JP2012104503A - Electric component, nonaqueous electrolyte battery, and lead conductor with insulation coating layer and encapsulation container used therefor - Google Patents

Electric component, nonaqueous electrolyte battery, and lead conductor with insulation coating layer and encapsulation container used therefor Download PDF

Info

Publication number
JP2012104503A
JP2012104503A JP2012011851A JP2012011851A JP2012104503A JP 2012104503 A JP2012104503 A JP 2012104503A JP 2012011851 A JP2012011851 A JP 2012011851A JP 2012011851 A JP2012011851 A JP 2012011851A JP 2012104503 A JP2012104503 A JP 2012104503A
Authority
JP
Japan
Prior art keywords
layer
lead conductor
heat
softening
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011851A
Other languages
Japanese (ja)
Other versions
JP5527717B2 (en
Inventor
Yutaka Fukuda
豊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012011851A priority Critical patent/JP5527717B2/en
Publication of JP2012104503A publication Critical patent/JP2012104503A/en
Application granted granted Critical
Publication of JP5527717B2 publication Critical patent/JP5527717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric component, especially a nonaqueous electrolyte battery, having an encapsulation container including a metal layer and a lead conductor extending from the inside to the outside of the encapsulation container, where the lead conductor and the encapsulation container are heat-sealed at the seal portion with excellent adhesive strength and sealability, and short circuit does not occur between the metal layer and the lead conductor during heat-seal, and to provide a lead conductor with an insulation coating layer and an encapsulation container for use in the electric component, or the like.SOLUTION: The electric component has an encapsulation container including a metal layer, and a lead conductor extending from the inside to the outside of the encapsulation container where the lead conductor and the encapsulation container are sealed at the seal portion with a heat-seal layer interposed therebetween, and a slightly softening layer having a through hole in the thickness direction is provided between the metal layer at the seal portion and the lead conductor. A nonaqueous electrolyte battery having a nonaqueous electrolyte and an electrode encapsulated in the encapsulation container, and a lead conductor with an insulation coating layer and an encapsulation container for use in the electric component are also provided.

Description

本発明は、電子機器等に用いられる電気部品、特に小型電子機器の電源等として用いられる非水電解質電池に関し、さらに、該電気部品を構成する部材である絶縁被覆つきリード導体、及び封入容器に関する。   The present invention relates to an electrical component used in an electronic device or the like, particularly a non-aqueous electrolyte battery used as a power source or the like for a small electronic device, and further relates to a lead conductor with insulation coating that is a member constituting the electrical component, and a sealed container. .

電子機器の小型軽量化のため、そこで使用される電気部品についても、小型化、軽量化が求められている。このため、例えば電源としては、袋体を封入容器として用い、その内部に非水電解質、正極及び負極を封入してなる非水電解質電池が採用されつつある。   In order to reduce the size and weight of electronic devices, the electrical components used there are also required to be smaller and lighter. For this reason, for example, as a power source, a nonaqueous electrolyte battery in which a bag body is used as an enclosure and a nonaqueous electrolyte, a positive electrode, and a negative electrode are enclosed therein is being adopted.

この封入容器には、電解液やガスの透過、外部からの水分の浸入を防止する性質が求められる。そこで、封入容器の材質としては、樹脂フィルム/金属層/熱融着性樹脂(熱融着層)の多層構造を持つラミネートフィルムが用いられている。   This sealed container is required to have a property of preventing permeation of electrolyte and gas and intrusion of moisture from the outside. Therefore, a laminate film having a multilayer structure of resin film / metal layer / heat-fusible resin (heat-fusible layer) is used as the material of the enclosure.

非水電解質電池は、この封入容器内に、非水電解質、正極板、負極板及び正負の極板間のセパレータを封入し、さらに正極板、負極板にその一端が接続されたリード導体を封入容器の開口部から電池外部へ延びるように配設して、最後に開口部を熱融着することにより製作することができる。(以後、この熱融着される開口部をシール部と言う。)   The nonaqueous electrolyte battery encloses a separator between the nonaqueous electrolyte, the positive electrode plate, the negative electrode plate, and the positive and negative electrode plates in this enclosure, and further encloses a lead conductor having one end connected to the positive electrode plate and the negative electrode plate. It can be manufactured by being arranged so as to extend from the opening of the container to the outside of the battery and finally heat-sealing the opening. (Hereinafter, this heat-sealed opening is referred to as a seal portion.)

シール部の融着の際には、ラミネートフィルムの熱融着層間が熱融着されるとともに、リード導体とラミネートフィルム間も熱融着層を介して熱融着される。そこで、シール部には、熱融着による優れた接着性、シール性が求められるが、さらに熱融着の際の変形により、ラミネートフィルムの金属層とリード導体との短絡が生じない性質も求められる。   At the time of fusion of the seal portion, the heat fusion layer of the laminate film is thermally fused, and the lead conductor and the laminate film are also thermally fused via the heat fusion layer. Therefore, the seal part is required to have excellent adhesiveness and sealability by heat sealing, but also has a property that does not cause a short circuit between the metal layer of the laminate film and the lead conductor due to deformation during heat sealing. It is done.

このため、ラミネートフィルムの内層(シール部において、金属層とリード導体間となる層)やシール部に於けるリード導体の絶縁被覆層には様々の工夫がなされている。例えば、特許文献1には、リード導体の絶縁被覆層として、リード導体に接触して、リード導体との接着性が良好なマレイン酸変性ポリオレフィンの層を設け、その外側にゲル分率が20〜90%である架橋ポリエチレンの層を設ける発明が開示されている。しかし、接着性は架橋ポリエチレンの架橋の程度により変化するので、この発明では、接着性を確実にするために架橋の程度を正確に制御する必要があり、この制御のため生産性が低下するとの問題がある。   For this reason, various contrivances have been made for the inner layer of the laminate film (the layer between the metal layer and the lead conductor in the seal portion) and the insulating coating layer of the lead conductor in the seal portion. For example, in Patent Document 1, a layer of maleic acid-modified polyolefin having good adhesion to the lead conductor is provided as an insulating coating layer of the lead conductor, and the gel fraction is 20 to 20 outside thereof. An invention is disclosed that provides a layer of crosslinked polyethylene that is 90%. However, since the adhesiveness varies depending on the degree of crosslinking of the crosslinked polyethylene, in the present invention, it is necessary to accurately control the degree of crosslinking in order to ensure the adhesiveness, and the productivity decreases due to this control. There's a problem.

リード導体と封入容器間に酸変性直鎖状低密度ポリエチレンを介在させて、低温での熱融着を可能にし、併せてシール性を良好にする発明も開示されている(特許文献2)。しかし、この発明では、熱融着の際、介在フィルムの軟化、流動による短絡が発生しやすく、それを避けつつ加圧、加熱して融着することは、制御がかなり困難との問題がある。   An invention has also been disclosed in which acid-modified linear low-density polyethylene is interposed between the lead conductor and the enclosing container to enable heat fusion at a low temperature and to improve the sealing performance (Patent Document 2). However, in this invention, at the time of thermal fusion, softening of the intervening film and short-circuit due to flow are likely to occur, and there is a problem that it is quite difficult to control the fusion by pressurizing and heating while avoiding it. .

