JP2012106211A - Drainage pretreatment method utilizing foam separation, and drainage pretreatment device using the method - Google Patents

Drainage pretreatment method utilizing foam separation, and drainage pretreatment device using the method Download PDF

Info

Publication number
JP2012106211A
JP2012106211A JP2010258689A JP2010258689A JP2012106211A JP 2012106211 A JP2012106211 A JP 2012106211A JP 2010258689 A JP2010258689 A JP 2010258689A JP 2010258689 A JP2010258689 A JP 2010258689A JP 2012106211 A JP2012106211 A JP 2012106211A
Authority
JP
Japan
Prior art keywords
foam
tank
microbubble
drainage
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010258689A
Other languages
Japanese (ja)
Other versions
JP5684544B2 (en
Inventor
Kaneo Chiba
金夫 千葉
Tsune Arai
恒 新井
Mitsutoshi Uozu
充利 魚津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGA INTERNAT KK
NAGA INTERNATIONAL KK
SHOWA YAKUHIN KOUGYOU CO Ltd
REO Laboratory Co Ltd
Original Assignee
NAGA INTERNAT KK
NAGA INTERNATIONAL KK
SHOWA YAKUHIN KOUGYOU CO Ltd
REO Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGA INTERNAT KK, NAGA INTERNATIONAL KK, SHOWA YAKUHIN KOUGYOU CO Ltd, REO Laboratory Co Ltd filed Critical NAGA INTERNAT KK
Priority to JP2010258689A priority Critical patent/JP5684544B2/en
Publication of JP2012106211A publication Critical patent/JP2012106211A/en
Application granted granted Critical
Publication of JP5684544B2 publication Critical patent/JP5684544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a drainage pretreatment device utilizing foam separation for effectively removing an organic system SS in drainage treatment using a microbubble, and a method.SOLUTION: The drainage pretreatment method includes: a process S1 which treats the microbubble of drainage in a conditioning tank by generating the microbubble containing gas and having a diameter of 10 to 50 μm by using a first microbubble generator in the drainage not lower than COD 1,000 mg/L containing an organic system fine solid substance; a process S3 which generates a foam in the drainage by generating the microbubble by using a second microbubble generator while supplying air to the drainage which is treated in a foam forming tank in the preceding process; and a process S5 which separates drainage containing the foam to a foam phase and a liquid phase in a foam separation tank, and rakes out a foam phase. The organic system microsolid substance is made to adhere on the surface of the microbubble which is generated by the second microbubble generator in the foam forming tank, the microbubble is floated, and the foam is formed, thus treating the foam.

Description

本発明は、その後のマイクロバブル圧壊を利用した排水処理を有効に進行させるため、マイクロバブルの界面に集中しやすい特性を持った有機物系微小固体物質を除去するための泡沫分離を利用した排水前処理方法及び該方法で使用する排水前処理装置に関する。   In order to effectively advance the wastewater treatment using the subsequent microbubble crushing, the present invention prior to drainage using foam separation to remove organic micro solid substances having characteristics that tend to concentrate on the microbubble interface. The present invention relates to a treatment method and a wastewater pretreatment device used in the method.

産業排水、農業排水及び生活排水等における、排水処理の目的の1つは、排水中の微生物類やフェノールなどの有害物質から成る有機物成分を低減させることである。   One of the purposes of wastewater treatment in industrial wastewater, agricultural wastewater, domestic wastewater and the like is to reduce organic components composed of harmful substances such as microorganisms and phenol in the wastewater.

上記目的において、例えば特許第4378543号公報(特許文献1)に開示されているようなマイクロバブル(直径が50μm以下の気泡のことを言う。)の圧壊(消滅)技術が非常に有効である。特許文献1に記載の方法によれば、マイクロバブル圧壊時に発生する大量のフリーラジカルが有機物を酸化分解し、また、前記圧壊過程において、溶解有機物が金属イオンなどを結びつくことで固体として析出する。これらを凝集沈殿などにより分離することで、排水中の有機物成分が効率的に低減される。   For the above purpose, for example, a crushing (extinguishing) technique of microbubbles (referring to bubbles having a diameter of 50 μm or less) as disclosed in Japanese Patent No. 4378543 (Patent Document 1) is very effective. According to the method described in Patent Document 1, a large amount of free radicals generated at the time of crushing microbubbles oxidatively decomposes organic matter, and in the crushing process, dissolved organic matter precipitates as a solid by combining metal ions and the like. By separating them by agglomeration precipitation or the like, the organic component in the waste water is efficiently reduced.

このように排水処理において、特許文献1に記載のマイクロバブルの圧壊技術は非常に有効な手段であるが、この圧壊の効率を低減させる因子が、排水中に存在する。その因子とは、主に高分子の有機物を含む(有機物系)微小固体物質(Suspended solids :SS)である。   Thus, in the wastewater treatment, the microbubble crushing technique described in Patent Document 1 is a very effective means, but a factor that reduces the efficiency of the crushing exists in the wastewater. The factor is a suspended solids (SS) mainly containing a high-molecular organic substance (organic substance).

