JP2012104458A - Battery cooling system and cooling method - Google Patents

Battery cooling system and cooling method Download PDF

Info

Publication number
JP2012104458A
JP2012104458A JP2010254408A JP2010254408A JP2012104458A JP 2012104458 A JP2012104458 A JP 2012104458A JP 2010254408 A JP2010254408 A JP 2010254408A JP 2010254408 A JP2010254408 A JP 2010254408A JP 2012104458 A JP2012104458 A JP 2012104458A
Authority
JP
Japan
Prior art keywords
battery
target temperature
remaining capacity
cooling
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010254408A
Other languages
Japanese (ja)
Other versions
JP5649918B2 (en
Inventor
Takeshi Ueda
岳史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010254408A priority Critical patent/JP5649918B2/en
Publication of JP2012104458A publication Critical patent/JP2012104458A/en
Application granted granted Critical
Publication of JP5649918B2 publication Critical patent/JP5649918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system which saves on power consumption when a battery is charged by an external power supply.SOLUTION: In the present embodiment of the invention, a cooling system 1 subtracts, from the battery usage upper-limit temperature, an increased portion of the battery temperature when the remaining capacity of the battery has all been used up in any predictable running state, to calculate a target temperature in the present embodiment. As a result, the target temperature in the present embodiment decreases proportionately as the SOC (state of charge) increases. Conversely, a target temperature in the conventional technology was set at a constant level relative to the SOC. Therefore, a difference between the target temperature in the present embodiment and a target temperature in the conventional technology is a reducible amount of power consumption. Accordingly, the cooling system 1 in the present embodiment can save on power consumption when the battery is charged by an external power supply.

Description

本発明は、電動車両(EV(Electric Vehicle)、PHEV(Plug-in Hybrid Electric Vehicle)等)に搭載される電池を冷却するときの電池冷却制御技術に関する。   The present invention relates to a battery cooling control technique for cooling a battery mounted on an electric vehicle (EV (Electric Vehicle), PHEV (Plug-in Hybrid Electric Vehicle), etc.).

特許文献1には、電気自動車に搭載されるバッテリ(電池)に対して、そのバッテリの温度が所定値以下となった場合に、そのバッテリを冷却するための外気冷却風の送風を停止し、消費電力を節約する冷却装置が開示されている。   In Patent Document 1, when the temperature of the battery (battery) mounted on the electric vehicle is equal to or lower than a predetermined value, the blowing of outside air cooling air for cooling the battery is stopped. A cooling device that saves power consumption is disclosed.

特開2001−130268号公報JP 2001-130268 A

つまり、特許文献1に記載の従来技術は、バッテリのSOC(State of Charge)の大きさとは無関係に、一律に、冷却を停止する目標温度を設定している。しかしながら、バッテリの高温劣化を抑止するために、バッテリ使用上限温度を守るという観点から見ると、SOCの大きさ(バッテリの残容量の大きさ)に依存して、その後に走行できる時間が変わってくる(言い換えると、バッテリの発熱量が変わってくる)ことになるので、必要以上に冷却している虞がある。外部電源によってバッテリを充電するときには、必要以上に冷却することによって、冷却のために電力を無駄に消費している虞がある。   That is, in the prior art described in Patent Document 1, a target temperature at which cooling is stopped is uniformly set regardless of the state of charge (SOC) of the battery. However, from the viewpoint of keeping the battery use upper limit temperature in order to suppress the high temperature deterioration of the battery, depending on the SOC size (the remaining battery capacity), the time that can be traveled after that changes. Since it will come (in other words, the amount of heat generated by the battery will change), there is a possibility of cooling more than necessary. When the battery is charged by an external power source, there is a possibility that power is wasted for cooling by cooling more than necessary.

そこで、本発明では、外部電源による電池充電時の消費電力を節約する冷却システムおよび冷却方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a cooling system and a cooling method that save power consumption when charging a battery by an external power source.

前記課題を解決するために、本発明における電池の冷却システムは、電池の温度を測定する温度測定手段、前記電池の残容量を測定する残容量測定手段、および前記電池を冷却する冷却手段を備える電池の冷却システムであって、前記残容量測定手段によって測定された前記電池の残容量を取得して、前記残容量が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した前記残容量に対応する目標温度を算出する目標温度算出手段をさらに備え、前記冷却手段を用いて、前記電池の充電時に、前記目標温度算出手段によって算出された当該目標温度を超えないように前記電池の温度を制御することを特徴とする。   In order to solve the above-described problems, a battery cooling system according to the present invention includes a temperature measuring unit that measures the temperature of the battery, a remaining capacity measuring unit that measures the remaining capacity of the battery, and a cooling unit that cools the battery. A cooling system for a battery, wherein the remaining capacity of the battery measured by the remaining capacity measuring means is obtained, and obtained by referring to a target temperature characteristic having a characteristic that decreases as the remaining capacity increases. The battery further comprises target temperature calculation means for calculating a target temperature corresponding to the remaining capacity, and the battery is used so that the target temperature calculated by the target temperature calculation means is not exceeded when the battery is charged using the cooling means. The temperature is controlled.