また、ヒートシールによる熱と加圧で変形し易い高流動性ポリプロピレンの層と、変形しにくい低流動性ポリプロピレンの層を積層したフィルムを、リード導体と封入容器間に介在させ、ラミネートフィルムの金属層とリード導体との短絡を防止する発明も開示されている(特許文献3)。しかし、この発明では、低流動性の樹脂の融点を超える温度条件での熱融着では、短絡が発生しやすく、それを避けた条件で優れた接着を達成することはかなり困難である。
特許31141174号公報 特開2001−297736号公報 特開2003−7269号公報
In addition, a laminate of a high-fluidity polypropylene layer that is easily deformed by heat and pressure by heat sealing and a low-fluidity polypropylene layer that is difficult to deform is interposed between the lead conductor and the enclosing container, and the metal of the laminate film An invention for preventing a short circuit between a layer and a lead conductor is also disclosed (Patent Document 3). However, in the present invention, short circuiting is likely to occur in heat fusion under a temperature condition exceeding the melting point of the low-flowing resin, and it is quite difficult to achieve excellent adhesion under conditions avoiding this.
Japanese Patent No. 31141174 Japanese Patent Laid-Open No. 2001-277736 Japanese Patent Laid-Open No. 2003-7269

本発明は、従来技術の前記の問題を解決することを目的とし、具体的には、金属層を含む封入容器と、前記封入容器の内部から外部に延びるリード導体とを有し、前記リード導体と前記封入容器とが、シール部で、優れた接着力、シール性で熱融着されるとともに、熱融着の際に、前記金属層とリード導体間に短絡が発生しない電気部品、特に非水電解質電池を提供することを課題とする。本発明は、さらに、この電気部品に用いられる絶縁被覆層つきリード導体及び封入容器を提供することを課題とする。   An object of the present invention is to solve the above-described problems of the prior art. Specifically, the lead conductor includes a sealed container including a metal layer and a lead conductor extending from the inside of the sealed container to the outside. And the sealed container are heat-sealed at the seal portion with excellent adhesive strength and sealability, and an electrical component that does not cause a short circuit between the metal layer and the lead conductor during heat-sealing, particularly non- It is an object to provide a water electrolyte battery. It is another object of the present invention to provide a lead conductor with an insulating coating layer and an enclosing container used for the electrical component.

本発明者は、検討の結果、シール部の金属層とリード導体との間、すなわちシール部に対応する位置にある、リード導体の絶縁被覆層又は封入容器の金属層上に、熱融着層とともに、軟化温度の比較的高い樹脂からなり、その厚さ方向に貫通孔を有する層を設けることにより、優れたシール性が得られるとともに、短絡の問題も防ぐことができることを見出し、本発明を完成した。   As a result of the study, the present inventor has found that the heat fusion layer is formed between the metal layer of the seal portion and the lead conductor, that is, on the insulating coating layer of the lead conductor or the metal layer of the enclosing container at a position corresponding to the seal portion. In addition, by providing a layer having a relatively high softening temperature and having a through-hole in the thickness direction, it has been found that excellent sealing properties can be obtained and a short circuit problem can be prevented. completed.

本発明は、金属層を含む封入容器と、前記封入容器の内部から外部に延びるリード導体とを有し、前記リード導体と前記封入容器とが、熱融着層を介してシール部で融着されている電気部品であって、シール部の金属層とリード導体との間に、その厚さ方向に貫通孔を有する難軟化層を設けることを特徴とする電気部品を提供する。   The present invention has a sealed container including a metal layer and a lead conductor extending from the inside of the sealed container to the outside, and the lead conductor and the sealed container are fused at a seal portion via a heat-sealing layer. Provided is an electrical component, characterized in that a non-softening layer having a through hole in the thickness direction is provided between a metal layer of a seal portion and a lead conductor.

金属層を含む封入容器としては、金属層を含むラミネートフィルムからなる袋体が挙げられる。例えば、前記のような樹脂フィルム/金属層/熱融着性樹脂フィルム(熱融着層)の多層構造を持つラミネートフィルムからなる袋体を用いることができ、このラミネートフィルムを、例えば長方形状として2枚重ねあわせ、開口部を残して、その辺部を熱融着することにより封入容器を製作することができる。   Examples of the enclosing container including the metal layer include a bag made of a laminate film including the metal layer. For example, a bag made of a laminate film having a multilayer structure of resin film / metal layer / heat-sealable resin film (heat-seal layer) as described above can be used. A sealed container can be manufactured by stacking two sheets and leaving the opening part and heat-sealing the side part.

ここで、熱融着層とは、加熱により溶融して熱融着する熱融着性樹脂よりなり、ラミネートフィルム間及びラミネートフィルムとリード導体間を熱融着するものである。金属層としては、アルミニウムあるいはアルミニウム合金製の箔が好ましく例示される。   Here, the heat-seal layer is made of a heat-sealable resin that melts and heat-seal by heating, and heat-seals between the laminate films and between the laminate films and the lead conductors. As the metal layer, a foil made of aluminum or aluminum alloy is preferably exemplified.

リード導体は、金属から形成され、封入容器の内部から外部に延びるように配置されるものである。その断面形状が丸状の電線や平角状の平角電線等が例示されるが、その断面形状は特に限定されない。この金属としては、アルミニウム、ニッケル、銅、ニッケルめっきされた銅などが例示される。   The lead conductor is made of metal and is disposed so as to extend from the inside of the enclosure to the outside. Examples of the cross-sectional shape include a round electric wire and a flat rectangular electric wire, but the cross-sectional shape is not particularly limited. Examples of the metal include aluminum, nickel, copper, nickel-plated copper, and the like.

リード導体は、その一部が絶縁層で被覆されていてもよく、特に、シール部に対応する部分(封入容器の封入の際にシール部に位置する部分。)に、その外層に熱融着層を有する絶縁層を設けることにより、密閉容器のラミネートフィルムとの間の優れた接着力、シール性が得られる。   A part of the lead conductor may be covered with an insulating layer, and in particular, it is heat-sealed to the outer layer of the part corresponding to the seal part (the part located in the seal part when the enclosure is sealed). By providing the insulating layer having a layer, excellent adhesive force and sealing property with the laminate film of the sealed container can be obtained.

本発明の電気部品では、前記リード導体と前記封入容器とが、熱融着層を介してシール部で融着されている。この熱融着層とは、前記のラミネートフィルムを形成する熱融着層や、前記のような、リード導体のシール部に対応する部分に形成された絶縁層の外層にある熱融着層等である。   In the electrical component of the present invention, the lead conductor and the enclosing container are fused by a seal portion via a heat sealing layer. The heat-seal layer is a heat-seal layer that forms the laminate film, a heat-seal layer that is an outer layer of the insulating layer that is formed in the portion corresponding to the seal portion of the lead conductor as described above, etc. It is.

熱融着層は、低い熱融着温度で、優れた接着力、シール性を得るため、軟化温度の低い樹脂より形成される。この軟化温度の低い樹脂としては、ポリエチレン、ポリプロピレン、アイオノマー樹脂、酸変性ポリオレフィンが例示される。中でも酸変性ポリオレフィンが、極性基を有し、このため接着性、シール性に優れているので好ましい。酸変性ポリオレフィンとは、無水マレイン酸等の酸をグラフトして変性したポリオレフィンである。酸変性ポリオレフィン樹脂に係るポリオレフィンとしては、ポリエチレン、ポリプロピレンが挙げられる。   The heat-sealing layer is formed from a resin having a low softening temperature in order to obtain excellent adhesion and sealability at a low heat-sealing temperature. Examples of the resin having a low softening temperature include polyethylene, polypropylene, ionomer resin, and acid-modified polyolefin. Among these, acid-modified polyolefin is preferable because it has a polar group and is excellent in adhesion and sealability. The acid-modified polyolefin is a polyolefin modified by grafting an acid such as maleic anhydride. Examples of the polyolefin relating to the acid-modified polyolefin resin include polyethylene and polypropylene.

本発明の電気部品は、シール部の金属層とリード導体との間に、その厚さ方向に貫通孔を有する難軟化層を有することを特徴とする。難軟化層とは、熱融着の際に変形しないような高い軟化温度を有する材質からなる層である。難軟化層の材質の軟化温度は、熱融着温度を十分に越える温度が望まれる。その結果、熱融着の際に難軟化層が変形することがないので、封入容器の金属層とリード導体の短絡が防止される。   The electrical component of the present invention is characterized by having a softening-resistant layer having a through hole in the thickness direction between the metal layer of the seal portion and the lead conductor. The hardly softened layer is a layer made of a material having a high softening temperature so as not to be deformed during heat fusion. The softening temperature of the material of the difficult-to-soften layer is desired to be sufficiently higher than the heat fusion temperature. As a result, the hard-softening layer does not deform at the time of heat fusion, so that a short circuit between the metal layer of the enclosure and the lead conductor is prevented.

このように、難軟化層の軟化温度は熱融着温度を十分に越える温度が望ましい。また、熱融着層の軟化温度は、熱融着融温度より十分低い温度が望ましく、70〜150℃が好ましい場合が多いが、熱融着の作業性の面から、両者の軟化温度の差は、20℃以上であることが好ましく、より好ましくは40℃以上である。   Thus, the softening temperature of the hard-to-soften layer is desirably a temperature that sufficiently exceeds the heat fusion temperature. Further, the softening temperature of the heat-sealing layer is preferably a temperature sufficiently lower than the heat-fusion fusing temperature, and is preferably 70 to 150 ° C., but in view of workability of heat fusing, the difference between the two softening temperatures. Is preferably 20 ° C. or higher, more preferably 40 ° C. or higher.

