有共沈沈澱物含有液を80〜120℃で加熱処理する黒色粒子の生成工程;(5)黒色粒子を洗浄してアルカリを除去した後、酸を添加して超微細粒子成分を除去する黒色粒子のエッチング工程;および(6)(5)で得られた黒色粒子をろ過および洗浄し120℃以下の温度で乾燥後、粉砕を行い、160℃〜250℃で加熱処理する工程からなる。   The method for producing spinel-type ferrimagnetic particle powder for magnetic recording media according to the present invention includes the following steps: Preparation step (however, the divalent to pentavalent metal element M is mixed with an aqueous M-containing solution or Fe-containing Ni-containing aqueous solution or Co-containing aqueous solution as necessary); (2) Fe, Ni (3) Fe, Ni, Co-containing coprecipitation adding Co-containing raw material aqueous solution to the Fe, Ni-containing coprecipitate precipitate-containing liquid Step for producing precipitate-containing liquid; (4) Step for producing black particles by heat-treating the Fe, Ni, Co-containing coprecipitate-containing liquid at 80 to 120 ° C .; And removing the ultrafine particle component by adding acid to the black particle etching step; and (6) after filtering and washing the black particles obtained in (5), drying at a temperature of 120 ° C. or lower, It consists of a step of pulverization and heat treatment at 160 to 250 ° C.

まず、原料水溶液の調製工程(1)において、原料であるFe、Ni、Co、M(2価乃至5価の金属元素)の水可溶性金属塩をそれぞれ水に溶解して、所定濃度の金属塩(Fe3+、Ni2+、Co2+及びMa+(a:2〜5))を含有する各水溶液を調整する。次いで、Fe含有水溶液とNi含有水溶液を混合し、Fe、Ni含有原料水溶液を調製する。なお、M(2価乃至5価の金属元素)含有水溶液は、必要に応じてFe、Ni含有原料水溶液、またはCo含有原料水溶液と混合する。 First, in the raw material aqueous solution preparation step (1), water-soluble metal salts of Fe, Ni, Co, and M (divalent to pentavalent metal elements) that are raw materials are dissolved in water, respectively, to obtain a metal salt having a predetermined concentration. Each aqueous solution containing (Fe 3+ , Ni 2+ , Co 2+ and M a + (a: 2 to 5)) is prepared. Next, the Fe-containing aqueous solution and the Ni-containing aqueous solution are mixed to prepare an Fe and Ni-containing raw material aqueous solution. The M (divalent to pentavalent metal element) -containing aqueous solution is mixed with an Fe, Ni-containing raw material aqueous solution, or a Co-containing raw material aqueous solution as necessary.

本発明で使用する鉄化合物としては、塩化物、臭化物、沃化物等のハロゲン化物、硝酸塩、硫酸塩、炭酸塩、有機酸塩及び錯塩等の水溶性の鉄塩から選ばれる1種又は2種以上を用いることができる。水への溶解性及び経済性を考慮すれば、塩化第二鉄及び硝酸第二鉄が好ましい。   Examples of the iron compound used in the present invention include one or two selected from water-soluble iron salts such as halides such as chloride, bromide and iodide, nitrates, sulfates, carbonates, organic acid salts and complex salts. The above can be used. Considering solubility in water and economy, ferric chloride and ferric nitrate are preferable.

本発明で使用するNi化合物、Co化合物、M(2価乃至5価の金属元素)から選ばれる金属塩としては、水溶性の塩化物、臭化物、沃化物等のハロゲン化物又は硝酸塩を用いることができる。M(2価乃至5価の金属元素)としては、具体的にはZn、Mn、Mg、Ti、Sn、Zr、Cu、Mo、La、Ce、V、Si、Sc、Sb、Y、Rh、Pd、Cr、Nd、Nb、B、P、Ge、Al、Ru、Pr、Bi、W、Re等を用いることができる。   As a metal salt selected from Ni compounds, Co compounds, and M (divalent to pentavalent metal elements) used in the present invention, water-soluble chlorides, bromides, iodides and other halides or nitrates may be used. it can. Specific examples of M (divalent to pentavalent metal elements) include Zn, Mn, Mg, Ti, Sn, Zr, Cu, Mo, La, Ce, V, Si, Sc, Sb, Y, Rh, Pd, Cr, Nd, Nb, B, P, Ge, Al, Ru, Pr, Bi, W, Re, or the like can be used.

アルカリ水溶液の濃度は、Fe、Ni含有共沈沈殿物含有液にCo含有原料水溶液を添加した後の反応溶液中のアルカリ濃度が0.1〜10mol/Lとなるように調整することが好ましく、より好ましくは0.2〜8mol/Lである。アルカリの濃度が0.1mol/L未満の場合は、スピネル型フェリ磁性粒子の結晶化が不完全となり好ましくない。また、アルカリ水溶液の濃度が10mol/Lを超える場合は、保磁力が著しく低下するため好ましくない。   The concentration of the alkaline aqueous solution is preferably adjusted so that the alkali concentration in the reaction solution after adding the Co-containing raw material aqueous solution to the Fe, Ni-containing coprecipitate precipitate-containing liquid is 0.1 to 10 mol / L. More preferably, it is 0.2-8 mol / L. When the alkali concentration is less than 0.1 mol / L, crystallization of spinel ferrimagnetic particles is incomplete, which is not preferable. Moreover, since the coercive force falls remarkably when the density | concentration of aqueous alkali solution exceeds 10 mol / L, it is not preferable.

使用するアルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水など水可溶性アルカリ類が挙げられる。また、アルカリ水溶液の温度は、あらかじめ60℃〜110℃の範囲に加熱・昇温しておくことが好ましい。   Examples of the alkali to be used include water-soluble alkalis such as sodium hydroxide, potassium hydroxide and aqueous ammonia. Moreover, it is preferable to heat and raise the temperature of aqueous alkali solution beforehand in the range of 60 to 110 degreeC.

アルカリ水溶液へのFe、Ni含有原料水溶液の添加は、60℃〜110℃、好ましくは80〜100℃の温度下で攪拌しながら行い、次いで、60℃〜110℃の温度を保持した状態で5分〜2時間攪拌を行い、Fe、Ni含有共沈沈殿物含有液を得る。   Addition of the Fe and Ni-containing raw material aqueous solution to the alkaline aqueous solution is performed while stirring at a temperature of 60 to 110 ° C., preferably 80 to 100 ° C., and then, while maintaining the temperature of 60 to 110 ° C. Stirring is performed for min-2 hours to obtain a Fe, Ni-containing coprecipitate-containing liquid.