かかる構成によれば、電池の冷却システムが、目標温度算出手段において、残容量が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した残容量に対応する目標温度を算出する。そのため、SOCの大きさとは無関係に一律に目標温度を設定していた従来技術と比較して、冷却手段の動作を必要最小限にすることができる。つまり、消費電力を節約することができる。   According to such a configuration, the battery cooling system calculates the target temperature corresponding to the acquired remaining capacity with reference to the target temperature characteristic having a characteristic that decreases as the remaining capacity increases in the target temperature calculation means. Therefore, the operation of the cooling means can be minimized as compared with the prior art in which the target temperature is set uniformly regardless of the SOC size. That is, power consumption can be saved.

また、前記電池の冷却システムは、前記電池の内部抵抗値を測定する内部抵抗測定手段をさらに備え、前記目標温度算出手段が、前記残容量測定手段によって測定された前記電池の残容量および前記内部抵抗測定手段によって測定された前記電池の内部抵抗値を取得して、前記残容量および前記内部抵抗値の双方が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した前記残容量および前記内部抵抗値に対応する目標温度を算出することを特徴とする。   The battery cooling system further includes internal resistance measuring means for measuring an internal resistance value of the battery, and the target temperature calculating means includes the remaining capacity of the battery and the internal capacity measured by the remaining capacity measuring means. Obtaining the internal resistance value of the battery measured by the resistance measuring means, referring to a target temperature characteristic having a characteristic that decreases as both the residual capacity and the internal resistance value increase, the acquired residual capacity And calculating a target temperature corresponding to the internal resistance value.

かかる構成によれば、電池の冷却システムは、目標温度算出手段において、バッテリの残容量および内部抵抗値の双方が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した残容量および内部抵抗値に対応する目標温度を算出する。そのため、バッテリ劣化時の目標温度を、内部抵抗値の増加に応じて低く設定することができる。このように、電池の冷却システムは、バッテリの状態に応じて、こまめに目標温度を設定可能なため、消費電力を節約することを可能とする。   According to this configuration, the battery cooling system refers to the target temperature characteristic having the characteristic that the target temperature calculation unit has a characteristic that both the remaining capacity and the internal resistance value of the battery decrease as the remaining capacity and the internal resistance value increase. A target temperature corresponding to the internal resistance value is calculated. Therefore, the target temperature at the time of battery deterioration can be set low as the internal resistance value increases. Thus, the battery cooling system can save power consumption because the target temperature can be set frequently according to the state of the battery.

本発明によれば、外部電源による電池充電時の消費電力を節約する冷却システムおよび冷却方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the cooling system and cooling method which save the power consumption at the time of the battery charge by an external power supply.

本実施形態におけるSOCと目標温度との関係を示す図である。It is a figure which shows the relationship between SOC in this embodiment, and target temperature. バッテリの劣化を考慮した場合のSOCと目標温度との関係を示す図であり、(a)はバッテリ初期時の関係を表し、(b)はバッテリ劣化時の関係を表す。It is a figure which shows the relationship between SOC and target temperature when the deterioration of a battery is considered, (a) represents the relationship at the time of a battery initial stage, (b) represents the relationship at the time of battery deterioration. 目標温度を算出する手段の一例を示す図である。It is a figure which shows an example of a means to calculate target temperature. 本実施形態における冷却システムのブロック構成の一例を示す図である。It is a figure which shows an example of the block configuration of the cooling system in this embodiment. 本実施形態における充電中のファン制御手段の処理フローの一例を示す図である。It is a figure which shows an example of the processing flow of the fan control means during charge in this embodiment.

次に、発明を実施するための形態(以降、「実施形態」と称す)について、適宜図面を参照しながら詳細に説明する。   Next, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate.

(概要)
本実施形態における、SOCと目標温度との関係の概要について、図1を用いて説明する。図1は、横軸にSOCを表し、縦軸にバッテリ温度を表している。
(Overview)
An outline of the relationship between the SOC and the target temperature in the present embodiment will be described with reference to FIG. In FIG. 1, the horizontal axis represents SOC, and the vertical axis represents battery temperature.

図1に示すように、従来技術における目標温度(バッテリを冷却する温度)は、SOCに対して一定に設定されていた。   As shown in FIG. 1, the target temperature (temperature for cooling the battery) in the prior art has been set constant with respect to the SOC.

しかし、想定されるいかなる走行状態においても、バッテリの残容量をすべて使い切る前に、バッテリ温度がバッテリ使用上限温度に到達しなければ良い。つまり、走行の開始時のSOCが小さい場合には、走行中にバッテリから放出される電力が少ないことからバッテリ温度の上昇分は小さく、逆に、走行の開始時のSOCが大きい場合は、走行中にバッテリから放出される電力が多くなることからバッテリ温度の上昇分が大きくなるということを考慮する。
即ち、走行開始時のSOCの多少により、想定されるバッテリの発熱量(到達温度)が異なることになる。具体的には、SOCが100%となるような充電をされた場合、この充電された電力を直ぐに消費するとすればバッテリの発熱量は大きく(到達温度は高く)なるので、この発熱量を見越して、走行前(充電完了時)に予めバッテリを冷却しておくことが好ましい。一方、SOCが20%となるような充電しかされない場合、この充電された電力を直ぐに消費するとしてもバッテリの発熱量はそう大きくはならないので、SOCが100%になるまで充電した場合と同程度の温度にまで、走行前(充電完了時)に予めバッテリを冷却しておくことは、冷却のエネルギーの無駄である。
However, in any assumed driving state, it is sufficient that the battery temperature does not reach the battery use upper limit temperature before using up the remaining battery capacity. That is, when the SOC at the start of travel is small, the amount of power released from the battery during travel is small, so the increase in battery temperature is small. Conversely, when the SOC at the start of travel is large, the travel is Consider that the increase in battery temperature increases because more power is discharged from the battery.
That is, the assumed amount of heat generated (between temperature) of the battery varies depending on the SOC at the start of traveling. Specifically, when the SOC is charged to 100%, if the charged power is consumed immediately, the heat generation amount of the battery becomes large (the reached temperature is high). Thus, it is preferable to cool the battery in advance before traveling (when charging is completed). On the other hand, if only SOC is charged to 20%, even if this charged power is consumed immediately, the amount of heat generated by the battery does not increase so much, so that it is about the same as when charged until the SOC reaches 100%. It is a waste of cooling energy to cool the battery in advance before traveling (when charging is completed) to the temperature of.

そこで、本実施形態における目標温度は、図1に示すように、バッテリ使用上限温度からバッテリの残容量に対応するバッテリ温度上昇分を減算することによって算出することができる。その結果、本実施形態における目標温度は、充電することによって、SOCが大きくなるに従って、低くなる特性となる。つまり、バッテリが目標温度より高い場合には、充電後の走行のために、予めSOCの大きさに対応する目標温度(発熱を見越した目標温度)にまで冷やされることになる。よって、一律にバッテリを冷却する場合に比較して、SOCの大きさに対応する目標温度までバッテリを冷やす方が、冷却のエネルギーが節約される。なお、図1では、本実施形態における目標温度の特性を、便宜的に直線で表現しているが、バッテリの種類(リチウムイオン電池、ニッケル水素電池、鉛蓄電池等)の特性に応じて、曲線等で表現しても構わない。   Therefore, as shown in FIG. 1, the target temperature in the present embodiment can be calculated by subtracting the battery temperature increase corresponding to the remaining battery capacity from the battery use upper limit temperature. As a result, the target temperature in the present embodiment has a characteristic of lowering as the SOC increases by charging. That is, when the battery is higher than the target temperature, the battery is cooled in advance to a target temperature (target temperature in anticipation of heat generation) corresponding to the magnitude of the SOC for traveling after charging. Therefore, compared with the case where the battery is uniformly cooled, the cooling energy is saved by cooling the battery to the target temperature corresponding to the magnitude of the SOC. In FIG. 1, the target temperature characteristic in the present embodiment is expressed by a straight line for convenience, but depending on the characteristics of the battery type (lithium ion battery, nickel metal hydride battery, lead storage battery, etc.), the curve It may be expressed as such.

また、図1に示すドットを付した領域101は、本実施形態における目標温度と従来技術における目標温度との差を表しており、消費電力を節約することが可能な領域(消費電力削減可能領域)である。すなわち、SOCが同じ場合、本実施形態における目標温度と従来技術における目標温度との差は、従来技術においてバッテリ温度を余計に下げすぎていたことを表している。   Further, a region 101 with dots shown in FIG. 1 represents the difference between the target temperature in the present embodiment and the target temperature in the prior art, and a region where power consumption can be saved (power consumption reduction possible region). ). That is, when the SOC is the same, the difference between the target temperature in the present embodiment and the target temperature in the conventional technique indicates that the battery temperature has been excessively lowered in the conventional technique.

次に、バッテリが劣化した場合の本実施形態における目標温度について、図2を用いて説明する。   Next, the target temperature in this embodiment when a battery deteriorates is demonstrated using FIG.

図2(a)には、バッテリ初期時、すなわち、バッテリが新品の状態の時の初期時の目標温度の特性(実線)を表している。しかし、バッテリが劣化すると、バッテリの内部抵抗値が増加するため、発熱量が増加する。そこで、図2(b)に示すように、劣化時の目標温度は、初期時の目標温度より低い値を有する劣化時の目標温度(一点鎖線)に設定することが好ましい。   FIG. 2A shows the target temperature characteristic (solid line) at the initial stage of the battery, that is, when the battery is in a new state. However, when the battery deteriorates, the internal resistance value of the battery increases, so the amount of heat generation increases. Therefore, as shown in FIG. 2B, the target temperature at the time of deterioration is preferably set to the target temperature at the time of deterioration (a dashed line) having a value lower than the target temperature at the initial time.

(目標温度算出手段)
次に、前記した初期時の目標温度および劣化時の目標温度を算出する目標温度算出手段について、図3を用いて説明する。
(Target temperature calculation means)
Next, target temperature calculation means for calculating the initial target temperature and the target temperature at the time of deterioration will be described with reference to FIG.

図3に示すように、目標温度算出手段301は、SOCおよび内部抵抗値を入力とし、目標温度を算出する。目標温度算出手段301は、初期時の目標温度(図1から明らかなように、SOCとバッテリ温度上昇分、およびバッテリ使用上限温度とから算出される)を予め図示しない記憶部に記憶している。また、目標温度算出手段301は、バッテリの内部抵抗値と内部抵抗増加係数との関係を予め図示しない記憶部に記憶している。なお、内部抵抗増加係数は、劣化時の目標温度を初期時の目標温度より低い値に設定するために用いられる。すなわち、内部抵抗増加係数は、バッテリの内部抵抗値が大きくなるに従って、小さくなるような特性を有する。   As shown in FIG. 3, the target temperature calculation means 301 receives the SOC and the internal resistance value as input, and calculates the target temperature. The target temperature calculation means 301 stores the initial target temperature (calculated from the SOC, the battery temperature increase, and the battery use upper limit temperature as is clear from FIG. 1) in a storage unit (not shown) in advance. . The target temperature calculation unit 301 stores a relationship between the internal resistance value of the battery and the internal resistance increase coefficient in a storage unit (not shown) in advance. The internal resistance increase coefficient is used to set the target temperature at the time of deterioration to a value lower than the target temperature at the initial time. That is, the internal resistance increase coefficient has such characteristics that it decreases as the internal resistance value of the battery increases.

そして、目標温度算出手段301は、取得したSOCに対応する初期時の目標温度(請求項に記載の目標温度)を前記記憶部から取得し、取得した内部抵抗値に対応する内部抵抗増加係数を前記記憶部から取得する。次に、目標温度算出手段301は、当該初期時の目標温度と当該内部抵抗増加係数とを乗算して、劣化時の目標温度(請求項に記載の目標温度)を算出する。ただし、バッテリが新品のときには、内部抵抗増加係数は1に設定される。   Then, the target temperature calculation unit 301 acquires an initial target temperature (target temperature described in claims) corresponding to the acquired SOC from the storage unit, and calculates an internal resistance increase coefficient corresponding to the acquired internal resistance value. Obtained from the storage unit. Next, the target temperature calculation means 301 multiplies the initial target temperature by the internal resistance increase coefficient to calculate a target temperature at the time of deterioration (target temperature described in claims). However, when the battery is new, the internal resistance increase coefficient is set to 1.

(冷却システム)
次に、前記した目標温度算出手段301を含む冷却システムのブロック構成の一例について、図4を用いて説明する。
(Cooling system)
Next, an example of a block configuration of the cooling system including the target temperature calculation unit 301 will be described with reference to FIG.

図4に示すように、冷却システム1は、走行中と充電中とでファンの制御の仕方が異なることから、走行中のファン制御手段401、充電中のファン制御手段402、および最終Duty算出手段403を備える。   As shown in FIG. 4, the cooling system 1 has different fan control methods during traveling and during charging. Therefore, the fan control unit 401 during traveling, the fan control unit 402 during charging, and the final duty calculation unit. 403 is provided.

走行中のファン制御手段401は、入力として、車速、バッテリ温度、吸気温度、冷却能力、発熱量、冷却目標温度、およびファン回転速度を入力として、走行中にバッテリを冷却するための要求Duty[%]を算出する。なお、この要求Duty[%]の算出には、公知の技術を用いることが可能である。また、冷却目標温度は、目標温度算出手段301によって算出された目標温度と同じであっても構わない。   The traveling fan control means 401 receives, as inputs, a vehicle speed, a battery temperature, an intake air temperature, a cooling capacity, a heat generation amount, a cooling target temperature, and a fan rotation speed, and inputs a request duty [ %] Is calculated. A known technique can be used to calculate the required duty [%]. Further, the cooling target temperature may be the same as the target temperature calculated by the target temperature calculation unit 301.

充電中のファン制御手段402は、前記した目標温度算出手段301によって算出される目標温度、吸気温度、およびバッテリ温度を用いて、充電中にバッテリを冷却するための要求Duty[%]を算出する。ここで、充電中とは、車両が停止(例えば、イグニッションスイッチがOFF)しているときに実行されることを意味し、走行中の回生充電とは異なる。なお、この要求Duty[%]の算出には、公知の技術を用いることが可能である。例えば、要求Duty[%]は、バッテリ温度が高いほど大きく、吸気温度が高いほど大きくなる。ただし、吸気温度が所定の温度より高い場合(冷却風がバッテリの冷却にほとんど効果をもたらさない場合)には、要求Duty[%]は0とする。また、バッテリ温度は、図示しない温度測定手段によって測定される。また、目標温度算出手段301へ入力されるSOCは、図示しないSOC測定手段(請求項に記載の残容量測定手段)によって測定される。また、目標温度算出手段301へ入力される内部抵抗値は、図示しない内部抵抗測定手段によって測定される。   The charging fan control unit 402 uses the target temperature, the intake air temperature, and the battery temperature calculated by the target temperature calculating unit 301 to calculate a request Duty [%] for cooling the battery during charging. . Here, charging is performed when the vehicle is stopped (for example, an ignition switch is OFF), and is different from regenerative charging during traveling. A known technique can be used to calculate the required duty [%]. For example, the required duty [%] increases as the battery temperature increases, and increases as the intake air temperature increases. However, when the intake air temperature is higher than a predetermined temperature (when the cooling air has little effect on cooling the battery), the required duty [%] is set to zero. The battery temperature is measured by a temperature measuring means (not shown). Further, the SOC input to the target temperature calculation means 301 is measured by an SOC measurement means (remaining capacity measurement means described in claims) (not shown). Further, the internal resistance value input to the target temperature calculation unit 301 is measured by an internal resistance measurement unit (not shown).