水中にマイクロバブルを発生させた場合に、有機物系微小固体物質(以下、本件明細書では有機物系SSと記す。)はその気液界面に付着する。これが、マイクロバブルの圧壊過程において、気液界面の面積が縮小すると表面における有機物系SSの密度が急激に増加する。その結果、界面を安定的に保持しようとする作用が生まれるため、水中における気泡の消滅、すなわち圧壊が起こりにくい状況となる。このことを防ぐために、マイクロバブルに物理的な刺激を与えて強制的に圧壊させる手法が考えられる。   When microbubbles are generated in water, an organic micro solid material (hereinafter referred to as an organic SS in this specification) adheres to the gas-liquid interface. When the area of the gas-liquid interface is reduced during the microbubble crushing process, the density of the organic material SS on the surface rapidly increases. As a result, an action to stably maintain the interface is born, so that the disappearance of bubbles in the water, that is, the crushing state is difficult to occur. In order to prevent this, it is conceivable to apply a physical stimulus to the microbubbles to forcibly crush them.

しかしながら、特許文献1に記載の方法では比較的低分子量の有機物に対しては作用効果をもたらすが、高分子量(分子量1万以上)の有機物系SSに対しては、効果を示しにくく、効果を示したとても排水処理の効率が非常に下がってしまうといった問題点があった。   However, the method described in Patent Document 1 has an effect on an organic substance having a relatively low molecular weight, but is difficult to show an effect on an organic substance SS having a high molecular weight (molecular weight of 10,000 or more). There was a problem that the efficiency of the wastewater treatment indicated was very lowered.

特許第4378543号公報Japanese Patent No. 4378543

上述したような実情に鑑みた場合、有機物系SSを減らした方がその後の排水処理が優位となり、また、排水処理の効率を上げる観点からも、分子量の大きな有機物系SSは処理の負担となるため、あらかじめ除去した方が全体の効率を上げる点で有利である。   In view of the above situation, the reduction of the organic SS is advantageous in the subsequent wastewater treatment, and from the viewpoint of increasing the efficiency of the wastewater treatment, the organic SS having a large molecular weight is a burden of the treatment. Therefore, the removal in advance is advantageous in terms of increasing the overall efficiency.

そこで、本発明では、マイクロバブルを使用した排水処理において、効果的に有機物系SSを取り除くために泡沫分離を利用した前処理装置及び方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a pretreatment apparatus and method using foam separation in order to effectively remove organic matter SS in wastewater treatment using microbubbles.

本発明の上記目的は、有機物系微小固体物質を含む、COD1000mg/L以上の排水において、前記排水を条件槽にて、気体が内在した直径が10〜50μmのマイクロバブルを第1マイクロバブル発生装置で発生させ、マイクロバブル処理をする工程と、泡沫形成槽にて、前記マイクロバブル処理をする工程で処理された前記排水に対して、空気を供給させながら第2マイクロバブル発生装置でマイクロバブルを発生させ、前記排水内に泡沫を形成させる工程と、泡沫分離槽にて、前記泡沫を含んだ前記排液を、泡沫相及び液相に分離して、前記泡沫相を掻き出す工程とを具備する泡沫分離を利用した排水前処理方法であって、前記泡沫形成槽にて、前記第2マイクロバブル発生装置により発生した前記マイクロバブルの表面に前記有機物系微小固体物質を付着させると共に、前記泡沫形成槽内外における前記排水の比重差を利用して、前記有機物系微小固体物質が付着した前記マイクロバブルを上方に浮上させて泡沫を形成させることにより、前記泡沫を処理することを特徴とすることにより、効果的に達成される。   The above-described object of the present invention is to provide a first microbubble generator in which a microbubble having a diameter of 10 to 50 μm containing a gas is contained in a wastewater in a condition tank containing COD 1000 mg / L or more, which contains an organic fine solid substance. The microbubbles are generated in the second microbubble generator while supplying air to the wastewater processed in the step of generating microbubbles and in the step of performing microbubbles in the foam forming tank. Generating a foam in the waste water, and separating the waste liquid containing the foam into a foam phase and a liquid phase in a foam separation tank, and scraping the foam phase. A wastewater pretreatment method using foam separation, wherein the presence of the presence on the surface of the microbubbles generated by the second microbubble generator in the foam formation tank. By adhering a physical micro solid substance and utilizing the difference in specific gravity of the waste water inside and outside the foam forming tank, the micro bubble to which the organic micro solid substance is adhered is floated upward to form a foam. It is effectively achieved by treating the foam.

本発明はまた、前記気体がオゾンであることにより、或いは前記第1マイクロバブル発生装置が前記条件槽内に複数台設置可能であることにより、或いは前記第2マイクロバブル発生装置がシャフト型であることにより、より効果的に達成される。   In the present invention, the gas may be ozone, or a plurality of the first microbubble generators may be installed in the condition tank, or the second microbubble generator may be a shaft type. This is achieved more effectively.

本発明の別の上記目的は、内部に第1マイクロバブル発生装置が設置されている、有機物系微小固体物質を含むCOD1000mg/Lの排水を貯蔵するための条件槽、内部に第2マイクロバブル発生装置が設置されている円筒形状の泡沫形成槽、泡沫分離槽及び掻き出し器から成る排水前処理装置であって、前記泡沫形成槽は、底部に空気供給部、下方側面に前記条件槽から前記排水を導入するための排水導入部、上方側面に泡沫形成槽にて形成された泡沫を含んだ排水をオーバーフローするためのオーバーフロー部をそれぞれ具備して成り、前記泡沫形成槽にて、前記第2マイクロバブル発生装置により発生した前記マイクロバブルの表面に前記有機物系微小固体物質を付着させると共に、前記泡沫形成槽内外における前記排水の比重差を利用して、前記有機物系微小固体物質が付着した前記マイクロバブルを上方に浮上させて泡沫を形成させ、前記泡沫を前記掻き出し器により掻き出すことで、前記有機物系微小固体物質を処理することを特徴とすることにより、効果的に達成される。   Another object of the present invention is to provide a condition tank for storing COD 1000 mg / L wastewater containing an organic micro solid material, in which a first microbubble generator is installed, and to generate second microbubbles inside. A wastewater pretreatment device comprising a cylindrical foam forming tank, a foam separating tank, and a scraper in which an apparatus is installed, wherein the foam forming tank has an air supply section at the bottom and the drainage from the condition tank at the lower side. A drainage introduction part for introducing a foam, and an overflow part for overflowing drainage containing foam formed in a foam formation tank on the upper side, respectively, in the foam formation tank, the second micro While adhering the organic micro solid material to the surface of the microbubbles generated by a bubble generator, the specific gravity difference of the drainage inside and outside the foam formation tank Utilizing the microbubble to which the organic matter-based fine solid substance is attached is floated upward to form a foam, and the foam is scraped out by the scraper to process the organic matter-based fine solid substance. This is achieved effectively.

