JPS6280533A - Pressure measuring instrument - Google Patents

Pressure measuring instrument

Info

Publication number
JPS6280533A
JPS6280533A JP22053885A JP22053885A JPS6280533A JP S6280533 A JPS6280533 A JP S6280533A JP 22053885 A JP22053885 A JP 22053885A JP 22053885 A JP22053885 A JP 22053885A JP S6280533 A JPS6280533 A JP S6280533A
Authority
JP
Japan
Prior art keywords
circuit
pressure
bridge
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22053885A
Other languages
Japanese (ja)
Inventor
Kazuo Takashima
和夫 高嶋
Masayuki Sugiyama
昌之 杉山
Masahiro Hiki
比企 昌弘
Yoshiaki Uwazumi
好章 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22053885A priority Critical patent/JPS6280533A/en
Publication of JPS6280533A publication Critical patent/JPS6280533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To simplify the constitution of an analog circuit and to improve measurement precision by processing digitally the output of a ridge circuit which has a semiconductor strain gauge. CONSTITUTION:A pressure receiving diaphragm 2 deforms according to the pressure for measurement to strain the semiconductor strain gauge 5 which varies in resistance value by piezoresistance effect. A bridge circuit 9 has the semiconductor strain gauge 5 incorporated in a bridge 92 and outputs a signal corresponding to the resistance value of the semiconductor strain gauge 5. The voltage-division value obtained by dividing this output signal by the input voltage VA of the bridge 92 by a voltage dividing circuit 1 is selected and digitized by an A/D converting circuit 14. Then, the output of the circuit 14 is inputted to calculate the ratio of the 1st digital signal corresponding to the output voltage of the circuit 9 and the 2nd digital signal corresponding to the voltage division by an arithmetic circuit 15, thereby outputting a pressure measurement digital signal corresponding to measured pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、圧力または差圧を圧抵抗効果素子で検出し
て、圧力または差圧に応じた信号をデジタル信号で出力
する圧力測定装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a pressure measuring device that detects pressure or differential pressure with a piezoresistive element and outputs a signal corresponding to the pressure or differential pressure as a digital signal. It is something.

〔従来の技術〕[Conventional technology]

第3図乃至第5図は従来のこの種の装置を示し、図にお
いて゛、(1)は内部に円形もしくは橢円形等の縦断面
形状の室を有するセンサ部本体、(2)はセンサ部本体
(1)内の室を第1の室(3)と第2の室(4)とに分
離している受圧ダイアプラムであり、縁部をセンサ部本
体(1)により保持され圧力または差圧により図示矢印
のA方向の一方に変位する。(5)は受圧ダイアフラム
(2)に設けられた圧抵抗効果を有する圧抵抗効果素子
例えば半導体ストレーンゲージ、(6)は第1の室(3
)に連通ずる圧力導入用の第1のキャピラリ、(7)は
第2の室(4)に連通ずる圧力導入用の第2のキャピラ
リである。(8)はセンサ部であり、上述の符号(1)
〜(7)で示される構成要素から構成されている。(9
)は半導体ストレーンゲージ(5)を用いて構成したブ
リッジ(92)を有しているブリッジ回路、α〔はブリ
ッジ回路(9)の出力を増幅して差動をとって出力する
増幅回路である。
Figures 3 to 5 show conventional devices of this kind, in which (1) is a sensor main body having a chamber with a vertical cross section such as a circular or oval shape, and (2) is a sensor unit. It is a pressure receiving diaphragm that separates the chamber in the main body (1) into a first chamber (3) and a second chamber (4), and the edge is held by the sensor main body (1) to detect pressure or differential pressure. , it is displaced in one direction in the direction of arrow A in the figure. (5) is a piezoresistive effect element having a piezoresistive effect provided on the pressure receiving diaphragm (2), such as a semiconductor strain gauge;
) is a first capillary for introducing pressure that communicates with the second chamber (4), and (7) is a second capillary for introducing pressure that communicates with the second chamber (4). (8) is a sensor part, and the above-mentioned code (1)
It is composed of the components shown in ~(7). (9
) is a bridge circuit having a bridge (92) constructed using a semiconductor strain gauge (5), and α is an amplifier circuit that amplifies the output of the bridge circuit (9) and outputs the differential signal. .

