JP2012109254A - Superconductive current lead - Google Patents

Superconductive current lead Download PDF

Info

Publication number
JP2012109254A
JP2012109254A JP2011287011A JP2011287011A JP2012109254A JP 2012109254 A JP2012109254 A JP 2012109254A JP 2011287011 A JP2011287011 A JP 2011287011A JP 2011287011 A JP2011287011 A JP 2011287011A JP 2012109254 A JP2012109254 A JP 2012109254A
Authority
JP
Japan
Prior art keywords
layer
superconducting
current lead
thin film
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287011A
Other languages
Japanese (ja)
Other versions
JP5496175B2 (en
Inventor
Taizo Tosaka
泰造 戸坂
Yusuke Ishii
祐介 石井
Michitaka Ono
通隆 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011287011A priority Critical patent/JP5496175B2/en
Publication of JP2012109254A publication Critical patent/JP2012109254A/en
Application granted granted Critical
Publication of JP5496175B2 publication Critical patent/JP5496175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a heat intrusion amount of a superconductive current lead using a high temperature superconductive thin film wire.SOLUTION: A superconductive current lead according to an embodiment includes a high temperature superconductive layer 3 formed on a metal substrate 1 through an intermediate layer 2 and made of a high temperature superconductor, a protective layer 4 formed on the high temperature superconductor layer and made of a metal, a high temperature superconductive thin film wire 104 formed on the protective layer and having a solder connection layer 6 including silver, a reinforcement material 10 provided so as to enclose the high temperature superconductive thin film wire, and electrodes 8 provided at the reinforcement material and disposed so as to connect the solder connection layer of the high temperature superconductive thin film wire through solder 9.

Description

本発明は、極低温に冷却される超電導機器に用いられる超電導電流リードに関する。   The present invention relates to a superconducting current lead used for a superconducting device cooled to a cryogenic temperature.

超電導現象の最大の特徴は、臨界温度で導体の電気抵抗がゼロになるため通電しても熱が発生せず、そのため無損失で大電流を流すことができるということである。超電導電力貯蔵システムに使用される超電導マグネット装置は、この超電導現象を応用したその代表的な装置である。   The biggest feature of the superconducting phenomenon is that the electric resistance of the conductor becomes zero at the critical temperature, so that no heat is generated even when energized, so that a large current can flow without loss. A superconducting magnet device used in a superconducting power storage system is a typical device that applies this superconducting phenomenon.

この超電導マグネット装置は、下記の超電導コイルをクライオスタット(真空断熱容器)の中間温度シールド内に液体ヘリウムとともに収容して外部環境から熱遮蔽した状態で極低温(液体ヘリウム温度の場合は約−269K)に保持するように構成されており、外部の電源装置より超電導電流リードを介して電流を供給する必要がある。   In this superconducting magnet device, the following superconducting coil is housed together with liquid helium in an intermediate temperature shield of a cryostat (vacuum insulation container) and thermally shielded from the external environment (approx. -269K for liquid helium temperature). It is necessary to supply a current from an external power supply device via a superconducting current lead.

超電導電流リードに求められる機能を簡潔にいえば、「電気を伝えて熱を伝えない」ことである。超電導体は、電気抵抗がほぼゼロであり熱伝導率が悪いためこうした超電導電流リードの材質として最適であり、特に高温超電導体は、80Kレベルから4Kレベルを結ぶ超電導電流リードの材質として用いられている。従来の超電導電流リードには、YBCOや、Bi2223等のバルク材を用いたものもあるが、特にバルク材は脆く破損しやすいため、取り扱いに注意が必要であった。よって、超電導電流リードの材料としてある程度の変形が許容される高温超電導線材を用いることにより、比較的取り扱いを容易とする工夫が考慮されている。   In short, the function required for a superconducting current lead is “conducting electricity but not heat”. Superconductors are ideal as materials for such superconducting current leads because of their nearly zero electrical resistance and poor thermal conductivity. High-temperature superconductors are especially used as materials for superconducting current leads that connect the 80K to 4K levels. Yes. Some conventional superconducting current leads use bulk materials such as YBCO and Bi2223, but the bulk materials are particularly fragile and easily damaged, so handling was necessary. Therefore, a device that makes the handling relatively easy is considered by using a high-temperature superconducting wire that allows a certain degree of deformation as a material of the superconducting current lead.

こうした高温超電導線材の製造にあたっては、まず、酸化物金属基板上に中間層を形成し、その上にYBCO(YBa2Cu3O7−x)等のRE123系の高温超電導薄膜を形成する。中間層は金属基板と高温超電導層の中間に位置し、結晶成長を促進させる例えば酸化セリウム、酸化マグネシウム等からなる薄膜である。   In manufacturing such a high-temperature superconducting wire, first, an intermediate layer is formed on an oxide metal substrate, and a RE123-based high-temperature superconducting thin film such as YBCO (YBa2Cu3O7-x) is formed thereon. The intermediate layer is a thin film made of, for example, cerium oxide or magnesium oxide that is located between the metal substrate and the high-temperature superconducting layer and promotes crystal growth.