最終Duty算出手段403は、走行中のファン制御手段401および充電中のファン制御手段402によって算出されたそれぞれの要求Duty[%]を統合して、最終的に、バッテリを冷却するための最終Duty[%]を算出する。なお、この最終Duty[%]の算出には、公知の技術を用いることが可能である。そして、冷却システム1は、算出した最終Duty[%]に基づいて、バッテリを冷却する図示しない冷却手段を制御して、バッテリが本実施形態における目標温度よりも高くならないようにする。なお、最終Duty[%]の値が大きいほど、ファンは高速(高トルク)で回転する。   The final duty calculation means 403 integrates the respective requested duty [%] calculated by the running fan control means 401 and the charging fan control means 402, and finally the final duty for cooling the battery. [%] Is calculated. A known technique can be used for calculating the final duty [%]. The cooling system 1 controls a cooling means (not shown) for cooling the battery based on the calculated final duty [%] so that the battery does not become higher than the target temperature in the present embodiment. Note that the fan rotates at higher speed (high torque) as the value of the final duty [%] increases.

(充電中のファン制御手段の処理フロー)
次に、充電中のファン制御手段402の処理フローについて、図5を用いて説明する。
ステップS501では、充電中のファン制御手段402は、充電中か否かを判定する。
充電中でない場合(ステップS501でNo)、処理は、ステップS501へ戻る。
充電中の場合(ステップS501でYes)、ステップS502では、充電中のファン制御手段402の目標温度算出手段301は、SOCおよびバッテリの内部抵抗値を取得する。
(Processing flow of fan control means during charging)
Next, a processing flow of the fan control unit 402 during charging will be described with reference to FIG.
In step S501, the charging fan control unit 402 determines whether charging is in progress.
If charging is not in progress (No in step S501), the process returns to step S501.
If charging is in progress (Yes in step S501), in step S502, the target temperature calculation unit 301 of the fan control unit 402 being charged acquires the SOC and the internal resistance value of the battery.

ステップS503では、目標温度算出手段301は、目標温度を算出する。
ステップS504では、充電中のファン制御手段402は、目標温度がバッテリ温度より低いか否かを判定する。
In step S503, the target temperature calculation unit 301 calculates a target temperature.
In step S504, the charging fan control unit 402 determines whether the target temperature is lower than the battery temperature.

バッテリ温度が目標温度以下場合(ステップS504でYes)、ステップS505では、充電中のファン制御手段402は、冷却を実行しない。すなわち、充電中のファン制御手段402は、要求Duty[%]=0とする。そして、処理は、ステップS501へ戻る。   If the battery temperature is equal to or lower than the target temperature (Yes in step S504), in step S505, the fan control unit 402 being charged does not perform cooling. That is, the fan control means 402 during charging sets the request Duty [%] = 0. Then, the process returns to step S501.

バッテリ温度が目標温度を超える場合(ステップS504でNo)、ステップS506では、充電中のファン制御手段402は冷却を実行する。すなわち、充電中のファン制御手段402は、要求Duty[%]を算出する。そして、処理は、ステップS501へ戻る。   When the battery temperature exceeds the target temperature (No in step S504), in step S506, the fan control unit 402 being charged performs cooling. In other words, the charging fan control unit 402 calculates the required duty [%]. Then, the process returns to step S501.

以上、本実施形態では、冷却システム1が、図1に示すように、バッテリ使用上限温度から、想定されるいかなる走行状態においてバッテリの残容量をすべて使い切ったときのバッテリ温度上昇分を減算することによって、本実施形態における目標温度を算出する。その結果、本実施形態における目標温度は、SOC(バッテリの残容量)が大きくなるに従って、低くなる特性となる。それに対して、従来技術における目標温度は、SOCに対して一定に設定されていた。したがって、本実施形態における目標温度と、従来技術における目標温度との差分が、削減可能な消費電力となる。すなわち、本実施形態における冷却システム1は、外部電源による電池充電時の消費電力を節約することができる。   As described above, in the present embodiment, as shown in FIG. 1, the cooling system 1 subtracts the battery temperature increase when the remaining battery capacity is completely used in any assumed driving state from the battery use upper limit temperature. Thus, the target temperature in the present embodiment is calculated. As a result, the target temperature in the present embodiment has a characteristic of lowering as the SOC (remaining battery capacity) increases. On the other hand, the target temperature in the prior art has been set constant with respect to the SOC. Therefore, the difference between the target temperature in the present embodiment and the target temperature in the conventional technique is the power consumption that can be reduced. That is, the cooling system 1 in the present embodiment can save power consumption during battery charging by an external power source.