難軟化層を形成する軟化温度の高い材質としては、ポリエステル、ポリエチレン、ポリプロピレン、ポリアリレート、フッ素樹脂、及びPPS等の樹脂が挙げられる。中でも、ポリエステル、ポリプロピレン、ポリアリレート及びフッ素樹脂が好ましい。樹脂に限らず、ガラス繊維でも良い。また、2種以上の材質の混合物であってもよい。   Examples of the material having a high softening temperature for forming the hardly softened layer include resins such as polyester, polyethylene, polypropylene, polyarylate, fluororesin, and PPS. Of these, polyester, polypropylene, polyarylate, and fluororesin are preferable. Not only resin but glass fiber may be used. Moreover, the mixture of 2 or more types of materials may be sufficient.

難軟化層は、その厚さ方向に貫通孔を有する。熱融着の際、熱融着層を形成する樹脂が加熱で溶融し、この貫通孔の内部に入り込む。その結果、熱融着層と難軟化層間の剥離も生じにくくなり、封入容器とリード導体間の接着性、シール性が向上するので好ましい。   The hardly softened layer has a through hole in its thickness direction. At the time of thermal fusion, the resin forming the thermal fusion layer is melted by heating and enters the inside of the through hole. As a result, peeling between the heat-fusible layer and the softening-resistant layer is less likely to occur, and the adhesiveness and sealing performance between the sealed container and the lead conductor are improved, which is preferable.

難軟化層の貫通孔は、例えば、ドリル等により厚み方向に孔を形成して得ることができる。また、後述するように、樹脂繊維を編んでなるメッシュや、樹脂繊維からなる不織布も好ましく使用することができる。貫通孔の孔径としては、0.05mm〜2mm程度が、開孔率としては、10%〜70%程度が好ましい。孔径が0.05mmよりも小さいと、熱融着層が孔内に入りにくくなり埋まり性が悪くなる。また、2mmよりも大きいと、リード導体と金属層がショートしやすくなる。   The through-hole of the hardly softened layer can be obtained by forming a hole in the thickness direction with a drill or the like, for example. Moreover, as will be described later, a mesh formed by knitting resin fibers and a non-woven fabric formed of resin fibers can also be preferably used. The hole diameter of the through hole is preferably about 0.05 mm to 2 mm, and the hole area ratio is preferably about 10% to 70%. When the hole diameter is smaller than 0.05 mm, the heat-fusible layer is difficult to enter the hole and the filling property is deteriorated. If it is larger than 2 mm, the lead conductor and the metal layer are likely to be short-circuited.

本発明の電気部品は、封入容器のシール部にあるラミネートフィルム間に、リード導体を挟んで加熱し、ラミネートフィルムやリード導体の絶縁被覆層等にある熱融着層を溶融し、熱融着することにより得ることができる。従って、加熱は、熱融着層の樹脂の溶融温度以上にして行われる。   The electrical component of the present invention is heated by sandwiching the lead conductor between the laminate films in the sealing part of the enclosing container, and melting the heat-sealing layer in the insulating film or the like of the laminate film or the lead conductor. Can be obtained. Accordingly, the heating is performed at a temperature equal to or higher than the melting temperature of the resin of the heat sealing layer.

本発明は、また、金属層を含む封入容器、前記封入容器の内部から外部に延びるリード導体、並びに、前記封入容器の内部に封入された非水電解質及び前記封入容器の内部に封入され前記リード導体の端部に接続される電極を有し、前記リード導体と前記封入容器とが、熱融着層を介してシール部で融着されている電池であって、シール部の金属層とリード導体との間に、その厚さ方向に貫通孔を有する難軟化層を有することを特徴とする非水電解質電池を提供する。   The present invention also provides a sealed container including a metal layer, a lead conductor extending from the inside of the sealed container, a nonaqueous electrolyte sealed in the sealed container, and the lead sealed in the sealed container. A battery having an electrode connected to an end portion of a conductor, wherein the lead conductor and the enclosing container are fused at a seal portion via a heat-fusible layer, the metal layer of the seal portion and the lead Provided is a non-aqueous electrolyte battery characterized by having a non-softening layer having a through hole in the thickness direction between the conductor and a conductor.

この非水電解質電池は、前記電気部品の発明の一態様であり、金属層を含む封入容器、リード導体、熱融着層及び難軟化層に関しては、前記と同様である。この非水電解質電池は、さらに、封入容器内に、非水電解質及び前記リード導体の端部に接続される電極を有することを特徴とする。電極は、少なくとも、正極と負極を有するので、リード導体も2本以上設けられ、それぞれの一端が正極、負極等の各電極と接続する。非水電解質、及び正極と負極としては、従来公知の非水電解質電池と同様なものが用いられる。通常さらに、正極、負極間を分けるセパレータが設けられている。   This non-aqueous electrolyte battery is an aspect of the invention of the electrical component, and the enclosure, the lead conductor, the heat-fusible layer, and the hardly softened layer including the metal layer are the same as described above. The nonaqueous electrolyte battery further includes an electrode connected to the end portion of the nonaqueous electrolyte and the lead conductor in the enclosure. Since the electrode has at least a positive electrode and a negative electrode, two or more lead conductors are provided, and one end of each electrode is connected to each electrode such as a positive electrode and a negative electrode. As the non-aqueous electrolyte, and the positive electrode and the negative electrode, those similar to those of conventionally known non-aqueous electrolyte batteries are used. Usually, further, a separator for separating the positive electrode and the negative electrode is provided.

本発明は、さらに、前記の本発明の電気部品又は非水電解質電池に用いられ、シール部に対応する部分に、熱融着層及び難軟化層を含む絶縁被覆層を有する絶縁被覆層つきリード導体を提供する。すなわち、前記の電気部品又は非水電解質電池に用いられるリード導体及びその少なくともシール部に対応する部分を被覆する絶縁被覆層からなり、前記絶縁被覆層は、リード導体を被覆する熱融着層1、及び前記熱融着層1を被覆し、その厚さ方向に貫通孔を有する難軟化層の少なくとも2層を有することを特徴とする絶縁被覆層つきリード導体である。   The present invention is further used for the electrical component or the nonaqueous electrolyte battery of the present invention, and the lead having an insulating coating layer having an insulating coating layer including a heat-fusible layer and a softening-resistant layer in a portion corresponding to the seal portion. Providing a conductor. That is, a lead conductor used in the electrical component or nonaqueous electrolyte battery and an insulating coating layer covering at least a portion corresponding to the seal portion, and the insulating coating layer is a heat fusion layer 1 covering the lead conductor. And a lead conductor with an insulating coating layer, characterized in that it has at least two layers of a softening-resistant layer that covers the thermal fusion layer 1 and has through-holes in the thickness direction.

本発明の絶縁被覆層つきリード導体を構成する熱融着層1は、前記の熱融着層と同様な構成、特徴を有するものであり、また、リード導体や難軟化層もそれぞれ前記のリード導体や難軟化層と同様な構成、特徴を有する。熱融着層1はリード導体と接触して設けられ、その上に難軟化層が設けられる。その結果、リード導体と難軟化層間の優れた接着力が得られる。   The heat-sealing layer 1 constituting the lead conductor with an insulating coating layer of the present invention has the same configuration and characteristics as the above-mentioned heat-sealing layer, and the lead conductor and the softening layer are also the above-mentioned leads. It has the same configuration and characteristics as the conductor and the softening layer. The heat-fusible layer 1 is provided in contact with the lead conductor, and a hardly softening layer is provided thereon. As a result, an excellent adhesive force between the lead conductor and the softening-resistant layer can be obtained.

