JP2012117926A - Method for analyzing isotopic concentration - Google Patents

Method for analyzing isotopic concentration Download PDF

Info

Publication number
JP2012117926A
JP2012117926A JP2010268204A JP2010268204A JP2012117926A JP 2012117926 A JP2012117926 A JP 2012117926A JP 2010268204 A JP2010268204 A JP 2010268204A JP 2010268204 A JP2010268204 A JP 2010268204A JP 2012117926 A JP2012117926 A JP 2012117926A
Authority
JP
Japan
Prior art keywords
sample
ion source
inert gas
isotope
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010268204A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yoshida
秀俊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2010268204A priority Critical patent/JP2012117926A/en
Publication of JP2012117926A publication Critical patent/JP2012117926A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing isotopic concentration capable of obtaining accurate measurement data by suppressing the influence caused by residual water in an ion source in mass spectrometry adapting electron ionization as an ionization method.SOLUTION: In mass spectrometry by introducing a sample to an ion source and ionizing it by electron ionization, the sample and at least one kind of inert gas such as helium, nitrogen, argon, neon, krypton and xenon are simultaneously introduced to the ion source when determining concentration of a stable isotope of a specific element in the sample.

Description

本発明は、同位体濃度の分析方法に関し、詳しくは、試料中の特定の元素の安定同位体の存在比を求めるための同位体濃度の分析方法に関する。   The present invention relates to an isotope concentration analysis method, and more particularly to an isotope concentration analysis method for determining the abundance ratio of a stable isotope of a specific element in a sample.

化合物中の特定の元素の同位体標識率を求める方法として、質量分析や赤外分光が広く利用されている。具体的には、質量分析では、前処理した試料あるいは未処理のままの試料をGCMS(Gas Chromatography Mass Spectrometry)、LCMS(Liquid Chromatography Mass Spectrometry)、IRMS(Isotope Ratio Mass Spectrometry)等の質量分析装置で測定し、分子イオンピークと質量数+α(αは互いに同位体である2つの核種の質量数の差)とのピーク比、あるいは、特定のフラグメントイオンと質量数+αとのピーク比が、互いに同位体である核種の存在比に等しいことに基づいて同位体純度(同位体標識率)を求めている。GCあるいはLCと組み合わせて質量分析を行うことで、混合物中の特定の化合物の同位体純度を求めることもできる(例えば、特許文献1参照。)。   Mass spectrometry and infrared spectroscopy are widely used as methods for obtaining the isotope labeling rate of a specific element in a compound. Specifically, in mass spectrometry, a pretreated sample or an untreated sample is analyzed with a mass spectrometer such as GCMS (Gas Chromatography Mass Spectrometry), LCMS (Liquid Chromatography Mass Spectrometry), or IRMS (Isotope Ratio Mass Spectrometry). The peak ratio between the molecular ion peak and mass number + α (α is the difference in mass number between two nuclides that are isotopes) or the peak ratio between a specific fragment ion and mass number + α is The isotope purity (isotope labeling rate) is obtained based on being equal to the abundance ratio of the nuclide as a body. By performing mass spectrometry in combination with GC or LC, the isotopic purity of a specific compound in the mixture can also be determined (see, for example, Patent Document 1).

特開2005−30816号公報JP 2005-30816 A

しかし、イオン化法に電子イオン化法を採用した質量分析で同位体濃度を求める場合は、イオン源内に残留する物質、例えば残留水分の影響によって正確なデータが得られないことがある。すなわち、電子イオン化法では、加熱などによりガス化した試料分子に電子ビームを照射することで、分子量Mの分子内から電子を飛び出させ、Mイオン(分子イオン)や、そのイオン内の結合が切れたイオン(フラグメントイオン)を生じさせるため、電子イオン化にて生じるイオンがそれだけであれば特段の問題はなく、得られたデータ、例えば分子イオンのピークとその同位体イオンのピークとの強度比などから、分子内の特定の元素の同位体存在比を求めることが可能となる。 However, when the isotope concentration is obtained by mass spectrometry employing an electron ionization method as the ionization method, accurate data may not be obtained due to the influence of substances remaining in the ion source, for example, residual moisture. That is, in the electron ionization method, an electron beam is emitted from a sample molecule gasified by heating or the like to emit electrons from the molecule of molecular weight M, and M + ions (molecular ions) and bonds in the ions are formed. In order to generate a broken ion (fragment ion), there is no particular problem if there are only ions generated by electron ionization, and the obtained data, for example, the intensity ratio between the peak of the molecular ion and the peak of its isotope ion From the above, it is possible to obtain the isotope abundance ratio of a specific element in the molecule.

しかしながら、電子イオン化法により試料をイオン化した場合、特にイオン源に残留水分が多い場合には、この水分が試料への陽子(プロトン)の供給体となり、分子にプロトンが付加したイオンが僅かではあるが生じて同位体イオンとプロトン付加イオンとのピークが重なると、分析結果に誤差を生じて同位体比が大きくなってしまう。   However, when the sample is ionized by the electron ionization method, particularly when the residual moisture is large in the ion source, this moisture becomes a proton (proton) supplier to the sample, and there are few ions with protons added to the molecules. When the peaks of isotope ions and proton-added ions overlap, an error is generated in the analysis result and the isotope ratio increases.

