JPS61209331A - Input apparatus of temperature measuring resistor - Google Patents

Input apparatus of temperature measuring resistor

Info

Publication number
JPS61209331A
JPS61209331A JP4941185A JP4941185A JPS61209331A JP S61209331 A JPS61209331 A JP S61209331A JP 4941185 A JP4941185 A JP 4941185A JP 4941185 A JP4941185 A JP 4941185A JP S61209331 A JPS61209331 A JP S61209331A
Authority
JP
Japan
Prior art keywords
correction
bridge circuits
resistors
resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4941185A
Other languages
Japanese (ja)
Other versions
JPH0313535B2 (en
Inventor
Noritaka Egami
江上 憲位
Yasutaka Hori
堀 保隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4941185A priority Critical patent/JPS61209331A/en
Publication of JPS61209331A publication Critical patent/JPS61209331A/en
Publication of JPH0313535B2 publication Critical patent/JPH0313535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/21Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE:To attain to reduce the number of parts, by inputting the differential voltage of a plurality of bridge circuits having temp. measuring resistors connected thereto and that of non-equilibrium bridge circuits and using an amplifying means and a correction means for performing linear correction and temp. correction in common. CONSTITUTION:Resistors 21, 31, 41, resistors 22, 32, 42 and resistors 26, 36, 46 are respectively connected to temp. measuring resistors 1, 2, 6 to form first, second and sixth bridge circuits and these bridge circuits come to non- equilibrium by the change in temp. to output differential voltages. Resistors 27, 37, 47 and resistors 28, 38, 48 are connected to resistors 7, 8 to form seventh and eighth non-equilibrium bridge circuits and constant differential voltages are always outputted from said bridge circuits. These differential voltages are inputted to a digital correction device 64 through an analogue multiplexer 61, a differential amplifier 62 and A/D converter 63 to perform linear correction, temp. span correction and offset and temp. drift correction. By this method even if measuring points increase, the number of parts can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、測温抵抗体入力装置に関し、より詳しくは
温度変化により抵抗値が可変することを利用した測温抵
抗体を備えた測温抵抗体入力装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a resistance temperature detector input device, and more specifically, a temperature detector equipped with a resistance temperature detector that utilizes the fact that the resistance value changes due to temperature changes. The present invention relates to a resistor input device.

〔従来の技術〕[Conventional technology]

第2図は、従来の測温抵抗体入力装置の一例を示す全体
構成図であり、第3図は前記第2図にて示した従来の測
温抵抗体入力装置における入力回路の回路構成を示した
図である。第2図において、3線式の測温抵抗体(以下
単に「測温抵抗体」という)1,2.6は、材質がPt
で構成されており、抵抗値100Ωの抵抗体である。こ
れらの測温抵抗体1,2.6は、夫々変換器11,12
゜16の入力側に接続されている。前記変換器11゜1
2.16は、前記測温抵抗体1,2,6の抵抗値が温度
変化によって可変した分を1〜5v程度の標準電圧に変
換して該電圧信号を出力する。アナログ入力カード9は
、前記変換器11,12゜16から出力された標準電圧
信号をディジタル信号に変換して出力する。前記変換器
11,12゜16の内部構成は第3図にて図示するごと
くである。
FIG. 2 is an overall configuration diagram showing an example of a conventional resistance temperature detector input device, and FIG. 3 shows the circuit configuration of the input circuit in the conventional resistance temperature detector input device shown in FIG. FIG. In FIG. 2, three-wire resistance temperature detectors (hereinafter simply referred to as "resistance temperature detectors") 1, 2.6 are made of Pt.
It is a resistor with a resistance value of 100Ω. These resistance temperature detectors 1, 2.6 are connected to converters 11, 12, respectively.
It is connected to the input side of ゜16. Said converter 11°1
2.16 converts the resistance values of the temperature measuring resistors 1, 2, and 6 that have changed due to temperature changes into a standard voltage of about 1 to 5 V, and outputs the voltage signal. The analog input card 9 converts the standard voltage signal output from the converters 11, 12, 16 into a digital signal and outputs the digital signal. The internal structure of the converters 11, 12 and 16 is as shown in FIG.