上記Fe、Ni含有共沈沈殿物含有液の生成工程において、アルカリ水溶液とFe、Ni含有原料水溶液との混合液の温度が60℃未満の場合は、生成する共沈沈殿物の粒子サイズが大きくなり、本発明の目的を達成することが困難である。また、混合液の温度が110℃以上の場合は、オートクレーブ等の特殊な装置を必要とするため、経済的でない。   In the step of producing the Fe, Ni-containing coprecipitate precipitate-containing liquid, when the temperature of the mixed solution of the alkaline aqueous solution and the Fe, Ni-containing raw material aqueous solution is less than 60 ° C, the particle size of the produced coprecipitate precipitate is large. Thus, it is difficult to achieve the object of the present invention. Further, when the temperature of the mixed liquid is 110 ° C. or higher, a special device such as an autoclave is required, which is not economical.

上記で得られたFe、Ni含有共沈沈殿物含有液へのCo含有原料水溶液の添加は、60℃〜110℃、好ましくは80〜100℃の温度下で攪拌しながら行う。   Addition of the Co-containing raw material aqueous solution to the Fe and Ni-containing coprecipitate precipitate-containing liquid obtained above is carried out with stirring at a temperature of 60 ° C to 110 ° C, preferably 80 to 100 ° C.

次いで、黒色粒子の生成工程(4)において、80℃〜120℃、好ましくは85〜110℃の温度下で30分〜20時間、好ましくは1〜15時間反応を行い、Fe、Ni、Co含有共沈沈殿物(黒色粒子)含有液を得る。Fe、Ni、Co含有共沈沈殿物含有液の生成工程における反応温度が80℃未満の場合は、超微粒子が生成し本発明の目的とする粒子サイズおよび磁気特性を有するスピネル型フェリ磁性粒子粉末を得ることが困難である。また、120℃を超える場合には粒子サイズが大きくなる傾向にあり、本発明の目的を達成することが困難である。   Next, in the black particle production step (4), the reaction is carried out at a temperature of 80 to 120 ° C., preferably 85 to 110 ° C. for 30 minutes to 20 hours, preferably 1 to 15 hours, and contains Fe, Ni and Co. A liquid containing a coprecipitate precipitate (black particles) is obtained. When the reaction temperature in the step of generating the Fe, Ni, Co-containing coprecipitate-containing precipitate-containing liquid is less than 80 ° C., ultrafine particles are generated, and the spinel-type ferrimagnetic particle powder having the particle size and magnetic properties intended by the present invention Is difficult to get. Moreover, when it exceeds 120 degreeC, it exists in the tendency for a particle size to become large, and it is difficult to achieve the objective of this invention.

共沈沈殿物含有液中の金属イオン濃度は、通常0.05〜0.5mol/L、好ましくは0.1〜0.4mol/Lである。金属イオン濃度が0.05mol/L未満の場合は、共沈沈殿物の濃度が低くなり過ぎて経済的でない。また、金属イオン濃度が0.5mol/Lを超える場合は、生成するスピネル型フェリ磁性粒子の粒度分布が大きくなり、本発明の目的を達成することが困難である。   The metal ion concentration in the coprecipitate precipitate-containing liquid is usually 0.05 to 0.5 mol / L, preferably 0.1 to 0.4 mol / L. When the metal ion concentration is less than 0.05 mol / L, the concentration of the coprecipitate precipitate becomes too low, which is not economical. On the other hand, when the metal ion concentration exceeds 0.5 mol / L, the particle size distribution of the generated spinel ferrimagnetic particles becomes large, and it is difficult to achieve the object of the present invention.

黒色粒子のエッチング工程(5)において、得られた黒色粒子を洗浄してアルカリを除去した後、酸を添加して超微細成分を除去する。洗浄方法としては、公知方法により行うことができる。洗浄は、ろ液の電気伝導度が1mS/cm以下になるまで行うことが好ましい。   In the black particle etching step (5), the obtained black particles are washed to remove alkali, and then an acid is added to remove ultrafine components. As a cleaning method, it can be performed by a known method. The washing is preferably performed until the filtrate has an electric conductivity of 1 mS / cm or less.

黒色粒子の酸エッチング方法は、例えば、黒色粒子中に含まれる金属イオンのモル数に対して、通常、5〜200モル%、好ましくは15〜100モル%に相当する酸当量を添加することから成る。エッチングの温度は、通常5〜90℃、好ましくは20〜50℃である。エッチングの時間は、通常1〜48時間、好ましくは2〜20時間である。添加する酸としては、塩酸、硫酸、硝酸、シュウ酸などが使用できる。酸の添加方法は、特に限定されず、例えば、一括添加でも、逐次添加でもよい。   In the acid etching method for black particles, for example, an acid equivalent corresponding to usually 5 to 200 mol%, preferably 15 to 100 mol% is added to the number of moles of metal ions contained in the black particles. Become. The etching temperature is usually 5 to 90 ° C., preferably 20 to 50 ° C. The etching time is usually 1 to 48 hours, preferably 2 to 20 hours. As the acid to be added, hydrochloric acid, sulfuric acid, nitric acid, oxalic acid and the like can be used. The method for adding the acid is not particularly limited, and for example, batch addition or sequential addition may be used.

酸当量が5モル%未満の場合は、超微細成分が多量に残存し、良好なSFDを有するスピネル型フェリ磁性粒子粉末を得ることが困難となる。また、酸当量が200モル%を超える場合は、得られる粒子の収量が低下するため工業的に好ましくない。   When the acid equivalent is less than 5 mol%, a large amount of ultrafine components remain, making it difficult to obtain a spinel ferrimagnetic particle powder having a good SFD. On the other hand, when the acid equivalent exceeds 200 mol%, the yield of the obtained particles is lowered, which is not industrially preferable.

黒色粒子のエッチング工程(5)後の黒色粒子含有液中には、可溶性金属塩などが含まれているので、洗浄によって可溶性金属塩などを除去する。洗浄方法としては、公知方法により行うことができる。洗浄は、ろ液の電気伝導度が50μS/cm以下になるまで行うことが好ましい。ただし、酸によるエッチング処理後にSi,Al,P,Znの群から選ばれた1種以上の金属含有水溶液を添加して金属水酸化物又は金属酸化物で粒子表面の被覆を行う場合は、ろ液の電気伝導度が1mS/cm以下になるまで洗浄を行えばよい。   Since the black particle-containing liquid after the black particle etching step (5) contains a soluble metal salt, the soluble metal salt is removed by washing. As a cleaning method, it can be performed by a known method. The washing is preferably performed until the electric conductivity of the filtrate is 50 μS / cm or less. However, when the particle surface is coated with a metal hydroxide or metal oxide by adding one or more metal-containing aqueous solutions selected from the group of Si, Al, P, and Zn after etching with an acid, Cleaning may be performed until the electric conductivity of the liquid becomes 1 mS / cm or less.