絶縁被覆層が、熱融着層1と難軟化層の2層のみからなるとき、熱融着の際、この難軟化層と封入容器のラミネートフィルムが接触し両者が熱融着する。熱融着の際、熱融着層1を構成する樹脂が加熱により溶融し、難軟化層の貫通孔内に入り込み、この樹脂によりラミネートフィルムとの熱融着を形成してもよい。この場合、熱融着をより確実にするため、絶縁被覆層つきリード導体の製造段階で、熱融着層の樹脂を、貫通孔の内部に入り込ましておくことがより好ましい。   When the insulating coating layer is composed of only two layers, that is, the heat-fusible layer 1 and the hard-to-soften layer, at the time of heat-sealing, the hard-softening layer and the laminated film of the enclosing container come into contact with each other and both are heat-sealed. At the time of heat-sealing, the resin constituting the heat-sealing layer 1 may be melted by heating and enter into the through hole of the softening-resistant layer, and the resin may be heat-sealed with the laminate film. In this case, in order to make heat fusion more reliable, it is more preferable that the resin of the heat fusion layer is allowed to enter the inside of the through hole at the stage of manufacturing the lead conductor with an insulating coating layer.

本発明は、前記の絶縁被覆層つきリード導体のより好ましい態様として、前記絶縁被覆層が、さらに、前記難軟化層を被覆する熱融着層2を有することを特徴とする絶縁被覆層つきリード導体を提供するものである。このように、難軟化層のラミネートフィルム側、すなわち最外周にも熱融着を設けると、封入容器とのより優れた接着性、シール性が得られより好ましい。熱融着層2は、前記の熱融着層と同様な構成、特徴を有するものである。   According to the present invention, as a more preferable aspect of the lead conductor with an insulating coating layer, the insulating coating layer further includes a heat-fusible layer 2 that covers the softening-resistant layer. A conductor is provided. Thus, it is more preferable to provide heat fusion on the laminate film side of the hard-softening layer, that is, the outermost periphery, because more excellent adhesiveness and sealing properties with the enclosing container are obtained. The heat sealing layer 2 has the same configuration and characteristics as the above heat sealing layer.

熱融着層1の樹脂と熱融着層2の樹脂は、熱融着の際の加熱により溶融して難軟化層の貫通孔内に入り込みこの貫通孔を通して互いに接触する。その結果、難軟化層と熱融着層の剥離が抑制される。絶縁被覆層つきリード導体の製造段階で、難軟化層の貫通孔が熱融着層の樹脂で充填され、両方の熱融着層の樹脂間が接触している場合は、両者の接触がより確実になるのでさらに好ましい。   The resin of the heat-fusible layer 1 and the resin of the heat-fusible layer 2 are melted by heating at the time of heat-sealing and enter into the through hole of the softening-resistant layer and come into contact with each other through the through hole. As a result, the peeling between the softening layer and the heat-fusible layer is suppressed. If the through hole of the softening layer is filled with the resin of the heat-sealing layer and the resin of both heat-sealing layers is in contact at the manufacturing stage of the lead conductor with an insulating coating layer, the contact between the two is more It is more preferable because it is certain.

本発明の絶縁被覆層つきリード導体は、公知の方法で、リード導体に被覆層を設けることにより得ることができる。例えば、フィルム状の樹脂をラミネートして熱融着層を形成することができる。また、熱融着層/難軟化層/熱融着層の3層からなる絶縁被覆層は、この3層からなるフィルムをリード導体にラミネートする方法等により得ることができる。   The lead conductor with an insulating coating layer of the present invention can be obtained by providing a coating layer on the lead conductor by a known method. For example, a heat-bonding layer can be formed by laminating a film-like resin. An insulating coating layer composed of three layers, ie, a heat-fusible layer / a hard-to-soften layer / a heat-fusible layer, can be obtained by a method of laminating a film composed of these three layers on a lead conductor.

難軟化層としては、樹脂繊維を編んでなるメッシュ層や樹脂繊維からなる不織布層も用いることができる。   As the hardly softening layer, a mesh layer formed by knitting resin fibers or a non-woven fabric layer formed from resin fibers can also be used.

例えば、難軟化層がメッシュ層である場合、縦糸はポリエステルであり横糸はフッ素樹脂であってもよい。ただし、メッシュや不織布の製造コスト等の面からは1種類の樹脂のみの使用が好ましい場合が多い。さらに、前記のような主材料の樹脂に加えて、各糸の良好な融着用に、例えば数%の接着剤が配合されていてもよい。   For example, when the softening-resistant layer is a mesh layer, the warp may be polyester and the weft may be a fluororesin. However, it is often preferable to use only one type of resin from the viewpoint of the production cost of the mesh or the nonwoven fabric. Furthermore, in addition to the resin of the main material as described above, for example, several% of an adhesive may be blended for good fusion of each yarn.

本発明は、さらに、前記の本発明の電気部品又は非水電解質電池に用いられる金属層を含む封入容器であって、前記シール部の少なくとも一部、すなわち融着の際にリード導体を挟持する位置に、難軟化層と熱融着層を含む絶縁層を有する封入容器を提供する。すなわち、前記の電気部品又は非水電解質電池に用いられる、金属層を含む封入容器であって、少なくとも前記リード導体との融着部が、前記金属層を被覆する熱融着層、及び前記熱融着層を被覆しその厚さ方向に貫通孔を有する難軟化層を有する絶縁層で被覆されていることを特徴とする封入容器である。好ましくは、前記難軟化層は、さらに熱融着層で被覆され、2層の熱融着層で挟持される(以降、それぞれの熱融着層を、熱融着層a及び熱融着層bとする。)。   The present invention further includes an enclosing container including a metal layer used in the electric component or the nonaqueous electrolyte battery of the present invention, wherein a lead conductor is sandwiched at least part of the seal portion, that is, at the time of fusion. A sealed container having an insulating layer including a hard-softening layer and a heat-fusible layer at a position is provided. That is, an encapsulated container including a metal layer, which is used for the electrical component or the non-aqueous electrolyte battery, in which at least a fused portion with the lead conductor covers the metal layer, and the heat It is an enclosed container characterized in that it is covered with an insulating layer having a hard-softening layer that covers a fusion-bonding layer and has through-holes in the thickness direction. Preferably, the softening-resistant layer is further covered with a heat-fusible layer and sandwiched between two heat-fusible layers (hereinafter, each heat-fusible layer is referred to as a heat-fusible layer a and a heat-fusible layer. b).

この封入容器は、熱融着層及び難軟化層を、(前記の発明におけるようなリード導体上でなく)、封入容器を構成するラミネートフィルムの金属層上に設けたものであり、この熱融着層により優れた接着性、シール性が確保されるとともに、難軟化層により、熱融着時の、封入容器の金属層とリード導体の短絡を防ぐことができる。   This enclosing container is provided with a heat-fusible layer and a softening-resistant layer (not on the lead conductor as in the above invention) on the metal layer of the laminate film constituting the enclosing container. Excellent adhesion and sealability are ensured by the adhesion layer, and short circuit between the metal layer and the lead conductor of the enclosing container at the time of heat fusion can be prevented by the softening layer.

リード導体との融着部とは、リード導体を挟持して封入容器とリード導体を融着する部分であり、従って封入容器の内面側(電解質液等を封入する側)である。本発明の封入容器を構成するラミネートフィルムは、金属層の内面側に絶縁層を有するが、この絶縁層の、少なくともリード導体との融着部が、熱融着層a及び難軟化層(好ましくはさらに熱融着層b)から構成されることを特徴とする。封入容器の生産を容易にするため、金属層の内面側の全面が、前記構成の絶縁層で被覆されていてもよい。   The fused portion with the lead conductor is a portion that sandwiches the lead conductor and fuses the enclosing container and the lead conductor, and is therefore the inner surface side (side that encloses the electrolyte solution or the like) of the enclosing container. The laminate film constituting the encapsulating container of the present invention has an insulating layer on the inner surface side of the metal layer, and at least the fused portion of the insulating layer with the lead conductor is the heat-fusible layer a and the softening layer (preferably Is further characterized by comprising a heat-sealing layer b). In order to facilitate the production of the enclosure, the entire inner surface of the metal layer may be covered with the insulating layer having the above configuration.

