JP2012112017A - Titanium alloy sheet for drum for producing electrolytic copper foil with sheet surface texture developed, and method for manufacturing the same - Google Patents

Titanium alloy sheet for drum for producing electrolytic copper foil with sheet surface texture developed, and method for manufacturing the same Download PDF

Info

Publication number
JP2012112017A
JP2012112017A JP2010263907A JP2010263907A JP2012112017A JP 2012112017 A JP2012112017 A JP 2012112017A JP 2010263907 A JP2010263907 A JP 2010263907A JP 2010263907 A JP2010263907 A JP 2010263907A JP 2012112017 A JP2012112017 A JP 2012112017A
Authority
JP
Japan
Prior art keywords
rolling
axis
titanium
less
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010263907A
Other languages
Japanese (ja)
Other versions
JP5531931B2 (en
Inventor
Hiroaki Otsuka
広明 大塚
Hideki Fujii
秀樹 藤井
Akio Karato
彰夫 唐戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010263907A priority Critical patent/JP5531931B2/en
Publication of JP2012112017A publication Critical patent/JP2012112017A/en
Application granted granted Critical
Publication of JP5531931B2 publication Critical patent/JP5531931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium material for a drum for producing copper foil having a uniform and fine sheet surface metal texture with no defect with a diameter of several tens μm or less caused by plucking in polishing, and manufacturable without depending on complicated thermomechanical treatment, and a method for manufacturing the titanium material.SOLUTION: A titanium sheet for the drum for producing electrolytic Cu foil contains, by mass%, 0.3-1.1% Cu, at most 0.04% Fe, at most 0.1% oxygen, and at most 0.006% hydrogen, and has an average crystal grain size of 8.2 or more, and a Vickers hardness of 115 or more and 145 or less. At a portion parallel with a sheet surface, the texture has an area ratio A/B of 3.0 or more, wherein A is the total area of crystal grains existing within an elliptic range in which a fall angle of a normal of a (0001) plane being ±45° in a direction of a rolling width direction TD is set as a major axis and the fall angle being ±25° in a direction of a final rolling direction RD is set as a minor axis in a (0001) plane pole figure of an α phase from a normal line (an ND axis) from a rolling face, and B is the total area of other crystal grains.

Description

本発明は、電子部品の多層配線板、フレキシブル配線板やリチウムイオン電池の負極集電体などに使用される銅箔(Cu箔と記す)を製造するためのドラム用チタン材であって、均一でかつ緻密な板面金属組織を有する材料およびその製造方法に関するものである。   The present invention is a drum titanium material for producing a copper foil (referred to as Cu foil) used for a multilayer wiring board of an electronic component, a flexible wiring board, a negative electrode current collector of a lithium ion battery, etc. In addition, the present invention relates to a material having a dense plate surface metallographic structure and a manufacturing method thereof.

これらの用途に用いられるCu箔は、Cu原料を硫酸溶液に溶解させた硫酸銅溶液中で、Pbやチタンなどの不溶性金属を陽極、幅1m以上、直径数mのドラムを陰極とし、ドラムを回転させつつドラム上にCuを連続的に電析させ、これを連続的に剥離させ、ロール状に巻き取るという方法で製造されている。ドラムの材料としては、耐食性に優れること、Cu箔の剥離性に優れること、などの観点から、チタンが使用されている。   Cu foil used for these applications is a copper sulfate solution in which a Cu raw material is dissolved in a sulfuric acid solution. An insoluble metal such as Pb or titanium is used as an anode, and a drum having a width of 1 m or more and a diameter of several meters is used as a cathode. It is manufactured by a method in which Cu is continuously electrodeposited on a drum while being rotated, and this is continuously peeled off and wound into a roll. As a material for the drum, titanium is used from the viewpoints of excellent corrosion resistance and excellent peelability of the Cu foil.

しかし、いかに高耐食性のチタン材といえども、使用中に電解液中で徐々に腐食を受けて、新たに出現した面の状態がCu箔に転写されるようになる。金属の腐蝕というのは、その金属材料の有する組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど様々な内質要因によってその程度が異なることが知られており、このような不均質な内質状態の材料からなるドラムが使用中に腐蝕を受けると、必ずしも均質な面状態が維持できなくなる。   However, even a highly corrosion-resistant titanium material is gradually corroded in the electrolyte during use, and the newly appearing surface state is transferred to the Cu foil. It is known that the degree of metal corrosion varies depending on various internal factors such as the structure, crystal orientation, defects, segregation, processing strain and residual strain of the metal material. If a drum made of an internal material is corroded during use, a uniform surface state cannot always be maintained.

このような不均質な組織のうち、肉眼で判別できるものを「マクロ模様」と呼ぶ。銅箔製造用チタンドラムの場合、マクロ組織は、表面を600番のサンドペーパーで研磨した後、硝酸約10%、弗酸約5%、残り水のエッチング液に数十秒〜数分間浸漬することにより得られる。何らかの原因により、数ミリメートル長さでも不均質な組織があると、それらの部分はエッチング状態が異なるため、肉眼で判別される。したがって、素材チタン材のマクロ組織を均質にすること、すなわちマクロ組織中に生ずるいわゆる「マクロ模様」を低減することが、ドラムの均質な腐蝕を達成し、高精度かつ均質な厚さのCu箔を製造するための必須事項である。   Among such heterogeneous tissues, those that can be discriminated with the naked eye are called “macro patterns”. In the case of a titanium drum for producing copper foil, the surface of the macrostructure is polished with sandpaper No. 600 and immersed in an etching solution of about 10% nitric acid, about 5% hydrofluoric acid and the remaining water for several tens of seconds to several minutes. Can be obtained. For some reason, if there is an inhomogeneous structure even several millimeters in length, these portions are different from each other in the etching state, and thus are discriminated with the naked eye. Therefore, homogenizing the macro structure of the raw material titanium material, that is, reducing the so-called “macro pattern” that occurs in the macro structure, achieves uniform corrosion of the drum, and highly accurate and uniform thickness Cu foil. Is essential for manufacturing.

これに対して、特許文献1には、チタン材料を、950℃以上に加熱し粗圧延した後、700℃以下の温度に加熱した後仕上げ圧延を粗圧延の方向に直角な方向にクロス圧延する方法が記載されている。   On the other hand, in Patent Document 1, a titanium material is heated to 950 ° C. or higher and rough-rolled, and then heated to a temperature of 700 ° C. or lower, and then finish rolling is cross-rolled in a direction perpendicular to the direction of rough rolling. A method is described.

特許文献2には、最表面から1/3板厚にわたる板面に平行な表層部において、平均粒径が40μm以下であり、さらに、集合組織が[0001]0°〜±45°TD、かつ、[0001]0°〜±25°RD(ただしTDは板幅方向、RDは圧延方向)であることを特徴とする表層部組織に優れた純チタン製銅箔製造ドラム用チタンが提案されている。   In Patent Document 2, in the surface layer portion parallel to the plate surface extending from the outermost surface to 1/3 plate thickness, the average particle size is 40 μm or less, and the texture is [0001] 0 ° to ± 45 ° TD, and , [0001] 0 ° to ± 25 ° RD (where TD is the sheet width direction and RD is the rolling direction), titanium for a pure titanium copper foil manufacturing drum excellent in surface layer structure has been proposed Yes.

また、特許文献3には、結晶粒度7.0以上、かつ初期水素含有量が35ppm以下であることを特徴とする電解銅箔製造用のチタン材とその製造方法として、圧延開始温度を200℃以上550℃未満、圧延終了温度を200℃以上で圧下率40%以上の圧延を行う方法が提案されている。   Patent Document 3 discloses a titanium material for producing an electrolytic copper foil characterized by having a crystal grain size of 7.0 or more and an initial hydrogen content of 35 ppm or less, and a rolling start temperature of 200 ° C. A method has been proposed in which rolling is performed at a rolling reduction temperature of less than 550 ° C., a rolling end temperature of 200 ° C. or more, and a rolling reduction of 40% or more.

特許文献4には、Cuを質量%で0.15%以上、0.5%未満、特許文献5には、Cuを0.5%以上、2.1%以下含む銅箔製造ドラム用チタンが提案されている。   Patent Document 4 discloses a titanium for copper foil manufacturing drum containing Cu in a mass% of 0.15% or more and less than 0.5%, and Patent Document 5 includes Cu in a range of 0.5% or more and 2.1% or less. Proposed.