洗浄後、ろ過・乾燥・粉砕を行った後、加熱焼成してスピネル型フェリ磁性粒子粉末を得る。乾燥温度は、通常60〜120℃、好ましくは60〜100℃であり、乾燥時間は、通常2〜20時間である。   After washing, filtration, drying and pulverization are performed, followed by heating and firing to obtain spinel ferrimagnetic particle powder. The drying temperature is usually 60 to 120 ° C., preferably 60 to 100 ° C., and the drying time is usually 2 to 20 hours.

また、乾燥後の加熱焼成温度は160℃〜250℃、好ましくは180℃〜240℃であり、加熱焼成時間は15分〜3時間、好ましくは30分〜2時間である。加熱焼成処理が160℃未満の場合には、保磁力Hcが397.9kA/mを超えるため好ましくない。また、加熱焼成処理が250℃を超える場合には、保磁力Hcが159.2kA/m未満となり好ましくない。   The heating and baking temperature after drying is 160 ° C. to 250 ° C., preferably 180 ° C. to 240 ° C., and the heating and baking time is 15 minutes to 3 hours, preferably 30 minutes to 2 hours. When the heating and baking treatment is less than 160 ° C., the coercive force Hc exceeds 397.9 kA / m, which is not preferable. On the other hand, when the heating and baking treatment exceeds 250 ° C., the coercive force Hc is less than 159.2 kA / m, which is not preferable.

エッチング処理された黒色粒子を洗浄およびろ過した後、Si,Al,P,Znの群から選ばれた1種以上の金属含有水溶液を添加して金属水酸化物又は金属酸化物で粒子表面を被覆してもよい。   After cleaning and filtering the etched black particles, one or more metal-containing aqueous solutions selected from the group of Si, Al, P, and Zn are added to coat the particle surface with metal hydroxide or metal oxide May be.

上記表面被覆処理は、洗浄された黒色粒子含有液に、上記金属の水可溶性塩が溶解した水溶液を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整することにより、前記黒色粒子の粒子表面を被覆し、次いで、ろ別、水洗、乾燥、粉砕後、加熱焼成処理を行う。   The surface coating treatment is performed by adding an aqueous solution in which the metal water-soluble salt is dissolved to the washed black particle-containing liquid and mixing and stirring, or, if necessary, adjusting the pH value after mixing and stirring. The surface of the black particles is coated, and then filtered, washed, dried, pulverized, and then heated and fired.

珪素化合物としては、珪酸ナトリウム、珪酸カリウム等の水可溶性塩類が挙げられ、アルミニウム化合物としては、硫酸アルミニウム、アルミン酸ナトリウム等の水可溶性塩類が挙げられ、リン化合物としては、リン酸水素二ナトリウム、オルト燐酸などの水可溶性塩類が挙げられ、亜鉛化合物としては、塩化亜鉛、硫酸亜鉛などの水可溶性塩類が挙げられる。アルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水など水可溶性アルカリ類が挙げられる。   Examples of the silicon compound include water-soluble salts such as sodium silicate and potassium silicate. Examples of the aluminum compound include water-soluble salts such as aluminum sulfate and sodium aluminate. Examples of the phosphorus compound include disodium hydrogen phosphate, Water-soluble salts such as orthophosphoric acid are exemplified, and examples of the zinc compound include water-soluble salts such as zinc chloride and zinc sulfate. Examples of the alkali include water-soluble alkalis such as sodium hydroxide, potassium hydroxide, and aqueous ammonia.

次に、本発明における磁気記録媒体の製造法について述べる。   Next, a method for manufacturing a magnetic recording medium in the present invention will be described.

前記非磁性下地層、磁気記録層、及びバックコート層の形成にあたって用いる溶剤としては、磁気記録媒体に汎用されているアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びテトラヒドロフラン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール及びイソプロピルアルコール等のアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル及び酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル及びジオキサン等のグリコールエーテル類及びその混合物等を使用することができる。   Solvents used in forming the nonmagnetic underlayer, magnetic recording layer, and backcoat layer include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and tetrahydrofuran, toluene, xylene, and the like that are widely used in magnetic recording media. Aromatic hydrocarbons, alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol and isopropyl alcohol, esters such as methyl acetate, butyl acetate, isobutyl acetate and glycol acetate, glycol dimethyl ether, glycol monoethyl ether and dioxane Glycol ethers and mixtures thereof can be used.

非磁性下地層、磁気記録層、バックコート層は、各層を構成する成分及び溶剤を一般に使用される混練機及び分散機により混練・分散処理を行い、各塗料を作製する。該各塗料を用いて、非磁性支持体上の一面に非磁性下地層、磁気記録層の順に塗布、乾燥後、カレンダー処理を行う。その際の塗布方法としては、磁性層と非磁性層をほぼ同時に塗布するWet on Wet法でも、非磁性下地層を塗布・乾燥後、その上に磁気記録層を塗布するWet on Dry法のどちらでもよい。また、必要により、バックコート層を設ける場合には、非磁性下地層及び磁気記録層とは反対面の非磁性支持体上にバックコート層用塗料を塗布、乾燥後、カレンダー処理を行い、磁気記録媒体を得る。   The nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer are kneaded and dispersed with a kneader and a disperser that generally use components and solvents that constitute each layer, thereby preparing each paint. Using each of the coating materials, a nonmagnetic underlayer and a magnetic recording layer are applied in this order on one surface of the nonmagnetic support, dried, and then calendared. As a coating method at that time, either the Wet on Wet method in which the magnetic layer and the nonmagnetic layer are applied almost simultaneously, or the Wet on Dry method in which the nonmagnetic underlayer is applied and dried and then the magnetic recording layer is applied thereon. But you can. If necessary, if a backcoat layer is provided, a backcoat layer coating is applied on the nonmagnetic support opposite to the nonmagnetic underlayer and the magnetic recording layer, dried, calendered, and magnetically treated. A recording medium is obtained.

<作用>
本発明において最も重要な点は、本発明に係るスピネル型フェリ磁性粒子粉末は、平均粒子径が5〜70nmと微細であるにもかかわらず、粉体SFDが1.4以下であることにより、磁気記録媒体のノイズをより低減できることから、より高密度記録可能な磁気記録媒体を得ることができるという事実である。
<Action>
The most important point in the present invention is that the spinel-type ferrimagnetic particle powder according to the present invention has an average particle diameter of 5 to 70 nm and a powder SFD of 1.4 or less, This is the fact that a magnetic recording medium capable of higher density recording can be obtained because the noise of the magnetic recording medium can be further reduced.