熱融着層a、熱融着層bの構成、作用、機能は、前記の熱融着層と同様であり、難軟化層の構成、作用、機能も、前記の難軟化層と同様であり、さらに、この封入容器を構成する金属層も、前記と同様であり、アルミニウムあるいはアルミニウム合金製の箔が好ましく例示される。熱融着層aは金属層と接触して設けられるので、金属層と難軟化層間の優れた接着力が得られる。   The configuration, action, and function of the heat-fusible layer a and the heat-fusible layer b are the same as those of the heat-fusible layer, and the structure, action, and function of the hard-to-soften layer are also the same as those of the hard-to-soften layer Furthermore, the metal layer constituting this sealed container is the same as described above, and aluminum or aluminum alloy foil is preferably exemplified. Since the heat-fusible layer a is provided in contact with the metal layer, an excellent adhesive force between the metal layer and the hardly softened layer can be obtained.

本発明の封入容器を構成するラミネートフィルムでは、好ましくは、難軟化層のリード導体側(金属層と反対側)にも熱融着層bが設けられている。熱融着層bが加熱により溶融してリード導体との間の優れた接着性、シール性が得られる。   In the laminated film constituting the encapsulating container of the present invention, preferably, the heat-fusible layer b is also provided on the lead conductor side (the side opposite to the metal layer) of the hardly softened layer. The heat-fusible layer b is melted by heating, and excellent adhesion and sealing properties with the lead conductor are obtained.

熱融着層aの樹脂と、熱融着層bの樹脂は、熱融着の際加熱により溶融して難軟化層の貫通孔に入り込みこの貫通孔を通して互いに接触する。その結果、難軟化層と各熱融着層の剥離が抑制される。封入容器のラミネートフィルムの製造段階で、難軟化層の貫通孔が熱融着層の樹脂で充填され、両方の熱融着層の樹脂間が接触している場合は、両者の接触がより確実になるのでさらに好ましい。   The resin of the heat-fusible layer a and the resin of the heat-fusible layer b are melted by heating at the time of heat-fusing and enter the through hole of the softening-resistant layer and come into contact with each other through the through-hole. As a result, peeling between the softening-resistant layer and each heat-fusible layer is suppressed. If the through-holes of the softening-resistant layer are filled with the resin of the heat-fusible layer at the manufacturing stage of the laminated film of the encapsulated container, and the resin of both the heat-fusible layers is in contact, the contact between the two is more reliable Is more preferable.

本発明の封入容器の金属層の外側、すなわち前記の絶縁層の反対側にも、通常樹脂等により形成された絶縁層が設けられている。この樹脂としては、ポリアミド等が使用される。このようなラミネートフィルムは、公知の方法で得ることができる。例えば、ポリアミド等の樹脂層を金属層にラミネートし、さらに金属層の反対側に熱融着層/難軟化層/熱融着層の3層からなるフィルムをラミネートする方法等により得ることができる。   An insulating layer usually formed of a resin or the like is also provided on the outer side of the metal layer of the enclosure of the present invention, that is, on the opposite side of the insulating layer. As this resin, polyamide or the like is used. Such a laminate film can be obtained by a known method. For example, it can be obtained by laminating a resin layer such as polyamide on a metal layer, and further laminating a film composed of three layers of a heat fusion layer / a softening layer / a heat fusion layer on the opposite side of the metal layer. .

封入容器の絶縁層を構成する難軟化層としても、樹脂繊維を編んでなるメッシュ層や樹脂繊維からなる不織布層を用いることができる。このメッシュ層、不織布層の構成についても、リード導体の絶縁被覆層を構成する前記のメッシュ層、不織布層の構成と同様であり、例えば、縦糸はポリエステルであり横糸はフッ素樹脂であってもよく、各糸の良好な融着用に、例えば数%の接着剤が配合されていてもよい。   As the softening-resistant layer constituting the insulating layer of the enclosure, a mesh layer formed by knitting resin fibers or a nonwoven fabric layer formed from resin fibers can be used. The configurations of the mesh layer and the non-woven fabric layer are the same as the configurations of the mesh layer and the non-woven fabric layer constituting the insulation coating layer of the lead conductor. For example, the warp may be polyester and the weft may be a fluororesin. For example, several% of an adhesive may be blended for good fusion of each yarn.

本発明の電気部品や非水電解質電池においては、また、本発明の絶縁被覆層つきリード導体及び封入容器を用いて電気部品や非水電解質電池を製造した場合では、シール部の封入容器とリード導体間に、熱融着の温度より高い軟化温度の樹脂からなる難軟化層を有するので、熱融着の際に発生しやすかった封入容器の金属層とリード導体間の短絡が効果的に抑制される。さらに、この難軟化層は、その厚さ方向に貫通孔を有し、熱融着の際等に熱融着層の樹脂がこの中に入り込む結果、優れた接着力、シール性が得られ、剥離等の問題も生じない。   In the electrical component and non-aqueous electrolyte battery of the present invention, and when the electrical component and non-aqueous electrolyte battery are manufactured using the lead conductor and encapsulating container with the insulating coating layer of the present invention, the encapsulated container and the lead of the seal portion are used. Since there is a softening layer made of a resin with a softening temperature higher than the heat sealing temperature between the conductors, the short circuit between the metal layer of the encapsulated container and the lead conductor, which was likely to occur during heat sealing, is effectively suppressed. Is done. Furthermore, this softening layer has through-holes in its thickness direction, and as a result of the heat fusion layer resin entering into this during heat fusion, excellent adhesive force and sealing properties are obtained, No problems such as peeling occur.

以下、本発明の最良の実施の形態を実施例に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明と同一及び均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the best mode of the present invention will be described based on examples. The present invention is not limited to the following embodiments, and various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

[評価試験用絶縁被覆層つきリード導体の製作]
(リード導体の製作)
正極用のリード導体は、厚さが0.1mm、幅が5mm、長さが100mmのアルミニウム板である。負極用のリード導体は、厚さが0.1mm、幅が5mm、長さが100mmの銅板である。
[Manufacture of lead conductor with insulation coating for evaluation test]
(Lead conductor production)
The lead conductor for the positive electrode is an aluminum plate having a thickness of 0.1 mm, a width of 5 mm, and a length of 100 mm. The lead conductor for the negative electrode is a copper plate having a thickness of 0.1 mm, a width of 5 mm, and a length of 100 mm.

(絶縁被覆層の製作)
リード導体の絶縁被覆層として、以下の4種(a、b、c、d)を製作し、前記リード導体上に被覆した。
(Production of insulation coating layer)
The following four types (a, b, c, d) were produced as insulating coating layers for lead conductors, and were coated on the lead conductors.

絶縁被覆層a:
厚さ50μmの無水マレイン酸変性ポリエチレン(三井化学株式会社製:アドマーNE060、密度0.92g/cc、メルトフローレート1.0、軟化温度104℃:熱融着層1)、厚さ方向に孔径1mmφ、開孔率28%の貫通孔を有する厚さ25μmのポリエステル(東レ株式会社製:ルミラーS10、軟化温度253℃:難軟化層)、及び厚さ50μmの無水マレイン酸変性ポリエチレン(三井化学株式会社製:アドマーNE060、密度0.92g/cc、メルトフローレート1.0、軟化温度104℃:熱融着層2)を順次積層し、さらに150℃の熱ローラーで加熱ラミネートしたものである。
Insulating coating layer a:
Maleic anhydride-modified polyethylene with a thickness of 50 μm (Mitsui Chemicals, Inc .: Admer NE060, density 0.92 g / cc, melt flow rate 1.0, softening temperature 104 ° C .: heat-sealing layer 1), pore size in the thickness direction 25 mm thick polyester having a through hole with 1 mmφ and an aperture ratio of 28% (manufactured by Toray Industries, Inc .: Lumirror S10, softening temperature 253 ° C .: hardly softened layer), and 50 μm thick maleic anhydride-modified polyethylene (Mitsui Chemicals) Company: Admer NE060, density 0.92 g / cc, melt flow rate 1.0, softening temperature 104 ° C .: heat fusion layer 2) are sequentially laminated, and further heat laminated with a 150 ° C. heat roller.

なお、軟化温度は、JIS K7196「熱可塑性プラスチックフィルム及びシートの熱機械分析による軟化温度試験方法」に従って測定した温度である。以下に示す他の絶縁被覆層及び熱可塑性樹脂シートの場合についても同様である。   The softening temperature is a temperature measured according to JIS K7196 “Testing method for softening temperature of thermoplastic film and sheet by thermomechanical analysis”. The same applies to other insulating coating layers and thermoplastic resin sheets described below.

図1は、絶縁被覆層aの要部の構成を概念的に示す概念断面図である。図1において、11、13は無水マレイン酸変性ポリエチレン層であり、それぞれ熱融着層1、熱融着層2に該当する。12はポリエステルからなる難軟化層であり、12aはその貫通孔である。   FIG. 1 is a conceptual cross-sectional view conceptually showing the structure of the main part of the insulating coating layer a. In FIG. 1, reference numerals 11 and 13 denote maleic anhydride-modified polyethylene layers, which correspond to the heat fusion layer 1 and the heat fusion layer 2, respectively. Reference numeral 12 denotes a softening-resistant layer made of polyester, and reference numeral 12a denotes a through hole.

加熱ラミネート時、貫通孔12aの内部には、熱ローラーによる押圧で上下の無水マレイン酸変性ポリエチレン層11、13の両方から、溶融した無水マレイン酸変性ポリエチレンが矢線で示すように入り込み、両者は貫通孔12aの内部で融着する。   During heat lamination, the melted maleic anhydride-modified polyethylene enters the through-hole 12a from both the upper and lower maleic anhydride-modified polyethylene layers 11 and 13 by pressing with a heat roller, as indicated by the arrows, It fuses inside the through-hole 12a.

また、貫通孔12a内が無水マレイン酸変性ポリエチレンで充填されることにより、難軟化層12と、無水マレイン酸変性ポリエチレンの層11、13等との接触面積が増加し、難軟化層12と、無水マレイン酸変性ポリエチレン層11、13との接着力も増加する。すなわち、絶縁被覆層aを構成する各層間の接着力が増加する。   Further, by filling the inside of the through-hole 12a with maleic anhydride-modified polyethylene, the contact area between the softening-resistant layer 12 and the maleic anhydride-modified polyethylene layers 11, 13 and the like increases, The adhesive force with the maleic anhydride-modified polyethylene layers 11 and 13 also increases. That is, the adhesive force between the layers constituting the insulating coating layer a increases.

絶縁被覆層b:
厚さ方向に貫通孔を有する厚さ25μmのポリエステルの代りに、厚さ45μmのポリエステルメッシュ(NBC(株)製:L315PW、線径30μm、315メッシュ/インチ、開孔率40%、軟化温度251℃:難軟化層)を用いた以外は、絶縁被覆層aと同様にして得たものである。従って、絶縁被覆層bの、難軟化層以外の基本的な構成は図1に示す構成と同じである。
Insulating coating layer b:
Instead of the 25 μm thick polyester having through holes in the thickness direction, a 45 μm thick polyester mesh (manufactured by NBC Corporation: L315PW, wire diameter 30 μm, 315 mesh / inch, opening rate 40%, softening temperature 251 It was obtained in the same manner as the insulating coating layer a except that [° C .: hardly softened layer] was used. Accordingly, the basic configuration of the insulating coating layer b other than the softening-resistant layer is the same as the configuration shown in FIG.

絶縁被覆層c:
厚さ方向に貫通孔を有する厚さ25μmのポリエステルの代りに、厚さ90μのポリエステル不織布(旭化成せんい(株)製:エルタスE01012、軟化温度255℃:難軟化層)を用いた以外は、絶縁被覆層aと同様にして得たものである。従って、絶縁被覆層cの、難軟化層以外の基本的な構成は図1に示す構成と同じである。
Insulating coating layer c:
Insulation except that a polyester nonwoven fabric having a thickness of 90 μm (Asahi Kasei Fibers Co., Ltd .: Eltus E01012, softening temperature 255 ° C .: hard to soften layer) was used instead of the 25 μm thick polyester having through holes in the thickness direction. It was obtained in the same manner as the coating layer a. Accordingly, the basic configuration of the insulating coating layer c other than the softening-resistant layer is the same as the configuration shown in FIG.

絶縁被覆層d:
厚さ100μmの無水マレイン酸変性ポリエチレン(三井化学株式会社製:アドマーNE060、密度0.92g/cc、メルトフローレート1.0、軟化温度104℃)からなる樹脂シートである。
Insulating coating layer d:
This is a resin sheet made of maleic anhydride-modified polyethylene (manufactured by Mitsui Chemicals, Inc .: Admer NE060, density 0.92 g / cc, melt flow rate 1.0, softening temperature 104 ° C.) having a thickness of 100 μm.

[評価試験用封入容器の製作]
厚さ40μmのアルミニウム箔の一方の面に、厚さ25μmのポリアミドシートをドライラミネーションで貼り合わせ、他方の面に、以下に示す4種の熱可塑性樹脂製シート(1、2、3、4)(絶縁層)のそれぞれを熱ラミネーションで貼り付けラミネートフィルムを得た。得られたラミネートフィルムを、前記ポリアミドシートが外層側に来るように用いて、一辺に開口部(シール部)を有する評価試験用封入容器を製作した。
[Production of enclosure for evaluation test]
A 25 μm thick polyamide sheet is bonded to one side of a 40 μm thick aluminum foil by dry lamination, and the following four types of thermoplastic resin sheets (1, 2, 3, 4) are attached to the other side: Each (insulating layer) was stuck by thermal lamination to obtain a laminate film. The obtained laminate film was used so that the polyamide sheet came to the outer layer side, and an evaluation test enclosure having an opening (seal part) on one side was produced.

熱可塑性樹脂シート1:
厚さ50μmの無水マレイン酸変性ポリエチレン(密度0.92g/cc、メルトフローレート1.0、融点123℃:熱融着層)、厚さ方向に孔径1mmφ、開孔率28%の貫通孔を有する厚さ25μmのポリエステル(東レ株式会社製:ルミラーS10、軟化温度253℃:難軟化層)、及び厚さ50μmの無水マレイン酸変性ポリエチレン(密度0.92g/cc、メルトフローレート1.0、融点123℃:熱融着層)を順次積層し、さらに150℃の熱ローラーで加熱ラミネートしたものである。
Thermoplastic resin sheet 1:
Maleic anhydride-modified polyethylene with a thickness of 50 μm (density 0.92 g / cc, melt flow rate 1.0, melting point 123 ° C .: heat-sealing layer), through-holes with a hole diameter of 1 mmφ in the thickness direction and a porosity of 28% Polyester having a thickness of 25 μm (manufactured by Toray Industries, Inc .: Lumirror S10, softening temperature 253 ° C .: hardly softened layer), and 50 μm thick maleic anhydride-modified polyethylene (density 0.92 g / cc, melt flow rate 1.0, Melting point: 123 ° C .: heat-bonding layer) are sequentially laminated, and further heated and laminated with a heat roller at 150 ° C.

図2は、熱可塑性樹脂シート1を貼り付けた前記ラミネートフィルムの要部の構成を概念的に示す概念断面図である。図2において、21、23は無水マレイン酸変性ポリエチレンからなる熱融着層(それぞれ、熱融着層a、熱融着層bに該当する。)であり、22はポリエステルからなる難軟化層であり、22aはその貫通孔であり、29はポリアミド層であり、28はアルミニウム箔である。   FIG. 2 is a conceptual cross-sectional view conceptually showing the structure of the main part of the laminate film to which the thermoplastic resin sheet 1 is attached. In FIG. 2, reference numerals 21 and 23 denote heat-sealable layers made of maleic anhydride-modified polyethylene (corresponding to heat-sealable layer a and heat-sealable layer b, respectively), and 22 denotes a softening-resistant layer made of polyester. Yes, 22a is the through hole, 29 is a polyamide layer, and 28 is an aluminum foil.

加熱ラミネート時、貫通孔22aの内部には、熱ローラーによる押圧で上下の無水マレイン酸変性ポリエチレン層21、23の両方から、溶融した無水マレイン酸変性ポリエチレンが矢線で示すように入り込み、両者は貫通孔22aの内部で融着する。   During the heat lamination, the melted maleic anhydride-modified polyethylene enters into the through-hole 22a by pressing with a heat roller from both the upper and lower maleic anhydride-modified polyethylene layers 21 and 23 as indicated by arrows, It fuses inside the through-hole 22a.

また、貫通孔22a内が無水マレイン酸変性ポリエチレンで充填されることにより、難軟化層22と無水マレイン酸変性ポリエチレン層21、23等との接触面積が増加し、無水マレイン酸変性ポリエチレン層21、23との接着力も増加する。すなわち、熱可塑性樹脂シート1を構成する各層間の接着力が増加する。   Further, by filling the inside of the through hole 22a with maleic anhydride-modified polyethylene, the contact area between the softening-resistant layer 22 and the maleic anhydride-modified polyethylene layers 21, 23, etc. is increased, and the maleic anhydride-modified polyethylene layer 21, The adhesive force with 23 also increases. That is, the adhesive force between each layer which comprises the thermoplastic resin sheet 1 increases.

熱可塑性樹脂シート2:
厚さ方向に貫通孔を有する厚さ25μmのポリエステルの代りに、厚さ45μmのポリエステルメッシュ(NBC(株)製:L315PW、線径30μm、315メッシュ/インチ、開孔率40%、軟化温度251℃:難軟化層)を用いた以外は、熱可塑性樹脂シート1と同様にして得たものである。従って、熱可塑性樹脂シート2の、難軟化層以外の基本的な構成は図2に示す構成と同じである。
Thermoplastic resin sheet 2:
Instead of the 25 μm thick polyester having through holes in the thickness direction, a 45 μm thick polyester mesh (manufactured by NBC Corporation: L315PW, wire diameter 30 μm, 315 mesh / inch, opening rate 40%, softening temperature 251 It was obtained in the same manner as the thermoplastic resin sheet 1 except that [° C .: hard softening layer] was used. Therefore, the basic structure of the thermoplastic resin sheet 2 other than the softening-resistant layer is the same as that shown in FIG.

熱可塑性樹脂シート3:
厚さ方向に貫通孔を有する厚さ25μmのポリエステルの代りに、厚さ90μmのポリエステル不織布(旭化成せんい(株)製:エルタスE01012、軟化温度255℃:難軟化層)を用いた以外は、熱可塑性樹脂シート1と同様にして得たものである。従って、熱可塑性樹脂シート3の、難軟化層以外の基本的な構成は図2に示す構成と同じである。
Thermoplastic resin sheet 3:
Heat was used except that a polyester nonwoven fabric having a thickness of 90 μm (Asahi Kasei Fibers Co., Ltd .: Eltus E01012, softening temperature 255 ° C .: hard to soften layer) was used instead of the 25 μm thick polyester having through holes in the thickness direction. It was obtained in the same manner as the plastic resin sheet 1. Therefore, the basic structure of the thermoplastic resin sheet 3 other than the softening-resistant layer is the same as that shown in FIG.

熱可塑性樹脂シート4:
厚さ100μmの無水マレイン酸変性ポリエチレン(三井化学株式会社製:アドマーNE060、密度0.92g/cc、メルトフローレート1.0、軟化温度104℃)からなる樹脂シートである。
Thermoplastic resin sheet 4:
This is a resin sheet made of maleic anhydride-modified polyethylene (manufactured by Mitsui Chemicals, Inc .: Admer NE060, density 0.92 g / cc, melt flow rate 1.0, softening temperature 104 ° C.) having a thickness of 100 μm.

(評価試験方法及びその結果)
以上のようにして得られた絶縁被覆層つきリード導体、封入容器を、表1に示す組合せで用いて、絶縁被覆層つきリード導体を貫通させたシール部を、150℃、1分の条件で熱融着して、非水電解質電池を製作した。このようにして製作した10サンプル中の、ショートしたサンプルの数を表1に示す。
(Evaluation test method and results)
Using the lead conductor with an insulating coating layer and the encapsulated container obtained as described above in the combinations shown in Table 1, the seal portion through which the lead conductor with the insulating coating layer penetrated was 150 ° C. for 1 minute. A non-aqueous electrolyte battery was manufactured by heat fusion. Table 1 shows the number of shorted samples among the 10 samples thus manufactured.

なお、図3は、実施例において製造された非水電解質電池のシール部及びその近傍を表す断面図であり、シール部における封入の様子を示す。図3aは、実施例1〜3の非水電解質電池に関し、図3bは、実施例4〜6の非水電解質電池に関する。図中、33は、2本のリード導体(図中では1本のみ表している。)であり、それぞれ正極34、負極35に接続している。図3bの例では、リード導体33は、無水マレイン酸変性ポリエチレン層36(熱融着層)の1層のみで被覆されているが、図3aの例では、リード導体33は、無水マレイン酸変性ポリエチレン層36、難軟化層37、無水マレイン酸変性ポリエチレン層36’の3層で被覆されている。難軟化層37は、図1で示すようにその厚み方向の貫通孔30を有する。   In addition, FIG. 3 is sectional drawing showing the seal part of the nonaqueous electrolyte battery manufactured in the Example, and its vicinity, and shows the mode of enclosure in a seal part. FIG. 3a relates to the nonaqueous electrolyte batteries of Examples 1 to 3, and FIG. 3b relates to the nonaqueous electrolyte batteries of Examples 4 to 6. In the figure, reference numeral 33 denotes two lead conductors (only one is shown in the figure), which are connected to the positive electrode 34 and the negative electrode 35, respectively. In the example of FIG. 3b, the lead conductor 33 is covered with only one layer of the maleic anhydride-modified polyethylene layer 36 (heat fusion layer), but in the example of FIG. 3a, the lead conductor 33 is modified with maleic anhydride. It is covered with three layers of a polyethylene layer 36, a softening-resistant layer 37, and a maleic anhydride-modified polyethylene layer 36 '. The softening-resistant layer 37 has a through hole 30 in the thickness direction as shown in FIG.

図3において、38は、封入容器を構成するラミネートフィルムである。このラミネートフィルム38は、アルミニウム箔32(金属層)を有し、その外側(リード導体33と反対側)にポリアミド層39がラミネートされている。図3aの例では、ラミネートフィルム38のリード導体33側では、アルミニウム箔32は、無水マレイン酸変性ポリエチレン層40(熱融着層)の1層のみで被覆されているが、図3bの例では、ラミネートフィルム38のリード導体33側では、アルミニウム箔32は、無水マレイン酸変性ポリエチレン層40、難軟化層41、無水マレイン酸変性ポリエチレン層40’の3層で被覆されている。難軟化層41は、図2で示すようにその厚み方向の貫通孔31を有する。   In FIG. 3, reference numeral 38 denotes a laminate film constituting the enclosing container. The laminate film 38 has an aluminum foil 32 (metal layer), and a polyamide layer 39 is laminated on the outer side (the side opposite to the lead conductor 33). In the example of FIG. 3a, on the lead conductor 33 side of the laminate film 38, the aluminum foil 32 is covered with only one layer of the maleic anhydride-modified polyethylene layer 40 (thermal fusion layer). On the lead conductor 33 side of the laminate film 38, the aluminum foil 32 is covered with three layers of a maleic anhydride-modified polyethylene layer 40, a softening-resistant layer 41, and a maleic anhydride-modified polyethylene layer 40 ′. As shown in FIG. 2, the hardly softened layer 41 has through holes 31 in the thickness direction.

Figure 2012104503
Figure 2012104503

表1の結果が示すように、絶縁被覆層つきリード導体の絶縁被覆層又は封入容器の熱可塑性樹脂シートのいずれかが本発明に該当する場合(実施例1〜6)、すなわち、難軟化層を有するときには、ショート(短絡)が発生していない。しかし、絶縁被覆層及び熱可塑性樹脂シートのいずれについても、難軟化層を有しない場合(比較例)は、ショート(短絡)の発生が多く、難軟化層により、短絡の発生が防止されていることが明らかに示されている。なお、上記の実験においては、作業性も極めて良好であり、また、シール部の接着性も極めて良好であった。   As shown in the results of Table 1, when either the insulating coating layer of the lead conductor with the insulating coating layer or the thermoplastic resin sheet of the enclosure is applicable to the present invention (Examples 1 to 6), that is, the softening layer When it has, there is no short circuit. However, both the insulating coating layer and the thermoplastic resin sheet have a short softening layer (comparative example) when there is no hard softening layer, and the short softening layer prevents the shorting. It is clearly shown. In the above experiment, the workability was very good and the adhesiveness of the seal part was very good.

実施例の絶縁被覆層aの要部を概念的に示す概念断面図である。It is a conceptual sectional view which shows notionally the principal part of insulating coating layer a of an example. 実施例の熱可塑性樹脂シート1の要部を概念的に示す概念断面図である。It is a conceptual sectional view which shows notionally a principal part of thermoplastic resin sheet 1 of an example. 実施例の非水電解質電池のシール部及びその近傍を表す断面図である。It is sectional drawing showing the seal | sticker part of the nonaqueous electrolyte battery of an Example, and its vicinity.

11、13、21、23、36、36’、40、40’ 無水マレイン酸変性ポリエチレン層
12、22、37、41 難軟化層
12a、22a、30、31 貫通孔
28、32 アルミニウム箔
29、39 ポリアミド層
33 リード導体
34 正極
35 負極
38 ラミネートフィルム
11, 13, 21, 23, 36, 36 ', 40, 40' Maleic anhydride-modified polyethylene layer 12, 22, 37, 41 Hardening-resistant layer 12a, 22a, 30, 31 Through hole 28, 32 Aluminum foil 29, 39 Polyamide layer 33 Lead conductor 34 Positive electrode 35 Negative electrode 38 Laminate film

Claims (4)

金属層及び前記金属層を被覆する樹脂フィルムからなる封入容器、前記封入容器の内部から外部に延びるリード導体、並びに、前記封入容器の内部に封入された非水電解質及び前記封入容器の内部に封入され前記リード導体の端部に接続される電極を有し、前記リード導体と前記封入容器とが、熱融着層を介してシール部で融着されている電池であって、シール部の金属層とリード導体との間に、リード導体を被覆する熱融着層1、前記熱融着層1を被覆しその厚さ方向に、孔径が0.05mm〜2mmの貫通孔を有し、開孔率が10%〜70%の難軟化層、及び前記難軟化層を被覆する熱融着層2を有することを特徴とする非水電解質電池。   An enclosure made of a metal layer and a resin film covering the metal layer, a lead conductor extending from the inside of the enclosure, and a nonaqueous electrolyte enclosed inside the enclosure and the inside of the enclosure A battery having an electrode connected to an end portion of the lead conductor, wherein the lead conductor and the enclosing container are fused by a seal portion via a heat-fusible layer, and the metal of the seal portion Between the layer and the lead conductor, there is a heat-sealing layer 1 covering the lead conductor, and the heat-sealing layer 1 is covered with a through hole having a hole diameter of 0.05 mm to 2 mm in the thickness direction. A non-aqueous electrolyte battery comprising: a non-softening layer having a porosity of 10% to 70%; and a heat-sealing layer 2 that covers the hard-softening layer. 請求項1に記載の非水電解質電池に用いられる絶縁被覆層つきリード導体であって、リード導体、及びその少なくともシール部に対応する部分を被覆する絶縁被覆層からなり、前記絶縁被覆層は、リード導体を被覆する熱融着層1、前記熱融着層1を被覆しその厚さ方向に、孔径が0.05mm〜2mmの貫通孔を有し、開孔率が10%〜70%の難軟化層、及び前記難軟化層を被覆する熱融着層2を有することを特徴とする絶縁被覆層つきリード導体。   A lead conductor with an insulating coating layer used in the nonaqueous electrolyte battery according to claim 1, comprising a lead conductor and an insulating coating layer covering at least a portion corresponding to the seal portion, and the insulating coating layer includes: A heat-sealing layer 1 for covering the lead conductor, the heat-sealing layer 1 is covered, and a through hole having a hole diameter of 0.05 mm to 2 mm is provided in the thickness direction, and the opening ratio is 10% to 70%. A lead conductor with an insulating coating layer, comprising: a softening layer; and a heat-sealing layer 2 that covers the softening layer. 前記難軟化層が、樹脂繊維からなるメッシュ層であることを特徴とする請求項2に記載の絶縁被覆層つきリード導体。   The lead conductor with an insulation coating layer according to claim 2, wherein the softening-resistant layer is a mesh layer made of resin fibers. 前記難軟化層が、樹脂繊維からなる不織布層であることを特徴とする請求項2に記載の絶縁被覆層つきリード導体。   The lead conductor with an insulation coating layer according to claim 2, wherein the softening-resistant layer is a nonwoven fabric layer made of resin fibers.
JP2012011851A 2012-01-24 2012-01-24 Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them Expired - Fee Related JP5527717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011851A JP5527717B2 (en) 2012-01-24 2012-01-24 Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011851A JP5527717B2 (en) 2012-01-24 2012-01-24 Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006002432A Division JP5108228B2 (en) 2006-01-10 2006-01-10 Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them

Publications (2)

Publication Number Publication Date
JP2012104503A true JP2012104503A (en) 2012-05-31
JP5527717B2 JP5527717B2 (en) 2014-06-25

Family

ID=46394613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011851A Expired - Fee Related JP5527717B2 (en) 2012-01-24 2012-01-24 Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them

Country Status (1)

Country Link
JP (1) JP5527717B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120501B1 (en) * 2021-12-27 2022-08-17 住友電気工業株式会社 Lead wire for non-aqueous electrolyte battery, insulating film and non-aqueous electrolyte battery
JP7120502B1 (en) * 2021-12-27 2022-08-17 住友電気工業株式会社 Lead wire for non-aqueous electrolyte battery, insulating film and non-aqueous electrolyte battery
JP7245570B1 (en) 2022-08-23 2023-03-24 ビージェイテクノロジーズ株式会社 Tab lead sealing film
WO2023054993A1 (en) * 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 Lead film for secondary battery, and secondary battery comprising same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054993A1 (en) * 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 Lead film for secondary battery, and secondary battery comprising same
JP7120501B1 (en) * 2021-12-27 2022-08-17 住友電気工業株式会社 Lead wire for non-aqueous electrolyte battery, insulating film and non-aqueous electrolyte battery
JP7120502B1 (en) * 2021-12-27 2022-08-17 住友電気工業株式会社 Lead wire for non-aqueous electrolyte battery, insulating film and non-aqueous electrolyte battery
WO2023127066A1 (en) * 2021-12-27 2023-07-06 住友電気工業株式会社 Lead wire for nonaqueous electrolyte batteries, insulating film and nonaqueous electrolyte battery
WO2023127067A1 (en) * 2021-12-27 2023-07-06 住友電気工業株式会社 Nonaqueous electrolyte battery lead wire, insulating film, and nonaqueous electrolyte battery
US11973197B2 (en) 2021-12-27 2024-04-30 Sumitomo Electric Industries, Ltd. Lead wire for nonaqueous electrolyte battery, insulating film and nonaqueous electrolyte battery
JP7245570B1 (en) 2022-08-23 2023-03-24 ビージェイテクノロジーズ株式会社 Tab lead sealing film
JP2024030096A (en) * 2022-08-23 2024-03-07 ビージェイテクノロジーズ株式会社 Film for sealing tab lead

Also Published As

Publication number Publication date
JP5527717B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5108228B2 (en) Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them
JP4622019B2 (en) Flat battery
JP5457040B2 (en) Electrochemical device and manufacturing method thereof
JP6315572B2 (en) Electrochemical cell
KR101216423B1 (en) Process of Improved Productivity for Preparation of Secondary Battery
JP2014225378A (en) Sealant for tab lead, tab lead and lithium ion secondary battery
JP2013211253A (en) Tab lead and manufacturing method therefor
JP6355117B2 (en) Electrochemical cell and method for producing electrochemical cell
JP5527717B2 (en) Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them
JP6256019B2 (en) Laminated battery
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
KR20130016563A (en) Pouch film for secondary battery and method for manufacturing secondary battery using the same
JP4636223B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JPH11312625A (en) Electochemical device
JP2019057473A (en) Electrochemical cell
JP2011249343A (en) Battery and battery pack
JP2020064742A (en) Battery charger pack and manufacturing method of battery charger pack
US9202633B2 (en) Laminate type energy device and method of manufacturing the same
JP2014127355A (en) Electric device
JP6832477B2 (en) Laminated battery and manufacturing method of laminated battery
JP2007018766A (en) Film-armored electric storage device and its manufacturing method
JP2020170667A (en) Manufacturing method of stacked battery and stacked batteries
JP2020047524A (en) Power storage element and manufacturing method of power storage element
JP2018142496A (en) Electrode assembly, power storage device and manufacturing method of electrode assembly
KR20170006046A (en) Pouch type secondary cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5527717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140406

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees