JP2012112849A - Highly accurate bridge circuit type detector - Google Patents

Highly accurate bridge circuit type detector Download PDF

Info

Publication number
JP2012112849A
JP2012112849A JP2010263057A JP2010263057A JP2012112849A JP 2012112849 A JP2012112849 A JP 2012112849A JP 2010263057 A JP2010263057 A JP 2010263057A JP 2010263057 A JP2010263057 A JP 2010263057A JP 2012112849 A JP2012112849 A JP 2012112849A
Authority
JP
Japan
Prior art keywords
voltage
strain
bridge circuit
bridge
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010263057A
Other languages
Japanese (ja)
Inventor
Masashi Ohashi
政司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2010263057A priority Critical patent/JP2012112849A/en
Publication of JP2012112849A publication Critical patent/JP2012112849A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate bridge circuit type detector having simple structure and capable of reducing errors in measurement of a fine resistance change.SOLUTION: The detector using a bridge circuit having a resistance displacement part Rto be displaced correspondingly to a measurement sensor part on at least one side of a quadrilateral includes a power supply part connected between a point A and a point B facing each other in the bridge circuit, an output voltage measurement part for detecting voltage outputted between the other points C and D facing each other and a net bridge voltage measurement part for measuring voltage between the points A and B to calculate a fine resistance change of the resistance displacement part Rby an output voltage value measured by the output voltage measurement part and a net bridge voltage value measured by the net bridge voltage measurement part.

Description

本発明は微小の抵抗変化を精密に測定できるブリッジ回路型の検出器に関する。   The present invention relates to a bridge circuit type detector capable of accurately measuring a minute resistance change.

歪みゲージと接続してその抵抗変化を測定したり、温度や圧力等の物理量の変化を抵抗変化として測定する温度センサー、圧力センサー等の各種センサーにホイーストンブリッジ回路が採用されている。   A Wheatstone bridge circuit is employed for various sensors such as a temperature sensor and a pressure sensor that measure resistance changes by connecting to a strain gauge, or measure changes in physical quantities such as temperature and pressure as resistance changes.

従来のブリッジ回路型の検出器の構成例を図2に示す。
歪みゲージ等の抵抗変位を検出する抵抗変位部Rと既知の抵抗器R,R,Rを四辺形に接続し、ブリッジ回路の対向するA点及びB点の間に電源電圧Eによる電流iを流し、他の対向するC点及びD点の間の出力電圧を測定する。
ここで、RとRを既知の固定抵抗器とし、Rを可変抵抗器とすることで出力電圧がゼロとなるRの抵抗値を求めることでRの抵抗値を算出する(零位法)と、R,R,Rを固定抵抗器にし、ブリッジ回路の不平衡によって生じる出力電圧を検出する方法とがある。
抵抗変位部Rが歪みゲージの場合に、その抵抗変化が極めて小さいのでブリッジ回路の不平衡によって生じる出力電圧を増幅して測定する。
A configuration example of a conventional bridge circuit type detector is shown in FIG.
A resistance displacement part RS for detecting resistance displacement, such as a strain gauge, and known resistors R 1 , R 2 , R 3 are connected in a quadrilateral shape, and a power supply voltage E between points A and B facing each other in the bridge circuit. And the output voltage between other opposing points C and D is measured.
Here, R 1 and R 2 are known fixed resistors, and R 3 is a variable resistor, so that the resistance value of R 3 is calculated by obtaining the resistance value of R 3 at which the output voltage becomes zero ( Zero method) and R 1 , R 2 , R 3 as fixed resistors, and a method of detecting an output voltage caused by an unbalanced bridge circuit.
When the resistance displacement part RS is a strain gauge, the change in resistance is extremely small, so the output voltage generated by the unbalance of the bridge circuit is amplified and measured.