そこで、本発明は、イオン化法として電子イオン化法を採用した質量分析において、イオン源内の残留水分による影響を抑えて正確な測定データを得ることができる同位体濃度の分析方法を提供することを目的としている。   Therefore, the present invention has an object to provide an isotope concentration analysis method capable of obtaining accurate measurement data while suppressing the influence of residual moisture in an ion source in mass spectrometry employing an electron ionization method as an ionization method. It is said.

上記目的を達成するため、本発明の同位体濃度の分析方法は、試料をイオン源に導入して電子イオン化法によりイオン化して質量分析することにより、前記試料中の特定の元素の安定同位体の濃度を求める同位体濃度の分析方法において、前記イオン源に前記試料と共に不活性ガスを同時に導入することを特徴としている。   In order to achieve the above object, the isotope concentration analysis method of the present invention is a stable isotope of a specific element in a sample by introducing the sample into an ion source and ionizing the sample by electron ionization to perform mass spectrometry. In the isotope concentration analysis method for obtaining the concentration of an inert gas, an inert gas is simultaneously introduced into the ion source together with the sample.

さらに、本発明の同位体濃度の分析方法は、前記不活性ガスが、ヘリウム、窒素、アルゴン、ネオン、クリプトン及びキセノンの少なくとも1種であること、前記試料が、水酸基、ケトン基又はカルボキシル基を含む分子、あるいは、アミン類又はイミン類と同じ結合構造を有する窒素原子を含む分子のいずれか1種の分子であること、また、前記試料が、グリシン、インドール、ベンズアルデヒド、ベンジルアルコール、安息香酸、フェノール、ピルビン酸、N,N−ジメチルホルムアミド、炭酸ジメチル、炭酸ジエチル、ピリジン及びメラミンのいずれか1種であることを特徴としてる。   Furthermore, in the method for analyzing an isotope concentration of the present invention, the inert gas is at least one of helium, nitrogen, argon, neon, krypton, and xenon, and the sample has a hydroxyl group, a ketone group, or a carboxyl group. Or a molecule containing a nitrogen atom having the same bond structure as amines or imines, and the sample is glycine, indole, benzaldehyde, benzyl alcohol, benzoic acid, It is characterized by being any one of phenol, pyruvic acid, N, N-dimethylformamide, dimethyl carbonate, diethyl carbonate, pyridine and melamine.

本発明によれば、試料と同時に不活性ガスをイオン源へ導入することで、イオン源内の残留水分と試料分子との反応によるプロトン付加分子イオンの生成を抑制することができる。特に、分子中に、水酸基、ケトン基、カルボキシル基、あるいは、アミン類又はイミン類と同じ結合構造を有する窒素原子を含む試料は、これらの分子中の酸素原子や窒素原子の不対電子がプロトン受容体として機能するため、プロトン付加分子イオンの生成をより確実に抑制することができる。   According to the present invention, by introducing an inert gas into the ion source simultaneously with the sample, it is possible to suppress the generation of proton-added molecular ions due to the reaction between residual moisture in the ion source and sample molecules. In particular, samples containing a nitrogen atom having the same bond structure as that of a hydroxyl group, ketone group, carboxyl group, or amines or imines in the molecule are oxygen atoms or unpaired electrons of the nitrogen atom in these molecules. Since it functions as an acceptor, generation of proton-added molecular ions can be suppressed more reliably.

質量分析計の一例を示す概略図である。It is the schematic which shows an example of a mass spectrometer. イオン源の一例を示す説明図である。It is explanatory drawing which shows an example of an ion source.

まず、試料をイオン化したイオンを質量分析するためには、例えば図1及び図2に示すように、イオン化法として電子イオン化法を採用したイオン源11と、イオン源11で発生したイオンの速度収束を行うトロイダル電場12a及び方向収束を行う扇形磁場12bとを有する質量分離部12と、イオン量を検出するための検出器13とを備えた質量分析計を使用する。   First, in order to mass-analyze ions obtained by ionizing a sample, for example, as shown in FIGS. 1 and 2, an ion source 11 adopting an electron ionization method as an ionization method, and velocity convergence of ions generated in the ion source 11 are used. A mass spectrometer including a mass separation unit 12 having a toroidal electric field 12a for performing the above and a sectoral magnetic field 12b for performing direction convergence and a detector 13 for detecting the amount of ions is used.