本発明はまた、前記第1マイクロバブル発生装置が前記条件槽内に複数台設置可能であることにより、或いは前記第2マイクロバブル発生装置がシャフト型であることにより、より効果的に達成される。   The present invention can also be achieved more effectively by providing a plurality of the first microbubble generators in the condition tank, or by being a shaft type of the second microbubble generators. .

本発明の前処理装置及び前処理方法によれば、有機物系SSを泡沫に受け渡すこと、即ち泡沫として有機物系SSを分離することにより、比較的高分子量の有機物系SSを除去することが可能となった。   According to the pretreatment device and the pretreatment method of the present invention, it is possible to remove the organic matter SS having a relatively high molecular weight by delivering the organic matter SS to the foam, that is, separating the organic matter SS as a foam. It became.

本発明に係る排水前処理装置の概略図である。It is the schematic of the waste water pre-processing apparatus which concerns on this invention. 本発明に係る排水前処理装置における泡沫形成槽の概略図である。It is the schematic of the foam formation tank in the waste_water | drain pretreatment apparatus which concerns on this invention. 本発明に係る排水前処理装置における泡沫形成槽の断面図である。It is sectional drawing of the foam formation tank in the waste_water | drain pretreatment apparatus which concerns on this invention. 本発明に係る排水前処理方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the waste water pre-processing method which concerns on this invention.

以下、本発明に係る排水前処理方法について図面を用いて詳細に説明する。なお、本発明はこの実施形態に限定されるものではない。   Hereinafter, the wastewater pretreatment method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to this embodiment.

図1は、本発明に係る排水前処理装置1の概略図である。   FIG. 1 is a schematic view of a wastewater pretreatment device 1 according to the present invention.

図1に示すように、排水前処理装置1は、3つの部位、即ち条件槽2、泡沫形成槽3及び泡沫分離槽4を具備する。ちなみに前記条件槽2、前記泡沫形成槽3及び前記泡沫分離槽4の容積割合は、前記排水前処理装置1の全容量を1とした場合、条件槽2が約45%、泡沫形成槽3が約5%、そして泡沫分離槽4が約50%である。なお、前記割合については、原則的にこれらの比率が好ましいが、適宜変更可能である。   As shown in FIG. 1, the waste water pretreatment device 1 includes three parts, that is, a condition tank 2, a foam formation tank 3, and a foam separation tank 4. By the way, the volume ratio of the condition tank 2, the foam formation tank 3 and the foam separation tank 4 is about 45% in the condition tank 2 and the foam formation tank 3 About 5% and the foam separation tank 4 is about 50%. In addition, about the said ratio, although these ratios are preferable in principle, it can change suitably.

次に条件槽2、泡沫形成槽3及び泡沫分離槽4について説明する。   Next, the condition tank 2, the foam formation tank 3, and the foam separation tank 4 will be described.

条件槽2は、内部に第1マイクロバブル発生装置5を1台設置している。該発生装置5については、消費電力が50W(気体(オゾン等)吸引量は1〜2L/分程度、液体の循環量は約40L/分、発生するマイクロバブルの平均粒径は30μmである。)タイプのものを使用することが好ましいが、消費電力が400Wタイプのものを使用しても良く、消費電力については特に限定されず、該発生装置5の長さ(大きさ)等もまた限定されない。また、該発生装置5については、シャフト型などといったタイプも限定されない。更に、該発生装置5は、条件槽2の内部に複数設置しても構わない。   The condition tank 2 has one first microbubble generator 5 installed therein. The generator 5 has a power consumption of 50 W (a gas (such as ozone) suction amount of about 1 to 2 L / min, a liquid circulation rate of about 40 L / min, and an average particle size of generated microbubbles of 30 μm. ) Type is preferable, but a power consumption type of 400 W may be used. The power consumption is not particularly limited, and the length (size) of the generator 5 is also limited. Not. Further, the generator 5 is not limited to a type such as a shaft type. Further, a plurality of the generators 5 may be installed inside the condition tank 2.

次に、図2は、図1で示した泡沫形成槽3の詳細図である。泡沫形成槽3は、図2に示すように円筒形状であり、内部にプロペラ7を有した第2マイクロバブル発生装置6を具備し、底部には空気供給部8を具備する。また、該泡沫形成槽3の下方部には、条件槽2から排水を導入するための排水導入部9が設けられ、該泡沫形成槽3の上方部には泡沫を含んだ排水を泡沫分離槽4へオーバーフローさせるためのオーバーフロー部10が設けられている。該シャフト型マイクロバブル発生装置6は全方位型であり、先端部のプロペラ7から突出したマイクロバブルは360°方向全体に広がる。なお、空気供給部8の形状はパイプ状が好ましいが、この限りではない。また、排水導入部9及びオーバーフロー部10の形状は孔状であれば好ましいが、孔の代わりに管を設けても良い。   Next, FIG. 2 is a detailed view of the foam forming tank 3 shown in FIG. As shown in FIG. 2, the foam forming tank 3 has a cylindrical shape, includes a second microbubble generator 6 having a propeller 7 therein, and an air supply unit 8 at the bottom. Further, a drainage introduction part 9 for introducing drainage from the condition tank 2 is provided in the lower part of the foam formation tank 3, and the wastewater containing foam is disposed in the upper part of the foam formation tank 3 as a foam separation tank. An overflow portion 10 for overflowing to 4 is provided. The shaft-type microbubble generator 6 is an omnidirectional type, and the microbubbles protruding from the propeller 7 at the tip end spread over the entire 360 ° direction. In addition, although the shape of the air supply part 8 has preferable pipe shape, it is not this limitation. Moreover, although the shape of the waste_water | drain introduction part 9 and the overflow part 10 is preferable if it is a hole shape, you may provide a pipe | tube instead of a hole.

また、図3に示すように、該マイクロバブル発生装置6は泡沫形成槽3の中心軸Cに沿って設置されており、プロペラ7の回転により円筒槽内の媒体(溶液、気泡および泡沫)が回転する構成となっている。なお、第2マイクロバブル発生装置6については、シャフト型であるということを除き、消費電力及び長さなどといった条件は第1マイクロバブル発生装置5と変わらない。また、泡沫形成槽3の直径は、第2マイクロバブル発生装置6を泡沫形成槽3内部に設置できるほどのものであれば、大きさは問わない。例えば、50Wタイプの装置を使用した場合、目安として20cm以上であれば良い。   As shown in FIG. 3, the microbubble generator 6 is installed along the central axis C of the foam forming tank 3, and the medium (solution, bubbles and foam) in the cylindrical tank is rotated by the rotation of the propeller 7. It is configured to rotate. The second microbubble generating device 6 is the same as the first microbubble generating device 5 except for the shaft type, except for the power consumption and the length. Moreover, the diameter of the foam formation tank 3 will not be ask | required as long as the 2nd microbubble generator 6 can be installed in the foam formation tank 3 inside. For example, when a 50 W type device is used, it may be 20 cm or more as a guide.

そして、泡沫形成槽3は、原則排水前処理装置1の中央部に設置されるが、上述した容積割合によって、設置場所は適宜変更可能である。   And the foam formation tank 3 is installed in the center part of the wastewater pretreatment apparatus 1 in principle, but the installation location can be changed as appropriate according to the volume ratio described above.

泡沫分離槽4については、後述する排水の液相をパージするためのパイプ(図示せず)等を設けても良いが、特にそれらを設けなくても良い。   About the foam separation tank 4, although the pipe (not shown) for purging the liquid phase of the waste_water | drain mentioned later may be provided, it is not necessary to provide them in particular.

また、図1にて示す掻き取り器11は、キャタピラ形状のものであるが、この形状に限定されるものではない。   Moreover, although the scraper 11 shown in FIG. 1 is a caterpillar shape, it is not limited to this shape.

次に、本発明に係る排水前処理方法を、図1の排水前処理装置及び図4のフローチャートを基に説明する。   Next, the wastewater pretreatment method according to the present invention will be described based on the wastewater pretreatment device of FIG. 1 and the flowchart of FIG.

先ず、条件槽2に排水(原水)を導入し、第1マイクロバブル発生装置5にてマイクロバブルを発生させる(ステップS1)。導入された原水はこの条件槽2内で大まかにマイクロバブル処理される。なお、本発明に係る排水前処理方法で使用する該原水は、特に限定はないが、COD(化学的酸素要求量)が1000mg/L以上のものに対して好適である。ここで、マイクロバブル内部に介在させる気体、即ち第1マイクロバブル発生装置5に吸入させる気体は、オゾンが好ましいが、酸素、窒素、希ガス類及び空気等といった気体でも構わない。ちなみに、マイクロバブル発生装置5にて発生させたマイクロバブルの粒径は1〜数百μmオーダーである。   First, drainage (raw water) is introduced into the condition tank 2, and microbubbles are generated by the first microbubble generator 5 (step S1). The introduced raw water is roughly subjected to microbubble treatment in the condition tank 2. The raw water used in the wastewater pretreatment method according to the present invention is not particularly limited, but is suitable for a COD (chemical oxygen demand) of 1000 mg / L or more. Here, the gas interposed inside the microbubble, that is, the gas sucked into the first microbubble generator 5 is preferably ozone, but may be a gas such as oxygen, nitrogen, rare gases, air, or the like. Incidentally, the particle size of the microbubbles generated by the microbubble generator 5 is on the order of 1 to several hundred μm.

次に、条件槽2にてマイクロバブル処理された原水は、泡沫形成槽3の下方部に設けられた排水導入部9を通じて、泡沫形成槽3に導入される(ステップS2)。ちなみに、水道水を利用した場合の気泡発生量は200個/mL程度であるが、産業排水を対象とした場合には数倍から数十倍の濃度となる。条件槽で溶液中に供給されたマイクロバブルはその表面に有機系微小固体物質(有機物系SS)を付着させながら、水中において縮小する。発生時よりも縮小し、また表面に有機系微小固体物質をトラップしたマイクロバブルは浮力が小さいため、水の流れに乗って装置の下方部を移動して泡沫形成槽3に導入される。   Next, the raw water that has been subjected to the microbubble treatment in the condition tank 2 is introduced into the foam formation tank 3 through the drainage introduction section 9 provided in the lower part of the foam formation tank 3 (step S2). Incidentally, the amount of bubbles generated when tap water is used is about 200 / mL, but when industrial wastewater is targeted, the concentration is several to several tens of times. The microbubbles supplied in the solution in the condition tank shrink in water while adhering an organic fine solid substance (organic matter SS) to the surface. Microbubbles that are smaller than those generated and trapped with organic fine solid substances on the surface have a low buoyancy, so that they move on the flow of water and move to the lower part of the apparatus to be introduced into the foam formation tank 3.