ブリッジ回路(9)は、定電流回路(91)と半導体ス
トレーンゲージ(5)を有するブリッジ(92)とから
構成されている。このブリッジ(92)は例えばブリッ
ジの相対する直接的に接続されてない抵抗対の内、1対
の抵抗対のみが半導体ストレーンゲージ(5ンで構成さ
n、他の1対の抵抗対(92A)、(92B)は固定抵
抗化されている。増幅回路OIはブリッジ(92)の正
極性側の出力電圧を非反転増幅する増幅器(1oo)と
ブリッジ(92)の負極性側の出力電圧を非反転増幅す
る増幅器(101)と両増幅器(10す、(1o1)の
出力の差をとって出力する係数器(102)等とから構
成されている。(105)はスパン調整用の可変抵抗器
であり、端子を増幅器(10す、(101)の(−)入
力端子間に接続さnている。
The bridge circuit (9) includes a constant current circuit (91) and a bridge (92) having a semiconductor strain gauge (5). For example, in this bridge (92), among opposing resistor pairs that are not directly connected, only one resistor pair is composed of a semiconductor strain gauge (5 n), and the other resistor pair (92A ), (92B) are fixed resistors.The amplifier circuit OI includes an amplifier (1oo) that non-inverts and amplifies the output voltage on the positive side of the bridge (92), and an output voltage on the negative side of the bridge (92). It consists of an amplifier (101) that performs non-inverting amplification, a coefficient unit (102) that calculates the difference between the outputs of both amplifiers (10s, (1o1), and outputs the difference. (105) is a variable resistor for span adjustment. The terminals are connected between the (-) input terminals of the amplifiers (10 and (101)).

(104)は零点調整用の可変抵抗器、(105)は可
変抵抗器(10りにより調整された電圧を増幅して係数
器(102)の(+1入力端子に与える増幅器である。
(104) is a variable resistor for zero point adjustment, and (105) is an amplifier that amplifies the voltage adjusted by the variable resistor (10) and supplies it to the (+1 input terminal) of the coefficient unit (102).

次に動作について説明する。測定用圧力PAが第1のキ
ャピラリ(6)を介して第1の室(3)に導入される。
Next, the operation will be explained. Measuring pressure PA is introduced into the first chamber (3) via the first capillary (6).

また、測定用圧力PBが第2のキャピラリ(7)を介し
て第2の室(4)に導入される。受圧ダイアフラム(2
)は導入さnた測定用圧力PA、PBの差圧に応じて変
形する。この変形により半導体ストレーンゲージ(5)
は歪を受けて圧抵抗効果により抵抗値を変化させる。ブ
リッジ回路(9)は半導体ストレーンゲージ(5)の抵
抗値に応じた信号を増幅回路01に出力する。ブリッジ
回路(9)のブリッジ(92)の出力電圧は増幅器(1
00)、(101)により差を大きくするように各々増
幅さnて係数器(102)により差をとられて出力され
る。なお、この圧力測定開始にあたっては、測定者は可
変抵抗器(104)の抵抗値を調整して、零点調整をし
、次に、可変抵抗器(105)の抵抗値を調整して、ス
パンの調整をする。
Moreover, the measurement pressure PB is introduced into the second chamber (4) via the second capillary (7). Pressure receiving diaphragm (2
) deforms according to the pressure difference between the introduced measurement pressures PA and PB. Due to this deformation, semiconductor strain gauge (5)
undergoes strain and changes its resistance value due to the piezoresistive effect. The bridge circuit (9) outputs a signal corresponding to the resistance value of the semiconductor strain gauge (5) to the amplifier circuit 01. The output voltage of the bridge (92) of the bridge circuit (9) is
00) and (101) to increase the difference, and the difference is calculated by a coefficient unit (102) and output. In addition, when starting this pressure measurement, the measurer adjusts the resistance value of the variable resistor (104) to adjust the zero point, and then adjusts the resistance value of the variable resistor (105) to adjust the span. Make adjustments.

また、上記従来例において測定用圧力Pへ、Paの一方
を常に一定とし測定用圧力を一方向から受圧ダイアフラ
ムに加える従来例の装置もある。
Furthermore, in the conventional example described above, there is also a conventional device in which one of the measuring pressure P and Pa is kept constant and the measuring pressure is applied to the pressure receiving diaphragm from one direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の圧力測定装置は以上のように構成されているので
、処理回路をアナログ的に構成しており、アナログ素子
を多(用いているので温度による測定値の影響が大きく
測定誤差を生じ易く、また、零点やスパンの調整が複雑
で余計温度ドリフトを生じ易いなどの問題点があった。
Conventional pressure measuring devices have the above-mentioned configuration, so the processing circuit is configured in an analog manner, and since many analog elements are used, the measured value is greatly influenced by temperature and measurement errors are likely to occur. In addition, there are other problems such as the adjustment of the zero point and span is complicated and tends to cause temperature drift.

この発明は上記のような問題点を解消するためになされ
たもので、圧抵抗効果を示す素子を有するブリッジ回路
の出力をデジタル的に処理することにより、アナログ回
路の構成を簡単化し測定精度を高くした圧力測定装置を
得ることを目的とする。
This invention was made to solve the above-mentioned problems, and by digitally processing the output of a bridge circuit having an element exhibiting a piezoresistive effect, it simplifies the configuration of an analog circuit and improves measurement accuracy. The purpose is to obtain a pressure measuring device with increased pressure.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る圧力測定装置は、加工手段により測定用
圧力に応じて圧抵抗素子に歪を加え、圧抵抗効果素子を
組込んだブリッジを有するブリッジ回路の出力を測定用
圧力に応じて変化させ、分圧回路によりブリッジ用の入
力電圧を分圧した分圧とブリッジ回路の出力とをアナロ
グ−デジタル変換回路によりデジタル化し、両デジタル
化した信号の比を演算することによって測定用圧力に応
じた圧力測定デジタル信号を演算回路から出力するよう
にしたものである。
The pressure measuring device according to the present invention applies strain to the piezoresistive element according to the measurement pressure by a processing means, and changes the output of a bridge circuit having a bridge incorporating the piezoresistive effect element according to the measurement pressure. , the input voltage for the bridge is divided by the voltage divider circuit and the output of the bridge circuit is digitized by the analog-to-digital conversion circuit, and the ratio of both digitized signals is calculated to calculate the voltage according to the measurement pressure. A pressure measurement digital signal is output from an arithmetic circuit.

〔作 用〕[For production]