この高温超電導薄膜の端部等において、電気的接続を形成する必要があるが、その方法としては、蒸着やスパッタリングなどの方法で金属層を形成し、インジウムなどで半田付けする方法(例えば特許文献1および2参照)や、インジウムを圧着する方法(例えば、特許文献3参照)が知られている。また、電極の材質としては、高温超電導体との化学反応を避ける、および酸素雰囲気中の熱処理が可能などの理由で、通常は金もしくは銀が用いられる。   It is necessary to form an electrical connection at the end of the high-temperature superconducting thin film. As a method for this, a metal layer is formed by a method such as vapor deposition or sputtering and soldered with indium or the like (for example, Patent Documents). 1 and 2) and a method of pressure bonding indium (for example, see Patent Document 3) are known. As the material of the electrode, gold or silver is usually used for any reason that avoids a chemical reaction with the high-temperature superconductor and allows heat treatment in an oxygen atmosphere.

一方、金属基盤上に中間層を形成し、その上にYBCO等のRE123系の高温超電導薄膜を形成したいわゆる第2世代線材と呼ばれる高温超電導薄膜線材(coated conductor)では、高温超電導層が、水等と反応させないための保護や、常伝導転移時のバイパス回路を形成するための安定化、また端部における電気的接続の形成するため、高温超電導層の表面に数μm程度の金属保護層が線材の全長にわたって形成されることが多い。金属保護層の材質としては、上述金属電極と同様の理由で金もしくは銀が用いられる。高温超電導薄膜線材は、高温超電導バルク材と比較してひずみや応力に強いため、高温超電導薄膜線材を用いて超電導電流リードを製作することにより、機械的に堅牢な超電導電流リードを得ることができる。   On the other hand, in a high-temperature superconducting thin film wire (coated conductor) called a second generation wire, in which an intermediate layer is formed on a metal substrate and a RE123-based high-temperature superconducting thin film such as YBCO is formed thereon, the high-temperature superconducting layer is water In order to protect it from reacting with the like, to stabilize the formation of a bypass circuit during normal conduction transition, and to form an electrical connection at the end, a metal protective layer of about several μm is formed on the surface of the high-temperature superconducting layer. Often formed over the entire length of the wire. As the material of the metal protective layer, gold or silver is used for the same reason as that of the metal electrode. High-temperature superconducting thin-film wires are more resistant to strain and stress than high-temperature superconducting bulk materials. Therefore, by manufacturing superconducting current leads using high-temperature superconducting thin-film wires, mechanically robust superconducting current leads can be obtained. .

特開平5−251761号公報JP-A-5-251761 特開2003−298129号公報JP 2003-298129 A 特開平11−204845号公報Japanese Patent Laid-Open No. 11-204845

高温超電導薄膜線材を用いて超電導電流リードを作製する際、その端部において電気的接続を形成する必要があるが、この接続部は電気的抵抗が低く、かつ経時的に安定であることが望まれる。しかしながら、例えば特許文献3に記載されているインジウムを圧着する方法では、一般的に低い電気抵抗を得にくいことが知られている。また、特許文献1や特許文献2に記載されている、金もしくは銀で形成された保護層に半田付けする方法では、十分に金もしくは銀層を厚くしないと電気抵抗が低く、安定な接続を得ることは難しいことが知られている。これは、金や銀は、鉛、錫、インジウム等の金属や、それらの合金から構成される半田材料に溶け込みやすいため、半田付け工程の際に保護層が消失してしまう可能性があるためである。   When producing a superconducting current lead using a high-temperature superconducting thin film wire, it is necessary to form an electrical connection at the end, but this connection is desired to have low electrical resistance and be stable over time. It is. However, it is known that, for example, the method of pressure bonding indium described in Patent Document 3 generally makes it difficult to obtain a low electric resistance. Further, in the method of soldering to a protective layer formed of gold or silver as described in Patent Document 1 or Patent Document 2, electrical resistance is low unless the gold or silver layer is sufficiently thick, and a stable connection is achieved. It is known that it is difficult to obtain. This is because gold and silver easily dissolve in solder materials composed of metals such as lead, tin, and indium, and alloys thereof, and the protective layer may disappear during the soldering process. It is.