本発明に係る磁気記録媒体用スピネル型フェリ磁性粒子粉末が、磁気記録媒体のノイズをより低減できた理由について、本発明者は、次のように考えている。   The present inventor considers the reason why the spinel-type ferrimagnetic particle powder for magnetic recording media according to the present invention can further reduce the noise of the magnetic recording media as follows.

即ち、従来のスピネル型フェリ磁性粒子粉末が、平均粒子径は5〜30nmと微細ではあるものの粉体SFDが大きく、磁気記録媒体のノイズ低減が困難であった。本発明者らは、原料溶液の添加方法の改良並びに、乾燥・粉砕工程後に加熱焼成処理を行うことにより、高保磁力Hc成分が少なくなることを見出し、その結果、保磁力Hcの分布がシャープになるため、粉体SFDを低減することができたため、磁気記録媒体のノイズをより低減できたものと考えている。   That is, although the conventional spinel type ferrimagnetic particle powder is fine with an average particle diameter of 5 to 30 nm, the powder SFD is large, and it is difficult to reduce noise in the magnetic recording medium. The present inventors have found that the coercive force Hc is sharply distributed by improving the addition method of the raw material solution and performing the heat-firing treatment after the drying / pulverization step, and as a result, the distribution of the coercive force Hc is sharp. Therefore, it is considered that the noise of the magnetic recording medium could be further reduced because the powder SFD could be reduced.

以下に、本発明における実施例を示し、本発明を具体的に説明する。   Examples of the present invention are shown below, and the present invention will be specifically described.

スピネル型フェリ磁性粒子の平均粒子径は、透過型電子顕微鏡を用いて複数の視野において粒子の写真を撮影し、該写真を用いて粒子360個以上について粒子径を測定し、その平均値で粒子の平均粒子径を示した。   The average particle diameter of the spinel ferrimagnetic particles is obtained by taking a photograph of the particles in a plurality of fields using a transmission electron microscope, measuring the particle diameter of 360 or more particles using the photograph, and calculating the average value of the particles. The average particle diameter was shown.

スピネル型フェリ磁性粒子粉末に含有される各種元素の含有量は、「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定した。   The content of various elements contained in the spinel ferrimagnetic particle powder was measured using an “inductively coupled plasma emission spectroscopic analyzer SPS4000” (manufactured by Seiko Denshi Kogyo Co., Ltd.).

比表面積は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。   The specific surface area was shown by the value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

スピネル型フェリ磁性粒子粉末及び磁気テープの磁気特性は、「振動試料型磁力計VSM SSM−5−15」(東英工業株式会社製)を用いて外部磁場1193.7kA/mの条件で測定した。また、粉体SFD及び磁気テープのSFDは、印加磁場が0〜397.9kA/mの範囲ではスイープ速度を79.6(kA/m)/分とし、397.9〜1,193.7kA/mの範囲ではスイープ速度を397.9(kA/m)/分として測定した。   The magnetic properties of the spinel-type ferrimagnetic particle powder and the magnetic tape were measured using a “vibrating sample magnetometer VSM SSM-5-15” (manufactured by Toei Kogyo Co., Ltd.) under an external magnetic field of 1193.7 kA / m. . The powder SFD and the SFD of the magnetic tape have a sweep speed of 79.6 (kA / m) / min when the applied magnetic field is in the range of 0 to 397.9 kA / m, and is 397.9 to 1,193.7 kA / min. In the range of m, the sweep rate was measured as 397.9 (kA / m) / min.

磁気テープの塗膜表面の光沢度は、「グロスメーター UGV−5D」(スガ試験機株式会社製)を用いて入射角45°で測定した値であり、標準板光沢を86.3%とした時の値を%で示したものである。   The glossiness of the coating film surface of the magnetic tape is a value measured at an incident angle of 45 ° using “Gloss meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.), and the standard plate gloss is 86.3%. The hour value is shown in%.

表面粗度Raは、「ZYGO NewView600S」(ZYGO株式会社製)を用いて塗膜の中心線平均粗さを測定した。   Surface roughness Ra measured the centerline average roughness of the coating film using "ZYGO NewView600S" (made by ZYGO Corporation).

磁気記録媒体を構成する非磁性支持体及び磁気記録層の各層の厚みは、デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて測定した。   The thickness of each layer of the nonmagnetic support and the magnetic recording layer constituting the magnetic recording medium was measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.).

磁気テープの電磁変換特性は、ドラムテスターを用い、記録ヘッドにはMIGヘッドを、再生用ヘッドにはMRヘッドを用いて測定を行った。ヘッドと磁気テープとの相対速度は2.5m/secとし、記録周波数10MHzにおける再生信号出力(C)及び記録周波数9MHzにおける出力をノイズ信号出力(N)を、それぞれ後出比較例2−1を0dB(基準テープ)として、基準テープに対する相対値として求めた。またC/Nはこれら再生信号出力(C)とノイズ信号出力(N)を用いて示した。   The electromagnetic conversion characteristics of the magnetic tape were measured using a drum tester, a MIG head as a recording head, and an MR head as a reproducing head. The relative speed between the head and the magnetic tape is 2.5 m / sec. The reproduction signal output (C) at a recording frequency of 10 MHz and the output at a recording frequency of 9 MHz are noise signal outputs (N). The relative value with respect to the reference tape was determined as 0 dB (reference tape). C / N is shown using these reproduction signal output (C) and noise signal output (N).

<実施例1−1:スピネル型フェリ磁性粒子粉末の製造>
金属塩として、塩化第二鉄六水塩、塩化コバルト六水塩、塩化ニッケル六水塩、塩化マンガン四水塩をそれぞれ5リットル樹脂製ビーカ中で純水に溶解して、2.00〔mol/l〕のFe3+水溶液、0.29〔mol/l〕のCo2+水溶液、0.24〔mol/l〕のNi2+水溶液および0.24〔mol/l〕のMn2+水溶液を各々10リットル調整した。攪拌機と温度計を装備した容積が10リットルの樹脂性容器にFe3+水溶液1.2リットル、Ni2+水溶液2.0リットル、Mn2+水溶液0.8リットルを投入し、混合攪拌してFe,Ni,Mnを含有する混合溶液を調製した(A液)。次に、濃度が6.50〔mol/l〕の水酸化ナトリウム水溶液7.0リットル(B液)をステンレス製反応容器(15リットル)に投入して、攪拌しながら95℃に加熱した。上記A液を攪拌しながら水酸化ナトリウム水溶液に投入し、95℃で60分間反応を行いFe,Ni,Mn含有共沈沈殿物含有液を得た。
<Example 1-1: Production of spinel-type ferrimagnetic particle powder>
As metal salts, ferric chloride hexahydrate, cobalt chloride hexahydrate, nickel chloride hexahydrate, and manganese chloride tetrahydrate are each dissolved in pure water in a 5-liter resin beaker, and 2.00 [mol / L] Fe 3+ aqueous solution, 0.29 [mol / l] Co 2+ aqueous solution, 0.24 [mol / l] Ni 2+ aqueous solution and 0.24 [mol / l] Mn 2+ aqueous solution 10 liters each It was adjusted. A resin container equipped with a stirrer and a thermometer and having a volume of 10 liters was charged with 1.2 liters of Fe 3+ aqueous solution, 2.0 liters of Ni 2+ aqueous solution and 0.8 liters of Mn 2+ aqueous solution, mixed and stirred, and Fe, Ni , A mixed solution containing Mn was prepared (A liquid). Next, 7.0 liters (solution B) of an aqueous sodium hydroxide solution having a concentration of 6.50 [mol / l] was charged into a stainless steel reaction vessel (15 liters) and heated to 95 ° C. with stirring. The solution A was added to an aqueous sodium hydroxide solution with stirring, and reacted at 95 ° C. for 60 minutes to obtain a Fe, Ni, Mn-containing coprecipitate-containing solution.

次いで、上記で得られたFe,Ni,Mn含有共沈沈殿物含有液にCo2+水溶液1.0リットルを攪拌しながら投入し、95℃で60分間反応を行いFe,Ni,Mn,Co含有共沈沈殿物含有液を得た。 Next, 1.0 liter of a Co 2+ aqueous solution is added to the Fe, Ni, Mn-containing coprecipitation precipitate-containing liquid obtained above while stirring, and the reaction is performed at 95 ° C. for 60 minutes to contain Fe, Ni, Mn, and Co. A liquid containing a coprecipitate precipitate was obtained.

上記で得られたFe,Ni,Mn,Co含有共沈沈殿物含有液を常法により純水を用いてろ液の電気伝導度が1mS/cm以下になるまで十分に水洗した後、Fe,Ni,Mn,Co含有共沈沈殿物を含むスラリー12リットル(30℃)に70質量%硫酸溶液0.20リットルを攪拌しながら添加して、30℃で3時間、酸によるエッチング処理を行った。   The Fe-, Ni-, Mn-, and Co-containing coprecipitate-containing solution obtained above is washed thoroughly with pure water using pure water until the filtrate has an electric conductivity of 1 mS / cm or less, and then Fe, Ni Then, 0.20 liter of 70 mass% sulfuric acid solution was added to 12 liters (30 ° C.) of the slurry containing the coprecipitation precipitate containing Mn and Co with stirring, and etching treatment with acid was performed at 30 ° C. for 3 hours.

上記で得られた酸エッチング後のFe,Ni,Mn,Co含有共沈沈殿物含有スラリーを、常法により純水を用いてろ液の電気伝導度が20μS/cm以下になるまで十分に水洗・ろ過した後、70℃で12時間乾燥した。得られた乾燥粉末を粉砕後、200℃にて1時間加熱焼成して実施例1−1のスピネル型フェリ磁性粒子粉末を得た。   The acid-etched Fe, Ni, Mn, and Co-containing slurry containing the coprecipitate precipitate obtained above is sufficiently washed with pure water until the electrical conductivity of the filtrate is 20 μS / cm or less using pure water. After filtration, it was dried at 70 ° C. for 12 hours. The obtained dry powder was pulverized and then heated and fired at 200 ° C. for 1 hour to obtain a spinel-type ferrimagnetic particle powder of Example 1-1.

得られたスピネル型フェリ磁性粒子粉末は、X線回折測定の結果スピネル型構造を有しており、形状は粒状であり、平均粒子径は28.9nm、BET比表面積値は46.7m/g、保磁力値(Hc)は248.9kA/m、飽和磁化(σs)は62.2Am/kg、粉体SFDは0.744であった。また、Feの含有量は46.74wt%、Niの含有量は9.74wt%、Coの含有量は5.89wt%、Mnの含有量は3.65wt%であり、下記組成式におけるnは2.518、xは0.301、yは0.499、zは0.200であった。
(CoO)(NiO)(MO)・n/2(Fe
The obtained spinel-type ferrimagnetic particle powder has a spinel-type structure as a result of X-ray diffraction measurement, the shape is granular, the average particle diameter is 28.9 nm, and the BET specific surface area value is 46.7 m 2 / g, the coercive force value (Hc) was 248.9 kA / m, the saturation magnetization (σs) was 62.2 Am 2 / kg, and the powder SFD was 0.744. The Fe content is 46.74 wt%, the Ni content is 9.74 wt%, the Co content is 5.89 wt%, the Mn content is 3.65 wt%, and n in the following composition formula is 2.518, x was 0.301, y was 0.499, and z was 0.200.
(CoO) x (NiO) y (MO) z · n / 2 (Fe 2 O 3)

<実施例2−1:磁気記録媒体の製造>
非磁性下地層形成用の非磁性塗料組成
非磁性下地層用ヘマタイト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 11.8重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 11.8重量部、
シクロヘキサノン 78.3重量部、
メチルエチルケトン 195.8重量部、
トルエン 117.5重量部、
硬化剤(ポリイソシアネート) 3.0重量部、
潤滑剤(ブチルステアレート) 1.0重量部。
<Example 2-1: Production of magnetic recording medium>
Nonmagnetic coating composition for nonmagnetic underlayer formation 100.0 parts by weight of hematite particle powder for nonmagnetic underlayer,
11.8 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
11.8 parts by weight of a polyurethane resin having a sodium sulfonate group,
78.3 parts by weight of cyclohexanone,
195.8 parts by weight of methyl ethyl ketone,
117.5 parts by weight of toluene,
Curing agent (polyisocyanate) 3.0 parts by weight,
Lubricant (butyl stearate) 1.0 part by weight.

非磁性下地層用ヘマタイト粒子粉末と結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が72wt%となるよう混合し、自動乳鉢を用いて30分間混練して混練物を得た。   A non-magnetic underlayer hematite particle powder, a binder resin solution (vinyl chloride copolymer resin having potassium sulfonate group 30 wt% and cyclohexanone 70 wt%) and cyclohexanone are mixed so that the solid content is 72 wt%; A kneaded product was obtained by kneading for 30 minutes using an automatic mortar.