この発明における圧力測定装置は、測定用圧力に応じて
圧抵抗効果によりブリッジ回路の出力信号を変化させ、
ブリッジ回路のブリッジの出力信号とブリッジの入力電
圧を分圧した分圧値とをA−り変換回路によりA−D変
換し、演算回路によりデジタル化したブリッジの出力信
号とブリッジの入力電圧の分圧値との比をとってブリッ
ジの入力電圧の変動等による誤差分を消去して精度の高
い圧力測定信号を出力する。
The pressure measuring device in this invention changes the output signal of the bridge circuit by piezoresistive effect according to the measurement pressure,
The output signal of the bridge of the bridge circuit and the divided voltage value obtained by dividing the input voltage of the bridge are A-to-D converted by the A-to-digital conversion circuit, and the output signal of the bridge digitized by the arithmetic circuit and the divided voltage of the input voltage of the bridge are converted. A highly accurate pressure measurement signal is output by calculating the ratio with the pressure value and eliminating errors caused by fluctuations in the input voltage of the bridge.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の全体的ブロック構成図で
あり、第2図は第1図のブリッジ回路から増幅回路迄の
詳細な回路図である。図において、符号(1)〜(9)
、(92)で示される構成要素は従来例と同一部分又は
相当部分を示し、その説明を省略するが、但し、ブリッ
ジ回路(9)用に保有している電源としては通常の電源
が用いられ、ブリッジ(92)の入力側に電源電圧+v
Aを与えている。0υは直列接続された抵抗(111)
、(N2)を有し、ブリッジ(92)の入力電圧十VA
を接地間とで分圧している分圧回路、α2は、例えばア
ナログマルチプレクサのようなスイッチ回路であり、分
圧回路Uυの分圧出力電圧(vl)、ブリッジ(22)
の2つの各出力電圧(V5) 、(v4)および接地レ
ベルの電圧(vl)を選択的に入・出力する。なお、ス
イッチ回路αりは後述の演算囲路(l!9により選択制
御信号を受けて所定のスイッチを開開する。Q旧=スイ
ッチ回路αりにより選択的に出力される信号を非反転域
幅するオペアンプ(151) 、非反転側入力抵抗(1
iS2)および帰還抵抗(133)からなる増幅回路、
α(は入力側を非反転増幅回路αりの出力側に接続され
たアナログ−デジタル変換器(以下、A−D変換器と称
す)、(I!9はアナログ−デジタル変換器Iの出力を
入力して所定の式に従って演算を行なう演算回路であり
、例えばマイクロプロセッサ、ワークメモリ、プログラ
ムを格納しているプログラムメモリ等から構成され、ス
イッチ回路a2の制御も行なう。αQは符号C1り〜I
で示されるA−D変換回路である。
FIG. 1 is an overall block diagram of an embodiment of the present invention, and FIG. 2 is a detailed circuit diagram from the bridge circuit to the amplifier circuit in FIG. 1. In the figure, symbols (1) to (9)
, (92) are the same or equivalent parts as in the conventional example, and their explanations are omitted. However, it should be noted that a normal power supply is used as the power supply for the bridge circuit (9). , supply voltage +v on the input side of the bridge (92)
I'm giving an A. 0υ is a resistor connected in series (111)
, (N2), and the input voltage of the bridge (92) is ten VA.
The voltage divider circuit α2, which divides the voltage between
The two output voltages (V5), (v4) and the ground level voltage (vl) are selectively input and output. Note that the switch circuit α opens and opens a predetermined switch in response to a selection control signal from an arithmetic circuit (l!9), which will be described later. wide operational amplifier (151), non-inverting side input resistance (1
iS2) and a feedback resistor (133);
α( is an analog-digital converter (hereinafter referred to as A-D converter) whose input side is connected to the output side of the non-inverting amplifier circuit α, (I!9 is the output of the analog-digital converter I) This is an arithmetic circuit that receives input and performs arithmetic operations according to a predetermined formula, and is composed of, for example, a microprocessor, a work memory, a program memory that stores programs, etc., and also controls the switch circuit a2. αQ is a symbol C1 to I
This is an A-D conversion circuit shown in FIG.

次に、この発明の一実施例の動作説明をする。Next, the operation of one embodiment of the present invention will be explained.

測定用圧力PA%PBの差圧もしくは一方側の圧力によ
り変形した受圧ダイアプラム(2)の変形により、圧抵
抗効果によって半導体ストレーンゲージ(5)の抵抗値
が変化する。PA師FBの場合には、受圧ダイアプラム
(2)が湾曲して変形するので半導体ストレーンゲージ
(5)は張力を受け、PA=PBの場合の抵抗値よりそ
の抵抗値が増加する。この半導体ストレーンゲージ(5
)の抵抗値の増加に応じてブリッジ回路(9)のブリッ
ジ(92)の出力電圧v2、v4の差が大きくなるよう
に変化する。
Due to the deformation of the pressure receiving diaphragm (2) due to the pressure difference between the measurement pressures PA%PB or the pressure on one side, the resistance value of the semiconductor strain gauge (5) changes due to the piezoresistive effect. In the case of PA master FB, the pressure receiving diaphragm (2) is curved and deformed, so the semiconductor strain gauge (5) receives tension, and its resistance value increases from the resistance value when PA=PB. This semiconductor strain gauge (5
) changes so that the difference between the output voltages v2 and v4 of the bridge (92) of the bridge circuit (9) increases.

まず、演算回路(l!9の制御によりスイッチ回路aZ
は分圧回路μυの分圧出力電圧(vl)を選択して増幅
回路賎に入力する。この分圧出力電圧(vl)は増幅回
路Q3により増幅され、次に、A−D変換器Iによりデ
ジタル信号VD1とされて演算回路に取込まれ一時的に
記憶される。この変換は、電源電圧+VAのレベルの変
動をモニタするために行なわれる。上述の動作と同様に
して、次に、ブリッジ(92)の比較的に大きな方の出
力電圧v2をデジタル信号VD2に変換し、次に、接地
レベルの電圧v3ヲテシタル信号VD3に変換し、次に
、ブリッジ(92)の比較的に小さな方の出力電圧v4
をデジタル信号VD4に変換する。演算回路住鴎は変換
毎にデジタル信号vD2、■D5、VD4を取込んで一
時的に記憶する。
First, the switch circuit aZ is controlled by the arithmetic circuit (l!9).
selects the divided output voltage (vl) of the voltage dividing circuit μυ and inputs it to the amplifier circuit. This divided output voltage (vl) is amplified by an amplifier circuit Q3, and then converted into a digital signal VD1 by an A-D converter I, taken into an arithmetic circuit, and temporarily stored. This conversion is performed to monitor variations in the level of power supply voltage +VA. In the same manner as described above, next, the relatively larger output voltage v2 of the bridge (92) is converted into a digital signal VD2, then the ground level voltage v3 is converted into a digital signal VD3, and then , the relatively smaller output voltage v4 of the bridge (92)
is converted into a digital signal VD4. The arithmetic circuit Sumio takes in the digital signals vD2, ■D5, and VD4 for each conversion and temporarily stores them.

ここで、受圧ダイアフラム(2)にかかる測定用圧力P
A、 Paの差圧もしくは圧力をPとすると、(1)式
が成立する。(1)式において、分子はブリッジ(92
)の出力電圧差に比例する成分であり電源電圧+V^と
接地レベル電圧v5の変動による影響および増幅回路の
温度ドリフトの誤差成分を含んでいる。分母は電源電圧
十VAと接地レベル電圧v5の膏dil+ lr十六暑
k 畢1tll セ) rに憎組T 日収M iLi 
11’ V +l q Lの誤差成分を含んだ電圧差の
成分である。(1)式のように、両者の比をとることに
より電源電圧+VAと接地レベル電圧v3の変動による
影響2よび増幅回路の温度ドリフトの誤差成分が消去さ
れ、誤差成分を含まない変動成分となり、これは差圧P
に比例する。よって、演算回路α9は記憶しているデジ
タル信号VD1〜VD1等から(1)式の右辺の演算式
に適当なデジタル定数を掛けた演算を行ない、差圧また
は圧力に応じた圧力測定信号を出力する。
Here, the measurement pressure P applied to the pressure receiving diaphragm (2)
If P is the differential pressure or pressure between A and Pa, then equation (1) holds true. In formula (1), the molecule is a bridge (92
), and includes the influence of fluctuations in the power supply voltage +V^ and the ground level voltage v5, and error components due to temperature drift of the amplifier circuit. The denominator is the power supply voltage of 1VA and the ground level voltage of v5.
This is a voltage difference component including an error component of 11' V +l q L. As shown in equation (1), by taking the ratio of the two, the influence 2 due to fluctuations in the power supply voltage +VA and ground level voltage v3 and the error component of the temperature drift of the amplifier circuit are eliminated, resulting in a fluctuation component that does not include the error component. This is the differential pressure P
is proportional to. Therefore, the arithmetic circuit α9 performs an arithmetic operation by multiplying the arithmetic expression on the right side of equation (1) by an appropriate digital constant from the stored digital signals VD1 to VD1, etc., and outputs a pressure measurement signal corresponding to the differential pressure or pressure. do.

上述したように、誤差成分を除去することにより、電源
電圧および接地レベルの変動による零点の調整が不要と
なりしかもスパン調整については演算により行なわれる
のでスパン調整が不要となる。
As described above, by removing the error component, it becomes unnecessary to adjust the zero point due to fluctuations in the power supply voltage and ground level, and since the span adjustment is performed by calculation, the span adjustment becomes unnecessary.

なS、アナログ電圧v1、vl、v3、v4のA−D変
換順序(工この順でな(ともよい。さらに、接地レベル
電圧v3の変換は必らずしも必要でない。
S, analog voltages v1, vl, v3, v4 may be converted in the order of A/D (this order may be used).Furthermore, the conversion of the ground level voltage v3 is not necessarily required.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、測定用圧力を圧抵抗
効果素子により抵抗変化に変換し、圧抵抗効果素子を有
するブリッジの出力を変化させ、このブリッジの出力電
圧およびブリッジ用の電源電圧をデジタル信号に変換し
、変換したデジタル信号の比をとる演算を行って測定用
圧力に応じた圧力測定信号を出力するように構成したの
で、アナログ処理回路を簡単にしてデジタル処理してい
るので測定値に温度ドリフトを生じに<<シシかもアナ
ログ処理回路に生じる温度ドリフトの誤差成分を消去す
るので精度の高い圧力測定信号を得ることができ、しか
も零点調整やスパン調整の手間が省けるものが得られる
効果がある。
As described above, according to the present invention, the pressure for measurement is converted into a resistance change by the piezoresistive effect element, the output of the bridge having the piezoresistive effect element is changed, and the output voltage of the bridge and the power supply voltage for the bridge are changed. The structure is configured to convert the signal into a digital signal, calculate the ratio of the converted digital signal, and output a pressure measurement signal corresponding to the measurement pressure.This simplifies the analog processing circuit and performs digital processing. It eliminates the error component of temperature drift that occurs in the analog processing circuit, which may cause temperature drift in the measured value, so it is possible to obtain a highly accurate pressure measurement signal, and it also eliminates the need for zero point adjustment and span adjustment. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面構成図、第2図
は第1図のブリッジ回路等の詳細な回路図、第3図(ま
従来の圧力よIJ定装置を示す断面構成図、第4図およ
び第5図は第3図のブリッジ回路等の詳細な回路図であ
る。 図において、(1)はセンサ部本体、(2)は受圧ダイ
アフラム、(5)は圧抵抗効果素子、(9)はブリッジ
回路、αυは分圧回路、αりはスイッチ回路、(141
はA/D変換器、19は演算回路、αQはA−D変換回
路。 なお、図中、同−打ち°は同一、又(ま相当部分を示す
FIG. 1 is a cross-sectional configuration diagram showing an embodiment of the present invention, FIG. 2 is a detailed circuit diagram of the bridge circuit etc. in FIG. 1, and FIG. , Figures 4 and 5 are detailed circuit diagrams of the bridge circuit etc. in Figure 3. In the figures, (1) is the sensor body, (2) is the pressure receiving diaphragm, and (5) is the piezoresistive effect element. , (9) is a bridge circuit, αυ is a voltage dividing circuit, α is a switch circuit, (141
is an A/D converter, 19 is an arithmetic circuit, and αQ is an A-D conversion circuit. In addition, in the drawings, the same or equivalent parts are indicated.

Claims (1)

【特許請求の範囲】[Claims] 測定用圧力に応じて変形し圧抵抗効果素子に歪を加える
加歪手段と、前記圧抵抗効果素子を組込んだブリッジお
よび該ブリッジ用の電源からなるブリッジ回路と、前記
電源の出力電圧を分圧する分圧回路と、前記ブリッジ回
路の出力電圧および前記分圧回路の分圧値を逐次に選択
してデジタル化するアナログ−デジタル変換回路と、該
アナログ−デジタル変換回路の出力を入力とし、前記ブ
リッジ回路の出力電圧に対応する第1のデジタル信号と
前記分圧に対応する第2のデジタル信号との比を演算す
ることにより前記測定用圧力に応じた圧力測定デジタル
信号を出力する演算回路とを備えた圧力測定装置。
a bridge circuit consisting of a straining means that deforms and applies strain to the piezoresistive element according to the measurement pressure; a bridge incorporating the piezoresistive element; and a power supply for the bridge; and a bridge circuit that divides the output voltage of the power supply. an analog-to-digital converter circuit that sequentially selects and digitizes the output voltage of the bridge circuit and the divided voltage value of the voltage divider circuit; an arithmetic circuit that outputs a pressure measurement digital signal according to the measurement pressure by calculating a ratio between a first digital signal corresponding to the output voltage of the bridge circuit and a second digital signal corresponding to the partial pressure; Pressure measuring device with.
JP22053885A 1985-10-03 1985-10-03 Pressure measuring instrument Pending JPS6280533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22053885A JPS6280533A (en) 1985-10-03 1985-10-03 Pressure measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22053885A JPS6280533A (en) 1985-10-03 1985-10-03 Pressure measuring instrument

Publications (1)

Publication Number Publication Date
JPS6280533A true JPS6280533A (en) 1987-04-14

Family

ID=16752564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22053885A Pending JPS6280533A (en) 1985-10-03 1985-10-03 Pressure measuring instrument

Country Status (1)

Country Link
JP (1) JPS6280533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026255A (en) * 1988-11-18 1991-06-25 Clarence W. Carpenter Pulseless pump apparatus having pressure crossover detector and control means
WO2008122925A2 (en) * 2007-04-04 2008-10-16 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus to digitize pressure gauge information
JP2012112849A (en) * 2010-11-26 2012-06-14 Kanazawa Univ Highly accurate bridge circuit type detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026255A (en) * 1988-11-18 1991-06-25 Clarence W. Carpenter Pulseless pump apparatus having pressure crossover detector and control means
WO2008122925A2 (en) * 2007-04-04 2008-10-16 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus to digitize pressure gauge information
WO2008122925A3 (en) * 2007-04-04 2009-02-19 Air Liquide Method and apparatus to digitize pressure gauge information
US7891250B2 (en) 2007-04-04 2011-02-22 American Air Liquide, Inc. Method and apparatus to digitize pressure gauge information
JP2012112849A (en) * 2010-11-26 2012-06-14 Kanazawa Univ Highly accurate bridge circuit type detector

Similar Documents

Publication Publication Date Title
JP2954406B2 (en) Apparatus and method for temperature compensation of catheter tip pressure transducer
US4362060A (en) Displacement transducer
JPH0719807A (en) Distortion amount detecting device and driving circuit and amplification circuit for it
US5764067A (en) Method and apparatus for sensor signal conditioning using low-cost, high-accuracy analog circuitry
JPH06194243A (en) Pulse-driving pressure sensor circuit and using method thereof
JP3244212B2 (en) Digital measuring instrument
JPS6280533A (en) Pressure measuring instrument
JPH02269912A (en) Semiconductor composite sensor and signal processing method
JPH08189845A (en) Digital measuring instrument
JP2000214029A (en) Pressure sensor circuit
JPH05110350A (en) Input offset voltage correcting device
JPS6248280B2 (en)
JP3765915B2 (en) Amplifier temperature zero point correction device
JPH0812114B2 (en) Digital temperature detector
JP2594722B2 (en) Analog input method
JPS61209331A (en) Input apparatus of temperature measuring resistor
JPS63224522A (en) Amplifier
JP2546681B2 (en) Temperature compensation circuit
JPH03110401A (en) Strain measuring instrument
SU1229565A1 (en) Strain gauge
JPH01291133A (en) Resistance bulb temperature converter
KR19980076201A (en) Temperature measuring device using RTD
JPH0743624Y2 (en) Temperature measuring device
RU14080U1 (en) PRESSURE TRANSMITTER ELECTRONIC UNIT
JPH05157642A (en) Measuring device