一方、半田付け工程での溶け込みをある程度想定して熱伝導が良好な金、銀からなる保護層を厚く形成すると、この保護層を介して高温端から低温端へ熱が流れ超電導電流リード内部での熱移動が起こる、すなわち超電導電流リードの熱侵入量が増大する原因になってしまうという課題があった。   On the other hand, if a thick protective layer made of gold or silver with good thermal conductivity is formed, assuming a certain degree of penetration in the soldering process, heat flows from the high temperature end to the low temperature end via this protective layer, inside the superconducting current lead. Heat transfer occurs, that is, the amount of heat penetration of the superconducting current lead increases.

本発明は上述した課題を解決するためになされたものであり、製造における半田付け工程を含む電気的接続を容易に実現するとともに、超電導電流リード装置としての外部からの熱侵入量を低減することを目的とする。   The present invention has been made to solve the above-described problems, and easily realizes electrical connection including a soldering process in manufacturing, and reduces the amount of heat penetration from the outside as a superconducting current lead device. With the goal.

上記目的を達成するため、本発明は、金属基板と、この金属基板上に中間層を介して形成される高温超電導体からなる高温超電導層と、この高温超電導層上に形成される金属からなる保護層と、この保護層の上に形成され銀を含む半田接続層とを有する高温超電導薄膜線材と、この高温超電導薄膜線材を囲繞して設けられる補強材と、この補強材に設けられ前記高温超電導線材の前記半田接続層と半田により接続して配置される電極と、を具備することを特徴とする超電導電流リードを提供する。   To achieve the above object, the present invention comprises a metal substrate, a high-temperature superconducting layer made of a high-temperature superconductor formed on the metal substrate via an intermediate layer, and a metal formed on the high-temperature superconducting layer. A high-temperature superconducting thin film wire having a protective layer and a solder connection layer containing silver formed on the protective layer, a reinforcing material provided surrounding the high-temperature superconducting thin film wire, and the high temperature provided on the reinforcing material There is provided a superconducting current lead comprising: the solder connection layer of a superconducting wire; and an electrode connected by soldering.

本発明によれば、接続抵抗が低く経時的にも安定でありさらに熱侵入量が少ない超電導電流リードを実現することができる。   According to the present invention, it is possible to realize a superconducting current lead that has low connection resistance, is stable over time, and has a small amount of heat penetration.

本発明の実施例1の高温超電導薄膜線材の斜視図。The perspective view of the high-temperature superconducting thin film wire of Example 1 of the present invention. 本発明の実施例1の変形例の高温超電導薄膜線材の斜視図。The perspective view of the high-temperature superconducting thin film wire of the modification of Example 1 of this invention. 本発明の実施例2の超電導電流リードの断面図。Sectional drawing of the superconducting electric current lead of Example 2 of this invention. 本発明の実施例2の変形例の超電導電流リードの断面図。Sectional drawing of the superconducting electric current lead of the modification of Example 2 of this invention. 本発明の実施例3の超電導電流リードの断面図。Sectional drawing of the superconducting electric current lead of Example 3 of this invention. 本発明の実施例4の超電導電流リードの断面図。Sectional drawing of the superconducting electric current lead of Example 4 of this invention. 本発明の実施例5の超電導電流リードの断面図。Sectional drawing of the superconducting electric current lead of Example 5 of this invention.

以下、本発明に係る超電導電流リードについて、複数の実施例を図面を参照して説明する。   Hereinafter, a plurality of embodiments of the superconducting current lead according to the present invention will be described with reference to the drawings.

[実施例1]
本発明の実施例1について、図1を参照して説明する。図1は、本実施例の高温超電導薄膜線材100の構成を示した斜視図であり、各層の構成を説明するため断面を併せて示している。
[Example 1]
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing the configuration of the high-temperature superconducting thin film wire 100 of the present embodiment, and also shows a cross-section for explaining the configuration of each layer.

高温超電導薄膜線材100は、金属基板1の上に、上述した酸化セリウム、酸化マグネシウム等からなり結晶成長を促進させる中間層2を介して、高温超電導層3が形成される。さらに高温超電導層3の上に、金もしくは銀あるいはその合金からなる保護層4、さらにその上に銅やニッケル等からなる拡散防止層5が形成されている。 In the high-temperature superconducting thin film wire 100, a high-temperature superconducting layer 3 is formed on a metal substrate 1 through an intermediate layer 2 made of the above-described cerium oxide, magnesium oxide or the like and promoting crystal growth. Further, a protective layer 4 made of gold, silver or an alloy thereof is formed on the high temperature superconducting layer 3, and a diffusion preventing layer 5 made of copper, nickel or the like is further formed thereon.