そして、泡沫形成槽3に導入した原水に対しても、第2マイクロバブル発生装置6によりマイクロバブルを発生させ、マイクロバブル処理を行う(ステップS3)。ちなみに、シャフト型マイクロバブル発生装置6により発生させたマイクロバブル内部に介在させる気体は、マイクロバブル発生装置5で発生させたマイクロバブルと同様にオゾンが好ましい。この際、泡沫形成槽3の底部に設けられた空気供給部8から空気を供給する。このとき、空気供給部8から放出された空気の気泡(粒径は数mm〜3cm程度)は泡沫形成槽3内の先回流に巻き込まれながら中心軸に沿って上昇してシャフト型マイクロバブル発生装置6のプロペラ7に取り込まれる。ここで強力に攪拌されて水流とともに外側に分散される。プロペラ7からはマイクロバブルも放出されているため、このマイクロバブルと下方(排水導入部9)から取り込まれて放出された粒径の大きい気泡(数百μmレベル)が、混在した状態で第2マイクロバブル発生装置6の周りを回転しながら上昇する。これらの気泡は泡沫形成槽3内部の狭い空間内での乱流条件により、マイクロバブル及びより前記空気の気泡との接触を繰り返しながら上昇する。また、泡沫形成槽3内は強力な回転状態にあり、遠心力の作用で気泡よりも重い液相部が周囲に押し出されて壁面を伝わって下降するため、上昇に伴い液相に対しての気相(気泡)の割合が向上し、その結果として気泡は泡沫へと変化していく。またこの時、該マイクロバブルに捕獲された有機物系SSは効果的に泡沫に受け渡され、最終的に泡沫形成槽3の上方部、即ちオーバーフロー部10から泡沫分離槽4へとオーバーフローされる(ステップS4)。   And also with respect to the raw | natural water introduce | transduced into the foam formation tank 3, a microbubble is generated with the 2nd microbubble generator 6, and a microbubble process is performed (step S3). Incidentally, the gas interposed inside the microbubbles generated by the shaft-type microbubble generator 6 is preferably ozone like the microbubbles generated by the microbubble generator 5. Under the present circumstances, air is supplied from the air supply part 8 provided in the bottom part of the foam formation tank 3. FIG. At this time, air bubbles (particle size of about several mm to 3 cm) discharged from the air supply unit 8 rise along the central axis while being entrained in the previous flow in the foam formation tank 3 to generate shaft-type microbubbles It is taken into the propeller 7 of the device 6. Here, it is vigorously stirred and dispersed outside along with the water flow. Since the microbubbles are also released from the propeller 7, the microbubbles and bubbles with a large particle diameter (a few hundred μm level) that are taken in and discharged from below (drainage introduction part 9) are mixed in the second state. Ascending while rotating around the microbubble generator 6. These bubbles rise while repeating contact with the microbubbles and the air bubbles due to turbulent flow conditions in a narrow space inside the foam forming tank 3. In addition, the foam forming tank 3 is in a powerful rotating state, and the liquid phase heavier than the bubbles is pushed out to the surroundings by the action of centrifugal force and descends along the wall surface. The ratio of the gas phase (bubbles) is improved, and as a result, the bubbles are changed to foam. At this time, the organic substance SS captured in the microbubbles is effectively transferred to the foam, and finally overflows from the upper part of the foam formation tank 3, that is, from the overflow part 10 to the foam separation tank 4 ( Step S4).

次に、泡沫形成槽3からオーバーフローしてきた排水は、泡沫分離槽4内で多量の泡沫と液相が混在する状況である。泡沫分離槽4内において、液相は下方に沈降し、該液相上方に泡沫が覆い泡沫層を成す。上方部に浮上してきた泡沫は掻き取り器11により外部に掻き出される(ステップS5)。   Next, the waste water overflowed from the foam formation tank 3 is in a state where a large amount of foam and liquid phase are mixed in the foam separation tank 4. In the foam separation tank 4, the liquid phase settles downward, and the foam covers the liquid phase to form a foam layer. The foam that has floated to the upper part is scraped to the outside by the scraper 11 (step S5).

以下、本発明に係る排水前処理方法について実施例を説明する。なお、本実施例にて使用した排水前処理装置については、図1及び上記実施形態を参照されたい。   Examples of the wastewater pretreatment method according to the present invention will be described below. In addition, please refer FIG. 1 and the said embodiment about the waste_water | drain pretreatment apparatus used in the present Example.

[実施例]
原水(排水)として界面活性物質を含む有機系排水を導入した。原水のCOD(化学的酸素要求量)は約5万mg/Lであり、BOD(生化学的酸素要求量)は約1,000mg/Lである。COD成分としてその30%程度を界面活性剤が占めているため、通常の加圧浮上装置では排水量の70%以上が泡沫化してしまう。このため通常の泡沫分離装置では処理が不可能な性質を持つ原水である。
[Example]
Organic wastewater containing surface active substances was introduced as raw water (drainage). The raw water has a COD (chemical oxygen demand) of about 50,000 mg / L and a BOD (biochemical oxygen demand) of about 1,000 mg / L. Since about 30% of the COD component is accounted for by the surfactant, 70% or more of the amount of drainage is foamed in a normal pressurized flotation device. For this reason, it is raw water having a property that cannot be treated with a normal foam separation device.

この原水を約0.1m/時の割合で処理容量が約1mの本発明に係る排水前処理装置に連続供給した。 In the processing capacity ratio of the raw water to about 0.1 m 3 / when the can was continuously fed to the waste water before treatment apparatus according to the present invention of about 1 m 3.

なお、この原水には有機(界面活性剤に由来)系微小固体物質が含まれており、その粒径としては1μmよりも小さくものが含まれており、原水中の有機物として占める割合は全体の約15%であった。また組成として分子量が10,000以上であり、酸化分解を主体とした排水処理設備においては非常に大きな負担となる有機物である。   In addition, this raw water contains organic (derived from surfactant) -based fine solid substances, the particle size of which is smaller than 1 μm, and the proportion of organic matter in the raw water is the whole About 15%. In addition, it has a molecular weight of 10,000 or more as a composition, and is an organic substance that is a very heavy burden in wastewater treatment facilities mainly composed of oxidative decomposition.

次に、原水は排水前処理装置の条件槽に導入され、マイクロバブル処理がされた。マイクロバブル発生装置の吸引ガスとしてはオゾン発生装置からの気体を利用した。吸引ガス量は約2L/分であり、オゾン濃度は約35g/mであった。マイクロバブルの発生量は50μm以下の気泡量として約2,000個/mL程度であった。なお、条件槽におけるオゾンマイクロバブル処理によってはCOD量の低下はほとんど確認できなかった。ただし、オゾンを供給することでシステム全体における有機系固体微粒子の除去率が劇的に向上した。すなわちマイクロバブルの発生源として空気を利用した場合には50%以下の除去率であったものがオゾンの利用により95%以上の除去となった。オゾンマイクロバブルの効果により固体微粒子の表面性状が変化したためと考えられる。 Next, the raw water was introduced into the condition tank of the wastewater pretreatment device and subjected to microbubble treatment. The gas from the ozone generator was used as the suction gas for the microbubble generator. The amount of suction gas was about 2 L / min, and the ozone concentration was about 35 g / m 3 . The amount of microbubbles generated was about 2,000 / mL as the amount of bubbles of 50 μm or less. In addition, the fall of COD amount was hardly confirmed by the ozone microbubble process in a condition tank. However, the ozone removal rate dramatically improved the organic solid particulate removal rate in the entire system. That is, when air was used as a generation source of microbubbles, the removal rate of 50% or less was 95% or more removed by using ozone. This is probably because the surface properties of the solid microparticles changed due to the effect of ozone microbubbles.

泡沫形成槽においては全方位型のシャフトタイプのマイクロバブル発生装置を駆動させた。マイクロバブル発生装置の気体の吸引量は約2L/分であり、また下方の吸気パイプより約5L/分の空気を導入した。なお、マイクロバブル発生装置への吸引ガスはオゾンであり、オゾン濃度は約35g/mであった。下方からは約5L/分の空気供給があるため、装置から発生する気泡分布は直径50μm以下の気泡については約2,000個/mL程度であったが、50μm〜数百μmレベルの気泡は1万個/mL以上含まれていた。これらの気泡は円筒槽内での回転流を受けながら徐々に上昇していき、その過程で液相は遠心力を受けて円筒の壁部分に押しつけられながら相対的に下降していった。その結果、上部に行くほど気体が占める割合が上昇していき、オーバーフローする段階では泡沫と呼ばれる状況になった。 In the foam formation tank, an omnidirectional shaft type microbubble generator was driven. The amount of gas sucked by the microbubble generator was about 2 L / min, and about 5 L / min of air was introduced from the lower intake pipe. The suction gas to the microbubble generator was ozone, and the ozone concentration was about 35 g / m 3 . Since there is an air supply of about 5 L / min from below, the bubble distribution generated from the apparatus was about 2,000 / mL for bubbles with a diameter of 50 μm or less, but bubbles of 50 μm to several hundred μm level More than 10,000 pieces / mL were contained. These bubbles gradually rose while receiving the rotational flow in the cylindrical tank, and in the process, the liquid phase was relatively lowered while being pressed against the cylindrical wall portion under the centrifugal force. As a result, the proportion of the gas increased as it went up, and it became a situation called foam when it overflowed.

泡沫形成槽からオーバーフローして泡沫分離槽に至った処理水は槽内で静置され、重力の影響を受けてさらに泡沫部分と液相部分に分離される。上部に濃縮した泡沫は掻き出し部により系外に排出された。   The treated water that has overflowed from the foam formation tank and reached the foam separation tank is left still in the tank, and is further separated into a foam portion and a liquid phase portion under the influence of gravity. The foam concentrated at the top was discharged out of the system by the scraping part.

なお、実施例は、あくまで一例である。   In addition, an Example is an example to the last.

本発明によれば、広範囲の分子量を有する有機物系SSの除去はもとより、含ヘテロ元素(リン、硫黄、窒素等)有機化合物、有機ハロゲン化合物、有機金属化合物等を成分として含む有機物系SSが含まれている排水にも利用することが可能である。   According to the present invention, not only the organic SS having a wide range of molecular weights but also organic SS containing hetero elements (phosphorus, sulfur, nitrogen, etc.), organic compounds, organic halogen compounds, organometallic compounds, etc. are included. It can also be used for wastewater.

1 排水前処理装置
2 条件槽
3 泡沫形成槽
4 泡沫分離槽
5 第1マイクロバブル発生装置
6 第2マイクロバブル発生装置
7 プロペラ
8 空気供給部
9 排水導入部
10 オーバーフロー部
11 掻き取り器
DESCRIPTION OF SYMBOLS 1 Waste water pretreatment apparatus 2 Condition tank 3 Foam formation tank 4 Foam separation tank 5 1st microbubble generator 6 2nd microbubble generator 7 Propeller 8 Air supply part 9 Drain introduction part 10 Overflow part 11 Scraper

Claims (7)

有機物系微小固体物質を含む、COD1000mg/L以上の排水において、
前記排水を条件槽にて、気体が内在した直径が10〜50μmのマイクロバブルを第1マイクロバブル発生装置で発生させ、マイクロバブル処理をする工程と、泡沫形成槽にて、前記マイクロバブル処理をする工程で処理された前記排水に対して、空気を供給させながら第2マイクロバブル発生装置でマイクロバブルを発生させ、前記排水内に泡沫を形成させる工程と、泡沫分離槽にて、前記泡沫を含んだ前記排液を、泡沫相及び液相に分離して、前記泡沫相を掻き出す工程とを具備する泡沫分離を利用した排水前処理方法であって、前記泡沫形成槽にて、前記第2マイクロバブル発生装置により発生した前記マイクロバブルの表面に前記有機物系微小固体物質を付着させると共に、前記泡沫形成槽内外における前記排水の比重差を利用して、前記有機物系微小固体物質が付着した前記マイクロバブルを上方に浮上させて泡沫を形成させることにより、前記泡沫を処理することを特徴とする排水前処理方法。
In the waste water of COD 1000mg / L or more containing organic fine solid substances,
In the condition tank, a microbubble having a diameter of 10 to 50 μm in which gas is contained is generated in a first microbubble generator, and the microbubble treatment is performed in a foam formation tank. In the step of generating microbubbles in the second microbubble generator while supplying air to the wastewater treated in the step of forming bubbles in the wastewater, and in the foam separation tank, The drainage pretreatment method using foam separation comprising the step of separating the contained drainage liquid into a foam phase and a liquid phase, and scraping out the foam phase. In the foam formation tank, the second While adhering the organic micro solid material to the surface of the microbubbles generated by the microbubble generator, using the specific gravity difference of the drainage inside and outside the foam formation tank By forming the foam by floating the microbubbles the organic type fine solid material is attached to the upper, pretreatment methods wastewater, which comprises treating the foam.
前記気体がオゾンである請求項1に記載の排水前処理方法。   The wastewater pretreatment method according to claim 1, wherein the gas is ozone. 前記第1マイクロバブル発生装置が前記条件槽内に複数台設置可能である請求項1又は2に記載の排水前処理方法。   The wastewater pretreatment method according to claim 1 or 2, wherein a plurality of the first microbubble generators can be installed in the condition tank. 前記第2マイクロバブル発生装置がシャフト型である請求項1乃至3のいずれか1項に記載の排水前処理方法。   The drainage pretreatment method according to any one of claims 1 to 3, wherein the second microbubble generator is a shaft type. 内部に第1マイクロバブル発生装置が設置されている、有機物系微小固体物質を含むCOD1000mg/Lの排水を貯蔵するための条件槽、内部に第2マイクロバブル発生装置が設置されている円筒形状の泡沫形成槽、泡沫分離槽及び掻き出し器から成る排水前処理装置であって、前記泡沫形成槽は、底部に空気供給部、下方側面に前記条件槽から前記排水を導入するための排水導入部、上方側面に泡沫形成槽にて形成された泡沫を含んだ排水をオーバーフローするためのオーバーフロー部をそれぞれ具備して成り、前記泡沫形成槽にて、前記第2マイクロバブル発生装置により発生した前記マイクロバブルの表面に前記有機物系微小固体物質を付着させると共に、前記泡沫形成槽内外における前記排水の比重差を利用して、前記有機物系微小固体物質が付着した前記マイクロバブルを上方に浮上させて泡沫を形成させ、前記泡沫を前記掻き出し器により掻き出すことで、前記有機物系微小固体物質を処理することを特徴とする排水前処理装置。   A cylindrical tank in which a first microbubble generator is installed, a condition tank for storing COD 1000 mg / L drainage containing organic micro solid substances, and a second microbubble generator in the interior. A wastewater pretreatment device comprising a foam formation tank, a foam separation tank and a scraper, wherein the foam formation tank has an air supply section at the bottom and a drainage introduction section for introducing the drainage from the condition tank to the lower side, Each of the microbubbles generated by the second microbubble generator in the foam forming tank is provided with an overflow portion for overflowing the waste water containing foam formed in the foam forming tank on the upper side. The organic matter-based fine solid substance is attached to the surface of the organic matter-based material, and the difference between the specific gravity of the wastewater inside and outside the foam-forming tank is used to Is floated said microbubbles small solid material adhered to the upper to form a foam, the said foam by scraping by the scraping device, the waste water before treatment apparatus, which comprises treating the organic type fine solid material. 前記第1マイクロバブル発生装置が前記条件槽内に複数台設置可能である請求項5に記載の排水前処理装置。   The wastewater pretreatment device according to claim 5, wherein a plurality of the first microbubble generators can be installed in the condition tank. 前記第2マイクロバブル発生装置がシャフト型である請求項5又は6に記載の排水前処理装置。   The wastewater pretreatment device according to claim 5 or 6, wherein the second microbubble generator is a shaft type.
JP2010258689A 2010-11-19 2010-11-19 Wastewater pretreatment method using foam separation and wastewater pretreatment device used in the method Active JP5684544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258689A JP5684544B2 (en) 2010-11-19 2010-11-19 Wastewater pretreatment method using foam separation and wastewater pretreatment device used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258689A JP5684544B2 (en) 2010-11-19 2010-11-19 Wastewater pretreatment method using foam separation and wastewater pretreatment device used in the method

Publications (2)

Publication Number Publication Date
JP2012106211A true JP2012106211A (en) 2012-06-07
JP5684544B2 JP5684544B2 (en) 2015-03-11

Family

ID=46492443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258689A Active JP5684544B2 (en) 2010-11-19 2010-11-19 Wastewater pretreatment method using foam separation and wastewater pretreatment device used in the method

Country Status (1)

Country Link
JP (1) JP5684544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072207A (en) * 2013-10-03 2015-04-16 佐藤工業株式会社 Device and method for separating vegetable waste in radioactively contaminated soil
JP2016106534A (en) * 2014-12-02 2016-06-20 株式会社フジキン Fish and shellfish aquaculture water purification device, fish and shellfish aquaculture device, and fish and shellfish aquaculture water purification method
US10244015B2 (en) 2015-08-18 2019-03-26 Ricoh Company, Ltd. System to control output of images to multiple devices in a network
JP2020036599A (en) * 2019-11-06 2020-03-12 株式会社フジキン Seafood culture water purifier, seafood culture device and purification method of seafood culture water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005030649A1 (en) * 2003-09-30 2006-12-07 株式会社Reo研究所 Collapse of micro bubbles
JP2008036518A (en) * 2006-08-04 2008-02-21 Sharp Corp Water treatment method and apparatus
JP2009039600A (en) * 2007-08-06 2009-02-26 Reo Laboratory Co Ltd Ultra-fine bubble production device
JP2009131827A (en) * 2007-11-08 2009-06-18 Idemitsu Eng Co Ltd Method for treating sewage
JP2010119972A (en) * 2008-11-20 2010-06-03 Sharp Corp Purification apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005030649A1 (en) * 2003-09-30 2006-12-07 株式会社Reo研究所 Collapse of micro bubbles
JP2008036518A (en) * 2006-08-04 2008-02-21 Sharp Corp Water treatment method and apparatus
JP2009039600A (en) * 2007-08-06 2009-02-26 Reo Laboratory Co Ltd Ultra-fine bubble production device
JP2009131827A (en) * 2007-11-08 2009-06-18 Idemitsu Eng Co Ltd Method for treating sewage
JP2010119972A (en) * 2008-11-20 2010-06-03 Sharp Corp Purification apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072207A (en) * 2013-10-03 2015-04-16 佐藤工業株式会社 Device and method for separating vegetable waste in radioactively contaminated soil
JP2016106534A (en) * 2014-12-02 2016-06-20 株式会社フジキン Fish and shellfish aquaculture water purification device, fish and shellfish aquaculture device, and fish and shellfish aquaculture water purification method
US10244015B2 (en) 2015-08-18 2019-03-26 Ricoh Company, Ltd. System to control output of images to multiple devices in a network
JP2020036599A (en) * 2019-11-06 2020-03-12 株式会社フジキン Seafood culture water purifier, seafood culture device and purification method of seafood culture water
JP7121399B2 (en) 2019-11-06 2022-08-18 株式会社フジキン Fish and shellfish culture water purification device, fish and shellfish culture device, and method for purifying fish and shellfish culture water

Also Published As

Publication number Publication date
JP5684544B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP4455631B2 (en) Solid-liquid separator
KR101758594B1 (en) Select operation possible type rise and precipitation integrated waste water treatment system
JP5684544B2 (en) Wastewater pretreatment method using foam separation and wastewater pretreatment device used in the method
US9346695B2 (en) Apparatus for purifying wastewater and method thereof
JP2011000583A (en) Method and apparatus for treating waste liquid
JP5702567B2 (en) Method and apparatus for purifying contaminated soil
JP2016087578A (en) Contaminant separation volume reduction system and method
JP2010046602A (en) Method of treating oil-containing waste water
JP2008264741A (en) Paint waste liquid separation apparatus and paint waste liquid separation method
JP2015009165A (en) Processing apparatus and processing method of oil-containing water
KR101053134B1 (en) System for oil sludge treatment
JP2009165915A (en) Method and apparatus for treating oil-containing waste water
JP6490978B2 (en) Water treatment method
JP6619160B2 (en) Soil purification method, soil purification system, and sparging rod assembly
WO2015156386A1 (en) Oil/water separation method for water including emulsified oil
JP2016168579A (en) Apparatus and method for treating water
CN110272143A (en) For purifying the device of the sewage during shale gas exploitation
JP3166826U (en) Wastewater treatment equipment
JP2018126703A (en) Decomposition purification method of hardly decomposable organic compound
JP2010264449A (en) Flotation separation apparatus
JP2004275182A (en) Apparatus and method for eliminating foreign matter from nemacystus decipiens
JP4693189B2 (en) Solid-liquid separation device and solid-liquid separation method
JP2011131153A (en) Oil separator and oil separation method
JP2016150315A (en) Liquid treatment apparatus and method
JP2009262036A (en) Ultrasonic cleaning device for incineration ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150115

R150 Certificate of patent or registration of utility model

Ref document number: 5684544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250