イオン源11は、イオン源ブロック11aを備えたイオン源チャンバー11bと、イオン源ブロック11aに試料を導入するための試料導入部14と、同じくイオン源ブロック11aに不活性ガスを導入する不活性ガス導入部15とを備えている。試料導入部14は、マイクロシリンジ16で試料注入口17aから試料溜17内に注入した所定量の試料をニードルバルブ18で流量調整して導入するように形成されており、不活性ガス導入部15は、ガスボンベなどの不活性ガス源19内の不活性ガスを圧力調整弁20で圧力調整し、ニードルバルブ21で流量調節して導入するように形成されている。   The ion source 11 includes an ion source chamber 11b provided with an ion source block 11a, a sample introduction unit 14 for introducing a sample into the ion source block 11a, and an inert gas that similarly introduces an inert gas into the ion source block 11a. And an introduction part 15. The sample introduction unit 14 is formed so that a predetermined amount of sample injected into the sample reservoir 17 from the sample injection port 17a with the microsyringe 16 is introduced by adjusting the flow rate with the needle valve 18, and the inert gas introduction unit 15 is introduced. Is configured such that an inert gas in an inert gas source 19 such as a gas cylinder is pressure-adjusted by a pressure regulating valve 20 and a flow rate is regulated by a needle valve 21 to be introduced.

このような質量分析計を使用して試料中の特定の元素の安定同位体の濃度を求める際には、前記イオン源11に、前記試料導入部14から所定量の試料を導入すると共に、前記不活性ガス導入部15から所定量の不活性ガスを導入する。不活性ガスとしては、試料のイオン化に際して不活性であり、分析結果に悪影響を与えないガスを使用する。例えば、試料の同位体濃度算出に使用するピークの出現位置と同じピークを持たないガスや、各種不純物成分、特に、含有水分量が1ppm以下のガス、例えば、ヘリウム、窒素、アルゴン、ネオン、クリプトン、キセノンを用いることができ、一般に流通している高純度ガスを使用することが可能である。   When using such a mass spectrometer to determine the concentration of a stable isotope of a specific element in a sample, a predetermined amount of sample is introduced from the sample introduction unit 14 into the ion source 11, and A predetermined amount of inert gas is introduced from the inert gas introduction unit 15. As the inert gas, a gas that is inert when the sample is ionized and does not adversely affect the analysis result is used. For example, a gas that does not have the same peak as the peak appearance position used for calculation of the isotope concentration of the sample, or various impurity components, particularly a gas having a water content of 1 ppm or less, such as helium, nitrogen, argon, neon, krypton Xenon can be used, and it is possible to use generally used high purity gas.

さらに、プロトン付加分子イオンの生成抑制効果を考慮すると、分子量の大きな不活性ガスを用いることが好ましく、例えば、前述のヘリウム、窒素、アルゴン、ネオン、クリプトン、キセノンを比較すると、ヘリウム、ネオン、窒素、アルゴン、クリプトン、キセノンの順に抑制効果が増大し、キセノンが最大となるが、試料の種類や質量分析計の構成、ガスコストを考慮して選定すればよく、これらの不活性ガスを複数種類混合して用いることもできる。   Furthermore, in view of the effect of suppressing the generation of proton-added molecular ions, it is preferable to use an inert gas having a large molecular weight. For example, when comparing the aforementioned helium, nitrogen, argon, neon, krypton, and xenon, helium, neon, nitrogen , Argon, krypton, and xenon, the suppression effect increases in order, and xenon is maximized, but it is only necessary to select the sample type, mass spectrometer configuration, and gas cost. It can also be used as a mixture.

不活性ガスは、一定圧力、一定流量で行うことが好ましく、導入圧力はイオン源11の圧力に応じて設定すればよく、圧力調整弁20の二次側を大気圧程度に設定しておけばよい。導入量は、試料の種類や質量分析計の構成、特に、イオン源の構成やイオン源内の残留水分量によって異なるが、通常は、毎分0.1〜5mlの範囲が適当である。不活性ガスの導入量が毎分0.1mlより少なくなりすぎると不活性ガスをイオン源11に導入した効果を十分に得ることが困難になり、不活性ガスの導入量が毎分5mlより多くなりすぎると、イオン源11における試料濃度が相対的に減少して正確な測定が困難になったり、イオン源11内を適正な圧力に維持することが困難になったりする。不活性ガスの導入温度は、常温でよく、特に加熱したり、冷却したりする必要はない。   The inert gas is preferably performed at a constant pressure and a constant flow rate, and the introduction pressure may be set according to the pressure of the ion source 11, and the secondary side of the pressure regulating valve 20 is set to about atmospheric pressure. Good. The amount introduced varies depending on the type of sample and the configuration of the mass spectrometer, particularly the configuration of the ion source and the amount of residual water in the ion source, but usually a range of 0.1 to 5 ml per minute is appropriate. If the introduction amount of the inert gas is less than 0.1 ml / min, it becomes difficult to obtain the effect of introducing the inert gas into the ion source 11 sufficiently, and the introduction amount of the inert gas is more than 5 ml / min. If it becomes too much, the sample concentration in the ion source 11 is relatively decreased, making it difficult to perform accurate measurement, or maintaining the inside of the ion source 11 at an appropriate pressure. The introduction temperature of the inert gas may be room temperature and does not need to be heated or cooled.

また、イオン源11への不活性ガスの導入は、図2に示したように、試料導入部14とは別に不活性ガス導入部15を設け、不活性ガスを試料とは別に、不活性ガスをイオン源11に直接導入することが好ましいが、試料の種類や性状によっては、試料溜17や試料溜17からイオン源11へ至る経路の途中に不活性ガスを導入し、試料と不活性ガスとを混合した状態でイオン源11に導入することも可能である。不活性ガスが流れる配管や弁等の不活性ガスが接触する部分は、ステンレス鋼やガラス等、不活性ガス中に不純物が混入しにくい材質とすることが好ましい。   In addition, as shown in FIG. 2, the inert gas is introduced into the ion source 11 by providing an inert gas introduction part 15 separately from the sample introduction part 14, and the inert gas is separated from the sample. Is preferably introduced directly into the ion source 11, but depending on the type and properties of the sample, an inert gas is introduced along the path from the sample reservoir 17 or the sample reservoir 17 to the ion source 11, and the sample and the inert gas are introduced. Can be introduced into the ion source 11 in a mixed state. Portions where the inert gas flows, such as pipes and valves through which the inert gas flows, are preferably made of a material such as stainless steel or glass that is less likely to contain impurities in the inert gas.

試料の質量分析手順や設定条件は、前記不活性ガスの導入を除いては、従来からの一般的な手順及び条件を採用することができる。また、装置構成においても、質量分離部12における質量分離の手段は、磁場タイプ、四重極の電場タイプ、飛行時間型のいずれであってもよく、電場−磁場の順に配列した二重収束タイプであっても、磁場−電場の順に配列した逆配列の二重収束タイプであってもよい。検出器13における検出手段も、2次電子増倍管、ファラデーカップ等、質量分析の検出器として一般的なものを使用することができる。   As the sample mass analysis procedure and setting conditions, conventional general procedures and conditions can be adopted except for the introduction of the inert gas. In the apparatus configuration, the mass separation means in the mass separation unit 12 may be any of a magnetic field type, a quadrupole electric field type, and a time-of-flight type. Or the double convergence type of the reverse arrangement | sequence arranged in order of the magnetic field-electric field may be sufficient. The detection means in the detector 13 may be a general detector such as a secondary electron multiplier or a Faraday cup as a mass spectrometry detector.

さらに、試料の導入方法も、試料の状態に応じて行うことができ、蒸気圧が比較的高い液体試料の場合は、図2に示したように、試料溜めへ試料を導入し、ニードルバルブを介して微小量ずつイオン源へリークさせる試料直接導入法を採用でき、このときの試料溜めへの試料導入量は、通常、1〜3μLが適当である。また、蒸気圧の低い液体試料や固体試料の場合は、ダイレクトプローブ等の先端に試料を詰めたキャピラリー管をセットし、イオン源チャンバー11bを予備排気した後、キャピラリー管をイオン源へ挿入する試料直接導入法で行うことができ、このときの液体試料の導入量は1〜2μL、固体試料の導入量は1〜2mgが適当である。   Furthermore, the sample can be introduced in accordance with the state of the sample. In the case of a liquid sample having a relatively high vapor pressure, as shown in FIG. Thus, a sample direct introduction method in which a minute amount is leaked to the ion source can be employed, and the sample introduction amount into the sample reservoir at this time is usually 1 to 3 μL. In the case of a liquid sample or a solid sample having a low vapor pressure, a capillary tube filled with the sample is set at the tip of a direct probe or the like, and the ion source chamber 11b is preliminarily evacuated, and then the capillary tube is inserted into the ion source. The introduction can be carried out by the direct introduction method. In this case, the introduction amount of the liquid sample is 1 to 2 μL, and the introduction amount of the solid sample is suitably 1 to 2 mg.

その他の条件として、イオン源11の温度は200℃程度、イオン化電圧は30〜70eV、イオン源フィラメント電流は4A程度、質量走査範囲は同位体濃度算出に使用するピークが含まれる範囲であり、質量走査速度は1SCANあたり数秒から数十秒が適当である。   As other conditions, the temperature of the ion source 11 is about 200 ° C., the ionization voltage is about 30 to 70 eV, the ion source filament current is about 4 A, the mass scanning range is a range including a peak used for calculating the isotope concentration, and the mass The scanning speed is suitably from several seconds to several tens of seconds per SCAN.

このように、従来から一般的に行われている質量分析において、イオン源11に試料と同時に不活性ガスを導入することにより、イオン源内の残留水分と試料分子との反応によるプロトン付加分子イオンの生成を抑制することができ、イオン源内の残留水分による影響を抑えて正確な測定データを得ることができる。また、イオン源11に不活性ガスを導入するだけでよく、通常の質量分析計に不活性ガス導入部15を追加するだけで実施することが可能であるから、設備コストの上昇も僅かに抑えることができる。さらに、不活性ガスには、市販の高純度ガスを使用することができるので、分析時に要するコストの上昇も僅かに抑えることができる。したがって、試料中の安定同位体の濃度、存在比を低コストで正確に測定することができる。   In this way, in mass spectrometry that has been generally performed in the past, by introducing an inert gas into the ion source 11 at the same time as the sample, the proton-added molecular ions caused by the reaction between the residual moisture in the ion source and the sample molecules Generation can be suppressed, and accurate measurement data can be obtained while suppressing the influence of residual moisture in the ion source. Moreover, it is only necessary to introduce an inert gas into the ion source 11, and it is possible to carry out by simply adding the inert gas introduction part 15 to a normal mass spectrometer, so that an increase in equipment cost is also suppressed slightly. be able to. Furthermore, since a commercially available high-purity gas can be used as the inert gas, an increase in cost required for analysis can be suppressed slightly. Therefore, the concentration and abundance ratio of stable isotopes in the sample can be accurately measured at a low cost.

特に、分子中に、水酸基(−OH)、ケトン基(−CO−)又はカルボキシル基(−COOH)を含む試料、あるいは、アミン類(R−N(−R)−R(R、R、Rは水素又は炭化水素基を示し、アンモニアを除く))又はイミン類(R−C(=NR)−R(R、R、Rは水素又は炭化水素基を示す)))と同じ結合構造を有する窒素原子を含む試料、例えば、グリシン、インドール、ベンズアルデヒド、ベンジルアルコール、安息香酸、フェノール、ピルビン酸、N,N−ジメチルホルムアミド、炭酸ジメチル、炭酸ジエチル、ピリジン、メラミンのような場合は、これらの試料中の水酸基等に含まれる酸素原子や窒素原子がプロトン受容体となり、イオン源11でイオン化する際に残留水分の影響を受けやすいが、イオン源11に導入された不活性ガスによって試料からのプロトン付加分子イオンの生成を抑制することができるので、プロトン受容体となる前記酸素原子や窒素原子が多い試料であっても、従来に比べて正確な分析を確実に行うことができる。 In particular, a sample containing a hydroxyl group (—OH), a ketone group (—CO—) or a carboxyl group (—COOH) in the molecule, or amines (R 1 —N (—R 2 ) —R 3 (R 1 , R 2 and R 3 represent hydrogen or a hydrocarbon group, excluding ammonia)) or imines (R 4 —C (═NR 5 ) —R 6 (R 4 , R 5 and R 6 are hydrogen or hydrocarbon) A sample containing a nitrogen atom having the same bond structure as in ())), for example, glycine, indole, benzaldehyde, benzyl alcohol, benzoic acid, phenol, pyruvic acid, N, N-dimethylformamide, dimethyl carbonate, diethyl carbonate, In the case of pyridine and melamine, oxygen atoms and nitrogen atoms contained in the hydroxyl groups and the like in these samples become proton acceptors and are affected by residual moisture when ionized by the ion source 11. Although it is easily affected, since the generation of proton-added molecular ions from the sample can be suppressed by the inert gas introduced into the ion source 11, the sample has a large amount of oxygen atoms and nitrogen atoms serving as proton acceptors. However, accurate analysis can be reliably performed as compared with the conventional case.

図1に示す構成の質量分析計を使用して実験を行った。試料には非標識のピルビン酸を使用し、検出器13には2次電子増倍管を用いた。不活性ガスには窒素(純ガス)を使用し、圧力調整弁20にて大気圧まで減圧後、ニードルバルブ21にて流量調整を行った。また、不活性ガス導入配管には、ステンレス配管及び内面を不活性処理したガラスキャピラリー管を使用した。イオン源への試料の導入は試料直接導入法にて行った。   Experiments were performed using a mass spectrometer having the configuration shown in FIG. Unlabeled pyruvic acid was used for the sample, and a secondary electron multiplier was used for the detector 13. Nitrogen (pure gas) was used as the inert gas, the pressure was adjusted to atmospheric pressure with the pressure adjustment valve 20, and the flow rate was adjusted with the needle valve 21. As the inert gas introduction pipe, a stainless steel pipe and a glass capillary pipe whose inner surface was subjected to an inert treatment were used. The sample was introduced into the ion source by the direct sample introduction method.

試料溜めへの試料導入量を2μL、イオン源温度を200℃、イオン化電圧を30eV、イオン源フィラメント電流を4A、質量走査範囲をM/Z=40〜300、質量走査速度を1SCAN/2secにそれぞれ設定し、不活性ガスである窒素の導入量を、0(比較用)、0.5ml/min、1ml/min及び10ml/minに変化させてマススペクトルを取得した。なお、窒素流量を10ml/minに設定すると、本実験で使用した質量分析計ではイオン源内の真空度不良によって保護回路が働き、質量分析計が停止してデータを取得することができなかった。   The amount of sample introduced into the sample reservoir is 2 μL, the ion source temperature is 200 ° C., the ionization voltage is 30 eV, the ion source filament current is 4 A, the mass scanning range is M / Z = 40 to 300, and the mass scanning speed is 1 SCAN / 2 sec. The mass spectrum was acquired by changing the introduction amount of nitrogen, which is an inert gas, to 0 (for comparison), 0.5 ml / min, 1 ml / min, and 10 ml / min. When the nitrogen flow rate was set to 10 ml / min, in the mass spectrometer used in this experiment, the protection circuit worked due to the vacuum degree in the ion source, and the mass spectrometer stopped and data could not be acquired.

水素及び酸素の同位体存在比は天然存在比(H:99.985atom%、H:0.015atom%、16O:0.99759atom%、17O:0.037atom%、18O:0.204atom%)であるとし、得られたマススペクトルにおいて、M/Z=88及びM/Z=89のピーク強度比の値を用いて炭素の13C濃度を算出した。窒素流量[ml/min]と13C濃度[atom%]との関係を表1に示す。

Figure 2012117926
Hydrogen and oxygen isotope abundance ratios are natural abundance ratios ( 1 H: 99.985 atom%, 2 H: 0.015 atom%, 16 O: 0.99759 atom%, 17 O: 0.037 atom%, 18 O: 0.0. In the obtained mass spectrum, the 13 C concentration of carbon was calculated using the peak intensity ratio values of M / Z = 88 and M / Z = 89. Table 1 shows the relationship between the nitrogen flow rate [ml / min] and the 13 C concentration [atom%].
Figure 2012117926

表1に示す結果から、試料と同時にイオン源へ窒素を導入することにより、求めた13C濃度が期待値の1.108atom%へ近付き、イオン源の残留水分が分析値に与える悪影響が低減していることが分かる。 From the results shown in Table 1, by introducing nitrogen into the ion source at the same time as the sample, the calculated 13 C concentration approaches the expected value of 1.108 atom%, and the adverse effect of residual moisture of the ion source on the analytical value is reduced. I understand that

試料を非標識N,N−ジメチルホルムアミドとし、不活性ガスをアルゴンとし、アルゴンの導入量を0ml/min、1ml/min及び2ml/minに変化させた以外は、実施例1と同様にしてマススペクトルを取得し、M/Z=73及びM/Z=74のピーク強度比を用いて13C濃度を算出した。アルゴン流量[ml/min]と13C濃度[atom%]との関係を表2に示す。この結果からも、試料と同時にアルゴンガスをイオン源へ導入することにより、13C濃度が期待値に近付いていることが分かる。

Figure 2012117926
The mass was the same as in Example 1 except that the sample was unlabeled N, N-dimethylformamide, the inert gas was argon, and the amount of argon introduced was changed to 0 ml / min, 1 ml / min, and 2 ml / min. A spectrum was acquired and 13 C concentration was calculated using peak intensity ratios of M / Z = 73 and M / Z = 74. Table 2 shows the relationship between the argon flow rate [ml / min] and the 13 C concentration [atom%]. This result also shows that the 13 C concentration approaches the expected value by introducing argon gas into the ion source simultaneously with the sample.
Figure 2012117926

ガス導入量を1ml/minとして不活性ガスの種類をネオン、窒素、アルゴン、クリプトン及びキセノンに変えた以外は、実施例2と同様にしてマススペクトルを取得して13C濃度を算出した。導入した不活性ガスの種類と13C濃度[atom%]との関係を表3に示す。この結果から、導入する不活性ガスの分子量(Ne<N<Ar<Kr<Xe)が大きくなるのに従って13C濃度が期待値に近付いていることが分かる。

Figure 2012117926
A 13 C concentration was calculated by acquiring a mass spectrum in the same manner as in Example 2 except that the amount of gas introduced was 1 ml / min and the type of inert gas was changed to neon, nitrogen, argon, krypton, and xenon. Table 3 shows the relationship between the type of inert gas introduced and the 13 C concentration [atom%]. From this result, it can be seen that the 13 C concentration approaches the expected value as the molecular weight of the introduced inert gas (Ne <N 2 <Ar <Kr <Xe) increases.
Figure 2012117926

試料を非標識メラミンとし、窒素導入量を1ml/minとして窒素導入圧力を0MPa、0.1MPa及び0.2MPa(いずれもゲージ圧)に変化させた以外は、実施例1と同様にしてマススペクトルを取得し、M/Z=126及びM/Z=127のピーク強度比から13C濃度を算出した。窒素圧力[MPaG]と13C濃度[atom%]との関係を結果を表4に示す。この結果から、窒素導入圧力は分析結果にほとんど影響を与えないことが分かる。

Figure 2012117926
Mass spectrum in the same manner as in Example 1 except that the sample was unlabeled melamine, the nitrogen introduction amount was 1 ml / min, and the nitrogen introduction pressure was changed to 0 MPa, 0.1 MPa, and 0.2 MPa (all gauge pressures). The 13 C concentration was calculated from the peak intensity ratio of M / Z = 126 and M / Z = 127. Table 4 shows the relationship between the nitrogen pressure [MPaG] and the 13 C concentration [atom%]. From this result, it can be seen that the nitrogen introduction pressure has little influence on the analysis result.
Figure 2012117926

試料を非標識ピリジンとし、窒素導入量を1ml/minとして窒素導入温度を室温(26℃)、75℃及び150℃に変化させた以外は、実施例1と同様にしてマススペクトルを取得し、M/Z=79及びM/Z=80のピーク強度比から13C濃度を算出した。窒素温度[℃]と13C濃度[atom%]との関係を結果を表5に示す。この結果から、窒素導入温度は分析結果にほとんど影響を与えないことが分かる。

Figure 2012117926
A mass spectrum was obtained in the same manner as in Example 1 except that the sample was unlabeled pyridine, the nitrogen introduction amount was 1 ml / min, and the nitrogen introduction temperature was changed to room temperature (26 ° C.), 75 ° C. and 150 ° C. The 13 C concentration was calculated from the peak intensity ratio of M / Z = 79 and M / Z = 80. The relationship between the nitrogen temperature [° C.] and the 13 C concentration [atom%] is shown in Table 5. From this result, it can be seen that the nitrogen introduction temperature hardly affects the analysis result.
Figure 2012117926

11…イオン源、11a…イオン源ブロック、11b…イオン源チャンバー、12…質量分離部、12a…トロイダル電場、12b…扇形磁場、13…検出器、14…試料導入部、15…不活性ガス導入部、16…マイクロシリンジ、17…試料溜、17a…試料注入口、18…ニードルバルブ、19…不活性ガス源、20…圧力調整弁、21…ニードルバルブ   DESCRIPTION OF SYMBOLS 11 ... Ion source, 11a ... Ion source block, 11b ... Ion source chamber, 12 ... Mass separation part, 12a ... Toroidal electric field, 12b ... Fan magnetic field, 13 ... Detector, 14 ... Sample introduction part, 15 ... Inert gas introduction , 16 ... micro syringe, 17 ... sample reservoir, 17a ... sample inlet, 18 ... needle valve, 19 ... inert gas source, 20 ... pressure regulating valve, 21 ... needle valve

Claims (4)

試料をイオン源に導入して電子イオン化法によりイオン化したイオンを質量分析することにより、前記試料中の特定の元素の安定同位体の濃度を求める同位体濃度の分析方法において、前記イオン源に前記試料と共に不活性ガスを同時に導入する同位体濃度の分析方法。 In an isotope concentration analysis method for obtaining a stable isotope concentration of a specific element in a sample by introducing a sample into an ion source and performing mass spectrometry on ions ionized by an electron ionization method, the ion source includes the ion source An isotope concentration analysis method that simultaneously introduces an inert gas together with a sample. 前記不活性ガスは、ヘリウム、窒素、アルゴン、ネオン、クリプトン及びキセノンの少なくとも1種である請求項1記載の同位体濃度の分析方法。 The isotope concentration analysis method according to claim 1, wherein the inert gas is at least one of helium, nitrogen, argon, neon, krypton, and xenon. 前記試料は、水酸基、ケトン基又はカルボキシル基を含む分子、あるいは、アミン類又はイミン類と同じ結合構造を有する窒素原子を含む分子のいずれか1種の分子である請求項1又は2記載の同位体濃度の分析方法。 The isotope according to claim 1 or 2, wherein the sample is a molecule containing a hydroxyl group, a ketone group or a carboxyl group, or a molecule containing a nitrogen atom having the same bond structure as amines or imines. Body concentration analysis method. 前記試料は、グリシン、インドール、ベンズアルデヒド、ベンジルアルコール、安息香酸、フェノール、ピルビン酸、N,N−ジメチルホルムアミド、炭酸ジメチル、炭酸ジエチル、ピリジン及びメラミンのいずれか1種である請求項1乃至3のいずれか1項記載の同位体濃度の分析方法。 4. The sample according to claim 1, wherein the sample is any one of glycine, indole, benzaldehyde, benzyl alcohol, benzoic acid, phenol, pyruvic acid, N, N-dimethylformamide, dimethyl carbonate, diethyl carbonate, pyridine and melamine. The method for analyzing an isotope concentration according to any one of the preceding claims.
JP2010268204A 2010-12-01 2010-12-01 Method for analyzing isotopic concentration Pending JP2012117926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010268204A JP2012117926A (en) 2010-12-01 2010-12-01 Method for analyzing isotopic concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268204A JP2012117926A (en) 2010-12-01 2010-12-01 Method for analyzing isotopic concentration

Publications (1)

Publication Number Publication Date
JP2012117926A true JP2012117926A (en) 2012-06-21

Family

ID=46500926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268204A Pending JP2012117926A (en) 2010-12-01 2010-12-01 Method for analyzing isotopic concentration

Country Status (1)

Country Link
JP (1) JP2012117926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499633A (en) * 2013-10-15 2014-01-08 无锡艾科瑞思产品设计与研究有限公司 Method for fast detecting melamine in milk powder based on saturated milk solution
JP2021032745A (en) * 2019-08-26 2021-03-01 大陽日酸株式会社 Oxygen isotope concentration measuring system, and oxygen isotope concentration measuring method
JP2021522650A (en) * 2018-04-20 2021-08-30 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドPerkinelmer Health Sciences Canada, Inc. Mass spectrometers including ion sources and reaction cells and systems and methods using them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184348A (en) * 1999-12-02 2002-06-28 Hitachi Ltd Ion trap mass spectrometric method
JP2006064484A (en) * 2004-08-25 2006-03-09 Tokyo Gas Co Ltd Method and system for measuring isotope presence ratio of gas
JP2008128922A (en) * 2006-11-24 2008-06-05 Taiyo Nippon Sanso Corp Analyzing method of concentration of stable isotope
WO2010007368A2 (en) * 2008-07-16 2010-01-21 Micromass Uk Limited Ion source with device for oxidising a sample

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184348A (en) * 1999-12-02 2002-06-28 Hitachi Ltd Ion trap mass spectrometric method
JP2006064484A (en) * 2004-08-25 2006-03-09 Tokyo Gas Co Ltd Method and system for measuring isotope presence ratio of gas
JP2008128922A (en) * 2006-11-24 2008-06-05 Taiyo Nippon Sanso Corp Analyzing method of concentration of stable isotope
WO2010007368A2 (en) * 2008-07-16 2010-01-21 Micromass Uk Limited Ion source with device for oxidising a sample

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014027904; TSERNG,K.-Y. 他: '"Gas chromatography/mass spectrometric determination of [15N]urea in plasma and application to urea' Analytical Chemistry Volume 54, Number 3, 1982, Pages 489-491 *
JPN6014027905; TOYODA,S. 他: '"Determination of Nitrogen Isotopomers of Nitrous Oxide on a Modified Isotope Ratio Mass Spectromet' Analytical Chemistry Volume 71, Number 20, 19990909, Pages 4711-4718 *
JPN6014027907; WILLIAMS,B.D. 他: '"Determination of amino- and amide-15N glutamine enrichment with tertiary butyldimethylsilyl deriva' Biological Mass Spectrometry Volume 23, Issue 11, 1994, Pages 682-688 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499633A (en) * 2013-10-15 2014-01-08 无锡艾科瑞思产品设计与研究有限公司 Method for fast detecting melamine in milk powder based on saturated milk solution
JP2021522650A (en) * 2018-04-20 2021-08-30 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドPerkinelmer Health Sciences Canada, Inc. Mass spectrometers including ion sources and reaction cells and systems and methods using them
JP2021032745A (en) * 2019-08-26 2021-03-01 大陽日酸株式会社 Oxygen isotope concentration measuring system, and oxygen isotope concentration measuring method
JP7295743B2 (en) 2019-08-26 2023-06-21 大陽日酸株式会社 Oxygen isotope concentration measuring device and oxygen isotope concentration measuring method

Similar Documents

Publication Publication Date Title
US10665329B2 (en) High-resolution mass spectrometer and methods for determining the isotopic anatomy of organic and volatile molecules
Kari et al. PTR-ToF-MS product ion distributions and humidity-dependence of biogenic volatile organic compounds
Fedi et al. The 14C AMS facility at LABEC, Florence
JP2009129868A (en) Mass spectroscope and its method for adjustment
CN113826187A (en) Mass spectrometry method and mass spectrometry device
Rohde et al. Ammonia production in nitrogen seeded plasma discharges in ASDEX Upgrade
Willems et al. Corrigendum: Characterization of the effluent of a He/O 2 micro-scaled atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry (2010 New J. Phys. 12 013021)
JP2012117926A (en) Method for analyzing isotopic concentration
Malásková et al. Compendium of the reactions of H3O+ with selected ketones of relevance to breath analysis using proton transfer reaction mass spectrometry
JP2017015676A (en) Plasma ion source mass spectrography method and apparatus
Drexel et al. Electron attachment to C 2 Cl 4 and Trojan horse ionization
Verkouteren et al. Isotopic metrology of carbon dioxide. II. Effects of ion source materials, conductance, emission, and accelerating voltage on dual‐inlet cross contamination
AU2012360196B2 (en) In situ generation of ozone for mass spectrometers
Ghosh et al. The effect of N2O on the isotopic composition of air‐CO2 samples
Limão-Vieira et al. Electron scattering cross sections for S F 6 and S F 5 C F 3 at intermediate and high energies (100–10000 eV)
JP7295743B2 (en) Oxygen isotope concentration measuring device and oxygen isotope concentration measuring method
Peitzmann et al. Absolute cross sections for electron impact excitation of mercury 61P1 at 15, 60 and 100 eV
Min et al. Estimation of Mass Discrimination Factor for a Wide Range of m/z by Argon Artificial Isotope Mixtures and NF 3 Gas
Park et al. A technique to minimize impurity signal from blank rhenium filaments for highly accurate TIMS measurements of uranium in ultra-trace levels
Cole et al. Contribution and origin of H3O+ in the mass spectral peak at 19amu
JP4857148B2 (en) Analysis method of stable isotope concentration
Jenninger et al. CAS tutorial on RGA Interpretation of RGA spectra
Wang et al. Determination of atomic hydrogen in non‐thermal hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry
CN109884156A (en) The detection device and method of plurality of impurities in a kind of quick analysis perfluoropropane
Pieńkos et al. A new negative and positive gas ion source for isotope ratio mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324