高温超電導層3の上に保護層4を形成する理由は、高温超電導材料が他の金属と反応しやすい活性な材料であり、金、銀以外の材料と直接的に接触させると反応して性能低下を引き起こすため、こうした性能低下を防止するためである。また、保護層4は、高温超電導層3に電流が流れているときに、常電導転移した場合のバイパス回路としても機能する。こうした目的のためには、保護層4は、できるだけ厚く形成することが望ましい。   The reason for forming the protective layer 4 on the high-temperature superconducting layer 3 is that the high-temperature superconducting material is an active material that easily reacts with other metals, and reacts when directly in contact with materials other than gold and silver. This is to prevent such performance degradation because it causes degradation. The protective layer 4 also functions as a bypass circuit when a normal conduction transition occurs when a current flows through the high-temperature superconducting layer 3. For these purposes, it is desirable to form the protective layer 4 as thick as possible.

一方、保護層4を構成する金または銀は高価な材料であるので、できるだけ薄く形成したいとの要請もある。しかし、保護層4の材質である金または銀は、鉛、錫、インジウム等の金属やそれらの合金から構成される半田材料に溶け込みやすい性質があり、過度に多くの保護層が溶け込むと高温超電導薄膜線材の性能が劣化する可能性がある。このため、電気的接続を目的として保護層4に直接半田付けする場合には、保護層4を薄く形成することはできずある程度の厚みを確保する必要がある。   On the other hand, since gold or silver constituting the protective layer 4 is an expensive material, there is a demand for forming it as thin as possible. However, gold or silver, which is the material of the protective layer 4, has a property that it is easy to dissolve in solder materials composed of metals such as lead, tin, indium and alloys thereof, and high temperature superconductivity when too many protective layers are dissolved. The performance of the thin film wire may be deteriorated. For this reason, when soldering directly to the protective layer 4 for the purpose of electrical connection, the protective layer 4 cannot be formed thin, and it is necessary to ensure a certain thickness.

また、保護層4の上に積層される拡散防止層5は、高温超電導薄膜線材を組み込んで製造時の電気的接続の容易性を考慮し、特に半田付け工程において保護層4が半田に溶け込んで半田接続が不能となることを防ぐため、すなわち製造時における保護層4の拡散を抑止するために設けられている。このため、拡散防止層5の材質としては、半田材料に溶け込みにくい銅やニッケル、あるいはその合金が好適である。   Further, the diffusion preventing layer 5 laminated on the protective layer 4 incorporates a high-temperature superconducting thin film wire and considers the ease of electrical connection during manufacturing. In particular, the protective layer 4 is dissolved in the solder in the soldering process. It is provided to prevent the solder connection from being disabled, that is, to suppress diffusion of the protective layer 4 during manufacturing. For this reason, the material of the diffusion preventing layer 5 is preferably copper, nickel, or an alloy thereof that hardly dissolves in the solder material.

本実施例によれば、保護層4の上にこうした拡散防止層5を形成し保護層4の拡散を抑止する構造としたため、保護層4を薄くする形成しても電気的接続による性能劣化を防止することができる高温超電導薄膜線材を実現することができる。   According to the present embodiment, since such a diffusion prevention layer 5 is formed on the protective layer 4 to prevent diffusion of the protective layer 4, even if the protective layer 4 is formed thin, performance deterioration due to electrical connection is caused. A high-temperature superconducting thin film wire that can be prevented can be realized.

本実施例の変形例として、図2に示す高温超電導薄膜線材101を構成することもできる。この変形例は、図1における拡散防止層5の上にさらに銀からなる半田接続層6を形成させたものである。これにより、上述した本実施例と同様の作用効果が得られるのに加えて、拡散防止層5の材質である銅やニッケルに比べて銀は半田付けがしやすく、かつ電気抵抗が小さいことから、高温超電導薄膜線材としてさらに良好な電気的接続を得ることができる。   As a modification of the present embodiment, the high-temperature superconducting thin film wire 101 shown in FIG. 2 can be configured. In this modification, a solder connection layer 6 made of silver is further formed on the diffusion prevention layer 5 in FIG. Thereby, in addition to the same effects as the above-described embodiment, silver is easier to solder and has a lower electrical resistance than copper or nickel as the material of the diffusion prevention layer 5. As a high-temperature superconducting thin film wire, better electrical connection can be obtained.

[実施例2]
本発明の実施例2について、図3を参照して説明する。図3は、本実施例に係る超電導電流リードの構成を示した断面図である。なお、以後の説明においては、上述した実施例と同様の構成については同一符号を付し、重複する説明を省略する。
[Example 2]
A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of the superconducting current lead according to the present embodiment. In the following description, the same reference numerals are given to the same components as those in the above-described embodiment, and the overlapping description is omitted.

本実施例2は、実施例1において説明した高温超電導薄膜線材を用いた超電導電流リード200に関するものである。ここでは代表的に図2に示した高温超電導薄膜線材101を用いた場合を説明するが、図1の高温超電導薄膜線材100についても同様に適用可能である。   The second embodiment relates to a superconducting current lead 200 using the high-temperature superconducting thin film wire described in the first embodiment. Here, the case where the high-temperature superconducting thin film wire 101 shown in FIG. 2 is used will be described as a representative, but the present invention can be similarly applied to the high-temperature superconducting thin film wire 100 of FIG.