特開昭60−9866号公報Japanese Patent Laid-Open No. 60-9866 特開2002−285267号公報JP 2002-285267 A 特開2002−194585号公報JP 2002-194585 A 特開2009−41064号公報JP 2009-41064 A 特開2005−298853号公報Japanese Patent Laid-Open No. 2005-298753

近年、電子部品で使用される銅箔の表面品質は、銅箔の薄肉化に伴いさらに厳しく問われるようになり、肉眼で判別できる「マクロ模様」のみならず、研磨時の表面の毟(むし)れの不均一に起因する直径数十μm以下のミクロサイズの欠陥も問題となる場合が出てきている。チタン製ドラム材表面の毟れとは、図1のaに示す部分のことである。   In recent years, the surface quality of copper foil used in electronic components has become more severe as the copper foil becomes thinner, and not only the “macro pattern” that can be discerned with the naked eye, but also the wrinkles on the surface during polishing. ) Micro-sized defects having a diameter of several tens of μm or less due to unevenness of the case have become a problem. The curvature of the surface of the titanium drum material refers to the portion shown in FIG.

特許文献1に開示された方法は、仕上げ熱延における加熱温度を低下させることにより、粗大結晶粒起因のマクロ模様の出現を抑制し、仕上げ圧延を粗圧延の方向に直角な方向にクロス圧延を行うことにより、圧延方向に生じるバンド状のマクロ模様を抑制するものであるが、上記ミクロサイズの欠陥の出現は抑制できない。   The method disclosed in Patent Document 1 suppresses the appearance of macro patterns due to coarse crystal grains by lowering the heating temperature in finish hot rolling, and performs cross rolling in a direction perpendicular to the direction of rough rolling. By doing so, the band-like macro pattern generated in the rolling direction is suppressed, but the appearance of the micro-sized defects cannot be suppressed.

また特許文献2には、純チタンにおいて、β温度域における分塊鍛造後急冷、α温度域で粗圧延後、仕上げ圧延を650〜750℃の温度で、粗圧延の方向に直角な方向にクロス圧延し、焼鈍後、冷延、再焼鈍を行うということにより、特徴のある集合組織を得、マクロ的不均一模様のない銅箔製造ドラム用純チタン材を得ている。しかし、この方法は工程が複雑、かつ、製造条件管理も煩雑である。また、集合組織は、[0001]軸が板法線方向とほぼ平行な(傾きは25°以内)、Center-Pole-texture、[0001]軸が板幅方向に35〜45°傾く、Split-TD-textureおよび[0001]軸が板幅方向に35〜45°傾く、Split-RD-textureの単一もしくは複合的集合組織である。しかし、熱間圧延まま材において、[0001]軸が板幅方向に70°以上傾くTransverse-textureも全結晶粒の割合が数十%以上存在するため、その後の工程を経た板材においても、Transverse-textureが充分抑制されない場合があり、その場合、隣接する結晶粒の面方位が大きく異なる部分ができるため、その境界では、研磨時の毟られ方が顕著となり、ミクロレベルの欠陥が生じ、ミクロサイズの疵をきらう高級銅箔を製造するドラム材としては品質的に不十分な場合があった。また、同特許文献には、「集合組織が[0001]0°〜±45°TD、かつ、[0001]0°〜±25°RD(ただしTDは板幅方向、RDは圧延方向)であることを特徴とする」という定性的な記述はあるが、集合組織の特徴を定量的に記載していない問題もある。   In Patent Document 2, in pure titanium, rapid cooling after forging in the β temperature range, rough rolling in the α temperature range, and finish rolling at a temperature of 650 to 750 ° C. in a direction perpendicular to the direction of the rough rolling. By rolling, annealing, cold rolling, and re-annealing, a characteristic texture is obtained, and a pure titanium material for a copper foil production drum without a macro uneven pattern is obtained. However, this method has complicated processes and complicated manufacturing condition management. In addition, the texture is such that the [0001] axis is almost parallel to the plate normal direction (tilt is within 25 °), Center-Pole-texture, and the [0001] axis is tilted 35 to 45 ° in the plate width direction. A TD-texture and [0001] axis is a split-RD-texture single or composite texture in which the axis is inclined by 35 to 45 ° in the plate width direction. However, in the as-rolled material, the [0001] axis is tilted by 70 ° or more in the plate width direction, and the ratio of the total crystal grains is also present in the transverse direction. -texture may not be sufficiently suppressed, and in that case, there is a part where the crystal orientation of adjacent crystal grains is significantly different. In some cases, it was insufficient in quality as a drum material for producing high-quality copper foils that do not require size wrinkles. Further, the patent document states that “the texture is [0001] 0 ° to ± 45 ° TD and [0001] 0 ° to ± 25 ° RD (where TD is the sheet width direction and RD is the rolling direction). There is a problem that does not quantitatively describe the characteristics of the texture.

特許文献3では、平均結晶粒度7.0以上、かつ初期水素含有量が35ppm以下であることを特徴とする電解銅箔製造用のチタン材とその製造方法として、圧延開始温度を200℃以上550℃未満、圧延終了温度を200℃以上で圧下率40%以上の圧延を行う方法が提案されているが、結晶粒度7.0以上、かつ水素含有量35ppm以下の純チタン材は、純チタン製品としては極普通の結晶粒度、かつ、水素含有量であり、この程度の組織微細化と水素含有量抑制による水素化物の生成抑制だけでは、ミクロサイズの欠陥は抑制できない。   In Patent Document 3, as a titanium material for producing an electrolytic copper foil characterized by having an average grain size of 7.0 or more and an initial hydrogen content of 35 ppm or less, a rolling start temperature is 200 ° C. or more and 550 ° C. A method has been proposed in which rolling is performed at a temperature below 200 ° C. and a rolling end temperature of 200 ° C. or more and a reduction rate of 40% or more. A pure titanium material having a crystal grain size of 7.0 or more and a hydrogen content of 35 ppm or less is a pure titanium product. In this case, the crystal grain size and the hydrogen content are extremely normal, and micro-sized defects cannot be suppressed only by suppressing the formation of hydride by reducing the structure to this extent and suppressing the hydrogen content.

特許文献4では、Cuを質量%で0.15%以上、0.5%未満、特許文献5には、Cuを0.5%以上、2.1%以下含む銅箔製造ドラム用チタン、および、α+β二相温度域に加熱し、熱間圧延を行い、500℃以上β変態点以下の温度域で焼鈍、さらに冷間圧延を行い、500℃以上、β変態点以下の温度域で焼鈍する製造方法が提案されているが、この方法は工程が複雑、かつ、製造条件管理も煩雑である。また、ミクロサイズの欠陥の抑制に関しても不十分である。   In Patent Document 4, Cu is 0.15% or more and less than 0.5% by mass, and Patent Document 5 includes titanium for a copper foil manufacturing drum containing Cu in an amount of 0.5% or more and 2.1% or less, and , Heated to α + β two-phase temperature range, hot-rolled, annealed at a temperature range of 500 ° C. to β transformation point, further cold-rolled, and annealed at a temperature range of 500 ° C. to β transformation point A manufacturing method has been proposed, but this method has complicated processes and complicated manufacturing condition management. In addition, the suppression of micro-sized defects is insufficient.

以上のような現状に鑑み、本発明は、銅箔製造ドラム用チタン材で、マクロ模様のみならず、研磨時の毟れに起因するミクロサイズの欠陥;直径数十μm以下の欠陥がなく均一微細な板面金属組織を有し、複雑な加工熱処理に頼ることなく製造可能で、高品質の電解Cu箔を製造することのできるドラム用チタン材、及びその製造方法を提供しようとするものである。   In view of the present situation as described above, the present invention is a titanium material for a copper foil manufacturing drum, which is not only a macro pattern but also a micro-size defect caused by wrinkling during polishing; It is intended to provide a titanium material for a drum having a fine plate surface metallographic structure, which can be manufactured without relying on complicated processing heat treatment, and capable of manufacturing high-quality electrolytic Cu foil, and a manufacturing method thereof. is there.

本発明者らは、Cu添加チタン合金について、その表面結晶方位と研磨時の表面の毟れ状態、およびミクロサイズの欠陥発生の関係を調査し、その製造方法について鋭意検討を重ねた結果、マクロ模様だけでなく、ミクロサイズの欠陥を抑制可能な集合組織を見出し、その製造プロセスを見出すにいたった。   As a result of investigating the relationship between the surface crystal orientation of the Cu-added titanium alloy, the surface wrinkling state during polishing, and the occurrence of micro-sized defects, the present inventors have made extensive studies on the manufacturing method. We found a texture that can suppress not only patterns but also micro-sized defects, and found the manufacturing process.