また、バッテリが劣化した場合には、内部抵抗値の増加にともなって発熱量が増加するので、その分バッテリ温度上昇分を多く見積もることが好ましい。そのため、本実施形態における冷却システム1は、バッテリ劣化時の目標温度を、内部抵抗値の増加に応じて、低く設定する。このように、本実施形態における冷却システム1は、バッテリの状態に応じて、こまめに目標温度を設定可能なため、外部電源による電池充電時の消費電力を節約することを可能とする。   In addition, when the battery is deteriorated, the amount of heat generation increases as the internal resistance value increases. Therefore, it is preferable to estimate the increase in battery temperature accordingly. Therefore, the cooling system 1 in the present embodiment sets the target temperature at the time of battery deterioration to be low as the internal resistance value increases. Thus, since the cooling system 1 in this embodiment can set the target temperature frequently according to the state of the battery, it is possible to save power consumption during battery charging by the external power source.

1 冷却システム
101 消費電力削減可能領域
301 目標温度算出手段
401 走行中のファン制御手段
402 充電中のファン制御手段
403 最終Duty算出手段
DESCRIPTION OF SYMBOLS 1 Cooling system 101 Power consumption reduction possible area 301 Target temperature calculation means 401 Fan control means during running 402 Fan control means during charging 403 Final duty calculation means

Claims (4)

電池の温度を測定する温度測定手段、前記電池の残容量を測定する残容量測定手段、および前記電池を冷却する冷却手段を備える電池の冷却システムであって、
前記残容量測定手段によって測定された前記電池の残容量を取得して、前記残容量が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した前記残容量に対応する目標温度を算出する目標温度算出手段をさらに備え、
前記冷却手段を用いて、前記電池の充電時に、前記目標温度算出手段によって算出された当該目標温度を超えないように前記電池の温度を制御する
ことを特徴とする電池の冷却システム。
A battery cooling system comprising temperature measuring means for measuring the temperature of the battery, remaining capacity measuring means for measuring the remaining capacity of the battery, and cooling means for cooling the battery,
The remaining capacity of the battery measured by the remaining capacity measuring means is acquired, and the target temperature corresponding to the acquired remaining capacity is obtained by referring to a target temperature characteristic having a characteristic that decreases as the remaining capacity increases. It further comprises target temperature calculation means for calculating,
A battery cooling system using the cooling means to control the temperature of the battery so as not to exceed the target temperature calculated by the target temperature calculating means when the battery is charged.
前記電池の内部抵抗値を測定する内部抵抗測定手段をさらに備え、
前記目標温度算出手段は、前記残容量測定手段によって測定された前記電池の残容量および前記内部抵抗測定手段によって測定された前記電池の内部抵抗値を取得して、前記残容量および前記内部抵抗値の双方が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した前記残容量および前記内部抵抗値に対応する目標温度を算出する
ことを特徴とする請求項1に記載の電池の冷却システム。
An internal resistance measuring means for measuring the internal resistance value of the battery;
The target temperature calculating means obtains the remaining capacity of the battery measured by the remaining capacity measuring means and the internal resistance value of the battery measured by the internal resistance measuring means, and the remaining capacity and the internal resistance value. 2. The battery according to claim 1, wherein a target temperature corresponding to the acquired remaining capacity and the internal resistance value is calculated with reference to a target temperature characteristic having a characteristic that both of the two become larger. Cooling system.
電池の温度を測定する温度測定手段、前記電池の残容量を測定する残容量測定手段、および前記電池を冷却する冷却手段を備える冷却システムにおいて用いられる冷却方法であって、
前記冷却システムは、
前記残容量測定手段によって測定された前記電池の残容量を取得して、前記残容量が大きくなるに従って低くなる特性を有する目標温度特性を参照して、取得した前記残容量に対応する目標温度を算出する目標温度算出ステップを実行し、
前記冷却手段を用いて、前記電池の充電時に、前記目標温度算出ステップによって算出された当該目標温度を超えないように前記電池の温度を制御する
ことを特徴とする冷却方法。
A cooling method used in a cooling system comprising temperature measuring means for measuring the temperature of the battery, remaining capacity measuring means for measuring the remaining capacity of the battery, and cooling means for cooling the battery,
The cooling system includes:
The remaining capacity of the battery measured by the remaining capacity measuring means is acquired, and the target temperature corresponding to the acquired remaining capacity is obtained by referring to a target temperature characteristic having a characteristic that decreases as the remaining capacity increases. Execute the target temperature calculation step to calculate,
A cooling method using the cooling means to control the temperature of the battery so as not to exceed the target temperature calculated in the target temperature calculation step when the battery is charged.
前記冷却システムは、
前記電池の内部抵抗値を測定する内部抵抗測定手段をさらに備え、
前記目標温度算出ステップでは、前記残容量測定手段によって測定された前記電池の残容量および前記内部抵抗測定手段によって測定された前記電池の内部抵抗値を取得して、前記残容量および前記内部抵抗値の双方が大きくなるに従って低くなる特性を有する目標温度特性を参照して、その取得した前記残容量および前記内部抵抗値に対応する目標温度を算出する
ことを特徴とする請求項3に記載の冷却方法。
The cooling system includes:
An internal resistance measuring means for measuring the internal resistance value of the battery;
In the target temperature calculating step, the remaining capacity of the battery measured by the remaining capacity measuring means and the internal resistance value of the battery measured by the internal resistance measuring means are obtained, and the remaining capacity and the internal resistance value are obtained. 4. The cooling according to claim 3, wherein a target temperature corresponding to the acquired remaining capacity and the internal resistance value is calculated with reference to a target temperature characteristic having a characteristic that decreases as both increase. Method.
JP2010254408A 2010-11-15 2010-11-15 Battery cooling system and cooling method Active JP5649918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254408A JP5649918B2 (en) 2010-11-15 2010-11-15 Battery cooling system and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254408A JP5649918B2 (en) 2010-11-15 2010-11-15 Battery cooling system and cooling method

Publications (2)

Publication Number Publication Date
JP2012104458A true JP2012104458A (en) 2012-05-31
JP5649918B2 JP5649918B2 (en) 2015-01-07

Family

ID=46394593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254408A Active JP5649918B2 (en) 2010-11-15 2010-11-15 Battery cooling system and cooling method

Country Status (1)

Country Link
JP (1) JP5649918B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507745A (en) * 2010-12-17 2014-03-27 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Temperature control method for in-vehicle electrochemical energy storage device
FR3005208A1 (en) * 2013-04-30 2014-10-31 Renault Sa METHOD FOR CONTROLLING THE TEMPERATURE OF A BATTERY OF AN ELECTRIC OR HYBRID VEHICLE.
FR3013151A1 (en) * 2013-11-13 2015-05-15 Renault Sa METHOD FOR MANAGING THE AVAILABLE POWER OF A BATTERY
KR20150105651A (en) * 2013-03-21 2015-09-17 도요타 지도샤(주) Vehicle
JP2016513342A (en) * 2013-02-15 2016-05-12 ルノー エス.ア.エス. How to adjust the battery temperature
WO2016190252A1 (en) * 2015-05-27 2016-12-01 株式会社Ihi Cooling system and contactless power supply system
JP2018207588A (en) * 2017-05-31 2018-12-27 トヨタ自動車株式会社 vehicle
WO2019096090A1 (en) * 2017-11-20 2019-05-23 明创能源股份有限公司 Thermal management system for independent electric device using large amount of power
WO2019123905A1 (en) * 2017-12-19 2019-06-27 三洋電機株式会社 Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same
GB2577088A (en) * 2018-09-13 2020-03-18 Oxis Energy Ltd Battery management
JP2021157876A (en) * 2020-03-25 2021-10-07 プライムアースEvエナジー株式会社 Cooling system and control method thereof
EP3916886A4 (en) * 2020-03-30 2021-12-01 Contemporary Amperex Technology Co., Limited Method and apparatus for controlling temperature of battery pack, and battery management system and storage medium
CN114248665A (en) * 2020-09-25 2022-03-29 本田技研工业株式会社 Storage battery control device
CN116087798A (en) * 2023-04-03 2023-05-09 中北润良新能源(济宁)股份有限公司 Power battery detection method
JP7343599B2 (en) 2019-02-15 2023-09-12 ウィスク アエロ エルエルシー Desired starting temperature of the battery in the vehicle
EP4414207A1 (en) 2023-02-10 2024-08-14 Toyota Jidosha Kabushiki Kaisha Electrified vehicle and method for controlling the same
JP7575682B2 (en) 2021-03-03 2024-10-30 マツダ株式会社 Vehicle power supply system and method for controlling vehicle battery unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175936A (en) * 1982-04-07 1983-10-15 株式会社東芝 Device for charging solar battery
JP2001130268A (en) * 1999-11-09 2001-05-15 Denso Corp Forced cooling device of battery for electric car
JP2004047208A (en) * 2002-07-10 2004-02-12 Ngk Insulators Ltd Heat insulating container for battery system
JP2004280449A (en) * 2003-03-14 2004-10-07 Toshiba Corp Data measurement device
JP2007048485A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Battery cooling apparatus for vehicle
JP2008016230A (en) * 2006-07-03 2008-01-24 Mazda Motor Corp Temperature control device of battery
JP2010124547A (en) * 2008-11-17 2010-06-03 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for charge control and photovoltaic power generating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175936A (en) * 1982-04-07 1983-10-15 株式会社東芝 Device for charging solar battery
JP2001130268A (en) * 1999-11-09 2001-05-15 Denso Corp Forced cooling device of battery for electric car
JP2004047208A (en) * 2002-07-10 2004-02-12 Ngk Insulators Ltd Heat insulating container for battery system
JP2004280449A (en) * 2003-03-14 2004-10-07 Toshiba Corp Data measurement device
JP2007048485A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Battery cooling apparatus for vehicle
JP2008016230A (en) * 2006-07-03 2008-01-24 Mazda Motor Corp Temperature control device of battery
JP2010124547A (en) * 2008-11-17 2010-06-03 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for charge control and photovoltaic power generating system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507745A (en) * 2010-12-17 2014-03-27 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Temperature control method for in-vehicle electrochemical energy storage device
JP2016513342A (en) * 2013-02-15 2016-05-12 ルノー エス.ア.エス. How to adjust the battery temperature
KR20150105651A (en) * 2013-03-21 2015-09-17 도요타 지도샤(주) Vehicle
KR102016057B1 (en) 2013-03-21 2019-08-29 도요타 지도샤(주) Vehicle
US9937816B2 (en) 2013-04-30 2018-04-10 Renault S.A.S Method for managing the temperature of a battery of an electric or hybrid vehicle
FR3005208A1 (en) * 2013-04-30 2014-10-31 Renault Sa METHOD FOR CONTROLLING THE TEMPERATURE OF A BATTERY OF AN ELECTRIC OR HYBRID VEHICLE.
WO2014177793A1 (en) * 2013-04-30 2014-11-06 Renault S.A.S Method for managing the temperature of a battery of an electric or hybrid vehicle
FR3013151A1 (en) * 2013-11-13 2015-05-15 Renault Sa METHOD FOR MANAGING THE AVAILABLE POWER OF A BATTERY
WO2015071587A1 (en) * 2013-11-13 2015-05-21 Renault S.A.S Method for managing the available power of a battery
WO2016190252A1 (en) * 2015-05-27 2016-12-01 株式会社Ihi Cooling system and contactless power supply system
US10315529B2 (en) 2015-05-27 2019-06-11 Ihi Corporation Cooling system and wireless power transfer system
JP2016226087A (en) * 2015-05-27 2016-12-28 株式会社Ihi Cooling system and non-contact power supply system
JP2018207588A (en) * 2017-05-31 2018-12-27 トヨタ自動車株式会社 vehicle
WO2019096090A1 (en) * 2017-11-20 2019-05-23 明创能源股份有限公司 Thermal management system for independent electric device using large amount of power
WO2019123905A1 (en) * 2017-12-19 2019-06-27 三洋電機株式会社 Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same
GB2577088A (en) * 2018-09-13 2020-03-18 Oxis Energy Ltd Battery management
JP7343599B2 (en) 2019-02-15 2023-09-12 ウィスク アエロ エルエルシー Desired starting temperature of the battery in the vehicle
JP7284124B2 (en) 2020-03-25 2023-05-30 プライムアースEvエナジー株式会社 Cooling system and cooling system control method
JP2021157876A (en) * 2020-03-25 2021-10-07 プライムアースEvエナジー株式会社 Cooling system and control method thereof
CN113994523A (en) * 2020-03-30 2022-01-28 宁德时代新能源科技股份有限公司 Battery pack temperature control method and device, battery management system and storage medium
EP3916886A4 (en) * 2020-03-30 2021-12-01 Contemporary Amperex Technology Co., Limited Method and apparatus for controlling temperature of battery pack, and battery management system and storage medium
CN113994523B (en) * 2020-03-30 2024-04-12 宁德时代新能源科技股份有限公司 Battery pack temperature control method and device, battery management system and storage medium
JP2022053838A (en) * 2020-09-25 2022-04-06 本田技研工業株式会社 Battery control device
JP7240368B2 (en) 2020-09-25 2023-03-15 本田技研工業株式会社 battery controller
CN114248665A (en) * 2020-09-25 2022-03-29 本田技研工业株式会社 Storage battery control device
CN114248665B (en) * 2020-09-25 2024-08-06 本田技研工业株式会社 Storage battery control device
JP7575682B2 (en) 2021-03-03 2024-10-30 マツダ株式会社 Vehicle power supply system and method for controlling vehicle battery unit
EP4414207A1 (en) 2023-02-10 2024-08-14 Toyota Jidosha Kabushiki Kaisha Electrified vehicle and method for controlling the same
CN116087798A (en) * 2023-04-03 2023-05-09 中北润良新能源(济宁)股份有限公司 Power battery detection method

Also Published As

Publication number Publication date
JP5649918B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5649918B2 (en) Battery cooling system and cooling method
CN102801190B (en) Charging control apparatus and charging control method for battery
JP5862631B2 (en) Power storage system
JP6119966B2 (en) Hybrid vehicle travel mode switching control device
JP6156353B2 (en) In-vehicle battery temperature increasing device and temperature increasing method
US10675985B2 (en) Fuel cell system mounted on vehicle and control method thereof
WO2012144060A1 (en) Charging device and charging method
JP5742607B2 (en) Control device for hybrid electric vehicle
JP6545435B2 (en) Vehicle control device, vehicle, and control method of vehicle
JP5585538B2 (en) Fuel cell system and fuel cell system control method
JP2017028874A (en) Secondary battery, electric automobile and arithmetic unit for secondary battery
JP5605321B2 (en) Charge control device
KR20090101015A (en) Method for conrolling torque of hybrid electric vehicle
JP2013169036A (en) Control device for power storage device, and electric vehicle
JP2013051115A (en) Vehicle and method of controlling vehicle
JP2005261034A (en) Controller of electric storage mechanism
JP2020072581A (en) Movable distance calculation device
JP6696358B2 (en) Control device for hybrid vehicle
JP5622705B2 (en) Charge / discharge control device and charge / discharge control method
JP2016013792A (en) Plug-in hybrid electric vehicle control unit
JP2015211500A (en) Vehicle temperature regulator
JP2012044849A (en) Controller of electric vehicle
JP5842607B2 (en) Non-aqueous secondary battery control device and control method
JP6424596B2 (en) Vehicle charge control device
JP6299963B2 (en) Secondary battery management device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5649918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250