金属基板1に中間層2を介して高温超電導層3が積層され、さらに保護層4、拡散防止層5を順次積層されてなる高温超電導薄膜線材101は、電極8に半田9で電気的に接続される。また、超電導電流リード200の外郭を構成する補強材10は、電極8を挟み込むように配置され、またこの内部は含浸材7により含浸されている。なお、含浸材7には例えば樹脂を用いることとし、特に、エポキシ系材料、シリコン系材料、ウレタン系材料等から適切に選択することが考えられる。   A high-temperature superconducting thin film wire 101 in which a high-temperature superconducting layer 3 is laminated on a metal substrate 1 through an intermediate layer 2 and a protective layer 4 and a diffusion preventing layer 5 are sequentially laminated is electrically connected to an electrode 8 with solder 9 Is done. Further, the reinforcing material 10 constituting the outline of the superconducting current lead 200 is arranged so as to sandwich the electrode 8, and the inside thereof is impregnated with the impregnating material 7. For example, a resin is used for the impregnating material 7, and in particular, it is conceivable to appropriately select from an epoxy material, a silicon material, a urethane material, and the like.

上述したように、従来の超電導電流リードでは、半田付け工程における溶け込みを考慮し、熱伝導が良好な金、銀からなる保護層4を比較的厚く形成する必要があり、このことが超電導電流リードの熱侵入量増大の原因になっていた。しかしながら、本実施例によれば、上述した実施例1において説明したように、保護層4を薄く形成しかつ電気的接続による性能劣化がない高温超電導薄膜線材101を用いているため、電気抵抗が少なく、さらに機械的に堅牢であり、熱侵入量が少ない超電導電流リードを実現することができる。   As described above, in the conventional superconducting current lead, it is necessary to form the protective layer 4 made of gold or silver with good heat conduction relatively thick in consideration of the penetration in the soldering process. Was the cause of increase in the amount of heat penetration. However, according to the present embodiment, as described in the above-described embodiment 1, since the high-temperature superconducting thin film wire 101 that is formed with a thin protective layer 4 and has no performance deterioration due to electrical connection is used, the electrical resistance is low. A superconducting current lead that is small, mechanically robust, and has a small amount of heat penetration can be realized.

[実施例3]
本発明の実施例3を図4を参照して説明する。図4は、本実施例に係る超電導電流リードの構成を示した断面図である。なお、以後の説明においては、上述した実施例と同様の構成については同一符号を付し、重複する説明を省略する。
[Example 3]
A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the configuration of the superconducting current lead according to the present embodiment. In the following description, the same reference numerals are given to the same components as those in the above-described embodiment, and the overlapping description is omitted.

図4に示した超電導電流リード201に用いられた高温超電導薄膜線材102は、金属基板1の上に、中間層2、高温超電導層3、保護層4、拡散防止層5を順次積層してなり、さらに、拡散防止層5上のうち電極8に半田9で電気的に接続され部位にのみ、半田接続層6を形成させている。半田接続層6を構成する材質、例えば銀は、熱伝導率が高いため、電極8との接続に寄与しない部位についてはこの層を無くして、図3に示した場合に比べて半田接続層6を構成する材料の量自体を減ずることで、超電導電流リードとしての熱侵入量をより減らすことができる。   The high-temperature superconducting thin film wire 102 used for the superconducting current lead 201 shown in FIG. 4 is formed by sequentially laminating an intermediate layer 2, a high-temperature superconducting layer 3, a protective layer 4 and a diffusion prevention layer 5 on a metal substrate 1. Furthermore, the solder connection layer 6 is formed only on the portion of the diffusion prevention layer 5 that is electrically connected to the electrode 8 with the solder 9. Since the material constituting the solder connection layer 6, such as silver, has a high thermal conductivity, this layer is omitted for portions that do not contribute to the connection with the electrode 8, and the solder connection layer 6 is compared to the case shown in FIG. 3. By reducing the amount of the material constituting the material itself, the amount of heat penetration as the superconducting current lead can be further reduced.

本実施例の構成によれば、第2の実施例と同様の作用効果が得られるとともに、高温超電導薄膜線材に半田接続層を限定的に配置することで、熱侵入量をさらに低減させた超電導電流リードを実現することができる。 According to the configuration of the present embodiment, the same effects as those of the second embodiment can be obtained, and the superconductivity in which the amount of heat penetration is further reduced by arranging the solder connection layer on the high-temperature superconducting thin film wire in a limited manner. A current lead can be realized.

さらに、本実施例の変形例として、図5に示すように、超電導電流リード202に用いられた高温超電導薄膜線材103について、半田接続層6のみでなく、この下層に位置する拡散防止層5についても、電極8に接続する部位のみに局所的に配置する構造をとることも考えられる。こうして構成される超電導電流リード202において、拡散防止層5を構成する材質、例えば銅は、半田接続層6を構成する銀と同様に、熱伝導率が高く、電極8との接続に寄与しない部位についてはこの層を無くすことによって、超電導電流リードとしての熱侵入量を減らすことができる。 Further, as a modification of the present embodiment, as shown in FIG. 5, not only the solder connection layer 6 but also the diffusion prevention layer 5 located below this high-temperature superconducting thin film wire 103 used for the superconducting current lead 202. However, it is also conceivable to adopt a structure in which it is locally arranged only at the site connected to the electrode 8. In the superconducting current lead 202 thus configured, the material constituting the diffusion preventing layer 5, for example, copper, has a high thermal conductivity and does not contribute to the connection with the electrode 8, like the silver constituting the solder connection layer 6. By eliminating this layer, the amount of heat penetration as a superconducting current lead can be reduced.

[実施例4]
本発明の実施例4を図6を参照して説明する。図6は、本実施例に係る超電導電流リードの構成を示した断面図である。なお、以後の説明においては、上述した実施例と同様の構成については同一符号を付し、重複する説明を省略する。
[Example 4]
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view showing the configuration of the superconducting current lead according to the present embodiment. In the following description, the same reference numerals are given to the same components as those in the above-described embodiment, and the overlapping description is omitted.

図6に示した超電導電流リード203に用いられた高温超電導薄膜線材104は、金属基板1の上に、中間層2、高温超電導層3、保護層4を順次積層してなり、さらに、保護層4上のうち電極8に半田9で電気的に接続された部位にのみ、半田接続層6を形成させている。半田接続層6を構成する材質、例えば銀は、熱伝導率が高く、電極8との接続に寄与しない部位に関してはこの層を無くすことで、超電導電流リードとしての熱侵入量を減らすことができる。さらにこの場合、半田接続層6を構成する銀は、半田9の材質である鉛、錫、インジウム等の金属や、それらの合金に溶け込みやすいため、この局所的に形成される半田接続層6としては、例えば1μm程度あるいはそれ以上の、十分な厚さを確保する必要がある。   The high-temperature superconducting thin film wire 104 used for the superconducting current lead 203 shown in FIG. 6 is formed by sequentially laminating an intermediate layer 2, a high-temperature superconducting layer 3, and a protective layer 4 on the metal substrate 1. 4, the solder connection layer 6 is formed only on the part electrically connected to the electrode 8 by the solder 9. The material constituting the solder connection layer 6, such as silver, has high thermal conductivity, and by eliminating this layer for portions that do not contribute to the connection with the electrode 8, the amount of heat penetration as a superconducting current lead can be reduced. . Furthermore, in this case, since the silver constituting the solder connection layer 6 is easily dissolved in metals such as lead, tin, and indium, which are the materials of the solder 9, and alloys thereof, the locally formed solder connection layer 6 is used as the solder connection layer 6. For example, it is necessary to secure a sufficient thickness of, for example, about 1 μm or more.

本実施例によれば、半田9に銀が溶け込んだとしても、十分な厚さ量からなる半田接続層6を配置した高温超電導薄膜線材104を用いているため、電気的接続による性能劣化がなく、電気抵抗が少なく、さらに機械的に堅牢であり、熱侵入量が少ない超電導電流リードを実現することができる。   According to the present embodiment, even if silver is dissolved in the solder 9, the high-temperature superconducting thin film wire 104 provided with the solder connection layer 6 having a sufficient thickness is used, so that there is no performance deterioration due to electrical connection. Therefore, it is possible to realize a superconducting current lead having a low electrical resistance, mechanically robust, and a small amount of heat penetration.

[実施例5]
本発明の実施例5を図7を参照して説明する。図7は、本実施例に係る超電導電流リードの構成を示した断面図である。なお、以後の説明においては、上述した実施例と同様の構成については同一符号を付し、重複する説明を省略する。
[Example 5]
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view showing the configuration of the superconducting current lead according to the present embodiment. In the following description, the same reference numerals are given to the same components as those in the above-described embodiment, and the overlapping description is omitted.

図7に示した超電導電流リード204に用いられた高温超電導薄膜線材104は、直接電極8に半田で接続するのではなく、高温超電導線であるBi2223銀シース線11を介して接続して構成する。すなわち、電極8とBi2223銀シース線12とを半田9Aで接続し、またこのBi2223銀シース線11と高温超電導薄膜線材1Dの半田接続層6とを半田9Bで接続したものである。ここで、Bi2223(Bi2Sr2Ca2Cu3O10+z)は、超電導転移温度が100Kを超える有用な高温超電導材料として知られている。   The high temperature superconducting thin film wire 104 used for the superconducting current lead 204 shown in FIG. 7 is not directly connected to the electrode 8 by soldering but is connected via a Bi2223 silver sheath wire 11 which is a high temperature superconducting wire. . That is, the electrode 8 and the Bi2223 silver sheath wire 12 are connected by the solder 9A, and the Bi2223 silver sheath wire 11 and the solder connection layer 6 of the high-temperature superconducting thin film wire 1D are connected by the solder 9B. Here, Bi2223 (Bi2Sr2Ca2Cu3O10 + z) is known as a useful high-temperature superconducting material having a superconducting transition temperature exceeding 100K.

以下、半田接続層6に銀を用いた場合を説明する。半田付け工程における銀が溶け込む量は、半田付け時の温度と時間が短いほど少なくなる。また、接続する相手の熱容量が小さいほど、短い時間で接続することが可能である。したがって、こうして構成される超電導電流リード105によれば、上述の本実施例の作用効果に加えて、半田に銀が溶け込む量を少なくすることができる。   Hereinafter, the case where silver is used for the solder connection layer 6 will be described. The amount of silver dissolved in the soldering process decreases as the temperature and time during soldering are shorter. Further, the smaller the heat capacity of the other party to be connected, the shorter the time for connection. Therefore, according to the superconducting current lead 105 configured in this way, in addition to the operational effects of the present embodiment described above, the amount of silver dissolved into the solder can be reduced.

以上、本発明の好適な実施の形態として複数の実施例を説明してきたが、本発明は上述の各実施例に限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変形を採ることができる。また、複数の実施例における技術的特徴を任意に組み合わせて超電導電流リードを構成することも考えられる。例えば、図3に示した実施例2における半田接続層6は拡散防止層5の上に一様に積層されており、また図4に示した実施例3における半田接続層6は拡散防止層5の一部として電極8との接続部近傍のみに設けられているが、こうした構成の変形として、半田接続層6を、電極8との接続部近傍で相対的に厚く、他の位置で相対的に薄く形成することによっても、ほぼ同様の作用効果が得られる。こうした厚さを変更する構成は、図5における拡散防止層5においても同様に考えられる。   As described above, a plurality of examples have been described as preferred embodiments of the present invention. However, the present invention is not limited to the above-described examples, and various modifications can be made without departing from the gist of the invention. be able to. It is also conceivable to configure a superconducting current lead by arbitrarily combining technical features in a plurality of embodiments. For example, the solder connection layer 6 in Example 2 shown in FIG. 3 is uniformly laminated on the diffusion prevention layer 5, and the solder connection layer 6 in Example 3 shown in FIG. 4 is the diffusion prevention layer 5. However, as a modification of such a configuration, the solder connection layer 6 is relatively thick in the vicinity of the connection portion with the electrode 8 and relatively in other positions. Even if it is formed to be thin, substantially the same effect can be obtained. Such a structure for changing the thickness is also conceivable in the diffusion preventing layer 5 in FIG.

1…金属基板、2…中間層、3…高温超電導層、4…保護層、5…拡散防止層、6…半田接続層、7…含浸材、8…電極、9…半田、10…補強材、11…Bi2223銀シース線、100,101,102,103,104…高温超電導薄膜線材、200,201,202,203,204…超電導電流リード。   DESCRIPTION OF SYMBOLS 1 ... Metal substrate, 2 ... Intermediate layer, 3 ... High temperature superconducting layer, 4 ... Protective layer, 5 ... Diffusion prevention layer, 6 ... Solder connection layer, 7 ... Impregnation material, 8 ... Electrode, 9 ... Solder, 10 ... Reinforcing material 11 ... Bi2223 silver sheath wire, 100, 101, 102, 103, 104 ... high temperature superconducting thin film wire, 200, 201, 202, 203, 204 ... superconducting current lead.

Claims (4)

金属基板と、この金属基板上に中間層を介して形成される高温超電導体からなる高温超電導層と、この高温超電導層上に形成される金属からなる保護層と、この保護層の上に形成され銀を含む半田接続層とを有する高温超電導薄膜線材と、この高温超電導薄膜線材を囲繞して設けられる補強材と、この補強材に設けられ前記高温超電導線材の前記半田接続層と半田により接続して配置される電極と、を具備することを特徴とする超電導電流リード。   A metal substrate, a high-temperature superconducting layer made of a high-temperature superconductor formed on the metal substrate via an intermediate layer, a protective layer made of metal formed on the high-temperature superconducting layer, and formed on the protective layer A high-temperature superconducting thin film wire having a solder connection layer containing silver, a reinforcing material provided surrounding the high-temperature superconducting thin film wire, and connected to the solder connecting layer of the high-temperature superconducting wire provided on the reinforcing material by soldering A superconducting current lead. 前記半田接続層は前記拡散防止層の一部に積層して設けられていることを特徴とする請求項1記載の超電導電流リード。   The superconducting current lead according to claim 1, wherein the solder connection layer is laminated on a part of the diffusion preventing layer. 前記拡散防止層は前記金属保護層の一部に積層して設けられていることを特徴とする請求項1または2記載の超電導電流リード。   3. The superconducting current lead according to claim 1, wherein the diffusion preventing layer is provided so as to be laminated on a part of the metal protective layer. 前記半田接続層および前記電極のそれぞれと半田により接続されるBi2223銀シース線をさらに有し、このシース線を介して前記半田接続層と前記電極とが接続して配置されることを特徴とする請求項1ないし3のいずれか1項記載の超電導電流リード。   It further has a Bi2223 silver sheath wire connected by solder to each of the solder connection layer and the electrode, and the solder connection layer and the electrode are connected via the sheath wire. The superconducting current lead according to any one of claims 1 to 3.
JP2011287011A 2011-12-27 2011-12-27 Superconducting current lead Expired - Fee Related JP5496175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287011A JP5496175B2 (en) 2011-12-27 2011-12-27 Superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287011A JP5496175B2 (en) 2011-12-27 2011-12-27 Superconducting current lead

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006302547A Division JP4936858B2 (en) 2006-11-08 2006-11-08 Superconducting current lead and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012109254A true JP2012109254A (en) 2012-06-07
JP5496175B2 JP5496175B2 (en) 2014-05-21

Family

ID=46494598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287011A Expired - Fee Related JP5496175B2 (en) 2011-12-27 2011-12-27 Superconducting current lead

Country Status (1)

Country Link
JP (1) JP5496175B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104208A1 (en) * 2012-12-28 2014-07-03 株式会社フジクラ Oxide superconducting wire
JP2014179526A (en) * 2013-03-15 2014-09-25 Toshiba Corp Current lead

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778640A (en) * 1993-09-10 1995-03-20 Fujitsu Ltd Contact structure with oxide type superconductor and its forming method
JPH07297025A (en) * 1994-04-28 1995-11-10 Mitsubishi Electric Corp Oxide superconducting current lead device
JPH0997637A (en) * 1995-09-29 1997-04-08 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Joint part of oxide superconductor and metal terminal, and its forming method
JPH11340533A (en) * 1998-05-22 1999-12-10 Sumitomo Electric Ind Ltd High-temperature superconducting coil persistent current switch
JP2003298129A (en) * 2002-03-28 2003-10-17 Toshiba Corp Superconducting member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778640A (en) * 1993-09-10 1995-03-20 Fujitsu Ltd Contact structure with oxide type superconductor and its forming method
JPH07297025A (en) * 1994-04-28 1995-11-10 Mitsubishi Electric Corp Oxide superconducting current lead device
JPH0997637A (en) * 1995-09-29 1997-04-08 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Joint part of oxide superconductor and metal terminal, and its forming method
JPH11340533A (en) * 1998-05-22 1999-12-10 Sumitomo Electric Ind Ltd High-temperature superconducting coil persistent current switch
JP2003298129A (en) * 2002-03-28 2003-10-17 Toshiba Corp Superconducting member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104208A1 (en) * 2012-12-28 2014-07-03 株式会社フジクラ Oxide superconducting wire
RU2597211C1 (en) * 2012-12-28 2016-09-10 Фудзикура Лтд. Wire made from oxide superconductor
JP2014179526A (en) * 2013-03-15 2014-09-25 Toshiba Corp Current lead

Also Published As

Publication number Publication date
JP5496175B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5421170B2 (en) Superconducting current lead
JP2008251564A (en) High-temperature superconducting current lead and method for increasing critical current density
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP4936858B2 (en) Superconducting current lead and manufacturing method thereof
US10062488B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP5496175B2 (en) Superconducting current lead
JP2013175293A (en) Superconductive current lead, current lead device, and superconducting magnet device
JP2012256744A (en) Superconductive coil
JP6678509B2 (en) Superconducting tape wire, superconducting current lead using superconducting tape, permanent current switch and superconducting coil
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP5011181B2 (en) Oxide superconducting current lead
JP5693798B2 (en) Oxide superconducting wire
JP5677116B2 (en) High temperature superconducting coil
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material
JP2013074082A (en) Permanent-current switch, and conductive cooling-type superconducting magnet device having the same
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP3357820B2 (en) Connection device and superconducting magnet
JP2019040771A (en) Superconducting tape wire, superconducting current lead with the superconducting tape wire, permanent current switch and superconducting coil
JPWO2014104333A1 (en) Oxide superconducting wire connection structure, manufacturing method thereof and superconducting device
JP4901585B2 (en) Oxide superconducting current lead

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R151 Written notification of patent or utility model registration

Ref document number: 5496175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees