WO2019123905A1 - Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same - Google Patents

Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same Download PDF

Info

Publication number
WO2019123905A1
WO2019123905A1 PCT/JP2018/042204 JP2018042204W WO2019123905A1 WO 2019123905 A1 WO2019123905 A1 WO 2019123905A1 JP 2018042204 W JP2018042204 W JP 2018042204W WO 2019123905 A1 WO2019123905 A1 WO 2019123905A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
cooling
supply device
temperature
battery pack
Prior art date
Application number
PCT/JP2018/042204
Other languages
French (fr)
Japanese (ja)
Inventor
直剛 吉田
隆秀 武田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2019123905A1 publication Critical patent/WO2019123905A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of cooling a power supply device, a cooling program, a computer readable recording medium, stored equipment, a power supply device, and a vehicle equipped with the same.
  • the power supply device is used for driving a vehicle and the like. Such a power supply device can output a large current by connecting a large number of secondary battery cells in series or in parallel.
  • the capacity of secondary battery cells has been increased, and it has become an issue how to realize measures against heat generation and burning of secondary battery cells.
  • high-capacity secondary battery cells have high battery energy, it is important to ensure safety, and when one secondary battery cell is in an abnormal heat generation state, it is possible to Attention is focused on the prevention of a burning phenomenon that causes heat to propagate and cause an adjacent secondary battery cell to generate abnormal heat.
  • Patent Document 1 As a power supply apparatus having a configuration for preventing burning, a power supply apparatus of Patent Document 1 below has been proposed.
  • the power supply device of Patent Document 1 has a configuration in which a heat insulating layer is interposed between adjacent secondary battery cells, and when a certain secondary battery cell generates heat, the secondary battery cells arranged adjacent to each other are generated. It is possible to prevent heat transfer.
  • the maximum calorific value of the secondary battery cell and whether or not burning can be prevented is determined by the thermal conductivity of the heat insulating layer and the thickness of the heat insulating layer. Since the calorific value of the secondary battery cell is determined by the capacity of the secondary battery cell, it tends to increase. On the other hand, the thermal conductivity of the heat insulating layer can not be designed freely because it is caused by the material constituting the heat insulating layer. Therefore, as the capacity of the secondary battery cell increases, it is necessary to increase the thickness of the heat insulating layer. The increase in the thickness of the heat insulating layer leads to an increase in the size of the power supply device, resulting in a problem that the energy density as the power supply device decreases.
  • the present invention has been made in view of such background, and one of the objects thereof is to provide a technology capable of preventing burning while suppressing a decrease in energy density as a power supply device.
  • a method of cooling a power supply device includes: detecting a state of charge (SOC) and a temperature of a battery assembly that is an assembly of a plurality of secondary battery cells included in the power supply device; Determining based on the determined charging rate and the detected temperature whether or not a predetermined temperature evaluation standard is met, and if it is determined that the temperature evaluation standard is not met, Operating a cooling mechanism for cooling the assembled battery, and continuing the cooling until the temperature of the assembled battery meets the temperature evaluation criteria.
  • SOC state of charge
  • a cooling program of a power supply device includes a function of acquiring a charging rate and a temperature of a battery pack that is an assembly of a plurality of secondary battery cells included in the power supply device, the acquired charging rate, A function of determining whether or not a predetermined temperature evaluation standard is met based on the acquired temperature, and cooling that cools the assembled battery when it is determined that the temperature evaluation standard is not met.
  • the mechanism can be operated to cause the computer to realize the function of continuing cooling until the temperature of the battery assembly meets the temperature evaluation criteria.
  • a power supply device includes a battery assembly that is an assembly of a plurality of secondary battery cells, a charge ratio detection unit that detects a charge ratio of the battery assembly, and temperature detection that detects a temperature of the battery assembly. And a deterioration rate calculation unit for calculating the deterioration rate of the assembled battery, and an evaluation for maintaining a temperature evaluation standard that defines the relationship between the charge rate and the temperature of the assembled battery capable of safely operating the assembled battery.
  • a reference holding unit a cooling mechanism for cooling the assembled battery, a charging rate of the assembled battery detected by the charging rate detecting unit, a temperature of the assembled battery detected by the temperature detecting unit, and An operation restriction determination unit that determines whether the temperature evaluation criteria held in the evaluation criteria holding unit are met based on the deterioration rate of the battery pack calculated in the deterioration rate computing unit, and the operation restriction determination If it is determined that the part does not meet the temperature evaluation criteria, Temperature of the assembled battery and a cooling control unit for operating the cooling mechanism to meet the temperature criterion.
  • a vehicle includes, in addition to the power supply device having the above configuration, a traveling motor supplied with power from the power supply device, a vehicle body on which the power supply device and the motor are mounted, and the motor And a wheel that is driven to drive the vehicle body.
  • the cooling program for the power supply device the cooling program for the power supply device, the power supply device, and the vehicle according to the above-described aspect of the present invention
  • the charging rate of the assembled battery, the temperature of the assembled battery, and the degradation rate of the assembled battery are included. If the battery information meets the preset temperature evaluation criteria and does not meet the temperature evaluation criteria, the cooling mechanism can be operated until the temperature of the battery pack meets the temperature evaluation criteria.
  • the cooling program for the power supply device, the cooling program for the power supply device, the power supply device, and the vehicle according to an aspect of the present invention can prevent burning by using the cooling mechanism of the power supply device. It is possible to prevent burning while suppressing the decrease in the energy density of the
  • FIG. 1 is a block diagram showing an example in which a battery device is mounted on a hybrid vehicle traveling by an engine and a motor. It is a block diagram which shows the example which mounts a battery apparatus in the electric vehicle which drive
  • a power supply device mounted on a vehicle such as a hybrid car or an electric car is required to be a large-capacity power supply device in order to improve the performance as a vehicle.
  • increasing the capacity of the power supply device can be expected to increase the range of the vehicle.
  • the driving efficiency of the vehicle decreases as the weight increases. That is, even if the capacity of the power supply device is increased, the travel distance of the vehicle does not necessarily increase when the weight increases. Therefore, the power supply device mounted in vehicles such as hybrid cars and electric vehicles is not necessarily just large in capacity, and in particular, the capacity of the power supply device is increased while suppressing an increase in weight, and energy as a power supply device It is important to improve the density.
  • the heat insulating layer is provided between the adjacent secondary battery cells, so that even if a certain secondary battery cell abnormally generates heat, Heat transfer to adjacent secondary battery cells can be suppressed.
  • the thermal insulation performance of the thermal insulation layer depends on the thermal conductivity of the material of the thermal insulation layer and the thickness of the thermal insulation layer.
  • the thermal conductivity of the material of the heat insulating layer is limited, it is necessary to increase the thickness of the heat insulating layer as the capacity of the secondary battery cell increases.
  • an increase in the thickness of the heat insulating layer may lower the energy density of the power supply device.
  • the inventors of the present invention utilize the cooling mechanism for cooling the assembled battery, so that even if one secondary battery cell abnormally generates heat, it is possible to switch to an adjacent secondary battery cell.
  • a power supply that can suppress heat transfer. If it is possible to prevent burning by utilizing the existing cooling mechanism, it is not necessary to increase the thickness of the heat insulating layer, so burning can be prevented while suppressing a decrease in energy density as a power supply device.
  • the secondary battery cell can be cooled when it is detected that an abnormality has occurred in the secondary battery cell, but such a configuration
  • the power supply device of the present invention needs to drive a circuit for monitoring the state of the secondary battery cell, and consumes power constantly.
  • monitoring of the state of the secondary battery cell is also stopped when the power supply device is not in use. Therefore, in order to realize prevention of burning using the cooling mechanism for cooling the assembled battery without deteriorating the performance as a vehicle, the possibility of burning is low or the possibility of burning is low. It is important to be able to determine if it is a state.
  • the worst condition is that the temperature of the secondary battery cell is high and the SOC of the secondary battery cell is high. Moreover, in the case of the secondary battery cell which has not deteriorated, this condition becomes severer.
  • As abnormal heat generation of the secondary battery cell a case where self heat generation is caused due to internal short circuit is assumed, but the heat generation amount itself depends on the remaining capacity of the secondary battery cell. Therefore, when the remaining capacity of the secondary battery cell in which the internal short circuit has occurred is small, the adjacent secondary battery cell may not reach thermal runaway even if the heat is transferred to the adjacent secondary battery cell.
  • the remaining capacity of the secondary battery cell indicates the amount of energy stored in the secondary battery cell.
  • the remaining capacity of the secondary battery cell can be estimated using the integrated value of the charge and discharge current, or can be estimated based on the voltage, temperature, and deterioration rate of the secondary battery cell.
  • the temperature of the secondary battery cell rises due to charge and discharge, but is also affected by the environmental temperature.
  • the remaining capacity of the secondary battery cell is only natural discharge if there is no charge and discharge of the power supply device, and the remaining capacity of the secondary battery cell changes in the decreasing direction.
  • the frequency of state monitoring of the secondary battery cell can be reduced.
  • the system is configured not to monitor the state of the secondary battery cell only when charging / discharging of the power supply device is stopped. May be
  • the method of cooling the power supply device includes a step of detecting a charging rate and a temperature of an assembled battery that is an assembly of a plurality of secondary battery cells included in the power supply device, the detected charging rate, and the detected temperature. Determining the temperature evaluation criteria, and operating the cooling mechanism for cooling the battery pack when it is determined that the temperature evaluation criteria are not satisfied; Continuing the cooling until the temperature of the assembled battery meets the temperature evaluation criteria. Thereby, the assembled battery can be used safely.
  • the pass / fail judgment of the temperature evaluation criteria is considered to be inappropriate for the operation of the assembled battery from the relationship between the charging rate of the assembled battery and the temperature. It may be determined whether or not an operating point determined by the current value of the charging rate and temperature of the battery pack is included in the defined operation restricted area.
  • the deterioration rate of the temperature evaluation criteria may be a deterioration rate of the assembled battery calculated in advance; It may be determined on the basis of the detected temperature whether or not a predetermined temperature evaluation standard is met.
  • appropriate safety management can be performed according to the degree of deterioration of the battery, and efficient safety management can be realized, such as eliminating unnecessary cooling operation.
  • the operation restricted area has a plurality of different restricted areas according to the deterioration rate of the assembled battery. There is.
  • the pass / fail judgment of the temperature evaluation criteria is made in advance on an evaluation graph in which the charging rate of the assembled battery and the temperature are coordinate axes. Whether an operating point determined by the current values of the charging rate and temperature of the assembled battery is included within the defined restricted area that seems to be unsuitable for the operation of the assembled battery from the relationship between the charging rate of the assembled battery and the temperature It is a judgment of.
  • the operation restricted area is defined by an area function predetermined based on the charging rate and temperature of the assembled battery. It is done.
  • the cycle for detecting the charging rate and the temperature of the assembled battery is 1 minute to 60 minutes.
  • the power supply device cooling method in addition to any of the above, it is possible to make the cycle for detecting the charging rate and the temperature of the assembled battery variable.
  • the cycle for detecting the charging rate and the temperature of the assembled battery becomes shorter as it approaches the operation restricted area. Can be controlled. As a result, it is possible to reduce the processing load under normal conditions while improving the monitoring accuracy and reliability.
  • the power supply device is a power supply device for driving a vehicle, and the ignition switch of the vehicle is turned off.
  • the cooling can be performed. This makes it possible to operate the power supply device safely at all times.
  • a computer-readable recording medium or a stored device stores a cooling program of the power supply device.
  • Recording media include CD-ROM, CD-R, CD-RW, flexible disk, magnetic tape, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, DVD-RW, DVD + RW, Blu-ray (registration
  • the media includes magnetic disks such as HD DVD (AOD), optical disks, magneto-optical disks, semiconductor memories, and other media capable of storing programs.
  • the program also includes programs distributed by downloading through a network line such as the Internet, in addition to those stored and distributed in the recording medium.
  • the stored devices include general-purpose or dedicated devices in which the above-described program is implemented in an executable state such as software or firmware.
  • each process or function included in the program may be executed by program software that can be executed by a computer, or the process of each part may be hardware such as a predetermined gate array (FPGA, ASIC) or program software.
  • a partial hardware module for realizing a part of hardware may be realized in a mixed form.
  • the cooling mechanism can be a water cooling type cooling mechanism.
  • the cooling mechanism can be an air cooling type cooling fan.
  • the power supply device in addition to any of the above configurations, can be used for driving a vehicle.
  • the cooling can be performed even in a state where the ignition switch of the vehicle is turned off.
  • the above configuration it is possible to always operate the power supply device safely.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and one member is used in common as a plurality of elements, or conversely, the function of one member is realized by a plurality of members It can be shared and realized.
  • the power supply device can be suitably used for driving a vehicle.
  • it is used in a device for supplying power to a motor for driving a vehicle, such as a plug-in hybrid vehicle or an electric vehicle, which is electrically driven.
  • a motor for driving a vehicle such as a plug-in hybrid vehicle or an electric vehicle, which is electrically driven.
  • the present invention is not limited to vehicles, and can be applied to other motors that are electrically driven, for example, heavy machines such as cranes, lines for improvement, etc., or power supplies for driving electric devices other than motors.
  • the power supply device 100 shown in this figure includes the battery assembly 1, the current detection unit 2, the voltage detection unit 3, the temperature detection unit 4, the charging rate detection unit 6, the deterioration rate calculation unit 7, and the operation restriction determination unit
  • a communication processing unit 9, a memory 11, a cooling control unit 14, and a cooling mechanism 15 are provided.
  • the battery assembly 1 includes one or more rechargeable secondary battery cells. When using a plurality of secondary battery cells, they are connected in series or in parallel. A lithium ion secondary battery or a lithium polymer battery can be used for the secondary battery cell. Further, an all solid battery, an air battery, a nickel hydrogen battery, a nickel cadmium battery or the like may be used for the secondary battery cell. (Current detection unit 2)
  • the current detection unit 2 is a member for detecting the charge / discharge current of the assembled battery 1.
  • the current detection unit 2 detects a voltage generated at both ends of a current detection resistor 10 connected in series to the battery assembly 1 to detect a charge current and a discharge current.
  • the current detection unit 2 amplifies the voltage induced across the current detection resistor 10 with an amplifier, converts an analog signal that is an output signal of the amplifier into a digital signal with an A / D converter, and outputs the digital signal.
  • the current detection resistor 10 generates a voltage proportional to the current flowing to the assembled battery 1, so that the current can be detected by the voltage.
  • the amplifier is an operational amplifier capable of amplifying a +-signal, and identifies the charging current and the discharging current by the output voltage +-.
  • the current detection unit 2 outputs a current signal of the battery pack 1 to the capacity calculation unit 5, the charging rate detection unit 6, and the communication processing unit 9. (Voltage detection unit 3)
  • the voltage detection unit 3 is a member for detecting the voltage of the assembled battery 1.
  • the voltage detection unit 3 converts an analog signal obtained by detecting the voltage of the battery pack 1 into a digital signal by an A / D converter and outputs the digital signal.
  • the voltage detection unit 3 outputs the detected voltage signal of the assembled battery 1 to the charging rate detection unit 6 and the communication processing unit 9.
  • the battery voltage of each secondary battery cell can be detected and the average value thereof can be output.
  • the average value or the median value of the battery modules is output as the battery voltage
  • a battery voltage is detected for each block connected in parallel.
  • the battery voltage can be detected efficiently.
  • the temperature detection unit 4 is a member for detecting the temperature of the assembled battery 1.
  • the temperature detection unit 4 converts a signal obtained by detecting the temperature of the battery pack 1 into a digital signal by an A / D converter and outputs the digital signal.
  • the temperature detection unit 4 outputs a temperature signal to the capacity calculation unit 5, the charging rate detection unit 6, and the communication processing unit 9.
  • the temperature detection unit is also configured by connecting a plurality of secondary battery cells to the battery pack, the temperature of each secondary battery cell may be detected and the average value or the median value may be output. it can. (Communication processing unit 9)
  • the communication processing unit 9 is a member for transmitting battery information to a vehicle on the main body side using the battery pack 1 as a power supply. (Cooling mechanism 15)
  • the cooling mechanism 15 is a member for cooling the assembled battery 1.
  • the air-cooling type cooling fan is rotated to blow cooling air to the battery assembly 1 for cooling.
  • the battery assembly 1 defines an air path of the cooling air blown by the cooling fan.
  • cooling is performed by circulating a refrigerant such as water with a pump for heat exchange.
  • the bottom and side surfaces of the battery assembly 1 and the cooling plate are thermally coupled to the cooling plate, and the refrigerant is circulated in the cooling plate to perform cooling.
  • the operation of the cooling mechanism 15 is performed by the cooling control unit 14.
  • the cooling control unit 14 operates the cooling mechanism 15. For example, when the cooling mechanism 15 is a cooling fan, the cooling control unit 14 controls ON / OFF of a motor that rotates the cooling fan. Further, when the cooling mechanism 15 is a water cooling type, the cooling control unit 14 controls ON / OFF of a pump that circulates a refrigerant such as water.
  • the operation of the cooling control unit 14 is performed by the operation restriction determination unit 8 described later. If it is determined that the battery pack 1 does not match the temperature evaluation criteria, the operation restriction determination unit 8 operates the cooling mechanism 15 to cool the temperature of the battery pack 1 to match the temperature evaluation criteria. Further, when the temperature of the battery pack 1 is lowered to meet the temperature evaluation standard, the operation of the cooling mechanism 15 is stopped. (Capacity calculator 5)
  • the capacity calculation unit 5 is a member for calculating the output signal of the current detection unit 2 and integrating the current for charging and discharging the assembled battery 1 to detect the capacity (Ah) of the assembled battery 1.
  • the capacity calculation unit 5 calculates a current signal of the digital signal input from the current detection unit 2 to calculate the discharge capacity of the assembled battery 1.
  • the capacity calculation unit 5 subtracts the discharge capacity from the charge capacity of the assembled battery 1 to calculate the dischargeable capacity (Ah) of the assembled battery 1 as an integrated value (Ah) of current.
  • the charge capacity is calculated by multiplying the charge current of the battery assembly 1 or by multiplying it by charge efficiency.
  • the discharge capacity is calculated by the integrated value of the discharge current.
  • the capacity calculation unit 5 can calculate the capacity accurately by correcting the integrated value of the charge capacity and the discharge capacity by the signal input from the temperature detection unit 4. (Charging rate detection unit 6)
  • the charging rate detection unit 6 is a member for determining the charging rate (SOC [%]) of the assembled battery 1 from the output signal of the voltage detection unit 3.
  • the charging rate detection unit 6 determines the charging rate (SOC [%]) of the assembled battery 1 from the open circuit voltage (V OCV ) of the assembled battery 1.
  • the charging rate detection unit 6 detects the open circuit voltage (V OCV ) of the assembled battery 1 from the voltage signal of the assembled battery 1 input from the voltage detection unit 3 and the current signal input from the current detection unit 2 or At timing when the current value of the charge / discharge input from the detection unit 2 becomes 0, the voltage value input from the voltage detection unit 3 is detected as an open circuit voltage (V OCV ).
  • the charging rate detector 6, to determine the charging rate of the battery pack 1 from the detected battery pack 1 of the open circuit voltage (V OCV) (SOC [% ]), open circuit voltage (V OCV) of the battery pack 1 are stored in the memory 11 as a function or a look-up table.
  • the memory 11 stores the characteristics of open circuit voltage-charge rate as a function or as a table.
  • the charging rate detection unit 6 determines the charging rate (SOC [%]) with respect to the open circuit voltage (V OCV ) from the function or table stored in the memory 11.
  • the charging rate detection unit 6 does not necessarily have to detect the open circuit voltage (V OCV ) at the timing when the charge / discharge current becomes 0, and the charge / discharge current is detected by the current detection unit 2.
  • the open circuit voltage (V OCV ) of the battery 1 can also be calculated and detected.
  • the charging rate detection unit 6 stores the detection voltage (V CCV ) of the battery pack 1 and the open voltage (V OCV ) for the charge / discharge current in the memory 11 as a function or a table.
  • the memory 11 stores the current-open voltage characteristics as a function or as a table.
  • the charging rate detection unit 6 calculates the open circuit voltage (V OCV ) for the detected voltage and the charge / discharge current from the function or table stored in the memory 11, and further, the assembled battery from the calculated open circuit voltage (V OCV ) Determine the charge rate of 1 (SOC [%]). In other words, regardless of the state of charge and discharge of the assembled battery 1, the charge ratio detection unit 6 can estimate the open circuit voltage (V OCV ) of the assembled battery 1 even in the state where the charge and discharge current flows in the assembled battery 1. . (Deterioration rate calculator 7)
  • the deterioration rate calculation unit 7 calculates the deterioration rate of the battery pack.
  • the degradation rate of the battery pack means the degradation state (capacity maintenance rate) of the battery capacity when the initial state of the battery pack is compared with 100%. That is
  • Deterioration rate D [%] 100 ⁇ ⁇ (present fully charged battery capacity) / (initial fully charged battery capacity) ⁇ ⁇ 100.
  • the deterioration rate of a non-deteriorated new assembled battery is 0%, and the deterioration degree of the deteriorated and unusable battery is 100%.
  • the deterioration rate D may be calculated using a capacity maintenance rate (State Of Health: SOH) estimated based on a change in internal resistance or the like. Specifically, the deterioration rate D is defined as 100-SOH [%].
  • the deterioration rate calculation unit 7 is configured to acquire the data of SOH recorded in a memory or the like and calculate the deterioration rate D, as necessary. Note that represents the degradation rate of the assembled battery at time t in D t. (Operation restriction determination unit 8)
  • the operation restriction determination unit 8 calculates the charge rate of the battery pack 1 detected by the charge rate detection unit 6, the temperature of the battery pack 1 detected by the temperature detection unit 4, and the assembled battery calculated by the deterioration rate calculation unit 7. Based on the deterioration rate of 1, it is determined whether the temperature evaluation criteria held in the evaluation criteria holding unit realized in the memory 11 are met.
  • the members such as the charging rate detection unit 6, the deterioration rate calculation unit 7, the operation restriction determination unit 8, the cooling control unit 14, etc. do not necessarily need to be configured as separate members, and are configured by a common arithmetic circuit 13. It is also good. For example, it may be configured by an ASIC or the like, or may be implemented as software by a CPU of a general-purpose computer or the like. (Evaluation criteria holding unit)
  • the evaluation reference holding unit holds the temperature evaluation reference of the battery assembly 1.
  • the temperature evaluation standard defines the relationship between the charging rate and the temperature at which the operation of the battery pack 1 can be performed safely.
  • a semiconductor memory such as an E 2 PROM can be used for such an evaluation reference holding unit.
  • the memory 11 is used as an evaluation reference holding unit.
  • the temperature evaluation standard of the battery pack held in the evaluation standard holding unit is given, for example, as an operation limited area that defines the range of the charging rate and the temperature that seems inappropriate for the operation of the battery pack. (Normal operating area)
  • FIG. 2 shows an evaluation graph in which the ratio of the charging rate SOC of the battery pack to the temperature T of the battery pack and the operation restricted area for defining the area where the battery pack can be used safely are superimposed and displayed as the temperature evaluation standard.
  • the operation limited area is an area which is determined by the temperature and the charging rate and is not suitable for the operation of the battery pack.
  • an operation restricted area is defined in order to define an area (normal operation area) in which the battery pack does not operate abnormally such as a thermal runaway chain.
  • the power supply apparatus 100 prevents the operating point of the battery pack from entering the operation restriction region according to the current temperature and charging rate of the battery pack so that the battery pack does not perform abnormal operation such as thermal runaway chain. Control.
  • the normal operation area can be said to be an operation area that requires no control (control unnecessary area). (Operation restricted area)
  • the operation restricted area is determined by the relationship between the charging rate of the assembled battery and the temperature. For example, it is given as an operation restricted area defined on the evaluation graph as shown in FIG.
  • the evaluation graph uses the charging rate and temperature of the battery pack as coordinate axes.
  • an operation restricted area which is considered to be unsuitable for the operation of the assembled battery is defined from the relationship between the charging rate of the assembled battery and the temperature. Then, the charging rate of the assembled battery and the current value of the temperature are respectively detected, and the operating point of the assembled battery is plotted on the evaluation graph to determine whether the operating point is included in the operation restricted area or not. Determined by 8.
  • the operation restricted area it is preferable to change the operation restricted area according to the deterioration rate of the assembled battery. This enables appropriate safety management according to the degree of deterioration of the battery.
  • the operation restricted area as a variable area that changes in accordance with the deterioration rate of the assembled battery, for example, in the case of a new assembled battery, the operating point in the operation restricted area becomes the normal operation area due to deterioration. There is no need to limit the operation. In this way, unnecessary safety operations can be eliminated to realize efficient safety management.
  • a plurality of operation restricted areas may be prepared and switched according to the deterioration rate of the battery pack. According to this method, it is sufficient to select a plurality of limited regions prepared in advance according to the deterioration rate of the battery pack, and an advantage is obtained that the processing can be simplified. For example, a new assembled battery having a deterioration rate of 0% has a relatively wide area as indicated by hatching in FIG. On the other hand, as the deterioration rate increases to 10% and 20%, the operation restricted area narrows. As described above, the operation restricted area is determined by the deterioration rate of the current battery pack and becomes narrower as the deterioration progresses. In the example of FIG.
  • the operation restricted area is divided into three, a first restricted area, a second restricted area, and a third restricted area, according to the deterioration rate of the battery cell.
  • the number of changes in the operation restriction area is not limited to three, and may be two or four or more.
  • the first restricted area is an area indicated by hatching in FIG.
  • the cooling mechanism 15 is operated. Then, the cooling is continued until the operating point becomes the normal operating area, and when the operating point goes out of the operating restricted area, the cooling mechanism 15 is stopped. This allows the battery pack to operate at a preferred operating environment temperature, and has the advantage of reducing the risk of thermal runaway.
  • the battery pack deteriorates, its operation restricted area becomes smaller.
  • the first restricted area with a deterioration rate of 0% is hatched from upper right to lower left
  • the second restricted area with a deterioration rate of 10% is hatched from upper left to lower right
  • the third restricted area with a deterioration rate of 20% are indicated by dots, respectively.
  • the threshold that separates the normal operation area and the operation restricted area is expressed by a first area function that uses the temperature T of the battery pack as a variable. That is, the first area function represents the state of charge SOC, which is a threshold separating the normal operation area and the operation restriction area with respect to the temperature T of a certain battery pack.
  • the threshold for separating the normal operation area and the operation restricted area is the temperature T t of the battery pack at time t and the deterioration rate D t as variables. It is expressed by one area function f (T t , D t ).
  • the above description exemplifies an embodiment in which the first restricted area, the second restricted area, and the third restricted area are divided into three according to the deterioration rate of the secondary battery cell, a function taking into consideration the deterioration rate In the case where is used, it is possible to evaluate the state of the battery pack more strictly.
  • Such monitoring of the operation restricted area is performed even while the power supply device is not discharged, for example, in a state where the ignition switch 12 of the vehicle is turned off.
  • the vehicle operates various protection circuits when the ignition switch 12 is ON, while most of the circuits stop operating when the ignition switch 12 is OFF. Therefore, in the power supply device according to the present embodiment, the safety can be further improved by continuing the monitoring operation of the operation limited area even when the ignition switch is off, and generally, the key is off.
  • a safer power supply can be realized by reducing the risk of thermal runaway of the battery pack due to the influence of ambient temperature.
  • the operation restricted area mentioned above is decided by the temperature and charge rate of an assembled battery, it is difficult to adjust the charge rate of an assembled battery generally at the time of ON of ignition switch 12, and OFF. From the viewpoint of safety in particular, although it is necessary to reduce the charging rate of the battery pack, specifically, to discharge the battery pack, such control is not easy. Therefore, in the present embodiment, focusing on the temperature control of the assembled battery which can be carried out more simply, a safe temperature range of the assembled battery determined according to the charging rate of the assembled battery when the ignition switch 12 is ON and OFF. If the temperature is out of the temperature range, that is, when the operation restricted area is reached, the cooling mechanism 15 is operated to lower the temperature, and control is performed in a direction out of the operation restricted area. Let This method is easy to realize because it is sufficient to turn on only the rotation of the cooling fan that constitutes the cooling mechanism 15 and the circulation pump of the refrigerant.
  • the charging rate of the battery assembly When the battery assembly is used as a power supply for the operation of the cooling mechanism, the charging rate of the battery assembly also decreases according to the operation time of the cooling mechanism. Therefore, while detecting such a change in the charging rate, it may be determined whether or not it is within the range of the operation restriction area. However, depending on the size and method of the cooling mechanism, the power consumption may be small, and in such a case, it is possible to perform control in which the fluctuation of the charging rate due to the driving of the cooling mechanism is ignored.
  • the control of the operation restriction determination unit 8 for operating the cooling mechanism 15 so that the operation point of the battery pack is out of the operation restriction area brings the operation point closer to the operation restriction area so that the operation point does not enter the operation restriction area.
  • the cooling mechanism 15 can be controlled.
  • the normal operating area can also be further divided into two areas using a second area function (T U , D).
  • the area (Zone) A divided by the second area function is an area in which the monitoring operation of the operation limited area is stopped or the frequency of the monitoring operation decreases when the ignition switch is OFF.
  • the area (Zone) B divided by the second area function is an area in which the monitoring operation of the operation restricted area is continued regardless of the charge / discharge state of the power supply device.
  • the area function is represented by a function having the deterioration rate D t as a variable. Specifically, as shown in FIG.
  • the upper limit temperature T U the power supply is equivalent to the upper limit of the available temperature range. That is, since the charging and discharging of the power supply at a maximum temperature T U above temperature is inhibited, there is no need to consider the upper limit temperature T U or more temperature regions. If the state of the battery pack is included in the range of the region A separated by the region function when the ignition switch is turned off, the power supply device is not charged, but it changes only in the direction of decreasing SOC due to natural discharge. Because of this, there is no risk of crossing the boundary with the zone C corresponding to the operation limited zone while the ignition switch is in the OFF state.
  • the monitoring operation of the operation limited area is stopped or the frequency of the monitoring operation is reduced.
  • the region B even if charging / discharging of the power supply device such as ignition switch OFF does not occur, the state of the battery pack is in the region C corresponding to the operation restricted region as the environmental temperature changes. It may cross boundaries. Therefore, in the area B, the monitoring operation of the operation limited area is continued regardless of the charge / discharge state of the power supply device.
  • the monitoring operation of the operation restricted area can be stopped or the frequency can be reduced, so that the power consumption associated with the monitoring operation can be reduced. It can be reduced.
  • the function f and the area function separating the above-mentioned normal operation area and the operation restricted area are given in advance according to the battery pack provided with the power supply device. For example, before use of the power supply device or at the time of shipment of the assembled battery, it is provided as a specification of the assembled battery. That is, it is created based on data obtained by measuring the presence or absence of thermal runaway by changing the charging rate, the temperature, and the deterioration rate for the battery pack.
  • the function f and the area function separating the above-described normal operation area and the operation restricted area are held in the evaluation reference holding unit, and are read out and used by the operation restriction judging unit 8.
  • the area function does not necessarily have to be held in the form of a function, and can also be held in the form of actual data, such as a look-up table.
  • the charging rate SOC is used in the above description, since the charging rate SOC has a correlation with the voltage V of the secondary battery cell, the voltage V of the secondary battery cell should be used instead of the charging rate SOC You can also. When the voltage V is used, the measurement value can be used as it is, so that the amount of calculation can be reduced. (How to cool the power supply)
  • the method of cooling the power supply device will be described according to the evaluation graph of FIG. 3 and the flowchart of FIG.
  • the evaluation graph of FIG. 3 the relationship between the operating point of the battery pack determined by the temperature of the battery pack detected by the temperature detecting unit 4 and the voltage of the battery pack detected by the voltage detecting unit 3 and the operation restricted area Is shown.
  • step S1 the temperature T t of the battery pack at time t and the voltage V t are detected, and the deterioration rate D t is acquired.
  • the temperature detection unit 4 and the voltage detection unit 3 detect the temperature and the voltage of each of the secondary battery cells that constitute the assembled battery at a predetermined sampling cycle. In the case of detecting a plurality of temperatures and voltages, the temperature T t and the voltage V t are respectively determined by their average value. This calculation may be performed by the temperature detection unit 4 or the voltage detection unit 3 or may be performed by the charging rate detection unit 6. Further, the deterioration rate D t is acquired by the deterioration rate calculator 7. Incidentally method of calculating the degradation rate D t of the assembled battery can be appropriately utilizing known algorithms for calculating the deterioration rate, for example, it is calculated on the basis of the capacity maintenance ratio SOH.
  • step S2 the first and second area functions f (T t , D t ) are determined based on the deterioration rate D t of the assembled battery at time t obtained above and the temperature T t of the assembled battery.
  • an appropriate area function f (T t , D t ) is selected based on the obtained D t .
  • the operation restriction determination unit 8 reads out the area function from the evaluation reference holding unit according to the deterioration rate D t of the battery pack.
  • the evaluation graph shown in FIG. 3 is obtained.
  • an area function f (T t , D t ) corresponding to the current deterioration rate of the battery pack is plotted.
  • the region that the operating point of the battery pack can have is in the region surrounded by the upper limit temperature Tu and the upper limit voltage V u of the battery assembly (indicated by a broken line in FIG. 3). It divides into the 1st zone A, the 2nd zone B, and the 3rd zone C using f ( Tt , Dt ).
  • the third zone C is a region where the voltage is higher than the curve defined by the region function f (T t , D t ), and all become a limited region, so the cooling mechanism 15 always operates in this region You need to
  • step S3 it is determined whether the operating point of the battery pack is within the operation restricted area.
  • the process proceeds to step S4, and the cooling mechanism 15 is stopped.
  • step S5 after the predetermined time T 0 wait corresponding to the sampling period, the process returns to step S1.
  • f (T U , D t ) ⁇ V t ⁇ f (T t , D t )
  • the process proceeds to step S6, and the cooling mechanism 15 is stopped.
  • the process proceeds to step S7, after the predetermined time T 1 waits which corresponds to the sampling period, the process returns to step S1.
  • the sampling period T 1 in the second zone B may be the same as the sampling period T 0 in the first zone B, but by setting it shorter than this, the timing is earlier. It is preferable because the operation of the cooling mechanism 15 can be started when necessary.
  • step S3 if the voltage V t at time t is higher than the area function f (T t , D t ), that is, if V t > f (T t , D t ), the operating point of the battery pack is It is determined that the vehicle is in zone C. In this case, the process proceeds to step S8, and the cooling mechanism 15 is operated. The process proceeds to step S9, after the predetermined time T 2 waits which corresponds to the sampling period, the process returns to step S1. Note sampling period T 3 when it is in the third zone C, which may be the same as the T 0 and T 1, also by less than these, the stopped state of the cooling mechanism 15 at an earlier timing It can be migrated.
  • the cooling mechanism 15 is operated and cooled according to the state of the assembled battery, and the assembled battery in the operation restricted area or the assembled battery approaching the operation restricted area is promptly transferred to the normal operation area It is realized that the thermal runaway chain of the battery pack can be prevented in advance to enhance the safety.
  • control in consideration of power consumption is possible. That is, in the area where there is no fear of thermal runaway chaining, the sampling cycle is extended to reduce the monitoring frequency of the assembled battery, for example, by stopping to the same monitoring level as the conventional vehicle shutdown or sleep mode. Power consumption can be reduced.
  • the state of the assembled battery is monitored by switching to a high sampling cycle similar to the monitoring in operation even while the vehicle is stopped. As described above, by switching the sampling cycle according to the situation, it is possible to achieve both suppression of power consumption while the vehicle is stopped and securing of safety. (Modification)
  • the sampling period which is the timing at which the temperature detection unit 4 and the voltage detection unit 3 measure the temperature and voltage of the battery pack, can be made constant. For example, it can be adjusted between 1 minute to 60 minutes, 3 minutes to 15 minutes, 5 minutes to 10 minutes and the like.
  • the charging rate of the assembled battery and the sampling cycle for detecting the temperature can be changed as well as fixed values.
  • the sampling cycle is variable and the operating point of the battery pack is in an area away from the operation restricted area in the normal operation area other than the operation restricted area, the operating point is in the normal operation area while the sampling cycle is extended.
  • the sampling period may be shortened when it is in the area close to the operation limited area.
  • the sampling cycle can be extended to reduce the processing load.
  • the information is frequently updated with the sampling cycle being 1 minute, while in the normal operation area 5 minutes, the power consumption in the normal operation area (when the car key is off) is suppressed. Is possible.
  • the above power supply device can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or plug-in hybrid vehicle traveling with both an engine and a motor, or an electric vehicle traveling only with a motor can be used.
  • a large-capacity, high-output power supply device 100 will be described as an example in which a large number of necessary control circuits are added by connecting a large number of the above-described power supply devices in series or in parallel. . (Power supply for hybrid vehicles)
  • FIG. 5 shows an example in which the power supply device 100 is mounted on a hybrid vehicle traveling with both an engine and a motor.
  • a vehicle HV equipped with a power supply device 100 shown in this figure includes a vehicle body 90, an engine 96 for traveling the vehicle body 90, a motor 93 for traveling, a power supply device 100 for supplying electric power to the motor 93, and a power supply device 100. And a wheel 97 driven by a motor 93 and an engine 96 to travel the vehicle body 90.
  • the power supply device 100 is connected to the motor 93 and the generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels with both the motor 93 and the engine 96 while charging and discharging the battery of the power supply device 100.
  • the motor 93 is driven in a region where the engine efficiency is low, for example, at the time of acceleration or low speed traveling to drive the vehicle.
  • the motor 93 is supplied with power from the power supply device 100 and is driven.
  • the generator 94 is driven by the engine 96 or driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (Power supply for electric vehicles)
  • FIG. 6 shows an example in which the power supply device is mounted on an electric vehicle traveling only by a motor.
  • the vehicle EV mounted with the power supply device shown in this figure includes a vehicle body 90, a traveling motor 93 for traveling the vehicle body 90, a power supply device 100 for supplying power to the motor 93, and a battery of the power supply device 100. And a wheel 97 driven by a motor 93 to travel the vehicle body 90.
  • the motor 93 is supplied with power from the power supply device 100 and is driven.
  • the generator 94 is driven by energy when regenerative braking the vehicle EV, and charges the battery of the power supply device 100. (Power storage device for storage)
  • this power supply device can be used not only as a power source for mobiles, but also as a storage type storage equipment.
  • a power supply for home use or factory use a power supply system that charges with sunlight or late-night power and discharges it when necessary, or a streetlight power supply that charges sunlight during the day and discharges it at night, It can also be used as a backup power supply for driving traffic signals.
  • FIG. In the power supply device 100 shown in this figure, a plurality of battery packs 81 are connected in a unit form to constitute a battery unit 82. In each battery pack 81, a plurality of secondary battery cells are connected in series and / or in parallel. Each battery pack 81 is controlled by a power supply controller 84.
  • the power supply device 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. Therefore, the power supply device 100 has a charge mode and a discharge mode.
  • the load LD and the charging power supply CP are connected to the power supply device 100 through the discharge switch DS and the charging switch CS, respectively.
  • the on / off of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply device 100.
  • the power supply controller 84 switches the charge switch CS to ON and the discharge switch DS to OFF to permit charging of the power supply device 100 from the charging power supply CP.
  • the power supply controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge in response to a request from the load LD. It switches to the mode and permits discharge from the power supply device 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to simultaneously perform the power supply of the load LD and the charging of the power supply apparatus 100.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects it to the load LD, and drives the load LD with the power from the power supply device 100.
  • the discharge switch DS can use a switching element such as an FET.
  • the ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 also includes a communication interface for communicating with an external device. In the example of FIG. 7, the host device HT is connected according to the existing communication protocol such as UART or RS-232C. Also, if necessary, a user interface may be provided for the user to operate the power supply system.
  • Each battery pack 81 includes a signal terminal and a power terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting a signal from another battery pack or the power supply controller 84
  • the pack connecting terminal DO is for inputting / outputting a signal to / from another pack battery which is a child pack. It is a terminal of.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
  • a cooling method for a power supply device, a cooling program, a computer readable recording medium, a stored device, a power supply device, and a vehicle equipped with the same are plug-in hybrids capable of switching between an EV travel mode and a HEV travel mode It can be suitably used as a power supply device for electric vehicles, hybrid electric vehicles, electric vehicles and the like.
  • a backup power supply that can be mounted in a rack of a computer server, a backup power supply for a wireless base station such as a mobile phone, a storage power for household use and a factory, a power supply for street lights, etc. It can also be suitably used for backup power sources such as traffic lights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

In order to improve safety of an assembled battery, a method for cooling a power supply device includes: a step for detecting the charging rate and temperature of the assembled battery, which is an assembly of a plurality of secondary battery cells that the power supply device comprises (S1); a step for assessing whether or not there is a match with preset temperature evaluation criteria on the basis of the detected charging rate and the detected temperature (S3); and when it is determined there is not a match with the temperature evaluation criteria, a step for operating a cooling mechanism 15 for cooling the assembled battery 1, and continuing cooling until the temperature of the assembled battery 1 matches the temperature evaluation criteria (S8).

Description

電源装置の冷却方法、冷却プログラム、コンピュータで読み取り可能な記録媒体及び記憶した機器、電源装置並びにこれを備える車両Power supply device cooling method, cooling program, computer readable recording medium and stored device, power supply device, and vehicle equipped with the same
 本発明は、電源装置の冷却方法、冷却プログラム、コンピュータで読み取り可能な記録媒体及び記憶した機器、電源装置並びにこれを備える車両に関する。 The present invention relates to a method of cooling a power supply device, a cooling program, a computer readable recording medium, stored equipment, a power supply device, and a vehicle equipped with the same.
 電源装置は、車両の駆動用等に利用されている。このような電源装置は、多数の二次電池セルを直列や並列に接続して大電流を出力可能としている。近年は二次電池セルの高容量化が進んでおり、二次電池セルの発熱や類焼の対策をいかにして実現するかが課題となっている。特に、高容量の二次電池セルは電池エネルギーが高いことから、安全性の確保が重要となっており、ある二次電池セルが異常発熱状態になった場合に、隣接する二次電池セルに熱が伝播して隣接する二次電池セルが異常発熱を引き起こす類焼現象の防止が注目されている。 The power supply device is used for driving a vehicle and the like. Such a power supply device can output a large current by connecting a large number of secondary battery cells in series or in parallel. In recent years, the capacity of secondary battery cells has been increased, and it has become an issue how to realize measures against heat generation and burning of secondary battery cells. In particular, because high-capacity secondary battery cells have high battery energy, it is important to ensure safety, and when one secondary battery cell is in an abnormal heat generation state, it is possible to Attention is focused on the prevention of a burning phenomenon that causes heat to propagate and cause an adjacent secondary battery cell to generate abnormal heat.
 具体的には、類焼を防止する構成を備えた電源装置として、下記特許文献1の電源装置が提案されている。特許文献1の電源装置は、隣接する二次電池セルの間に断熱層を介在させる構成となっており、ある二次電池セルが発熱したときに、隣り合って配置された二次電池セルに熱が伝達されるのを防止できるようになっている。 Specifically, as a power supply apparatus having a configuration for preventing burning, a power supply apparatus of Patent Document 1 below has been proposed. The power supply device of Patent Document 1 has a configuration in which a heat insulating layer is interposed between adjacent secondary battery cells, and when a certain secondary battery cell generates heat, the secondary battery cells arranged adjacent to each other are generated. It is possible to prevent heat transfer.
特開2017-45508号公報JP, 2017-45508, A
 上記構成の電源装置の場合、二次電池セルの最大発熱量と、類焼を防止できるかどうかは断熱層の熱伝導率と、断熱層の厚さによって決まる。二次電池セルの発熱量は、二次電池セルの容量によって決まるため、増加する傾向にある。一方、断熱層の熱伝導率は、断熱層を構成する材料に起因するため、自由に設計できるわけではない。そのため、二次電池セルの高容量化が進むと、断熱層の厚さを増加させる必要がある。断熱層の厚さの増加は、電源装置の大型化を招き、電源装置としてのエネルギー密度が低下するという問題がある。 In the case of the power supply device configured as described above, the maximum calorific value of the secondary battery cell and whether or not burning can be prevented is determined by the thermal conductivity of the heat insulating layer and the thickness of the heat insulating layer. Since the calorific value of the secondary battery cell is determined by the capacity of the secondary battery cell, it tends to increase. On the other hand, the thermal conductivity of the heat insulating layer can not be designed freely because it is caused by the material constituting the heat insulating layer. Therefore, as the capacity of the secondary battery cell increases, it is necessary to increase the thickness of the heat insulating layer. The increase in the thickness of the heat insulating layer leads to an increase in the size of the power supply device, resulting in a problem that the energy density as the power supply device decreases.
 本発明は、このような背景に鑑みてなされたものであり、その目的の一は、電源装置としてのエネルギー密度の低下を抑制しつつ、類焼を防止できる技術を提供することにある。 The present invention has been made in view of such background, and one of the objects thereof is to provide a technology capable of preventing burning while suppressing a decrease in energy density as a power supply device.
 本発明のある態様の電源装置の冷却方法は、電源装置が備える複数の二次電池セルの集合体である組電池の充電率(State Of Charge:SOC)と温度を検出する工程と、前記検出された充電率と、前記検出された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定する工程と、温度評価基準に合致していないと判定された場合に、前記組電池を冷却する冷却機構を作動させて、前記組電池の温度が温度評価基準に合致するまで冷却を継続する工程とを含んでいる。 A method of cooling a power supply device according to an aspect of the present invention includes: detecting a state of charge (SOC) and a temperature of a battery assembly that is an assembly of a plurality of secondary battery cells included in the power supply device; Determining based on the determined charging rate and the detected temperature whether or not a predetermined temperature evaluation standard is met, and if it is determined that the temperature evaluation standard is not met, Operating a cooling mechanism for cooling the assembled battery, and continuing the cooling until the temperature of the assembled battery meets the temperature evaluation criteria.
 本発明のある態様の電源装置の冷却プログラムは、電源装置が備える複数の二次電池セルの集合体である組電池の充電率と温度を取得する機能と、前記取得された充電率と、前記取得された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定する機能と、温度評価基準に合致していないと判定された場合に、前記組電池を冷却する冷却機構を作動させて、前記組電池の温度が温度評価基準に合致するまで冷却を継続する機能とをコンピュータに実現させることができるものである。 A cooling program of a power supply device according to an aspect of the present invention includes a function of acquiring a charging rate and a temperature of a battery pack that is an assembly of a plurality of secondary battery cells included in the power supply device, the acquired charging rate, A function of determining whether or not a predetermined temperature evaluation standard is met based on the acquired temperature, and cooling that cools the assembled battery when it is determined that the temperature evaluation standard is not met. The mechanism can be operated to cause the computer to realize the function of continuing cooling until the temperature of the battery assembly meets the temperature evaluation criteria.
 本発明のある態様の電源装置は、複数の二次電池セルの集合体である組電池と、前記組電池の充電率を検出する充電率検出部と、前記組電池の温度を検出する温度検出部と、前記組電池の劣化率を演算する劣化率演算部と、前記組電池の動作を安全に行い得る該組電池の充電率と温度の関係を規定した温度評価基準を保持するための評価基準保持部と、前記組電池を冷却するための冷却機構と、前記充電率検出部で検出された前記組電池の充電率と、前記温度検出部で検出された前記組電池の温度と、前記劣化率演算部で演算された前記組電池の劣化率に基づいて、前記評価基準保持部に保持された温度評価基準に合致しているか否かを判定する動作制限判定部と、前記動作制限判定部で温度評価基準に合致していないと判定されると、前記組電池の温度が温度評価基準に合致するまで前記冷却機構を作動させる冷却制御部とを備えている。 A power supply device according to an aspect of the present invention includes a battery assembly that is an assembly of a plurality of secondary battery cells, a charge ratio detection unit that detects a charge ratio of the battery assembly, and temperature detection that detects a temperature of the battery assembly. And a deterioration rate calculation unit for calculating the deterioration rate of the assembled battery, and an evaluation for maintaining a temperature evaluation standard that defines the relationship between the charge rate and the temperature of the assembled battery capable of safely operating the assembled battery. A reference holding unit, a cooling mechanism for cooling the assembled battery, a charging rate of the assembled battery detected by the charging rate detecting unit, a temperature of the assembled battery detected by the temperature detecting unit, and An operation restriction determination unit that determines whether the temperature evaluation criteria held in the evaluation criteria holding unit are met based on the deterioration rate of the battery pack calculated in the deterioration rate computing unit, and the operation restriction determination If it is determined that the part does not meet the temperature evaluation criteria, Temperature of the assembled battery and a cooling control unit for operating the cooling mechanism to meet the temperature criterion.
 本発明のある態様の車両は、上記の構成の電源装置に加えて、該電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えている。 A vehicle according to an aspect of the present invention includes, in addition to the power supply device having the above configuration, a traveling motor supplied with power from the power supply device, a vehicle body on which the power supply device and the motor are mounted, and the motor And a wheel that is driven to drive the vehicle body.
 上述の本発明のある態様の電源装置の冷却プログラム、電源装置の冷却プログラム、電源装置、及び、車両によれば、組電池の充電率と、組電池の温度と、組電池の劣化率を含む電池情報が、予め設定された温度評価基準に合致し、温度評価基準に合致していない場合には、組電池の温度が温度評価基準に合致するまで冷却機構を作動させることができる。これにより、本発明のある態様の電源装置の冷却プログラム、電源装置の冷却プログラム、電源装置、及び、車両は、電源装置の冷却機構を用いて、類焼を防止することが可能となり、電源装置としてのエネルギー密度の低下を抑制しつつ、類焼を防止できるようになっている。 According to the cooling program for the power supply device, the cooling program for the power supply device, the power supply device, and the vehicle according to the above-described aspect of the present invention, the charging rate of the assembled battery, the temperature of the assembled battery, and the degradation rate of the assembled battery are included. If the battery information meets the preset temperature evaluation criteria and does not meet the temperature evaluation criteria, the cooling mechanism can be operated until the temperature of the battery pack meets the temperature evaluation criteria. As a result, the cooling program for the power supply device, the cooling program for the power supply device, the power supply device, and the vehicle according to an aspect of the present invention can prevent burning by using the cooling mechanism of the power supply device. It is possible to prevent burning while suppressing the decrease in the energy density of the
本発明の一実施形態に係る電源装置を示すブロック図である。It is a block diagram showing the power supply device concerning one embodiment of the present invention. 温度評価基準を示す評価グラフである。It is an evaluation graph which shows a temperature evaluation standard. 温度検出部で検出された組電池の温度と、電圧検出部で検出された組電池の電圧で決まる動作点と、動作制限領域との関係を示す評価グラフである。It is an evaluation graph which shows the relationship between the temperature of the assembled battery detected by the temperature detection part, the operating point determined by the voltage of the assembled battery detected by the voltage detection part, and an operation restriction area. 電源装置の冷却方法を示すフローチャートである。It is a flowchart which shows the cooling method of a power supply device. エンジンとモータで走行するハイブリッド自動車にバッテリ装置を搭載する例を示すブロック図である。FIG. 1 is a block diagram showing an example in which a battery device is mounted on a hybrid vehicle traveling by an engine and a motor. モータのみで走行する電気自動車にバッテリ装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery apparatus in the electric vehicle which drive | works only by a motor. 蓄電装置にバッテリ装置を使用する例を示すブロック図である。It is a block diagram which shows the example which uses a battery apparatus for an electrical storage apparatus.
 まず、本発明の一つの着目点について説明する。ハイブリッドカーや電気自動車等の車両に搭載される電源装置は、車両としての性能向上のため、大容量の電源装置であることが求められている。例えば、電源装置の容量を増加させることで、車両の航続距離の増加が期待できる。一方、ハイブリッドカーや電気自動車等の車両は、重量が増加すると、車両の駆動効率が低下する。つまり、電源装置の容量が増えても、重量が増加した場合には、必ずしも車両の航続距離が増加するとは限らない。そのため、ハイブリッドカーや電気自動車等の車両に搭載される電源装置は、単に容量が大きければ良いわけではなく、特に、重量増加を抑制しつつ、電源装置の容量を増加させ、電源装置としてのエネルギー密度を向上させることが大切である。 First, one focus point of the present invention will be described. A power supply device mounted on a vehicle such as a hybrid car or an electric car is required to be a large-capacity power supply device in order to improve the performance as a vehicle. For example, increasing the capacity of the power supply device can be expected to increase the range of the vehicle. On the other hand, in the case of a vehicle such as a hybrid car or an electric car, the driving efficiency of the vehicle decreases as the weight increases. That is, even if the capacity of the power supply device is increased, the travel distance of the vehicle does not necessarily increase when the weight increases. Therefore, the power supply device mounted in vehicles such as hybrid cars and electric vehicles is not necessarily just large in capacity, and in particular, the capacity of the power supply device is increased while suppressing an increase in weight, and energy as a power supply device It is important to improve the density.
 上述の通り、複数の二次電池セルを備える電源装置において、隣接する二次電池セルの間に断熱層を備える構成とすることで、ある二次電池セルが異常発熱した場合であっても、隣接する二次電池セルへの伝熱を抑制することができる。断熱層の断熱性能は、断熱層の材料の熱伝導率と、断熱層の厚さに依存する。一方で、断熱層の材料の熱伝導率には、限度があるため、二次電池セルが大容量になるにつれて、断熱層の厚さを増加させることが必要になる。しかしながら、断熱層の厚さの増加は、電源装置としてのエネルギー密度が低下を招くおそれがある。 As described above, in the power supply apparatus including the plurality of secondary battery cells, the heat insulating layer is provided between the adjacent secondary battery cells, so that even if a certain secondary battery cell abnormally generates heat, Heat transfer to adjacent secondary battery cells can be suppressed. The thermal insulation performance of the thermal insulation layer depends on the thermal conductivity of the material of the thermal insulation layer and the thickness of the thermal insulation layer. On the other hand, since the thermal conductivity of the material of the heat insulating layer is limited, it is necessary to increase the thickness of the heat insulating layer as the capacity of the secondary battery cell increases. However, an increase in the thickness of the heat insulating layer may lower the energy density of the power supply device.
 以上の問題に鑑みて、本発明の発明者らは、組電池を冷却する冷却機構を利用することで、ある二次電池セルが異常発熱した場合であっても、隣接する二次電池セルへの伝熱を抑制することのできる電源装置を検討した。既存の冷却機構を利用して類焼を防止することができれば、断熱層の厚さを増加させる必要がないので、電源装置としてのエネルギー密度の低下を抑制しつつ、類焼を防止することができる。 In view of the above problems, the inventors of the present invention utilize the cooling mechanism for cooling the assembled battery, so that even if one secondary battery cell abnormally generates heat, it is possible to switch to an adjacent secondary battery cell. We examined a power supply that can suppress heat transfer. If it is possible to prevent burning by utilizing the existing cooling mechanism, it is not necessary to increase the thickness of the heat insulating layer, so burning can be prevented while suppressing a decrease in energy density as a power supply device.
 上記構成を検討するにあたり、特に重要なことは、二次電池セルの状態判定をどのようにするのかということである。例えば、二次電池セルの状態を常に監視するように構成した場合、二次電池セルに異常が発生したことを検知した際に、二次電池セルを冷却することができるが、このような構成の電源装置は、二次電池セルの状態監視のための回路を駆動する必要があり、電力を常に消費することになる。電力消費を抑制するためには、電源装置が使用されていない場合には二次電池セルの状態の監視も停止されることが好ましい。従って、車両としての性能を損なうことなく、組電池を冷却する冷却機構を利用した類焼防止を実現するためには、類焼が発生する可能性が高い状態なのか、類焼が発生する可能性が低い状態なのかを判定できるようにすることが重要になる。 In considering the above configuration, it is particularly important how to determine the state of the secondary battery cell. For example, when it is configured to constantly monitor the state of the secondary battery cell, the secondary battery cell can be cooled when it is detected that an abnormality has occurred in the secondary battery cell, but such a configuration The power supply device of the present invention needs to drive a circuit for monitoring the state of the secondary battery cell, and consumes power constantly. In order to reduce power consumption, it is preferable that monitoring of the state of the secondary battery cell is also stopped when the power supply device is not in use. Therefore, in order to realize prevention of burning using the cooling mechanism for cooling the assembled battery without deteriorating the performance as a vehicle, the possibility of burning is low or the possibility of burning is low. It is important to be able to determine if it is a state.
 具体的に、熱暴走連鎖を想定する場合、ワースト条件は、二次電池セルの温度が高く、二次電池セルのSOCが高い状態である。また、劣化していない二次電池セルの場合には、さらに、この条件が厳しくなる。二次電池セルの異常発熱としては、内部短絡によって自己発熱する場合などが想定されるが、その発熱量自体は、二次電池セルの残容量に依存する。そのため、内部短絡が起こった二次電池セルの残容量が小さい場合には、隣接する二次電池セルに熱が伝わったとしても、隣接する二次電池セルが熱暴走に至らないこともある。なお、二次電池セルの残容量は、二次電池セルに蓄えられたエネルギー量を指す。典型的には、二次電池セルの残容量は、充放電電流の積算値を用いて推定したり、二次電池セルの電圧と温度と劣化率などを元に推定することができる。 Specifically, when assuming a thermal runaway chain, the worst condition is that the temperature of the secondary battery cell is high and the SOC of the secondary battery cell is high. Moreover, in the case of the secondary battery cell which has not deteriorated, this condition becomes severer. As abnormal heat generation of the secondary battery cell, a case where self heat generation is caused due to internal short circuit is assumed, but the heat generation amount itself depends on the remaining capacity of the secondary battery cell. Therefore, when the remaining capacity of the secondary battery cell in which the internal short circuit has occurred is small, the adjacent secondary battery cell may not reach thermal runaway even if the heat is transferred to the adjacent secondary battery cell. The remaining capacity of the secondary battery cell indicates the amount of energy stored in the secondary battery cell. Typically, the remaining capacity of the secondary battery cell can be estimated using the integrated value of the charge and discharge current, or can be estimated based on the voltage, temperature, and deterioration rate of the secondary battery cell.
 また、二次電池セルの温度は、充放電によって上昇するが、環境温度にも影響を受ける。一方で、二次電池セルの残容量は、電源装置の充放電がなければ、自然放電のみであり、二次電池セルの残容量は低下する方向に変化することになる。 In addition, the temperature of the secondary battery cell rises due to charge and discharge, but is also affected by the environmental temperature. On the other hand, the remaining capacity of the secondary battery cell is only natural discharge if there is no charge and discharge of the power supply device, and the remaining capacity of the secondary battery cell changes in the decreasing direction.
 従って、このような場合には、冷却機構を駆動する必要がないので、二次電池セルの状態監視の頻度を下げることができる。なお、類焼防止以外の理由で二次電池セルの状態を監視する必要がなければ、電源装置の充放電が停止されている場合に限り、二次電池セルの状態監視を行わないように構成してもよい。 Therefore, in such a case, since it is not necessary to drive the cooling mechanism, the frequency of state monitoring of the secondary battery cell can be reduced. In addition, if it is not necessary to monitor the state of the secondary battery cell for reasons other than fire prevention, the system is configured not to monitor the state of the secondary battery cell only when charging / discharging of the power supply device is stopped. May be
 以上の観点を考慮した電源装置の冷却方法として、本発明のある態様の電源装置の冷却方法は、以下の構成により特定されても良い。電源装置の冷却方法は、電源装置が備える複数の二次電池セルの集合体である組電池の充電率と温度を検出する工程と、前記検出された充電率と、前記検出された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定する工程と、温度評価基準に合致していないと判定された場合に、前記組電池を冷却する冷却機構を作動させて、前記組電池の温度が温度評価基準に合致するまで冷却を継続する工程とを含んでいる。これにより、組電池を安全に使用できる。 As a method of cooling a power supply device considering the above aspect, the method of cooling a power supply device according to an aspect of the present invention may be specified by the following configuration. The method of cooling the power supply device includes a step of detecting a charging rate and a temperature of an assembled battery that is an assembly of a plurality of secondary battery cells included in the power supply device, the detected charging rate, and the detected temperature. Determining the temperature evaluation criteria, and operating the cooling mechanism for cooling the battery pack when it is determined that the temperature evaluation criteria are not satisfied; Continuing the cooling until the temperature of the assembled battery meets the temperature evaluation criteria. Thereby, the assembled battery can be used safely.