しかし、従来のブリッジ回路型検出器では、電源電圧Eと測定された出力電圧VCDとの値を用いてひずみを測定していたので結線コードの長さや何らかの内部抵抗rの変化により測定誤差が生じる問題があった。
また、電流値を安定化させるための高価な電流コントロール装置が必要であった。
特許文献1にブリッジ型検出回路を設けた技術を開示するが、同公報に開示するブリッジ電圧検出回路はガスクロマトグラフ等に用いるものであって、自己発熱によるブリッジ回路内の抵抗値変化をゼロ点補正するものであって専用の複雑なコンピュータプログラムが必要であった。
また、ブリッジ回路内の抵抗値は自己発熱だけでなく、周辺温度・圧力・磁場等測定環境の変化に伴って刻々と変化するから前記のような自己発熱だけの補正では不充分であった。
However, in the conventional bridge circuit type detector, since the distortion is measured using the value of the power supply voltage E and the measured output voltage V CD , the measurement error is caused by the length of the connection cord or some internal resistance r. There was a problem that occurred.
Further, an expensive current control device for stabilizing the current value is required.
Patent Document 1 discloses a technique in which a bridge-type detection circuit is provided. The bridge voltage detection circuit disclosed in the same publication is used for a gas chromatograph or the like, and a resistance value change in the bridge circuit due to self-heating is zero. A complex computer program dedicated to the correction was necessary.
Further, since the resistance value in the bridge circuit changes not only with self-heating but also with changes in the measurement environment such as ambient temperature, pressure, and magnetic field, the above-described correction only with self-heating is not sufficient.

特開2004−93321号公報JP 2004-93321 A

本発明は微小抵抗変化の測定に対して、構造が簡単で誤差の小さい高精度のブリッジ回路型検出器の提供を目的とする。   An object of the present invention is to provide a high-accuracy bridge circuit type detector having a simple structure and a small error with respect to measurement of a minute resistance change.

本発明に係るブリッジ回路型検出器は、四辺形の少なくとも一辺に測定センサー部に対応して変位する抵抗変位部Rを有するブリッジ回路を用いた検出器であって、ブリッジ回路の対向するA点及びB点間に有する電源部と、他の対向するC点及びD点間に出力される電圧を検出する出力電圧測定部を有し、さらに前記A点及びB点間の電圧を測定する正味ブリッジ電圧測定部を有し、前記出力電圧測定部にて測定した出力電圧値と前記正味ブリッジ電圧測定部にて測定した正味ブリッジ電圧値にて抵抗変位部Rの微小抵抗変化を算出するものであることを特徴とする。 A bridge circuit type detector according to the present invention is a detector using a bridge circuit having a resistance displacement part RS that is displaced corresponding to a measurement sensor part on at least one side of a quadrilateral, and is a detector that has a facing A of the bridge circuit. A power supply unit between the point B and the point B, and an output voltage measurement unit that detects a voltage output between the other opposing points C and D, and further measures the voltage between the points A and B A net bridge voltage measurement unit is included, and a minute resistance change of the resistance displacement unit RS is calculated from the output voltage value measured by the output voltage measurement unit and the net bridge voltage value measured by the net bridge voltage measurement unit. It is characterized by being.

ここで、出力電圧測定部は必要に応じて増幅器を有してもよい。   Here, the output voltage measurement unit may include an amplifier as necessary.

本発明に係る検出器は、A点及びB点間に直接印加される正味ブリッジ電圧をその都度測定し、このときのC点及びD点間の出力電圧を測定できるので、これらの値を用いることで微小の抵抗変化を高精度に測定できる。
例えば電源部と検出器との間の結線コードの長さが変化したり、測定系内の温度、圧力、磁場等の測定環境が変化しても測定の都度、ブリッジ回路に真に印加される正味ブリッジ電圧とそのときの出力電圧を測定するので測定環境変化の排除ができ、非常に測定誤差が小さくなり、ひずみ測定の場合に測定誤差は標準偏差で10−6以下の高精度が得られる。
本発明に係る検出器は、A点及びB点間の電圧VABを直接測定し、それを用いて微小の抵抗変化を検出するものであることから、電源装置を有すればよく、従来のような定電流コントロール装置は必ずしも必要ではなくなる。
The detector according to the present invention measures the net bridge voltage directly applied between the points A and B each time, and can measure the output voltage between the points C and D at this time, so these values are used. Therefore, a minute resistance change can be measured with high accuracy.
For example, even if the length of the connection cord between the power supply unit and the detector changes or the measurement environment such as temperature, pressure, magnetic field, etc. in the measurement system changes, it is truly applied to the bridge circuit at every measurement. Since the net bridge voltage and the output voltage at that time are measured, the change in the measurement environment can be eliminated, and the measurement error can be greatly reduced. In the case of strain measurement, the measurement error has a high standard deviation of 10 −6 or less. .
Since the detector according to the present invention directly measures the voltage V AB between the points A and B and detects a minute resistance change using the voltage V AB , it is sufficient to have a power supply device. Such a constant current control device is not necessarily required.

本発明に係るブリッジ回路型検出器の構成例を示す。The structural example of the bridge circuit type detector which concerns on this invention is shown. 従来の検出器の構成例を示す。The structural example of the conventional detector is shown. 従来の検出器と本発明に係る検出器を用いて測定したひずみの比較データを示す。The comparison data of the distortion measured using the conventional detector and the detector based on this invention are shown.

本発明に係る検出器の構成例を図1に示す。
図1に示した例は、既知の固定抵抗器R,R,Rと、抵抗変位部Rを四辺形に接続したブリッジ回路になっていて、Rは歪みゲージ,温度センサー,圧力センサー等の物理量の測定センサー部における測定対象となる物理量の変化に応じて変化する抵抗体である。
ブリッジ回路のA点及びB点間には電源部Eを有する。
C点及びD点の間には出力電圧測定部VCDを有する。
出力電圧VCDの測定に対して、A点及びB点の間の正味ブリッジ電圧VABを測定する。
A configuration example of a detector according to the present invention is shown in FIG.
The example shown in FIG. 1 is a bridge circuit in which known fixed resistors R 1 , R 2 , R 3 and a resistance displacement portion RS are connected in a quadrilateral shape, where R S is a strain gauge, a temperature sensor, It is a resistor that changes in accordance with a change in a physical quantity to be measured in a physical quantity measurement sensor unit such as a pressure sensor.
A power source E is provided between the points A and B of the bridge circuit.
Between the point C and point D has an output voltage measuring unit V CD.
The measurement of the output voltage V CD, measures the net bridge voltage V AB between the points A and B.

次に抵抗変位部Rに歪みゲージを用いてひずみ(引張ひずみ、圧縮ひずみ等)を測定する例を説明する。
<例1>
初期平衡状態でR=R=R=Rとし、歪みゲージにひずみεが生じた時に抵抗Rが変化すれば、正味ブリッジ電圧VABに対して出力電圧VCD(ひずみεが生じたことにより変化した電圧)の関係は、歪みゲージのゲージ率をKとすると、Rの抵抗変化が微小であることからε=4/K×VCD/VABの近似式が成立する。
<例2>
に歪みと温度・圧力・磁場などの外場の影響をうけるアクティブゲージ、Rに温度・圧力・磁場などの外場のみの影響をうけるダミーゲージを用いてひずみ(引張ひずみ、圧縮ひずみ等)を測定する場合は、初期平衡状態でR=R,R=Rとし、アクティブゲージにひずみεが生じた時に抵抗Rが変化すれば、正味ブリッジ電圧VABに対して出力電圧VCD(ひずみεが生じたことにより変化した電圧)の関係は、歪みゲージのゲージ率をKとすると、R,Rの抵抗変化が微小であることからε=4/K×VCD/VABの近似式が成立する。
<例3>
,Rに歪みゲージを用いてひずみ(引張ひずみ、圧縮ひずみ等)を測定する場合は、初期平衡状態でR=R=R=Rとし、歪みゲージにひずみεが生じた時に抵抗R,Rが変化すれば、正味ブリッジ電圧VABに対して出力電圧VCD(ひずみεが生じたことにより変化した電圧)の関係は、歪みゲージのゲージ率をKとすると、R,Rの抵抗変化が微小であることからε=4/(1+ν)K×VCD/VABの近似式が成立する。
ここでνはR,Rの歪みの方向によってきまるパラメータである。
<例4>
,Rに歪みゲージを用いてひずみ(引張ひずみ、圧縮ひずみ等)を測定する場合は、初期平衡状態でR=R,R=Rとし、歪みゲージにひずみεが生じた時に抵抗R,Rが変化すれば、正味ブリッジ電圧VABに対して出力電圧VCD(ひずみεが生じたことにより変化した電圧)の関係は、歪みゲージのゲージ率をKとすると、R,Rの抵抗変化が微小であることからε=4/(1+ν)K×VCD/VABの近似式が成立する。
ここでνはR,Rの歪みの方向によってきまるパラメータである。
<例5>
,R,R,Rに歪みゲージを用いてひずみ(引張ひずみ、圧縮ひずみ等)を測定する場合は、初期平衡状態でR=R=R=Rとし、歪みゲージにひずみεが生じた時の抵抗変化をそれぞれΔR,ΔR,ΔR,ΔRとし、ΔR=ΔR=−ΔR =−ΔRとすれば、正味ブリッジ電圧VABに対して出力電圧VCD(ひずみεが生じたことにより変化した電圧)の関係は、歪みゲージのゲージ率をKとすると、R,Rの抵抗変化が微小であることからε=K×VCD/VABの近似式が成立する。
図3のグラフは横軸に測定系の温度(K)をとり、縦軸に本発明に係る検出器を用い、上記例2に従ってVAB,VCDの値から算出したひずみεに対して、従来の検出器でVCDの値から算出したひずみεとした場合の差分をδεとし、δε/εの値を%で表示したものである。
この結果、温度20〜30K付近で約0.3%の差があった。
即ち、正味ブリッジ電圧VABを用いてひずみを算出した方がそれだけ測定誤差が小さくなることになる。
Next, an example in which strain (tensile strain, compressive strain, etc.) is measured using a strain gauge on the resistance displacement portion RS will be described.
<Example 1>
If R 1 = R 2 = R 3 = R S in the initial equilibrium state and the resistance R S changes when a strain ε occurs in the strain gauge, the output voltage V CD (strain ε is less than the net bridge voltage V AB . As for the relationship of the voltage that has changed due to the occurrence, the approximate expression of ε = 4 / K S × V CD / V AB is obtained because the resistance change of R S is very small when the gauge factor of the strain gauge is K S. To establish.
<Example 2>
Active gage affected by external field, such as R strain to the S and the temperature, pressure and magnetic field, strain using a dummy gauge affected by external field only, such as temperature, pressure, magnetic field R 3 (tensile strain, compressive strain Etc.), if R 1 = R 2 , R 3 = R S in the initial equilibrium state, and the resistance R S changes when the strain ε occurs in the active gauge, then the net bridge voltage V AB relationship between the output voltage V CD (voltage changed by strain epsilon occurs), when the gauge factor of the strain gauge and K S, R S, since the change in resistance of R 3 is small epsilon = 4 / K An approximate expression of S × V CD / V AB is established.
<Example 3>
When strain (tensile strain, compression strain, etc.) is measured using strain gauges for R S and R 1 , R 1 = R 2 = R 3 = R S in the initial equilibrium state, and strain ε is generated in the strain gauge. resistance R S when the, if R 1 is changed, the relationship between the output voltage with respect to the net bridge voltage V AB V CD (voltage changed by strain ε occurs) is the gauge factor of the strain gauge and K S Then, since the resistance change of R S and R 1 is minute, an approximate expression of ε = 4 / (1 + ν) K S × V CD / V AB is established.
Here, ν is a parameter determined by the direction of distortion of R S and R 1 .
<Example 4>
When measuring strain (tensile strain, compressive strain, etc.) using strain gauges for R S and R 3 , R 1 = R 2 and R 3 = RS in the initial equilibrium state, and strain ε is generated in the strain gauge. resistance R S when the, if R 3 is changed, the relationship between the output voltage with respect to the net bridge voltage V AB V CD (voltage changed by strain ε occurs) is the gauge factor of the strain gauge and K S Then, since the resistance change of R S and R 3 is minute, an approximate expression of ε = 4 / (1 + ν) K S × V CD / V AB is established.
Here, ν is a parameter determined by the direction of distortion of R S and R 3 .
<Example 5>
When measuring strain (tensile strain, compressive strain, etc.) using strain gauges for R 1 , R 2 , R 3 , and RS , R 1 = R 2 = R 3 = R S in the initial equilibrium state, Assuming that ΔR 1 , ΔR 2 , ΔR 3 , and ΔR s are resistance changes when strain ε is generated in the gauge, and ΔR 1 = ΔR 3 = −ΔR 2 = −ΔR S , the net bridge voltage V AB is obtained. relationship Te output voltage V CD (strain epsilon voltage changed by occurs), when the gauge factor of the strain gauge and K S, R S, since the change in resistance of R 1 is small epsilon = K S The approximate expression of × V CD / V AB is established.
Graph of Figure 3 takes the temperature (K) of the measuring system on the horizontal axis, relative to a detector according to the present invention used on the vertical axis, the strain was calculated from the value of V AB, V CD in accordance with the above Example 2 epsilon, The difference when the strain ε 0 calculated from the value of V CD with a conventional detector is δε is represented by δε, and the value of δε / ε 0 is represented by%.
As a result, there was a difference of about 0.3% around the temperature of 20-30K.
That is, the measurement error becomes smaller as the strain is calculated using the net bridge voltage V AB .

歪みゲージには箔歪みゲージ、線歪みゲージ及び半導体歪みゲージのいずれも使用できる。
ゲージ率Kは歪みゲージの感度を表す係数で、一般用の歪みゲージで使われている銅・ニッケル系やニッケル・クロム系合金はほぼ2の値である。
そこで、ε=4/K×VCD/VABにてK=2とし、VAB=2[V]×変化率の逆数αを置くと、ε=αVCDとなることから、正味ブリッジで電圧の変化率の逆数αと出力電圧変化ΔV=VCDの積として算出することもできる。
本発明に係る検出器はKの値を入力するだけで、VABとVCDの値から自動計算する自動演算部を有していてもよい。
As the strain gauge, any of a foil strain gauge, a linear strain gauge, and a semiconductor strain gauge can be used.
Gauge factor K S is a coefficient representing the sensitivity of the strain gauge, copper nickel based or nickel-chromium-based alloys are used in strain gauge OTC is approximately 2 values.
Therefore, if K S = 2 at ε = 4 / K S × V CD / V AB and V AB = 2 [V] × the reciprocal α of the change rate is set, ε = αV CD is obtained. in it is possible to calculate the reciprocal of the rate of change of voltage α as the product of the output voltage change [Delta] V = V CD.
The detector according to the present invention may have an automatic calculation unit that automatically calculates the value of V AB and V CD only by inputting the value of K S.

Claims (1)

四辺形の少なくとも一辺に測定センサー部に対応して変位する抵抗変位部Rを有するブリッジ回路を用いた検出器であって、
ブリッジ回路の対向するA点及びB点間に有する電源部と、他の対向するC点及びD点間に出力される電圧を検出する出力電圧測定部を有し、さらに前記A点及びB点間の電圧を測定する正味ブリッジ電圧測定部を有し、
前記出力電圧測定部にて測定した出力電圧値と前記正味ブリッジ電圧測定部にて測定した正味ブリッジ電圧値にて抵抗変位部Rの微小抵抗変化を算出するものであることを特徴とするブリッジ回路型検出器。
A detector using a bridge circuit having a resistance displacement part RS that is displaced corresponding to the measurement sensor part on at least one side of the quadrilateral,
A power supply unit between the A and B points facing each other in the bridge circuit, and an output voltage measuring unit that detects a voltage output between the other C and D points facing each other. A net bridge voltage measurement unit that measures the voltage between
A bridge characterized in that the minute resistance change of the resistance displacement portion RS is calculated from the output voltage value measured by the output voltage measurement unit and the net bridge voltage value measured by the net bridge voltage measurement unit. Circuit type detector.
JP2010263057A 2010-11-26 2010-11-26 Highly accurate bridge circuit type detector Pending JP2012112849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263057A JP2012112849A (en) 2010-11-26 2010-11-26 Highly accurate bridge circuit type detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263057A JP2012112849A (en) 2010-11-26 2010-11-26 Highly accurate bridge circuit type detector

Publications (1)

Publication Number Publication Date
JP2012112849A true JP2012112849A (en) 2012-06-14

Family

ID=46497211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263057A Pending JP2012112849A (en) 2010-11-26 2010-11-26 Highly accurate bridge circuit type detector

Country Status (1)

Country Link
JP (1) JP2012112849A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374058A (en) * 1976-12-13 1978-07-01 Amaki Denshi Kenkiyuushiyo Yuu Digital measuring circuit
JPS6280533A (en) * 1985-10-03 1987-04-14 Mitsubishi Electric Corp Pressure measuring instrument
JPH05500716A (en) * 1989-09-29 1993-02-12 ローズマウント インコーポレイテッド Voltage-digital converter
JPH11230709A (en) * 1997-12-11 1999-08-27 Tokyo Sokki Kenkyusho Co Ltd Method and apparatus for measuring strain as well as recording medium therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374058A (en) * 1976-12-13 1978-07-01 Amaki Denshi Kenkiyuushiyo Yuu Digital measuring circuit
JPS6280533A (en) * 1985-10-03 1987-04-14 Mitsubishi Electric Corp Pressure measuring instrument
JPH05500716A (en) * 1989-09-29 1993-02-12 ローズマウント インコーポレイテッド Voltage-digital converter
JPH11230709A (en) * 1997-12-11 1999-08-27 Tokyo Sokki Kenkyusho Co Ltd Method and apparatus for measuring strain as well as recording medium therefor

Similar Documents

Publication Publication Date Title
US9857782B2 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
US9395386B2 (en) Electronic tilt compensation for diaphragm based pressure sensors
CN206057424U (en) A kind of current measuring device
US8874387B2 (en) Air flow measurement device and air flow correction method
US11022481B2 (en) Load cell having compensation of temperature differences
JP2012002587A (en) Failure diagnostic device for force or load detection sensor
JPH11511849A (en) Temperature compensation method for pressure sensor
EP3391003B1 (en) Pressure sensor drift detection and correction
JP2000088891A (en) Bridge circuit and detector using the same
CN106441403B (en) Bridge type magnetic sensor initial zero position voltage adjusting zero method
JPH0769232B2 (en) Method and apparatus for temperature compensation of load cell
CN102313609B (en) There is the temperature-detecting device of diode and A/D converter
KR20090014711A (en) Method of calibrating a pressure gauge and system for calibrating a pressure gauge using the same
JP2013022110A (en) Needle thread tension measurement device of sewing machine
US20120105054A1 (en) Dc responsive transducer with on-board user actuated auto-zero
JP2012112849A (en) Highly accurate bridge circuit type detector
JP2012127721A (en) Failure diagnostic device for load cell
Suryana et al. Strain gage for mass sensor using cantilever beam
KR101960888B1 (en) Temperature sensor correcting device, temperature sensor, and temperature sensor correcting method
JP4255926B2 (en) Strain and temperature measuring device
JP2013024808A (en) Measuring apparatus and measuring method
CN114521233A (en) Strain gauge type pressure sensing
RU2418275C1 (en) Method of measuring pressure
Chattopadhyay et al. Modified AC Wheatstone bridge network for accurate measurement of pressure using strain gauge type pressure sensor
JP2010107266A (en) Load cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150601