次いで、上記非磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、非磁性下地層用非磁性塗料を調整した。   Next, the kneaded product and an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) so that the nonmagnetic coating composition is obtained. , Cyclohexanone, methyl ethyl ketone and 95 g of toluene 1.5 mmφ glass beads were added to a 140 ml glass bottle and mixed and dispersed for 6 hours with a paint shaker to obtain a nonmagnetic coating composition. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a nonmagnetic paint for a nonmagnetic underlayer.

上記非磁性下地層用非磁性塗料を厚さ4.5μmの芳香族ポリアミドフィルム上に塗布し、次いで、乾燥させることにより非磁性下地層を形成した。   The nonmagnetic coating for the nonmagnetic underlayer was applied onto an aromatic polyamide film having a thickness of 4.5 μm, and then dried to form a nonmagnetic underlayer.

磁気記録層形成用の磁性塗料組成
スピネル型フェリ磁性粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 12.5重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 7.5重量部、
研磨剤(AKP−50) 5.0重量部、
カーボンブラック 2.0重量部、
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部、
硬化剤(ポリイソシアネート) 5.0重量部、
シクロヘキサノン 170.0重量部、
メチルエチルケトン 170.0重量部。
Magnetic coating composition for forming a magnetic recording layer 100.0 parts by weight of spinel-type ferrimagnetic particle powder,
12.5 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
7.5 parts by weight of a polyurethane resin having a sodium sulfonate group,
Abrasive (AKP-50) 5.0 parts by weight,
2.0 parts by weight of carbon black,
Lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight,
Curing agent (polyisocyanate) 5.0 parts by weight,
170.0 parts by weight of cyclohexanone,
170.0 parts by weight of methyl ethyl ketone.

スピネル型フェリ磁性粒子粉末と研磨剤、カーボンブラック、結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が76wt%となるよう混合し、自動乳鉢を用いて40分間混練して混練物を得た。   Spinel-type ferrimagnetic particle powder, abrasive, carbon black, binder resin solution (30% by weight of vinyl chloride copolymer resin having potassium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone have a solid content of 76% by weight. And kneaded for 40 minutes using an automatic mortar to obtain a kneaded product.

次いで、上記磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、磁気記録層用磁性塗料を調整した。   Next, the kneaded product and an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) so that the magnetic coating composition is obtained, A magnetic coating composition was obtained by adding to a 140 ml glass bottle together with 95 g of cyclohexanone, methyl ethyl ketone and toluene 1.5 mmφ glass beads, and mixing and dispersing for 6 hours with a paint shaker. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a magnetic coating material for a magnetic recording layer.

上記磁気記録層用塗料を、乾燥後の厚さが1.5μmになるよう前記非磁性下地層の上に塗布した後、磁場中において配向・乾燥した。その後、60℃で24時間硬化反応を行い、12.7mm幅にスリットして磁気記録媒体を得た。   The magnetic recording layer coating composition was applied on the nonmagnetic underlayer so that the thickness after drying was 1.5 μm, and then oriented and dried in a magnetic field. Thereafter, a curing reaction was performed at 60 ° C. for 24 hours, and a magnetic recording medium was obtained by slitting to a width of 12.7 mm.

得られた磁気記録媒体は、保磁力値Hcが254.3kA/m、Br/Bmが0.81、保磁力分布SFDが0.725、光沢度が164%、表面粗度Raが14.2nmであり、再生出力(C)が+0.2dB、C/Nが+1.6dBであった。   The obtained magnetic recording medium had a coercive force value Hc of 254.3 kA / m, a Br / Bm of 0.81, a coercive force distribution SFD of 0.725, a glossiness of 164%, and a surface roughness Ra of 14.2 nm. The reproduction output (C) was +0.2 dB and C / N was +1.6 dB.

前記実施例1−1および実施例2−1に従ってスピネル型フェリ磁性粒子粉末および磁気記録媒体を作製した。各製造条件および得られたスピネル型フェリ磁性粒子粉末及び磁気記録媒体の諸特性を示す。   Spinel-type ferrimagnetic particle powder and a magnetic recording medium were prepared according to Example 1-1 and Example 2-1. Various production conditions and various properties of the obtained spinel-type ferrimagnetic particle powder and magnetic recording medium are shown.

<スピネル型フェリ磁性粒子粉末の製造>
実施例1−2〜1−5及び比較例1−1:
<Manufacture of spinel ferrimagnetic particle powder>
Examples 1-2 to 1-5 and Comparative Example 1-1

スピネル型フェリ磁性粒子粉末を製造する際の条件を種々変化させた以外は、実施例1−1と同様にしてスピネル型フェリ磁性粒子粉末を得た。   A spinel type ferrimagnetic particle powder was obtained in the same manner as in Example 1-1 except that the conditions for producing the spinel type ferrimagnetic particle powder were variously changed.

このときの製造条件を表1および表2に、得られたスピネル型フェリ磁性粒子粉末の諸特性を表3に示す。   Production conditions at this time are shown in Tables 1 and 2, and various properties of the obtained spinel-type ferrimagnetic particle powder are shown in Table 3.

Figure 0006164396
Figure 0006164396

Figure 0006164396
Figure 0006164396

実施例1−6:
実施例1−1で得られた酸エッチング後のFe,Ni,Mn,Co含有共沈沈殿物含有スラリーを半分抜き取り、常法により純水を用いてろ液の電気伝導度が1mS/cm以下になるまで十分に水洗し、該スラリーに水酸化ナトリウム水溶液を添加してpH値を9とした後、加熱して60℃とし、このスラリー中に20wt%のアルミン酸ナトリウム水溶液9.75g(スピネル型フェリ磁性粒子粉末に対してAl換算で1.3重量%に相当する)を加え、30分間保持した後、酢酸を用いてpH値を9に調整した。この状態で30分間保持した後、濾過・水洗・乾燥・粉砕し、粒子表面がアルミニウムの水酸化物等により被覆されている実施例1−6のスピネル型フェリ磁性粒子粉末を得た。得られた粒子表面がアルミニウムの水酸化物等により被覆されているスピネル型フェリ磁性粒子粉末の諸特性を表3に示す。
Example 1-6:
Half of the Fe-, Ni-, Mn-, and Co-containing coprecipitation precipitate-containing slurry obtained in Example 1-1 after acid etching was extracted, and the electrical conductivity of the filtrate was 1 mS / cm 2 or less using pure water by a conventional method. The slurry was sufficiently washed with water, and an aqueous sodium hydroxide solution was added to the slurry to adjust the pH value to 9. Then, the slurry was heated to 60 ° C. In this slurry, 9.75 g of 20 wt% aqueous sodium aluminate solution (spinel (Corresponding to 1.3% by weight in terms of Al) with respect to the type ferrimagnetic particle powder, and maintained for 30 minutes, and then the pH value was adjusted to 9 using acetic acid. After maintaining for 30 minutes in this state, filtration, washing, drying and pulverization were performed to obtain a spinel-type ferrimagnetic particle powder of Example 1-6 in which the particle surface was coated with an aluminum hydroxide or the like. Table 3 shows various characteristics of the spinel-type ferrimagnetic particle powder whose surface is coated with aluminum hydroxide or the like.

比較例1−2:
金属塩として、塩化第二鉄六水塩、塩化ニッケル六水塩、塩化コバルト六水塩、塩化マンガン四水塩をそれぞれ10リットル樹脂製ビーカ中で純水に溶解して、2.00〔mol/l〕のFe3+水溶液、0.24〔mol/l〕のNi2+水溶液、0.29〔mol/l〕のCo2+水溶液および0.24〔mol/l〕のMn2+水溶液を各々10リットル調整した。攪拌機と温度計を装備した容積が10リットルの樹脂性容器にFe3+水溶液1.2リットル、Ni2+水溶液2.0リットル、Mn2+水溶液0.8リットル、Co2+水溶液1.0リットルを投入し、混合攪拌してFe,Ni,Mn,Coを含有する混合溶液を調製した(A液)。次に、濃度が6.50〔mol/l〕の水酸化ナトリウム水溶液7.0リットル(B液)をステンレス製反応容器(15リットル)に投入して、攪拌しながら95℃に加熱した。上記A溶液を攪拌しながら水酸化ナトリウム水溶液に投入し、95℃で60分間反応を行いFe,Ni,Mn,Co含有共沈沈殿物含有液を得た。得られた磁性粒子粉末の諸特性を表3に示す。
Comparative Example 1-2:
As metal salts, ferric chloride hexahydrate, nickel chloride hexahydrate, cobalt chloride hexahydrate, and manganese chloride tetrahydrate were each dissolved in pure water in a 10-liter resin beaker to obtain 2.00 [mol / L] Fe 3+ aqueous solution, 0.24 [mol / l] Ni 2+ aqueous solution, 0.29 [mol / l] Co 2+ aqueous solution and 0.24 [mol / l] Mn 2+ aqueous solution of 10 liters each. It was adjusted. A resin container equipped with a stirrer and a thermometer with a capacity of 10 liters is charged with 1.2 liters of Fe 3+ aqueous solution, 2.0 liters of Ni 2+ aqueous solution, 0.8 liters of Mn 2+ aqueous solution, and 1.0 liter of Co 2+ aqueous solution. Then, a mixed solution containing Fe, Ni, Mn, and Co was prepared by mixing and stirring (solution A). Next, 7.0 liters (solution B) of an aqueous sodium hydroxide solution having a concentration of 6.50 [mol / l] was charged into a stainless steel reaction vessel (15 liters) and heated to 95 ° C. with stirring. The above solution A was stirred into an aqueous sodium hydroxide solution and reacted at 95 ° C. for 60 minutes to obtain a Fe, Ni, Mn, Co-containing coprecipitate precipitate-containing liquid. Table 3 shows various characteristics of the obtained magnetic particle powder.

上記で得られたFe,Ni,Mn,Co含有共沈沈殿物含有液を実施例1−1と同様にして洗浄、酸エッチング、洗浄・ろ過、乾燥・粉砕を行い、比較例1−2の磁性粒子粉末を得た。   The Fe, Ni, Mn, Co-containing coprecipitate precipitate-containing liquid obtained above was washed, acid-etched, washed / filtered, dried / pulverized in the same manner as in Example 1-1, and Comparative Example 1-2 Magnetic particle powder was obtained.

比較例1−3:
金属塩として、塩化第二鉄六水塩、塩化ニッケル六水塩、塩化コバルト六水塩、塩化マンガン四水塩をそれぞれ10リットル樹脂製ビーカ中で純水に溶解して、3.00〔mol/l〕のFe3+水溶液、0.36〔mol/l〕のNi2+水溶液、0.68〔mol/l〕のCo2+水溶液および0.045〔mol/l〕のMn2+水溶液を各々10リットル調整した。攪拌機と温度計を装備した容積が10リットルの樹脂性容器にFe3+水溶液1.2リットル、Ni2+水溶液2.0リットル、Mn2+水溶液0.8リットル、Co2+水溶液1.0リットルを投入し、混合攪拌してFe,Ni,Mn,Coを含有する混合溶液を調製した(A液)。次に、濃度が7.1〔mol/l〕の水酸化ナトリウム水溶液7.0リットル(B液)をステンレス製反応容器(15リットル)に投入して、攪拌しながら95℃に加熱した。上記A溶液を攪拌しながら水酸化ナトリウム水溶液に投入し、95℃で60分間反応を行いFe,Ni,Mn,Co含有共沈沈殿物含有液を得た。
Comparative Example 1-3:
As metal salts, ferric chloride hexahydrate, nickel chloride hexahydrate, cobalt chloride hexahydrate, and manganese chloride tetrahydrate were each dissolved in pure water in a 10-liter resin beaker to obtain 3.00 mol / L] Fe 3+ aqueous solution, 0.36 [mol / l] Ni 2+ aqueous solution, 0.68 [mol / l] Co 2+ aqueous solution and 0.045 [mol / l] Mn 2+ aqueous solution 10 liters each It was adjusted. A resin container equipped with a stirrer and a thermometer with a capacity of 10 liters is charged with 1.2 liters of Fe 3+ aqueous solution, 2.0 liters of Ni 2+ aqueous solution, 0.8 liters of Mn 2+ aqueous solution, and 1.0 liter of Co 2+ aqueous solution. Then, a mixed solution containing Fe, Ni, Mn, and Co was prepared by mixing and stirring (solution A). Next, 7.0 liters (solution B) of an aqueous sodium hydroxide solution having a concentration of 7.1 [mol / l] was put into a stainless steel reaction vessel (15 liters) and heated to 95 ° C. with stirring. The above solution A was stirred into an aqueous sodium hydroxide solution and reacted at 95 ° C. for 60 minutes to obtain a Fe, Ni, Mn, Co-containing coprecipitate precipitate-containing liquid.

上記で得られたFe,Ni,Mn,Co含有共沈沈殿物含有液を実施例1−1と同様にして洗浄、酸エッチング、洗浄・ろ過、乾燥・粉砕、加熱焼成を行い、比較例1−3の磁性粒子粉末を得た。得られた磁性粒子粉末の諸特性を表3に示す。   The Fe-, Ni-, Mn-, and Co-containing coprecipitate-containing solution obtained above was washed, acid-etched, washed / filtered, dried / pulverized, and heated and fired in the same manner as in Example 1-1. -3 magnetic particle powder was obtained. Table 3 shows various characteristics of the obtained magnetic particle powder.

Figure 0006164396
Figure 0006164396

<磁気記録媒体の製造>
実施例2−2〜2−7、比較例2−1〜2−3:
スピネル型フェリ磁性粒子粉末の種類を種々変化させた以外は、前記実施例2−1の磁気記録媒体の作製方法に従って磁気記録媒体を製造した。
<Manufacture of magnetic recording media>
Examples 2-2 to 2-7, comparative examples 2-1 to 2-3:
A magnetic recording medium was manufactured according to the method for manufacturing a magnetic recording medium of Example 2-1 except that the type of spinel ferrimagnetic particle powder was changed variously.

得られた磁気記録媒体の諸特性を表4に示す。   Table 4 shows various characteristics of the obtained magnetic recording medium.

Figure 0006164396
Figure 0006164396

上記実施例より、本発明によって得られたスピネル型フェリ磁性粒子粉末は、平均粒子径が5〜70nm、粉体SFDが1.4以下であることにより、これらを用いて得られた磁気記録媒体は、ノイズがより低減されていることがわかる。   From the above examples, the spinel-type ferrimagnetic particle powder obtained according to the present invention has an average particle diameter of 5 to 70 nm and a powder SFD of 1.4 or less. It can be seen that noise is further reduced.

本発明に係るスピネル型フェリ磁性粒子粉末は、平均粒子径が5〜70nmと微細であるにもかかわらず、粉体SFDが1.4以下であることにより、磁気記録媒体のノイズをより低減できるため、高密度磁気記録媒体の磁性粒子粉末として好適である。
The spinel-type ferrimagnetic particle powder according to the present invention can further reduce noise of the magnetic recording medium because the powder SFD is 1.4 or less despite the fine average particle diameter of 5 to 70 nm. Therefore, it is suitable as a magnetic particle powder for a high-density magnetic recording medium.

Claims (2)

下記一般式で表されるスピネル型フェリ磁性粒子からなり、平均粒子径が10〜50nmであり、且つ、粉体SFDが1.2以下であり、2価乃至5価の金属元素MがZn,Mn,Cu,Tiの群から選ばれる1種又は2種以上からなり、保磁力(Hc)が159.2〜358.1kA/mであり、飽和磁化値σsが45〜70Am /kgであることを特徴とする磁気記録媒体用スピネル型フェリ磁性粒子粉末。
(CoO)(NiO)(MO)・n/2(Fe
(M:2価乃至5価の金属元素)(2.1≦n≦2.9
(x:0.2〜0.55、y:0.2〜0.55、z:0.01〜0.3)
(x+y+az/2=1)(a:金属元素の価数)
It consists of spinel-type ferrimagnetic particles represented by the following general formula, the average particle size is 10 to 50 nm, the powder SFD is 1.2 or less, and the divalent to pentavalent metal element M is Zn , Mn, Cu, Ti, one or more selected from the group, coercive force (Hc) is 159.2 to 358.1 kA / m, and saturation magnetization value σs is 45 to 70 Am 2 / kg. spinel-type ferrimagnetic particles for magnetic recording medium characterized Oh Rukoto.
(CoO) x (NiO) y (MO) z · n / 2 (Fe 2 O 3)
(M: divalent to pentavalent metal element) ( 2.1 ≦ n ≦ 2.9 )
(X: 0.2~0.55, y: 0.2~0.55 , z: 0.01 ~0.3)
(X + y + az / 2 = 1) (a: valence of metal element)
非磁性支持体上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記磁性粒子粉末として請求項1記載の磁気記録媒体用スピネル型フェリ磁性粒子粉末を用いることを特徴とする磁気記録媒体。 In the magnetic recording medium comprising a magnetic recording layer containing magnetic particles is formed on a nonmagnetic support binder resin, the magnetic particles as claimed in claim 1 Symbol placement of the magnetic recording medium for the spinel-type ferrimagnetic particles A magnetic recording medium characterized by using.
JP2013012640A 2013-01-25 2013-01-25 Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium Active JP6164396B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013012640A JP6164396B2 (en) 2013-01-25 2013-01-25 Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium
PCT/JP2014/051490 WO2014115836A1 (en) 2013-01-25 2014-01-24 Spinel ferrimagnetic particle powder for magnetic recording media, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012640A JP6164396B2 (en) 2013-01-25 2013-01-25 Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2014146387A JP2014146387A (en) 2014-08-14
JP6164396B2 true JP6164396B2 (en) 2017-07-19

Family

ID=51227625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012640A Active JP6164396B2 (en) 2013-01-25 2013-01-25 Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium

Country Status (2)

Country Link
JP (1) JP6164396B2 (en)
WO (1) WO2014115836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166931A1 (en) * 2015-04-13 2016-10-20 ソニー株式会社 Magnetic recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4452847B2 (en) * 2004-07-27 2010-04-21 Dowaエレクトロニクス株式会社 Manufacturing method of metal magnetic powder
JP2006053982A (en) * 2004-08-11 2006-02-23 Fuji Photo Film Co Ltd Magnetic disk recording medium
JP4687136B2 (en) * 2005-02-18 2011-05-25 戸田工業株式会社 Method for producing spinel ferrimagnetic particles
JP4591700B2 (en) * 2005-10-27 2010-12-01 戸田工業株式会社 Spinel type ferrimagnetic fine particle powder and method for producing the same

Also Published As

Publication number Publication date
WO2014115836A1 (en) 2014-07-31
JP2014146387A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5403278B2 (en) Hexagonal ferrite particle powder and magnetic recording medium
JP5319561B2 (en) Magnetic recording medium
JP4687136B2 (en) Method for producing spinel ferrimagnetic particles
US8133405B2 (en) Spinel-type ferrimagnetic particles, process for producing the same, and magnetic recording medium using the same
JP5589348B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP5454037B2 (en) Method for producing hexagonal ferrite particle powder and magnetic recording medium
JP6164396B2 (en) Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP4534085B2 (en) Magnetic powder for coating type magnetic recording medium corresponding to high density and manufacturing method thereof
JP5403242B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5754091B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP5446478B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5311074B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5446527B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5457260B2 (en) Magnetic recording medium
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5625364B2 (en) Method for producing hexagonal ferrite particle powder, hexagonal ferrite particle powder, and magnetic recording medium
JP5305037B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP2010239067A (en) Magnetic fine particle powder for magnetic recording medium, and manufacturing method of the same
JP5316522B2 (en) Magnetic particle powder
JP2012119030A (en) Magnetic particle powder and magnetic recording medium
JP5403241B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6164396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250