第3図は前記測温抵抗体1と変換器11との関係の詳細
を図示したもので、測温抵抗体2と変換器12、測温抵
抗体6と変換器16との関係も同様である。第3図にお
いて、測温抵抗体1と抵抗21、抵抗31、抵抗41と
でブリッジ回路を構成しており、該ブリッジ回路からは
前記測温抵抗体1の温度変化に応じた抵抗値の変化によ
って該ブリッジの平衡がくずれたときの差電圧を取り出
して出力する。
FIG. 3 shows the details of the relationship between the resistance temperature detector 1 and the converter 11, and the relationships between the resistance temperature detector 2 and the converter 12, and the relationship between the resistance temperature detector 6 and the converter 16 are also similar. be. In FIG. 3, the resistance temperature detector 1 and a resistor 21, a resistor 31, and a resistor 41 constitute a bridge circuit. The differential voltage when the bridge is unbalanced is extracted and output.

入力フィルタ51は、前記ブリッジ回路から出力される
信号より約2 K11z −3d Bで交流誘導成分を
除去して出力する。プリアンプ52の入力端子は前記入
力フィルタ51の出力端子と接続されており、入力フィ
ルタ51から出力された信号を増幅して出力する。リニ
アライザ53は前記プリアンプ52の帰還ループに接続
されており、前記プリアンプ51によって増幅された温
度変化に対して非直線性を示す測温抵抗体1の抵抗値変
化によって生ずる差電圧を直線化し、1〜5v信号とし
て出力する。アイソレータ54は入力−出力間を絶縁す
ることによって水分の多い環境で回り込みによる影響を
少なくするとともに、前記1〜5v信号を受けてこれを
前記アナログ入力カード9に出力する。
The input filter 51 removes an AC induced component at approximately 2 K11z -3d B from the signal output from the bridge circuit and outputs the signal. The input terminal of the preamplifier 52 is connected to the output terminal of the input filter 51, and amplifies and outputs the signal output from the input filter 51. The linearizer 53 is connected to the feedback loop of the preamplifier 52, and linearizes the differential voltage caused by the change in resistance of the resistance temperature sensor 1, which exhibits nonlinearity with respect to the temperature change amplified by the preamplifier 51. ~Output as a 5v signal. The isolator 54 insulates between the input and the output to reduce the influence of wraparound in a humid environment, and also receives the 1-5V signal and outputs it to the analog input card 9.

上述したごとき構成の従来の測温抵抗体入力装置を使用
して、例えば0℃〜100℃の計測を行う場合には測定
温度範囲O℃〜100℃をプリアンプ52においてボリ
ューム(図示しない)等で調整する。各々の測温抵抗体
1,2.6の抵抗値は、O℃〜100℃の間の被測定温
度に応じて可変する。すると、前述したごとく測定抵抗
体1゜2.6と前記変換器11,12.16内の抵抗と
で夫々構成されているブリッジ回路におけるブリッジの
平衡がくずれるため、その差電圧が前記変換器11,1
2.16からアナログ入力カード9へと出力される。そ
してアナログ入力カード9においてA/D変換されるこ
ととなる。
For example, when measuring from 0°C to 100°C using the conventional resistance temperature detector input device configured as described above, the measurement temperature range from 0°C to 100°C is set using a volume control (not shown) in the preamplifier 52. adjust. The resistance value of each resistance temperature detector 1, 2.6 varies depending on the temperature to be measured between 0°C and 100°C. Then, as mentioned above, the balance of the bridge in the bridge circuit constituted by the measuring resistor 1°2.6 and the resistances in the converters 11 and 12.16, respectively, is lost, and the difference voltage is reflected in the converter 11. ,1
2.16 to the analog input card 9. Then, the analog input card 9 performs A/D conversion.

なお、前述したアイソレータ54は、水分等が少ない環
境下においては必要性がないものである。
Note that the above-mentioned isolator 54 is not necessary in an environment with little moisture or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上述したごとき構成の従来の測温抵抗体入力装
置においては、夫々の測温抵抗体毎に変換器が接続され
る構成となっていたために、測定点が増加して測温抵抗
体の配設数がそれに伴って増加すると変換器の配設数も
増加しなければならず部品点数が多くなりコスト高にな
るという問題点があった。
By the way, in the conventional resistance temperature detector input device configured as described above, a converter is connected to each resistance temperature detector, so the number of measurement points increases and the arrangement of the resistance temperature detectors becomes difficult. As the number of converters increases, the number of converters must also increase, resulting in an increase in the number of parts and higher costs.

この発明は、上記のような問題点を解消するためになさ
れたもので、測定点が増加してもそれによって部品点数
が増加することがなく、コスト低下が可能な測温抵抗体
入力装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a resistance temperature detector input device that does not require an increase in the number of parts even if the number of measurement points increases, and can reduce costs. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る測温抵抗体入力装置は、測温抵抗体が接
続された第1複数群のブリッジ回路と、予め不平衡とな
るように抵抗値を選定した第2複数群のブリッジ回路と
、入力制御信号番とよって第1、第2複数群のブリッジ
回路から出力される差電圧信号を選択的に取り込む入力
選択手段と、増幅手段によって増幅された前記差電圧信
号をディジタル化し、このディジタル化した信号を線形
補正するとともに温度スパン補正を行う補正手段とを有
するものである。
The resistance temperature detector input device according to the present invention includes a first plurality of bridge circuits to which the resistance temperature detectors are connected, and a second plurality of bridge circuits whose resistance values are selected in advance so as to be unbalanced. input selection means for selectively taking in differential voltage signals output from the first and second groups of bridge circuits according to input control signal numbers; and digitizing the differential voltage signals amplified by the amplification means. and a correction means for linearly correcting the signal and performing temperature span correction.

〔作 用〕[For production]

この発明における測温抵抗体入力装置は測温抵抗体が接
続された複数のブリッジ回路から出力される差電圧と、
予め不平衡となるように抵抗値を選定したブリッジ回路
から出力される差電圧とを入力選択手段において選択的
化入力することにより増幅手段、線形補正、温度補正を
行う補正手段を共用化することが回軸となって部品点数
の減少によるコスト低下に資する。又、予め不平衡とな
るように抵抗値を選定したブリッジ回路からの差電圧を
補正用電圧として用いることによりオフセットや温度ド
リフト等の影蕃を極めて小さくすることが可能で前記入
力装置の調整を不要としている0 〔実施例〕 以下この発明の一実施例を図について説明する。
The resistance temperature detector input device according to the present invention receives a differential voltage output from a plurality of bridge circuits to which resistance temperature detectors are connected;
By selectively inputting the differential voltage output from the bridge circuit whose resistance value is pre-selected to be unbalanced to the input selection means, the amplification means, linear correction, and correction means for temperature correction can be shared. This becomes a pivot and contributes to cost reduction by reducing the number of parts. In addition, by using the differential voltage from the bridge circuit whose resistance value is selected in advance to be unbalanced as the correction voltage, it is possible to extremely minimize the effects of offset and temperature drift, and the adjustment of the input device is made easier. Unnecessary 0 [Example] An example of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例に従う測温抵抗体入力装置
の全体構成図である。第1図において、測温抵抗体1,
2,6は、材質がPtで構成されており、抵抗値100
Ωの抵抗体である。測温抵抗体1は、IOKΩの抵抗2
1.31と1000の抵抗41とで第1のブリッジ回路
を構成している。
FIG. 1 is an overall configuration diagram of a resistance temperature detector input device according to an embodiment of the present invention. In FIG. 1, resistance temperature detector 1,
2 and 6 are made of Pt and have a resistance value of 100.
It is a resistor of Ω. The resistance temperature detector 1 is a resistance 2 of IOKΩ.
The resistor 41 of 1.31 and 1000 constitutes a first bridge circuit.

測温抵抗体2は、IOKΩの抵抗22.32と1000
の抵抗42とで第2のブリッジ回路を構成している。同
様に測温抵抗体6も、IOKΩの抵抗26゜36と10
0Ωの抵抗46とで第6のブリッジ回路を構成している
。抵抗7にはその抵抗値が1100の素子が使用されて
おり、10にΩの抵抗27゜37と100Ωの抵抗47
とで不平衡な第7のブリッジ回路を構成している。同様
に抵抗8にはその抵抗値が900の素子が使用されてお
り、10にΩの抵抗28.38と1000の抵抗48と
で不平衡な第8のブリッジ回路を構成している。上述し
た測温抵抗体1〜6が接続されている第1〜第6のブリ
ッジ回路は、温度変化によって夫々の測温抵抗体1〜6
の抵抗値が可変することによって不平衡となり、各々の
ブリッジ回路から差電圧を出力する。又、上述した不平
衡な第1.第2のブリッジ回路からは、常時一定の差電
圧が夫々出力されている。
The resistance temperature detector 2 has a resistance of IOKΩ of 22.32 and 1000
A second bridge circuit is constituted by the resistor 42. Similarly, the resistance temperature detector 6 has resistances of IOKΩ of 26°36 and 10
A sixth bridge circuit is configured with a 0Ω resistor 46. An element with a resistance value of 1100 is used for the resistor 7, and a resistor 27°37 of Ω and a resistor 47 of 100 Ω are used for the resistor 10.
and constitute an unbalanced seventh bridge circuit. Similarly, an element with a resistance value of 900 is used for the resistor 8, and an unbalanced eighth bridge circuit is formed by the resistor 28.38 of 10Ω and the resistor 48 of 1000Ω. The first to sixth bridge circuits to which the above-mentioned resistance temperature detectors 1 to 6 are connected are arranged such that the resistance temperature detectors 1 to 6 are connected to each other due to temperature changes.
By varying the resistance value of the bridge circuits, the bridge circuits become unbalanced and a differential voltage is output from each bridge circuit. Moreover, the above-mentioned unbalanced first . A constant differential voltage is always output from each of the second bridge circuits.

入力選択手段即ちアナログマルチプレクサ61は、入力
制御端子を介して制御部66から出力される入力制御信
号に基づいて前記各々のブリッジ回路から出力される差
電圧信号を選択的に取り込んで出力する。増幅手段即ち
差動アンプ62は、前記アナログマルチプレクサ61か
ら時系列的に出力される各差電圧信号を受けてこれを増
幅して出力する。A/D変換器63は制御部66から出
力される駆動指令信号によって駆動し前記差動アンプ6
2から出力された信号をディジタル信号に変換して出力
する。ディジタル補正器64には、例えばマイクロプロ
セッサのごとき電子回路制御機器が使用されて参り、温
度変化と非線形の関係にある前記測温抵抗体1〜6の抵
抗値の可変によって前記第1〜第6ブリツジ回路に発生
しディジタル化された差電圧信号を線形補正する。これ
とともに前記ディジタル補正器64は、不平衡な第7、
第8のブリッジ回路から夫々出力されディジタル化され
た差電圧信号に基づいて、電源電圧の変動、差動アンプ
62、A/D変換器63等によって前記第1〜第6のブ
リッジ回路から出力された差電圧信号に生ずるオフセッ
トや温度ドリフト等の補正をも行う。制御部66には例
えばマイクロコンピュータのCPUのごときが使用され
ており、前述したアナログマルチプレクサ61 、A/
D変換器63、ディジタル補正器64及び入出力インタ
フェース65へ夫々駆動指令信号を出力する。
The input selection means, that is, the analog multiplexer 61 selectively takes in and outputs the differential voltage signals output from the respective bridge circuits based on the input control signal output from the control section 66 via the input control terminal. The amplifying means, that is, the differential amplifier 62 receives each differential voltage signal outputted in time series from the analog multiplexer 61, amplifies it, and outputs it. The A/D converter 63 is driven by a drive command signal output from the control section 66, and the differential amplifier 6
The signal output from 2 is converted into a digital signal and output. For example, an electronic circuit control device such as a microprocessor is used for the digital corrector 64, and the resistance values of the temperature sensing resistors 1 to 6, which have a nonlinear relationship with temperature changes, are varied to adjust the resistance values of the first to sixth temperature sensing resistors 1 to 6. The differential voltage signal generated in the bridge circuit and digitized is linearly corrected. At the same time, the digital corrector 64 has an unbalanced seventh,
Based on the differential voltage signals output from the eighth bridge circuits and digitized, the voltages are output from the first to sixth bridge circuits by fluctuations in the power supply voltage, the differential amplifier 62, the A/D converter 63, etc. It also corrects offsets, temperature drifts, etc. that occur in differential voltage signals. For example, a microcomputer CPU is used as the control unit 66, and the analog multiplexer 61, A/
Drive command signals are output to the D converter 63, digital corrector 64, and input/output interface 65, respectively.

スパン(記憶部)67は、前記測温抵抗体1〜6の1点
毎の測定温度範囲データを記憶しており、ディジタル補
正器64に該データを出力する。
The span (storage unit) 67 stores measurement temperature range data for each point of the resistance temperature detectors 1 to 6, and outputs the data to the digital corrector 64.

上記のようlζ構成された測温抵抗体入力装置lζおい
て、測温抵抗体1〜6が温度変化によって夫々の抵抗値
が可変すると前記第1〜第6ブリツジ回路は夫々不平衡
状態となるので差電圧が発生する。この差電圧は例えば
第1ブリッジ回路についてみれば、抵抗21.31の値
がIOKΩであり測温抵抗体1の値は100Ω近傍であ
り又抵抗41は100Ωであるため前記抵抗21.31
の値の方が十分大きいため番ここれらの抵抗値の差分に
比例した値として発生するものである。該差電圧はアナ
ログマルチプレクサ61を介して差動アンプ62に入力
され該差動アンプ62で増幅された後A/D変換器63
においてディジタル信号に変換される。そして該ディジ
タル信号は、ディジタル補正器64において線形補正、
温度スパン補正(即ち測定温度範囲の補正)及びオフセ
ット、温度ドリフト補正が行われる。
In the resistance temperature detector input device lζ configured as described above, when the respective resistance values of the resistance temperature detectors 1 to 6 change due to temperature changes, the first to sixth bridge circuits become unbalanced, respectively. Therefore, a differential voltage is generated. For example, if we look at the first bridge circuit, the value of the resistor 21.31 is IOKΩ, the value of the resistance temperature detector 1 is around 100Ω, and the resistor 41 is 100Ω, so the resistor 21.31
Since the value of is sufficiently larger, this value is generated as a value proportional to the difference between these resistance values. The differential voltage is input to a differential amplifier 62 via an analog multiplexer 61, amplified by the differential amplifier 62, and then sent to an A/D converter 63.
It is converted into a digital signal at The digital signal is then linearly corrected in a digital corrector 64.
Temperature span correction (ie, correction of the measured temperature range), offset, and temperature drift correction are performed.

上述したディジタル補正器64において行われる線形補
正、温度スパン補正及びオフセット、温度ドリフト補正
の詳細は以下のようである。
Details of the linear correction, temperature span correction and offset, and temperature drift correction performed in the digital corrector 64 described above are as follows.

(1)まず抵抗7,8を有する不平衡な第7ブリッジ回
路、第8ブリッジ回路から出力される差電圧を用いたオ
フセット、温度ドリフト補正について説明する。被測定
温度や測温抵抗体1〜6の間にある個体差によって電源
電圧(15V)が変動するので、前記測温抵抗体1〜6
を有する第1〜第6のブリッジ回路から夫々出力される
差電圧が変動し、これによって差動アンプ62の利得や
オフセットも変動することとなる。
(1) First, offset and temperature drift correction using the differential voltages output from the unbalanced seventh and eighth bridge circuits having resistors 7 and 8 will be explained. Since the power supply voltage (15V) fluctuates depending on the temperature to be measured and individual differences between the resistance temperature detectors 1 to 6, the resistance temperature detectors 1 to 6
The differential voltages output from the first to sixth bridge circuits each having a variable voltage vary, and as a result, the gain and offset of the differential amplifier 62 also vary.

前記測温抵抗体1,2.6の真の値をR8,几2゜R8
、抵抗7,8の真の値をR,、R,とし前記第1〜第6
のブリッジ回路、予め不平衡に設定された第7.第8の
ブリッジ回路から出力される差電圧をアナログマルチプ
レクサ61で選択的に取り込んで差動アンプ62で増幅
し、A/D変換器63で夫々変換した値をdI +d2
 *d@ 、d? *d8 とすれば次のような関係式
が成立する。
The true value of the temperature sensing resistor 1, 2.6 is R8, 几2゜R8
, the true values of the resistors 7 and 8 are R,, R, and the first to sixth
bridge circuit, the seventh bridge circuit is set to be unbalanced in advance. The differential voltage output from the eighth bridge circuit is selectively taken in by the analog multiplexer 61, amplified by the differential amplifier 62, and the values converted by the A/D converter 63 are dI + d2.
*d@,d? *d8, the following relational expression holds true.

R,=に、 d、 +a、 、 R2=に、 d2+8
2゜t6  ”Wk6  d、  +a、   、  
R,=に、  d、  +a、  。
R, = to d, +a, , R2= to, d2+8
2゜t6 ”Wk6 d, +a, ,
R,=to,d,+a,.

R,=に、 dg +a@ ここで抵抗21,31,41,22,32,42,26
゜36.46,27,37,47.28,38.48 
 の素子値の精度が十分高いものを利用するとすれば、
差動アンプ62、A/D変換器63は共用されているの
で に、=J =に、=に、=J a、=a、  冨a、=aマ =a8 という関係が成立すると考えてよい。従って次のごとき
関係式が成立する。
R,=to dg +a@ where resistance 21, 31, 41, 22, 32, 42, 26
゜36.46, 27, 37, 47.28, 38.48
If we use a device with sufficiently high accuracy of element values,
Since the differential amplifier 62 and the A/D converter 63 are shared, it can be considered that the following relationships hold: . Therefore, the following relational expression holds true.

几7.R1は既知であるためd、 、d、 、d、の値
が温度ドリフト等で変動したとしても、d〒。
7. Since R1 is known, even if the values of d, , d, , d change due to temperature drift, etc., d〒.

d、を同時に計測することにより前掲の関係式で測温抵
抗体の真値R1、R,、R,を計算することとなる。
By measuring d at the same time, the true values R1, R,, R, of the resistance temperature sensor can be calculated using the above-mentioned relational expression.

上記関係式からディジタル補正器64が行うオフセット
、温度ドリフト補正は以下の一般式で表現できる。
From the above relational expression, the offset and temperature drift correction performed by the digital corrector 64 can be expressed by the following general expression.

几:測温抵抗体の真の抵抗値 d :A/D変換後のディジタル値 上述したオフセット、温度ドリフトの補正において、測
温抵抗体とともにブリッジ回路に精度の高い抵抗を使用
すれば、電源電圧、差動アンプ62A/Dコンバータ6
3のオフセット、温度ドリフトの影響を少なくシ、調整
箇所をなくすことが可能となる。
几: True resistance value of the resistance temperature detector d: Digital value after A/D conversion In the above-mentioned offset and temperature drift correction, if a highly accurate resistor is used in the bridge circuit along with the resistance temperature detector, the power supply voltage can be reduced. , differential amplifier 62 A/D converter 6
It is possible to reduce the influence of the offset and temperature drift described in No. 3, and eliminate adjustment points.

(2)次いで線形補正及び温度スパン補正について説明
する。測温抵抗体の抵抗値可変とその周辺温度の温度変
化との関係は非線形であるので補正する必要がある。ま
た測定温度範囲に応じ変換したいディジタル値が異なる
ため(例えば測温抵抗体1は0〜100℃測定用、2は
一100℃〜+100℃測定用でその変換ディジタル値
は800〜4000にしたいような場合)スパン補正も
行う必要がある。
(2) Next, linear correction and temperature span correction will be explained. Since the relationship between the variable resistance value of the resistance temperature detector and the change in the surrounding temperature is non-linear, it is necessary to correct it. Also, since the digital value that you want to convert differs depending on the measurement temperature range (for example, resistance temperature detector 1 is for measuring 0 to 100°C, resistance temperature detector 2 is for measuring -100°C to +100°C, and you want to convert the digital value to 800 to 4000. ) Span correction must also be performed.

上述した線形補正は以下に示す0式で、又測定温度範囲
の補正は0式で夫々示される。
The above-mentioned linear correction is shown by the following equation 0, and the correction of the measurement temperature range is shown by the equation 0 below.

T=f(R)・・・・・・リニアライズ(非線形性の補
正)・・・・・・ ■ T:測温抵抗体の周囲温度 ・・・・・・■ TムTB:測定したい温度の下限値、上限値(スパン記
憶部671こ情報がある ・・・スイッチによる設定も考えら れる) Dム、DB:Tム、TBに対応したディジタル値〔発明
の効果〕 以上のように、この発明によれば測温抵抗体が接続され
た第1複数群のブリッジ回路と、予め不平衡となるよう
に抵抗値を選定した第2複数群のブリッジ回路と、入力
制御信号によって第1.第2複数群のブリッジ回路から
出力される差電圧信号を選択的に取り込む入力選択手段
と、増幅手段によって増幅された前記差電圧信号をディ
ジタル化し、このディジタル化した信号を線形補正する
とともに温度スパン補正を行う補正手段とを有すること
としたので、測定点が増加してもそれによって部品点数
が増加することがなく、コスト低下が可能な測温抵抗体
入力装置を得ることができる効果がある。
T=f(R)...Linearization (correction of nonlinearity)...■ T: Ambient temperature of the resistance thermometer...■ TTB: Temperature to be measured (Span storage unit 671 has this information...Setting by switch is also possible) Dm, DB: Digital values corresponding to Tm, TB [Effect of the invention] As described above, this According to the invention, the first plurality of bridge circuits to which the resistance temperature detectors are connected, the second plurality of bridge circuits whose resistance values are selected in advance so as to be unbalanced, and the first plurality of bridge circuits connected to the resistance temperature detectors by an input control signal. input selection means for selectively taking in the differential voltage signals output from the second plurality of bridge circuits; and digitizing the differential voltage signals amplified by the amplifying means, linearly correcting the digitized signals, and converting the temperature span. Since the present invention includes a correction means for performing correction, even if the number of measurement points increases, the number of parts does not increase accordingly, and it is possible to obtain a resistance temperature detector input device that can reduce costs. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に従う測温抵抗体入力装置
の全体構成図、第2図は従来の測温抵抗体入力装置の一
例を示す全体構成図、第3図は前記第2図における入力
回路の回路構成を示した図である。 図において1,2.6は測温抵抗体、21,31゜22
.32,26,36,27,37.28.38は同一値
の抵抗器、41,42,46.47 は同一値の抵抗器
47.48は異なる値の抵抗器、61はアナログマルチ
プレクサ、62は差動アンプ、63はA/D変換器、6
4はディジタル補正器、65は他とのインターフェイス
部、66は制御部、67は測定温度範囲を持つスパン、
11,12.16は測温抵抗体の抵抗値を標準的な電圧
1〜5■等に変換する変換器、9は標準化された電圧を
ディジタル値に直すアナログ入力装置、51はノイズを
除去する入力フィルタ、52はプリアンプ、53はリニ
アライザ、54はアイソレータである。 図中、同一符号は同一を示す。
FIG. 1 is an overall configuration diagram of a resistance temperature detector input device according to an embodiment of the present invention, FIG. 2 is an overall configuration diagram showing an example of a conventional resistance temperature detector input device, and FIG. FIG. 2 is a diagram showing a circuit configuration of an input circuit in FIG. In the figure, 1, 2.6 are resistance temperature sensors, 21, 31° 22
.. 32, 26, 36, 27, 37, 28, 38 are resistors of the same value, 41, 42, 46.47 are resistors of the same value, 47.48 are resistors of different values, 61 is an analog multiplexer, 62 is a resistor of a different value. Differential amplifier, 63 is A/D converter, 6
4 is a digital corrector, 65 is an interface section with other parts, 66 is a control section, 67 is a span having a measurement temperature range,
11, 12. 16 is a converter that converts the resistance value of the resistance temperature sensor into a standard voltage of 1 to 5, etc., 9 is an analog input device that converts the standardized voltage into a digital value, and 51 is for removing noise. 52 is a preamplifier, 53 is a linearizer, and 54 is an isolator. In the figures, the same reference numerals indicate the same.

Claims (1)

【特許請求の範囲】[Claims] 測温抵抗体が接続され、該測温抵抗体の温度変化による
抵抗値可変に起因して不平衡となり差電圧を発生させる
第1複数群のブリッジ回路と、予め不平衡となるように
抵抗値が選定され、各々異なつた差電圧を発生させる第
2複数群のブリッジ回路と、入力制御信号によつて前記
第1、第2複数群のブリッジ回路から出力される差電圧
信号を選択的に取り込む入力選択手段と、該入力選択手
段から出力された前記差電圧信号を増幅して出力する増
幅手段と、該増幅手段によつて増幅された信号をディジ
タル信号に変換し該信号を前記測温抵抗体の抵抗値可変
に合わせて線形補正するとともに温度スパン補正を行う
補正手段とを有する測温抵抗体入力装置。
A first plurality of bridge circuits to which a resistance temperature detector is connected and which become unbalanced due to a change in resistance value due to a change in temperature of the resistance temperature detector and generate a differential voltage; are selected and selectively take in the differential voltage signals output from the second plurality of bridge circuits, each of which generates a different voltage difference, and the first and second plurality of bridge circuits according to the input control signal. input selection means; amplification means for amplifying and outputting the differential voltage signal outputted from the input selection means; converting the signal amplified by the amplification means into a digital signal and transmitting the signal to the temperature measuring resistor; What is claimed is: 1. A resistance temperature detector input device comprising correction means for performing linear correction according to the variable resistance value of the body and temperature span correction.
JP4941185A 1985-03-14 1985-03-14 Input apparatus of temperature measuring resistor Granted JPS61209331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4941185A JPS61209331A (en) 1985-03-14 1985-03-14 Input apparatus of temperature measuring resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4941185A JPS61209331A (en) 1985-03-14 1985-03-14 Input apparatus of temperature measuring resistor

Publications (2)

Publication Number Publication Date
JPS61209331A true JPS61209331A (en) 1986-09-17
JPH0313535B2 JPH0313535B2 (en) 1991-02-22

Family

ID=12830311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4941185A Granted JPS61209331A (en) 1985-03-14 1985-03-14 Input apparatus of temperature measuring resistor

Country Status (1)

Country Link
JP (1) JPS61209331A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273123A (en) * 1988-09-07 1990-03-13 Yokogawa Electric Corp Multipoint temperature measuring device
CN103913249A (en) * 2012-12-29 2014-07-09 北京谊安医疗系统股份有限公司 Temperature monitoring circuit device and method
CN106200713A (en) * 2015-05-06 2016-12-07 丁华峰 For controlling high-precisive temperature controllers and the method for work thereof of hot box of texturing machine temperature
CN111189553A (en) * 2020-01-10 2020-05-22 北京航天测控技术有限公司 Thermocouple and synchronous acquisition device for multi-order differential signals thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273123A (en) * 1988-09-07 1990-03-13 Yokogawa Electric Corp Multipoint temperature measuring device
CN103913249A (en) * 2012-12-29 2014-07-09 北京谊安医疗系统股份有限公司 Temperature monitoring circuit device and method
CN106200713A (en) * 2015-05-06 2016-12-07 丁华峰 For controlling high-precisive temperature controllers and the method for work thereof of hot box of texturing machine temperature
CN111189553A (en) * 2020-01-10 2020-05-22 北京航天测控技术有限公司 Thermocouple and synchronous acquisition device for multi-order differential signals thereof

Also Published As

Publication number Publication date
JPH0313535B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
JPS645360B2 (en)
EP0178368B1 (en) Process variable transmitter and method for correcting its output signal
JPS61209331A (en) Input apparatus of temperature measuring resistor
JPS61199199A (en) Analog input unit
JP2898500B2 (en) Pressure sensor with temperature characteristic correction
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
KR100904225B1 (en) Apparatus for measuring water level
JPH05110350A (en) Input offset voltage correcting device
JPS60165527A (en) Temperature measuring circuit
JPS5942249B2 (en) Radiation thermometer compensation circuit
JPH11160347A (en) Sensor circuit
KR100213941B1 (en) Digital-type thermo couple signal converter amplifying error compensating method
RU2165602C2 (en) Semiconductor pressure transducer
Travis Smart conditioners rub out sensor errors
SU968633A1 (en) Device for measuring temperature difference
JPH0743219A (en) Temperature measuring instrument
JP3195639B2 (en) Thermocouple thermometer
JPH0631390Y2 (en) Digital thermometer
JPH0915055A (en) Infrared detection circuit
JPS60129630A (en) Digital thermometer
JPS6210382B2 (en)
JPH0510720B2 (en)
JPH05231953A (en) Thermocouple thermometer
KR101073973B1 (en) Thermo-couple signal error correction device
JPS62165117A (en) Transducer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term