本発明はかかる知見に基づいて完成させたものであり、その要旨とするところは以下の通りである。
(1)質量%で、Cu:0.3〜1.1%、Fe:0.04%以下、酸素:0.1%以下、水素:0.006%以下を含み、残部チタンと不可避不純物からなり、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、平均結晶粒度が8.2以上であり、かつビッカース硬度が115以上、145以下であり、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、集合組織が、圧延面より法線方向からのα相の(0001)面極点図において、c軸の倒れの角度が、ND軸を中心とするウルフネットにおいて、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の範囲内に存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする電解Cu箔製造ドラム用チタン板。
(2)α+β二相域加熱による熱間圧延工程を経て仕上げ圧延によりチタン材を得るための製造方法であって、仕上げ圧延工程は、チタン材の圧延開始温度が200℃以上700℃以下で、当該チタン材を圧下率40%以上で圧延加工し、最後に550〜700℃で10〜30minの熱処理を施すことを特徴とする(1)に記載の電解Cu箔製造ドラム用チタン板の製造方法。
The present invention has been completed based on such findings, and the gist thereof is as follows.
(1) By mass%, Cu: 0.3-1.1%, Fe: 0.04% or less, Oxygen: 0.1% or less, Hydrogen: 0.006% or less, from the remaining titanium and inevitable impurities The average grain size is 8.2 or more and the Vickers hardness is 115 or more and 145 or less in a portion parallel to the plate surface of 1.0 mm below the surface and 1/2 plate thickness part, and the final rolling direction RD , Rolling surface normal ND, rolling width direction TD, (0001) surface normal is c-axis, 1.0 mm below the surface and the part parallel to the plate surface of the 1/2 plate thickness part In the (0001) plane pole figure of the α phase from the normal direction to the rolling surface, the inclination angle of the c-axis is a long axis of ± 45 ° in the TD direction in a wolf net centered on the ND axis. The total area of crystal grains in the range of an ellipse having a minor axis of ± 25 ° in the RD direction A titanium plate for an electrolytic Cu foil production drum, wherein the total area of A and other crystal grains is B, and the area ratio A / B is 3.0 or more.
(2) A manufacturing method for obtaining a titanium material by finish rolling through a hot rolling step by α + β two-phase region heating, wherein the finish rolling step has a rolling start temperature of the titanium material of 200 ° C. or more and 700 ° C. or less. The titanium material is rolled at a rolling reduction of 40% or more, and finally subjected to a heat treatment at 550 to 700 ° C. for 10 to 30 minutes, The method for producing a titanium plate for an electrolytic Cu foil production drum according to (1) .

本発明により、ミクロサイズの欠陥発生が少なく均一微細な板面金属組織を有し、高品質の電解Cu箔を製造するに適した、電解Cu箔製造ドラム用チタン板及びその製造方法を、複雑な加工熱処理工程を経ることなく提供することができる。   According to the present invention, a titanium plate for an electrolytic Cu foil production drum having a uniform and fine plate surface metal structure with few micro-size defects and suitable for producing a high quality electrolytic Cu foil and a method for producing the same are provided. It can be provided without going through a special heat treatment process.

チタン材の表面に生じた毟れを示す顕微鏡写真Photomicrograph showing the wrinkles that occurred on the surface of the titanium material ND軸を中心とするウルフネットにおいて、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の領域を示す模式図Schematic diagram showing an elliptical region having a major axis of ± 45 ° in the TD direction and a minor axis of ± 25 ° in the RD direction in a wolf net centered on the ND axis. EBSP結晶方位解析における(0001)極点図の例Example of (0001) pole figure in EBSP crystal orientation analysis

本発明のチタン板において、質量%で、Cu:0.3〜1.1%、Fe:0.04%以下、酸素:0.1%以下、水素:0.006%以下と残部チタン及び不可避不純物からなることとした。   In the titanium plate of the present invention, Cu: 0.3 to 1.1%, Fe: 0.04% or less, oxygen: 0.1% or less, hydrogen: 0.006% or less, and the remaining titanium and unavoidable. It was made of impurities.

まず、各組成を上記範囲に限定した理由について説明する。   First, the reason why each composition is limited to the above range will be described.

Cuを本発明のCu濃度範囲(0.3〜1.1%)で含有するチタン合金は、α+βの二相となる温度範囲が840〜870℃と広い温度範囲となる。そこで、このようなチタン素材を用い、α+β二相温度域に加熱して熱間圧延することにより、単相組織に比べて著しく結晶粒成長が抑制されるため、より微細な組織となる。加工再結晶組織は、加工前の組織が微細であるほど均質微細となる。また、結晶組織が微細化した結果として、ビッカース硬度を高めることができる。   The titanium alloy containing Cu in the Cu concentration range (0.3 to 1.1%) of the present invention has a wide temperature range of 840 to 870 ° C., which is a two-phase α + β phase. Thus, by using such a titanium material and heating to α + β two-phase temperature range and hot rolling, crystal grain growth is remarkably suppressed as compared with a single-phase structure, so that a finer structure is obtained. The processed recrystallized structure becomes more homogeneous and finer as the structure before processing becomes finer. Moreover, Vickers hardness can be raised as a result of refinement | miniaturization of crystal structure.

本発明ではさらに、上記Cu量を含むチタン合金をα+β二相温度域で熱間圧延した後、本発明のチタン板の製造方法に示す仕上げ圧延と熱処理を行うことにより、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、集合組織が、圧延面より法線方向からのα相の(0001)面極点図において、c軸が、ND軸を中心とするウルフネットにおいて、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の領域に存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bを3.0以上とすることができる。ND軸を中心とするウルフネットにおいて、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の領域というのは、図2の模式図に示す楕円の部分である。なお、ウルフネットとは、半球上に緯線と経線の格子を置き、それらを円盤の上にステレオ投影した曲線をいう(図2)。   In the present invention, the titanium alloy containing the above Cu amount is hot-rolled in the α + β two-phase temperature range, and then subjected to finish rolling and heat treatment shown in the method for producing a titanium plate of the present invention, whereby the final rolling direction RD, rolling When the surface normal ND, the rolling width direction is TD, and the (0001) surface normal is the c-axis, the texture is 1.0 mm below the surface and parallel to the plate surface of the 1/2 plate thickness part. In the (0001) plane pole figure of the α phase from the normal direction to the rolling surface, the c-axis is a wolf net centered on the ND axis, the major axis is ± 45 ° in the TD direction, and ± 25 ° in the RD direction. The total area of crystal grains existing in the elliptical region with A as the short axis can be A, the total area of other crystal grains can be B, and the area ratio A / B can be 3.0 or more. In the wolf net centered on the ND axis, an elliptical region having a major axis of ± 45 ° in the TD direction and a minor axis of ± 25 ° in the RD direction is the part of the ellipse shown in the schematic diagram of FIG. . A wolf net is a curve in which a grid of latitude and meridian lines is placed on a hemisphere and these are stereo-projected onto a disk (FIG. 2).

こうして、α+β二相域圧延によって平均結晶粒度が8.2以上の微細な結晶とするとともに、さらに面積比A/Bが3.0以上の、大部分の結晶粒のc軸が板面に対して垂直(圧延面の法線ND方向)に近い集合組織を有し、最終的にマクロ不均一組織はもとより、ミクロサイズの欠陥もない均質微細な結晶組織とすることによる相乗効果により、ビッカース硬度が115以上、145以下の高い硬度を実現することができ、研磨時にミクロサイズの欠陥、また、同欠陥の原因となる表面の毟れが微小または発生しにくい組織を得る技術である。   Thus, the α + β two-phase region rolling produces fine crystals having an average crystal grain size of 8.2 or more, and the c-axis of most crystal grains having an area ratio A / B of 3.0 or more is relative to the plate surface. Vickers hardness due to the synergistic effect of having a texture that is nearly vertical (normal to the normal line ND direction of the rolling surface), and finally a macro-inhomogeneous structure and a homogeneous fine crystal structure with no micro-size defects. Is a technique that can achieve a high hardness of 115 to 145, and obtain a micro-size defect during polishing and a structure in which surface wrinkles that cause the defect are minute or difficult to occur.

これを実現するためには、Cuの添加量は0.3〜1.1%であることが必要である。Cuが0.3%未満の場合、二相域圧延を行っても平均結晶粒度を8.2以上とするのが困難であるため、Cu量の下限は0.3%とした。また、1.1%を超えて含有すると、仕上圧延の際にTi2Cuの析出が起こりやすくなり、マクロ不均一模様を生じる場合が出てくるためである。 In order to realize this, the amount of Cu needs to be 0.3 to 1.1%. When Cu is less than 0.3%, it is difficult to set the average grain size to 8.2 or more even if two-phase rolling is performed, so the lower limit of the Cu amount is set to 0.3%. Further, if it exceeds 1.1%, Ti 2 Cu is likely to precipitate during finish rolling, and a macro nonuniform pattern may occur.

Fe、酸素、水素を本発明範囲に限定した理由について説明する。   The reason why Fe, oxygen, and hydrogen are limited to the scope of the present invention will be described.

Feは、β相を安定化する元素であり、α相中への固溶量は極めて小さく最も多量に固溶する温度においても高々0.04%である。これを超えてFeが添加されると、Feの濃化したβ相が出現するようになるが、このβ相は腐蝕環境下で優先的に溶解し、ピット状の窪みとなりやすい。このような窪みが面上に存在すると、電析するCu箔に転写されるため、高品質のCu箔が製造できなくなる。したがって、Fe含有量は0.04%以下であることが必要である。Fe量の下限は特に規定しないが、不純物として通常0.005%以上含有している。   Fe is an element that stabilizes the β phase, and the amount of solid solution in the α phase is extremely small and is 0.04% at most even at the temperature at which the most solid solution is formed. When Fe is added in excess of this, a β-phase enriched with Fe appears, but this β-phase is preferentially dissolved in a corrosive environment and tends to be a pit-like depression. If such a dent exists on the surface, it is transferred to the Cu foil to be electrodeposited, so that a high-quality Cu foil cannot be produced. Therefore, the Fe content needs to be 0.04% or less. The lower limit of the amount of Fe is not particularly specified, but is usually 0.005% or more as an impurity.

純チタンや主要なチタン合金は、hcp構造のα相を主相としており、酸素はこれを強化する合金元素である。電解Cu箔製造ドラムは、板を冷間で曲げて円筒状のドラムに成形するため、軟質の方が成形しやすく、また成形後の残留応力も小さく、均質となる。この残留応力もマクロ模様発生の一因であり、これを低減するために、本発明では酸素の含有量を0.1%以下とした。酸素量の下限は特に規定しないが、不純物として通常0.005%以上含有している。   Pure titanium and main titanium alloys have an α phase of hcp structure as the main phase, and oxygen is an alloying element that strengthens this. Since the electrolytic Cu foil production drum is formed into a cylindrical drum by bending the plate cold, the softer one is easier to mold, and the residual stress after molding is smaller and uniform. This residual stress also contributes to the generation of the macro pattern, and in order to reduce this, the oxygen content is set to 0.1% or less in the present invention. The lower limit of the amount of oxygen is not particularly specified, but is usually 0.005% or more as an impurity.

Hを0.006%以下としたのは、水素化物の生成を抑制するためである。水素化物が生成すると衝撃特性が劣化し、加工時やハンドリング時に支障をきたす可能性がある。H濃度が0.006%以下であれば、平均結晶粒度8.2以上の材料中において水素化物が生成することはほとんどないため、上限を0.006%とした。下限は、水素化物を発生しないという点から、低いほど良いが、通常不純物として0.001%以上は含有していることが多い。なお、不可避不純物とは、精錬、溶解等の製造工程で、材料中への混入が避けられない不純物元素を指すものであり、例えば0.05%以下の窒素、炭素、水素、Ni、Cr、Mn、Mg、Sn、Al、V、Siなどを指す。   The reason why H is set to 0.006% or less is to suppress the formation of hydride. When hydride is generated, impact characteristics deteriorate, and there is a possibility that it may cause trouble during processing and handling. If the H concentration is 0.006% or less, hydride is hardly generated in a material having an average crystal grain size of 8.2 or more, so the upper limit was made 0.006%. The lower limit is better from the point of not generating hydride, but usually 0.001% or more is often contained as an impurity. The inevitable impurities refer to impurity elements that are unavoidable to be mixed into the material in the manufacturing process such as refining and melting. For example, 0.05% or less of nitrogen, carbon, hydrogen, Ni, Cr, It refers to Mn, Mg, Sn, Al, V, Si and the like.

Fe、酸素及び水素の含有量を各々上に記載の範囲内に制御するためには、チタン原料として高純度のスポンジチタンを用い、スクラップチタンの使用比率を調整すれば良い。更に、加熱の際に微量の過剰酸素を雰囲気に供給するなどして雰囲気を調整し、水素の含有量を制御することができる。   In order to control the contents of Fe, oxygen, and hydrogen within the ranges described above, high-purity sponge titanium is used as a titanium raw material, and the use ratio of scrap titanium may be adjusted. Furthermore, the hydrogen content can be controlled by adjusting the atmosphere by supplying a trace amount of excess oxygen to the atmosphere during heating.

また、本発明において、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、集合組織が、圧延面より法線方向からのα相の(0001)面極点図において、c軸の倒れの角度が、ND軸を中心とするウルフネットにおいて、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の範囲内に存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする電解Cu箔製造ドラム用チタン板とした。集合組織を上記のように規定した理由は前述のとおりチタン板の硬度を上昇させる効果に加え、以下のとおりの効果を得るためである。   Further, in the present invention, when the final rolling direction RD, the normal line ND of the rolled surface, the rolled width direction TD, and the normal line of the (0001) plane are c-axis, 1.0 mm below the surface and 1/2 plate thickness part In the part parallel to the plate surface, the texture is a (0001) plane pole figure of the α phase from the normal direction to the rolling surface, and the tilt angle of the c-axis is a Wolfnet centered on the ND axis. The total area of crystal grains existing within an ellipse with ± 45 ° as the major axis in the TD direction and ± 25 ° as the minor axis in the RD direction is A, and B is the total area of the other crystal grains. It was set as the titanium plate for electrolytic Cu foil manufacture drums characterized by A / B being 3.0 or more. The reason why the texture is defined as described above is to obtain the following effects in addition to the effect of increasing the hardness of the titanium plate as described above.

銅箔製造ドラム用チタン材でこれまで問題になっていたのは主にマクロ不均一模様に関するものであるが、マクロ不均一模様は肉眼で容易に識別できる程度、大きさでいうと数mmレベルの表面欠陥で、粗大粒の残存や、熱間圧延時に残留した筋状の圧延組織等に起因するものであるため、熱間圧延時にクロス圧延を行うことや、α温度域での加工量を十分取ること等により解決されていた。   Titanium materials for copper foil production drums have so far been mainly related to macro non-uniform patterns, but the macro non-uniform patterns can be easily identified with the naked eye and are several millimeters in size. Surface defects, which are caused by residual coarse grains or streak-like rolled microstructures remaining during hot rolling, so that cross rolling during hot rolling and the amount of processing in the α temperature range can be reduced. It was solved by taking enough.

一方、直径数十μm以下のミクロサイズの欠陥は、隣接する結晶粒の方位が関係している。α型チタン材料の各結晶粒はHCP構造をしているが、HCPの底面(0001)面は最稠密であるため、柱面(10−10)面に比べ硬度が高く、研磨条件によっては、表面の毟られ方が異なる。したがって、これらの面が隣接して存在すると一方はあまり毟られず、一方は顕著に毟られるため、境界部分の差が顕著となり、直径数十μm(結晶粒径と同等サイズ)以下のミクロサイズの欠陥として認識されるようになるのである。ドラム材の各結晶粒が完全にランダムだとしても、上記のような組み合わせはどこかに生じるため、局所的に欠陥が生じることになる。このような事実に鑑み、発明者らは、結晶粒のほとんどが底面(0001)面か、それに近い方位の面に揃っていれば、研磨時の欠陥は抑制できることを見出した。   On the other hand, micro-sized defects having a diameter of several tens of μm or less are related to the orientation of adjacent crystal grains. Each crystal grain of the α-type titanium material has an HCP structure, but since the bottom surface (0001) surface of HCP is the most dense, the hardness is higher than the column surface (10-10) surface, and depending on the polishing conditions, The way the surface is beaten is different. Therefore, if these faces exist adjacent to each other, one of them will not be scratched very much, and one of them will be scratched remarkably, so the difference in the boundary will be significant, and the micro size will be several tens of μm (size equivalent to the crystal grain size) or less. It will be recognized as a defect. Even if the crystal grains of the drum material are completely random, such a combination occurs somewhere, so that a defect is locally generated. In view of such facts, the inventors have found that defects at the time of polishing can be suppressed if most of the crystal grains are aligned on the bottom (0001) plane or a plane with an orientation close thereto.

すなわち、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、圧延面より法線方向からのα相の(0001)面極点図において、ND軸を中心とするウルフネットの、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の領域にc軸が存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする集合組織である。   That is, when the final rolling direction RD, the normal ND of the rolled surface, the rolling width direction TD, and the normal of the (0001) plane as the c axis, the (0001) plane pole of the α phase from the normal direction to the rolled surface In the figure, the total area of the crystal grains in which the c-axis is present in an elliptical region having a major axis of ± 45 ° in the TD direction and a minor axis of ± 25 ° in the RD direction of the wolf net centered on the ND axis is represented by A The texture is characterized in that the total area of other crystal grains is B and the area ratio A / B is 3.0 or more.

チタン材のc軸はRD方向に比べTD方向には倒れ方が大きい。c軸のTD方向への倒れの角度は±45°とした。上限を45°としたのは、これを超えると角度0°の結晶粒表面との硬度差が顕著となるため、研磨時の毟れの差が大きくなるためである。c軸のRD方向への倒れの角度は±25°である。c軸はRD方向へはTD方向に比べ倒れないため、上限は25°とした。   The c-axis of the titanium material is more inclined in the TD direction than in the RD direction. The inclination angle of the c-axis in the TD direction was ± 45 °. The reason why the upper limit is set to 45 ° is that, if the upper limit is exceeded, the difference in hardness from the crystal grain surface at an angle of 0 ° becomes remarkable, so that the difference in wrinkling during polishing increases. The tilt angle of the c-axis in the RD direction is ± 25 °. Since the c-axis is not tilted in the RD direction as compared with the TD direction, the upper limit is set to 25 °.

本発明において、ND軸を中心とするウルフネットの、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の領域にc軸が存在する結晶粒の総面積A、それ以外の結晶粒の総面積B、面積比A/Bは以下のようにして算出する。   In the present invention, the total area A of the crystal grains in which the c-axis exists in an elliptical region having a major axis of ± 45 ° in the TD direction and a minor axis of ± 25 ° in the RD direction of the wolf net centered on the ND axis. The total area B and the area ratio A / B of other crystal grains are calculated as follows.

まず、当該試料の観察表面を化学研磨し、電子線後方散乱回折法;EBSP(Electron Back Scattering Diffraction Pattern)を用いて結晶方位解析する。1mm×1mmの領域を、ステップ1〜2μmでスキャンし、(0001)極点図(図3)を作図する。図中の黒い点は、(0001)面の法線すなわちc軸が、板面の法線(ND軸)に対して傾斜した角度を示している。その角度は、図2に示すウルフネットに重ね合わせることにより読み取ることができる。ウルフネットでTD方向に−45〜45°、RD方向に−25〜25°となる楕円(図2中のb)内にある黒点の密度とそれ以外の部分にある黒点の密度の比が、本発明で規定する、c軸が楕円bの領域にある結晶粒の総面積Aと、c軸が楕円b以外の部分にある結晶粒の総面積Bの比A/Bに相当する。楕円bの領域及びそれ以外の領域にある黒点の密度は、それぞれ画像解析により読み取ることにより得る。A/B3.0以上は、観察範囲の結晶粒の中で75%以上の結晶粒のc軸が、中央付近の領域に集まっていることを意味する。3.0以上としたのは、3.0未満だと中央付近への集積が少なく、c軸が板面に対して倒れた結晶粒が多くなり、研磨時の毟れが顕著となるためである。上限はAが100%で、Bがゼロとなる場合であるが、実際にはそのような場合はなく、3.0〜19.0である。また、A/B3.0以上は、表面から1/2厚の深さにわたって均一に満足されることが好ましいが、発明者らは、本発明の電解Cu箔製造ドラム用Ti合金板において、表面から1.0mmの面及び1/2厚の面におけるA/Bが3.0以上であれば表面から1/2厚までの間でもA/Bは、ほぼ均一に3.0以上であることを確認した。   First, the observation surface of the sample is chemically polished, and crystal orientation analysis is performed using an electron backscattering diffraction pattern (EBSP). An area of 1 mm × 1 mm is scanned in steps 1 to 2 μm, and a (0001) pole figure (FIG. 3) is drawn. A black dot in the figure indicates an angle at which the normal line of the (0001) plane, that is, the c-axis is inclined with respect to the normal line of the plate surface (ND axis). The angle can be read by overlapping the wolf net shown in FIG. The ratio of the density of black spots in the ellipse (b in FIG. 2) that is −45 to 45 ° in the TD direction and −25 to 25 ° in the RD direction and the density of black spots in the other part of the wolf net is This corresponds to the ratio A / B of the total area A of the crystal grains in the region where the c-axis is an ellipse b and the total area B of the crystal grains where the c-axis is in a portion other than the ellipse b. The density of black spots in the area of the ellipse b and other areas is obtained by reading each image analysis. A / B of 3.0 or more means that the c-axis of 75% or more of the crystal grains in the observation range is gathered in a region near the center. The reason for setting it to 3.0 or more is that when it is less than 3.0, the accumulation near the center is small, the number of crystal grains whose c-axis is tilted with respect to the plate surface increases, and wrinkling during polishing becomes remarkable. is there. The upper limit is the case where A is 100% and B is zero, but there is actually no such case and is 3.0 to 19.0. Further, it is preferable that A / B 3.0 or more is satisfied uniformly over a depth of ½ thickness from the surface. If the A / B on the surface of 1.0 mm to 1.0 mm and the surface of 1/2 thickness is 3.0 or more, the A / B is approximately 3.0 or more evenly from the surface to 1/2 thickness. It was confirmed.

本発明において、平均結晶粒度と硬度を、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、平均結晶粒度が8.2以上であり、かつ、ビッカース硬度が115以上、145以下であると規定した。平均結晶粒度が8.2以上としたのは以下の理由による。全ての結晶粒のc軸方位を板面にほぼ垂直に揃えるのは困難であり、c軸がTD方向に倒れた結晶粒もある割合で存在する。そのような場合に、研磨時の毟れが周囲と異なる場所があったとしても、結晶粒が微細であれば、数十μmレベルよりもさらに狭い領域となり目立ちにくくなるため、欠陥と認識されにくくなる。この効果は平均結晶粒度が8.2以上で有効となる。再結晶していれば、結晶粒は微細なほど良いが、実質的には8.2〜10.5の範囲のものが望ましい。また、研磨時の毟れを小さく、または、毟れそのものを発生しにくくするため、表面の硬度はある程度の硬さを有することが望ましい。ビッカース硬度115以上であれば、毟れは微小となり、欠陥として目立ちにくくなる。ただし硬すぎると研磨そのものが困難となるため上限を145とした。   In the present invention, the average crystal grain size and hardness are 1.0 mm or less below the surface and the part parallel to the plate surface of the 1/2 plate thickness part has an average crystal grain size of 8.2 or more and a Vickers hardness of 115 or more. 145 or less. The reason why the average grain size is set to 8.2 or more is as follows. It is difficult to align the c-axis orientation of all the crystal grains substantially perpendicular to the plate surface, and there is a certain proportion of crystal grains in which the c-axis is tilted in the TD direction. In such a case, even if there is a place where the wrinkle at the time of polishing is different from the surroundings, if the crystal grains are fine, the region becomes narrower than the tens of μm level and becomes less conspicuous. Become. This effect is effective when the average grain size is 8.2 or more. If it is recrystallized, the finer the crystal grain, the better. However, it is desirable that the crystal grain is substantially in the range of 8.2 to 10.5. In addition, it is desirable that the surface has a certain degree of hardness in order to reduce wrinkles during polishing or to prevent wrinkles themselves from occurring. If the Vickers hardness is 115 or more, the wrinkles become minute and are less noticeable as defects. However, if it is too hard, polishing itself becomes difficult, so the upper limit was set to 145.

また、結晶粒度及び硬度の条件は、表面から1/2厚の深さにわたって均一に満足されることが好ましいが、発明者らは、本発明の電解Cu箔製造ドラム用Ti合金板において、表面から1.0mmの面及び1/2厚の面において結晶粒度が8.2〜10.5の範囲であり、ビッカース硬度が115〜145の範囲であれば表面から1/2厚までの間でも結晶粒度が8.2〜10.5の範囲であり、ビッカース硬度が115〜145の範囲であることを確認した。   Moreover, it is preferable that the conditions of the crystal grain size and the hardness are uniformly satisfied over a depth of ½ thickness from the surface. If the crystal grain size is in the range of 8.2 to 10.5 and the Vickers hardness is in the range of 115 to 145 on the surface of 1.0 mm to 1.0 mm and 1/2 thickness, even between the surface and 1/2 thickness It was confirmed that the crystal grain size was in the range of 8.2 to 10.5 and the Vickers hardness was in the range of 115 to 145.

本発明の電解Cu箔製造ドラム用チタン板の製造方法は、α+β二相域加熱による熱間圧延工程を経て仕上げ圧延によりチタン材料を得る製造方法であって、仕上げ圧延工程を、圧延開始温度300℃以上700℃以下、圧下率40%以上で行い、最後に550〜700℃で10〜30minの熱処理を施すことを特徴とする。   The method for producing a titanium plate for an electrolytic Cu foil production drum according to the present invention is a production method for obtaining a titanium material by finish rolling through a hot rolling step by α + β two-phase region heating. The heat treatment is performed at a temperature of from 700 ° C. to 700 ° C. and a rolling reduction of 40% or more, and finally a heat treatment is performed at 550 to 700 ° C. for 10 to 30 minutes.

本発明の成分組成を有するチタン材をα+β二相温度域で加熱し、直後に熱間圧延すると、Cuを本発明範囲で含有しているので十分なα+β二相温度域において熱間圧延を行うことができる。α+β二相温度域としては、840〜880℃であるため、加工発熱を考慮して、加熱温度は830〜870℃とすることが望ましい。このように、α+β二相域温度で熱間圧延を行うことにより、均質な結晶組織を得ることができる。α+β二相域で熱間圧延すると、α相とβ相が互いの結晶粒成長を妨げ合うために、結晶粒径の粗大化を防止できる。その後冷却時に、β相はα相に変態し、結果的に、平均結晶粒径の小さなα単相組織が得られる。   When a titanium material having the component composition of the present invention is heated in the α + β two-phase temperature range and immediately hot-rolled, Cu is contained in the range of the present invention, so that hot rolling is performed in a sufficient α + β two-phase temperature range. be able to. Since the α + β two-phase temperature range is 840 to 880 ° C., it is desirable that the heating temperature is 830 to 870 ° C. in consideration of processing heat generation. Thus, a homogeneous crystal structure can be obtained by performing hot rolling at an α + β two-phase region temperature. When hot rolling is performed in the α + β two-phase region, the α phase and the β phase interfere with each other's crystal grain growth, so that the crystal grain size can be prevented from becoming coarse. Thereafter, upon cooling, the β phase is transformed into an α phase, and as a result, an α single phase structure having a small average crystal grain size is obtained.

次に、仕上げ圧延において、圧延開始温度200℃以上700℃以下、圧下率40%以上の圧延を行う。仕上げ圧延において、通常の熱間圧延温度より低い温度で圧延することにより、本発明に規定する極めて強い集合組織が形成されることが可能となる。この時、700℃を超えると、集合組織の形成が不十分となり、200℃未満では、圧延時に疵が発生しやすくなり、かつ圧延形状が悪くなるため、200℃以上、700℃以下とした。   Next, in finish rolling, rolling is performed at a rolling start temperature of 200 ° C. or higher and 700 ° C. or lower and a rolling reduction of 40% or higher. In finish rolling, by rolling at a temperature lower than the normal hot rolling temperature, it is possible to form a very strong texture defined in the present invention. At this time, when the temperature exceeds 700 ° C., the formation of the texture becomes insufficient. When the temperature is less than 200 ° C., wrinkles are liable to occur during rolling and the rolling shape is deteriorated.

仕上げ圧延時の圧下率は40%以上とした。圧下率40%未満では、本発明に規定する集合組織の形成が不十分であり、研磨時の毟れを起因とするミクロサイズの欠陥が生じる危険性が高まるためである。   The rolling reduction during finish rolling was set to 40% or more. If the rolling reduction is less than 40%, the texture defined in the present invention is not sufficiently formed, and the risk of causing micro-sized defects due to wrinkling during polishing is increased.

さらに、仕上げ圧延後、当該チタン材を550〜700℃で熱処理する。これは、200〜700℃での仕上げ圧延により高度に蓄積した歪みを核として再結晶を促進させ、均質微細再結晶組織を得るための工程である。したがって、焼鈍温度の下限は、再結晶温度550℃、できるだけ細粒とすべく、上限温度は結晶粒径を微細とするため、700℃とした。保定時間としては、10min以下だと面内の均一な温度分布が達成されず、結晶粒径が混粒化するのでよくない。また、保定時間が30min以上であれば表面酸化が過剰になり、後続の脱酸化膜工程の負荷が大きくなり、また生産性が悪いなどの理由で好ましくない。以上の理由から、冷間圧延後の最終焼鈍条件としては、550〜700℃の温度範囲において10〜30minの保定を行うように規定した。   Further, after the finish rolling, the titanium material is heat-treated at 550 to 700 ° C. This is a process for obtaining a homogeneous fine recrystallized structure by accelerating recrystallization with a strain accumulated at a high temperature by finish rolling at 200 to 700 ° C. as a nucleus. Therefore, the lower limit of the annealing temperature is set to 700 ° C. in order to make the recrystallization temperature 550 ° C. and as fine a grain as possible, and the upper limit temperature to make the crystal grain size fine. If the retention time is 10 min or less, the in-plane uniform temperature distribution is not achieved, and the crystal grain size is mixed, which is not good. Further, if the holding time is 30 minutes or more, the surface oxidation becomes excessive, the load of the subsequent deoxidation film process becomes large, and the productivity is not preferable. For the above reasons, the final annealing condition after cold rolling is defined to be maintained for 10 to 30 minutes in a temperature range of 550 to 700 ° C.

本発明を、実施例を用いてさらに詳しく説明する。   The present invention will be described in more detail with reference to examples.

表1に示した成分からなるインゴット200kgを、真空アーク2回溶解により準備し、これを分塊圧延して厚さ150mmのスラブとした。このスラブについて、熱間圧延工程を経て仕上げ圧延を行った。熱間圧延時の加熱温度、熱間圧延後の板厚、仕上げ圧延の開始温度、仕上げ圧延後の板厚と圧下率を表2に示した。   An ingot of 200 kg composed of the components shown in Table 1 was prepared by melting twice with a vacuum arc, and this was divided and rolled into a slab having a thickness of 150 mm. About this slab, the finish rolling was performed through the hot rolling process. Table 2 shows the heating temperature during hot rolling, the plate thickness after hot rolling, the start temperature of finish rolling, the plate thickness after finish rolling and the rolling reduction.

これらの試料の表層下1mm、および1/2板厚部の表面を機械研磨し鏡面にした後、コロイダルシリカを用いて研磨した。その後、FE−SEM(Field Emission-Scanning Electron Microscope)/EBSPを用いて結晶方位解析を実施した。なお、EBSP測定については、試料の平均的な情報を得るため、試料ごとに1mm×1mmの範囲、5視野をステップ2μmで測定し、(0001)極点図を作図、ND軸を中心とするウルフネットでTD方向に−45〜45°、RD方向に−25〜25°となる楕円(図2中のb)内にある黒点の密度とそれ以外の部分にある黒点の密度を画像解析により求め、その比(A/B)を求めた。   The surface of these samples 1 mm below the surface layer and the surface of the 1/2 plate thickness portion was mechanically polished to a mirror surface, and then polished using colloidal silica. Then, crystal orientation analysis was performed using FE-SEM (Field Emission-Scanning Electron Microscope) / EBSP. For EBSP measurement, in order to obtain the average information of the sample, a range of 1 mm × 1 mm for each sample, 5 fields of view were measured at 2 μm, a (0001) pole figure was drawn, and a wolf centered on the ND axis. The density of black spots in an ellipse (b in FIG. 2) that is −45 to 45 ° in the TD direction and −25 to 25 ° in the RD direction and the density of black spots in other portions are obtained by image analysis. The ratio (A / B) was determined.

また、50mm×70mmの試験片を切り出し、表面下1mmの面と板厚1/2の面をフライス加工により表出し、サンドペーパー研磨600番で研磨した後、ポリビニール・アルコールのアセタール化物を結合剤とする弾性砥石(砥粒はSiC、粒度#600、以下PVA砥石と称す)により研磨し、SEM観察により、表面の状態を観察した。尚、潤滑油は石油を使用した。表面の状態は、PVA研磨後の毟れの状態を観察した。100×130μmの領域に発生する毟れの個数が、5個以上あれば「やや多い」、2〜4個であれば「微少」、1個以下を「ほぼ無し」と評価した。   In addition, a 50 mm x 70 mm test piece was cut out, 1 mm below the surface and 1/2 surface thickness were exposed by milling, polished with sandpaper polishing No. 600, and then combined with polyvinyl alcohol acetalized product. Polishing was performed with an elastic grindstone (abrasive grains were SiC, grain size # 600, hereinafter referred to as PVA grindstone), and the surface condition was observed by SEM observation. The lubricating oil used was petroleum. As for the surface state, the state of dripping after PVA polishing was observed. When the number of wrinkles generated in a 100 × 130 μm region was 5 or more, it was evaluated as “slightly”, when it was 2-4, “small”, and 1 or less were evaluated as “nearly absent”.

結晶粒度は小片の表層下1mmと1/2板厚部の表面のそれぞれ任意の5箇所のミクロ組織を光学顕微鏡観察し、ミクロ組織よりJISG0551に準拠して測定した。ビッカース硬度についても同様の面の硬度を荷重1kgで5点測定し、平均した。   The crystal grain size was measured in accordance with JISG0551 from the microstructure by observing the microstructure of each of five arbitrary locations on the surface of the surface layer of the small piece 1 mm below and the surface of the 1/2 plate thickness portion. Regarding Vickers hardness, the hardness of the same surface was measured at 5 points with a load of 1 kg and averaged.

表2に製造条件と各測定値、および研磨時毟れの評価をまとめた。   Table 2 summarizes the manufacturing conditions, the respective measured values, and the evaluation of wobbling during polishing.

No.1〜14は、本発明の実施例である。粗圧延の加熱温度は、それぞれの合金組成でα+βの2相となる温度である。電解Cu箔製造ドラムの板厚は10mm以下程度であるため、仕上げ圧延後の板厚は7、8、9、10mmとし、粗圧延材の板厚を19〜70mmにすることにより、仕上げ圧延の圧下率を確保した。   No. Examples 1 to 14 are examples of the present invention. The heating temperature of rough rolling is a temperature at which two phases of α + β are formed in each alloy composition. Since the plate thickness of the electrolytic Cu foil production drum is about 10 mm or less, the plate thickness after finish rolling is set to 7, 8, 9, 10 mm, and the plate thickness of the rough rolled material is set to 19 to 70 mm. The reduction rate was secured.

本発明のいずれの試作材についても、表面下1mm、1/2板厚部のいずれの表面においても、c軸の板面法線方向への集積を示すA/Bは3.0以上であり、結晶粒度も8.2以上、ビッカース硬度も115以上、145以下であった。また、表面下1mmをPVA研磨した際の毟れの発生は、「ほぼ無し」または「微少」であり、毟れを起因とするミクロ欠陥の発生が抑制された電解Cu箔製造ドラム用チタン材料が製造できた。   In any prototype material of the present invention, A / B indicating accumulation in the normal direction of the c-axis plate surface is 3.0 or more in any surface of 1 mm below the surface and 1/2 plate thickness part. The crystal grain size was 8.2 or more, and the Vickers hardness was 115 or more and 145 or less. Further, the occurrence of wrinkling when PVA polishing 1 mm below the surface is “nearly none” or “small”, and the titanium material for an electrolytic Cu foil production drum in which the generation of micro defects due to wrinkles is suppressed. Could be manufactured.

また、表2のNo.3の試料を用いて、厚みを変えて、表面下0.5mm、2mm、3mm、4mmの面を、上に記載の方法で研磨し、各々の面で A/B、結晶粒度、及び硬度を評価した。その結果、各厚みの面で、A/B、結晶粒度、及び硬度は、各々測定誤差の範囲内でほぼ一致した。   In Table 2, No. Using the sample of No. 3, the thickness is changed, and the surface of 0.5 mm, 2 mm, 3 mm, and 4 mm below the surface is polished by the method described above, and A / B, crystal grain size, and hardness are polished on each surface. evaluated. As a result, in terms of each thickness, A / B, crystal grain size, and hardness almost coincided within the range of measurement error.

一方、粗圧延時の加熱温度が、800℃とα+β温度域を低温側にはずれ、α単相の温度域であったNo.15では、粗圧延時の粒成長の抑制が不十分となり、最終焼鈍材の結晶粒度も7.7と低く、ビッカース硬度も110前後でやや低め、なおかつ研磨時の毟れもやや多かった。また、粗圧延時の加熱温度が、920℃とα+β温度域を高温側にはずれ、β単相の温度域であったNo.16でも、粗圧延時に粒成長が顕著となり、最終焼鈍材の結晶粒度が7.3前後と低く、ビッカース硬度も110未満で低め、なおかつ研磨時の毟れもやや多かった。   On the other hand, the heating temperature at the time of rough rolling shifted from 800 ° C. and the α + β temperature range to the low temperature side, and was a temperature range of α single phase. In No. 15, the grain growth during rough rolling was insufficiently suppressed, the crystal grain size of the final annealed material was as low as 7.7, the Vickers hardness was slightly low at around 110, and the wrinkling during polishing was also somewhat high. Moreover, the heating temperature at the time of rough rolling shifted from 920 ° C. and the α + β temperature range to the high temperature side, and was a temperature range of β single phase. In No. 16, the grain growth was remarkable during rough rolling, the crystal grain size of the final annealed material was as low as around 7.3, the Vickers hardness was low at less than 110, and the wrinkling during polishing was somewhat high.

仕上圧延の開始温度が700℃よりも高いNo.17では、1/2板厚部でのA/Bが小さく、また、結晶粒度が低く、さらに、PVA研磨時の毟れがやや多かった。仕上圧延の圧下率が低いNo.18では、表面下1mm、および1/2板厚部ともにA/Bが小さく、集合組織が十分発達せず、また結晶粒度も低く、硬度も低め、PVA研磨時の毟れもやや多かった。仕上圧延温度が低いNo.19では、変形抵抗が大きく圧延が困難であり、板形状が悪くなる上に硬度が大きくPVA研磨が困難であった。Cu添加なしのNo.20では、集合組織が十分発達せず、また結晶粒度、硬度ともに低く、研磨時の毟れがやや多かった。また、Cu添加量が少ないNo.21でも同様の結果であった。Cu添加量の多いNo.22では、Cuの偏析が大きく、また、Ti2Cuの析出が多くマクロ不均一模様が発生した。 No. in which the starting temperature of finish rolling is higher than 700 ° C. In No. 17, the A / B at the 1/2 plate thickness portion was small, the crystal grain size was low, and further, there was a little amount of wrinkling during PVA polishing. No. with low rolling reduction of finish rolling In No. 18, the A / B was small at 1 mm below the surface and 1/2 plate thickness, the texture was not sufficiently developed, the crystal grain size was low, the hardness was low, and there was a little amount of wrinkling during PVA polishing. No. with low finish rolling temperature No. 19, the deformation resistance was large and rolling was difficult, the plate shape was poor, and the hardness was large and PVA polishing was difficult. No. without Cu addition. In No. 20, the texture was not sufficiently developed, the crystal grain size and hardness were low, and there was a little amount of wrinkling during polishing. In addition, No. with less Cu addition. 21 also had similar results. No. with a large amount of Cu addition. In No. 22, the segregation of Cu was large, the precipitation of Ti 2 Cu was large, and the macro uneven pattern was generated.

また、Cu含有量が本発明の範囲外であった、表1の1−8,1−9,1−10材を用いたNo.20〜22については、本発明の製造条件で製造しても、いずれも、結晶粒度、及び/或いは、A/Bの何れかが本発明条件を満たさず、研磨時毟れが多く、Cu箔製造用のドラムに適したチタン合金板は得られなかった。   Moreover, No. using the 1-8, 1-9, 1-10 material of Table 1 whose Cu content was outside the scope of the present invention. About 20-22, even if it manufactures on the manufacturing conditions of this invention, neither crystal grain size and / or A / B satisfy | fills the conditions of this invention, and there are many wrinkles at the time of grinding | polishing, Cu foil A titanium alloy plate suitable for a production drum could not be obtained.

Feを上限以上の0.08%含むNo.1−11材を、No.5と同じプロセスで厚さ9mmの板を作製し、ドラム形状に加工し電解液に浸けて使用したところ、粒界にFeが濃化していたため、粒界が優先的に溶解し窪みとなってマクロ不均一模様が発生した。また、酸素を上限以上の0.15%含むNo.1−12をNo.5と同じプロセスで厚さ9mmの板を作製し、ドラム形状に加工使用としたところ、加工時に入った残留応力によりマクロ不均一模様が発生した。水素を上限以上の0.010%含む1−13をNo.5と同じプロセスで厚さ9mmの板を作製し、ドラム形状に加工すべく板を切断したところ、切断部に割れが生じ、ドラムへの加工が不能となった。   No. containing 0.08% of Fe above the upper limit. 1-11 material, No.1. A plate with a thickness of 9 mm was produced by the same process as No. 5, processed into a drum shape, immersed in an electrolyte solution, and Fe was concentrated at the grain boundary. Therefore, the grain boundary dissolved preferentially and became a dent. Macro uneven pattern occurred. In addition, No. containing 0.15% or more of oxygen above the upper limit. 1-12 is No.1. When a plate having a thickness of 9 mm was produced by the same process as in No. 5 and processed into a drum shape, a macro non-uniform pattern was generated due to residual stress entered during the processing. No. 1-13 containing 0.010% of hydrogen above the upper limit When a plate having a thickness of 9 mm was produced by the same process as in No. 5 and the plate was cut to be processed into a drum shape, the cut portion was cracked, making it impossible to process the drum.

Claims (2)

質量%で、
Cu:0.3〜1.1%、
Fe:0.04%以下、
酸素:0.1%以下
水素:0.006%以下
を含み、残部チタンと不可避不純物からなり、
表面下1.0mmおよび1/2板厚部の板面に平行な部位において、平均結晶粒度が8.2以上であり、かつビッカース硬度が115以上、145以下であり、
最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、集合組織が、圧延面より法線方向からのα相の(0001)面極点図において、c軸の倒れの角度が、ND軸を中心とするウルフネットにおいて、TD方向に±45°を長軸、RD方向に±25°を短軸とする楕円の範囲内に存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする電解Cu箔製造ドラム用チタン板。
% By mass
Cu: 0.3 to 1.1%
Fe: 0.04% or less,
Oxygen: 0.1% or less Hydrogen: 0.006% or less, comprising the balance titanium and inevitable impurities,
1.0 mm below the surface and a portion parallel to the plate surface of the 1/2 plate thickness part, the average grain size is 8.2 or more, and the Vickers hardness is 115 or more and 145 or less,
When the final rolling direction RD, the normal line ND of the rolled surface, the rolling width direction TD, and the normal line of the (0001) plane as the c-axis, parallel to the plate surface of 1.0 mm below the surface and 1/2 plate thickness part In the region, the texture is α phase (0001) plane pole figure from the normal direction from the rolling surface, and the inclination angle of the c axis is ± 45 ° in the TD direction in the wolf net centering on the ND axis. Is the major axis and A is the total area of the crystal grains existing within an elliptical range with ± 25 ° as the minor axis in the RD direction, and B is the total area of the other crystal grains. A titanium plate for an electrolytic Cu foil production drum, wherein the titanium plate is 0 or more.
α+β二相域加熱による熱間圧延工程を経て仕上げ圧延によりチタン材を得るための製造方法であって、仕上げ圧延工程は、チタン材の圧延開始温度が200℃以上700℃以下で、当該チタン材を圧下率40%以上で圧延加工し、最後に550〜700℃で10〜30minの熱処理を施すことを特徴とする請求項1に記載の電解Cu箔製造ドラム用チタン板の製造方法。   A manufacturing method for obtaining a titanium material by finish rolling through a hot rolling process by α + β two-phase region heating, wherein the rolling start temperature of the titanium material is 200 ° C. or more and 700 ° C. or less, and the titanium material The method for producing a titanium plate for an electrolytic Cu foil production drum according to claim 1, wherein the steel sheet is rolled at a rolling reduction of 40% or more, and finally heat-treated at 550 to 700 ° C for 10 to 30 minutes.
JP2010263907A 2010-11-26 2010-11-26 Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof Active JP5531931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263907A JP5531931B2 (en) 2010-11-26 2010-11-26 Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263907A JP5531931B2 (en) 2010-11-26 2010-11-26 Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof

Publications (2)

Publication Number Publication Date
JP2012112017A true JP2012112017A (en) 2012-06-14
JP5531931B2 JP5531931B2 (en) 2014-06-25

Family

ID=46496550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263907A Active JP5531931B2 (en) 2010-11-26 2010-11-26 Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof

Country Status (1)

Country Link
JP (1) JP5531931B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213715A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet and copper foil production drum
KR20210080520A (en) 2019-04-17 2021-06-30 닛폰세이테츠 가부시키가이샤 A titanium alloy plate, a manufacturing method of a titanium alloy plate, a copper foil manufacturing drum, and a manufacturing method of a copper foil manufacturing drum
KR20210138725A (en) 2019-04-17 2021-11-19 닛폰세이테츠 가부시키가이샤 Titanium plate, titanium rolled coil and copper foil manufacturing drum
WO2022024180A1 (en) * 2020-07-27 2022-02-03 日本製鉄株式会社 Titanium material for manufacturing metal foil, method for manufacturing titanium material for manufacturing metal foil, and metal foil manufacturing drum
CN114932383A (en) * 2022-06-28 2022-08-23 西安泰金工业电化学技术有限公司 Manufacturing method of seamless cathode roller titanium cylinder for electrolytic copper foil

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138725A (en) 2019-04-17 2021-11-19 닛폰세이테츠 가부시키가이샤 Titanium plate, titanium rolled coil and copper foil manufacturing drum
JPWO2020213715A1 (en) * 2019-04-17 2021-05-06 日本製鉄株式会社 Titanium plate and copper foil manufacturing drum
KR20210080520A (en) 2019-04-17 2021-06-30 닛폰세이테츠 가부시키가이샤 A titanium alloy plate, a manufacturing method of a titanium alloy plate, a copper foil manufacturing drum, and a manufacturing method of a copper foil manufacturing drum
KR20210094026A (en) 2019-04-17 2021-07-28 닛폰세이테츠 가부시키가이샤 Titanium plate and copper foil manufacturing drum
CN113260727A (en) * 2019-04-17 2021-08-13 日本制铁株式会社 Titanium plate and copper foil manufacturing roller
TWI739398B (en) * 2019-04-17 2021-09-11 日商日本製鐵股份有限公司 Titanium plate and roller for manufacturing copper foil
WO2020213715A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet and copper foil production drum
KR102569909B1 (en) * 2019-04-17 2023-08-24 닛폰세이테츠 가부시키가이샤 Titanium plate and copper foil manufacturing drum
KR102608727B1 (en) * 2019-04-17 2023-12-04 닛폰세이테츠 가부시키가이샤 Drums for manufacturing titanium plates, titanium rolled coils and copper foil
WO2022024180A1 (en) * 2020-07-27 2022-02-03 日本製鉄株式会社 Titanium material for manufacturing metal foil, method for manufacturing titanium material for manufacturing metal foil, and metal foil manufacturing drum
KR20230028437A (en) 2020-07-27 2023-02-28 닛폰세이테츠 가부시키가이샤 Titanium material for manufacturing metal foil, method for manufacturing titanium material for manufacturing metal foil, and drum for manufacturing metal foil
CN116134165A (en) * 2020-07-27 2023-05-16 日本制铁株式会社 Titanium material for producing metal foil, method for producing titanium material for producing metal foil, and metal foil production drum
CN114932383A (en) * 2022-06-28 2022-08-23 西安泰金工业电化学技术有限公司 Manufacturing method of seamless cathode roller titanium cylinder for electrolytic copper foil

Also Published As

Publication number Publication date
JP5531931B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6901049B2 (en) Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
JP6863531B2 (en) Titanium plate and copper foil manufacturing drum
JP5531931B2 (en) Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof
WO2016152935A1 (en) Titanium plate, plate for heat exchanger, and separator for fuel cell
WO2015146812A1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JP5609784B2 (en) Titanium alloy thick plate for electrolytic Cu foil production drum and its production method
CN108884520B (en) Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
CN113710825B (en) Titanium plate, titanium roll and copper foil manufacturing roller
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP4061211B2 (en) Titanium alloy used for cathode electrode for producing electrolytic copper foil and method for producing the same
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
JP2017190480A (en) Titanium sheet
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP4264377B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JP2019039078A (en) Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5531931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350