 また、本発明のある態様の電源装置の冷却方法は、上記に加えて、前記温度評価基準の合否判定が、組電池の充電率と温度の関係から組電池の動作に不適切と思われる予め画定された動作制限領域内に、組電池の充電率と温度の現在値で決まる動作点が含まれているかどうかの判定としてもよい。 Further, in the power supply device cooling method according to an aspect of the present invention, in addition to the above, the pass / fail judgment of the temperature evaluation criteria is considered to be inappropriate for the operation of the assembled battery from the relationship between the charging rate of the assembled battery and the temperature. It may be determined whether or not an operating point determined by the current value of the charging rate and temperature of the battery pack is included in the defined operation restricted area.
 さらに、本発明のある態様の電源装置の冷却方法は、上記何れかに加えて、温度評価基準の合否判定が、予め演算された前記組電池の劣化率と、前記検出された充電率と、前記検出された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定するものとしてもよい。これにより、電池の劣化度合いに応じて適切な安全管理が可能となり、無用な冷却動作を省くなど効率的な安全管理が実現される。 Further, in the power supply device cooling method according to an aspect of the present invention, in addition to any one of the above, the deterioration rate of the temperature evaluation criteria may be a deterioration rate of the assembled battery calculated in advance; It may be determined on the basis of the detected temperature whether or not a predetermined temperature evaluation standard is met. Thus, appropriate safety management can be performed according to the degree of deterioration of the battery, and efficient safety management can be realized, such as eliminating unnecessary cooling operation.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、前記動作制限領域が、前記組電池の劣化率に応じて異なる複数の制限領域を有している。 Furthermore, according to the power supply device cooling method according to an aspect of the present invention, in addition to any one of the above, the operation restricted area has a plurality of different restricted areas according to the deterioration rate of the assembled battery. There is.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、温度評価基準の合否判定が、組電池の充電率と温度を座標軸とする評価グラフ上で予め画定された、組電池の充電率と温度の関係から組電池の動作に不適切と思われる動作制限領域内に、組電池の充電率と温度の現在値で決まる動作点が含まれているかどうかの判定である。 Furthermore, according to the power supply device cooling method according to an aspect of the present invention, in addition to any of the above, the pass / fail judgment of the temperature evaluation criteria is made in advance on an evaluation graph in which the charging rate of the assembled battery and the temperature are coordinate axes. Whether an operating point determined by the current values of the charging rate and temperature of the assembled battery is included within the defined restricted area that seems to be unsuitable for the operation of the assembled battery from the relationship between the charging rate of the assembled battery and the temperature It is a judgment of.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、前記動作制限領域が、組電池の充電率と温度に基づいて予め定められた領域関数によって画定されている。 Furthermore, according to the power supply device cooling method according to one aspect of the present invention, in addition to any of the above, the operation restricted area is defined by an area function predetermined based on the charging rate and temperature of the assembled battery. It is done.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、前記組電池の充電率と温度を検出する周期が、1分~60分である。 Furthermore, according to the power supply device cooling method of one aspect of the present invention, in addition to any of the above, the cycle for detecting the charging rate and the temperature of the assembled battery is 1 minute to 60 minutes.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、前記組電池の充電率と温度を検出する周期を可変とすることができる。 Furthermore, according to the power supply device cooling method according to an aspect of the present invention, in addition to any of the above, it is possible to make the cycle for detecting the charging rate and the temperature of the assembled battery variable.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、前記組電池の充電率と温度を検出する周期が、前記動作制限領域に近付くと短くなるよう制御することができる。これにより、監視の精度を向上させて信頼性を高めつつ、平常時においては処理の負荷を軽減できる。 Furthermore, according to the power supply device cooling method according to an aspect of the present invention, in addition to any of the above, the cycle for detecting the charging rate and the temperature of the assembled battery becomes shorter as it approaches the operation restricted area. Can be controlled. As a result, it is possible to reduce the processing load under normal conditions while improving the monitoring accuracy and reliability.
 さらにまた、本発明のある態様に係る電源装置の冷却方法によれば、上記何れかに加えて、前記電源装置が車両の駆動用の電源装置であり、前記車両のイグニッションスイッチがOFFされた状態においても、前記冷却を実行させることができる。これにより、電源装置を常時安全に動作させることが可能となる。 Furthermore, according to the power supply device cooling method according to an aspect of the present invention, in addition to any of the above, the power supply device is a power supply device for driving a vehicle, and the ignition switch of the vehicle is turned off. In the above, the cooling can be performed. This makes it possible to operate the power supply device safely at all times.
 さらにまた、本発明のある態様に係るコンピュータで読み取り可能な記録媒体または記憶した機器は、上記電源装置の冷却プログラムを格納するものである。記録媒体には、CD-ROM、CD-R、CD-RWやフレキシブルディスク、磁気テープ、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW、Blu-ray(登録商標)、HD DVD(AOD)等の磁気ディスク、光ディスク、光磁気ディスク、半導体メモリその他のプログラムを格納可能な媒体が含まれる。またプログラムには、上記記録媒体に格納されて配布されるものの他、インターネット等のネットワーク回線を通じてダウンロードによって配布される形態のものも含まれる。さらに記憶した機器には、上記プログラムがソフトウェアやファームウェア等の形態で実行可能な状態に実装された汎用もしくは専用機器を含む。さらにまたプログラムに含まれる各処理や機能は、コンピュータで実行可能なプログラムソフトウエアにより実行してもよいし、各部の処理を所定のゲートアレイ(FPGA、ASIC)等のハードウエア、又はプログラムソフトウエアとハードウェアの一部の要素を実現する部分的ハードウエアモジュールとが混在する形式で実現してもよい。 Furthermore, a computer-readable recording medium or a stored device according to an aspect of the present invention stores a cooling program of the power supply device. Recording media include CD-ROM, CD-R, CD-RW, flexible disk, magnetic tape, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, DVD-RW, DVD + RW, Blu-ray (registration The media includes magnetic disks such as HD DVD (AOD), optical disks, magneto-optical disks, semiconductor memories, and other media capable of storing programs. The program also includes programs distributed by downloading through a network line such as the Internet, in addition to those stored and distributed in the recording medium. The stored devices include general-purpose or dedicated devices in which the above-described program is implemented in an executable state such as software or firmware. Furthermore, each process or function included in the program may be executed by program software that can be executed by a computer, or the process of each part may be hardware such as a predetermined gate array (FPGA, ASIC) or program software. And a partial hardware module for realizing a part of hardware may be realized in a mixed form.
 さらにまた、本発明のある態様に係る電源装置によれば、上記何れかの構成に加えて、前記冷却機構を、水冷式の冷却機構とすることができる。 Furthermore, according to the power supply device according to an aspect of the present invention, in addition to any one of the above configurations, the cooling mechanism can be a water cooling type cooling mechanism.
 さらにまた、本発明のある態様に係る電源装置によれば、上記何れかの構成に加えて、前記冷却機構を、空冷式の冷却ファンとすることができる。 Furthermore, according to the power supply device according to an aspect of the present invention, in addition to any of the above configurations, the cooling mechanism can be an air cooling type cooling fan.
 さらにまた、本発明のある態様に係る電源装置によれば、上記何れかの構成に加えて、電源装置を車両の駆動用とすることができる。 Furthermore, according to the power supply device according to an aspect of the present invention, in addition to any of the above configurations, the power supply device can be used for driving a vehicle.
 さらにまた、本発明のある態様に係る電源装置によれば、上記何れかの構成に加えて、前記車両のイグニッションスイッチがOFFされた状態においても、前記冷却を実行させることができる。上記構成により、電源装置を常時安全に動作させることが可能となる。 Furthermore, according to the power supply device according to an aspect of the present invention, in addition to any of the above configurations, the cooling can be performed even in a state where the ignition switch of the vehicle is turned off. With the above configuration, it is possible to always operate the power supply device safely.
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一若しくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。 Hereinafter, embodiments of the present invention will be described based on the drawings. However, the embodiments shown below are exemplifications for embodying the technical idea of the present invention, and the present invention is not limited to the following. Further, the present specification does not in any way specify the members described in the claims to the members of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention thereto unless specifically described otherwise, but merely illustrative examples It is only Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for the sake of clarity. Further, in the following description, the same names and reference numerals indicate the same or similar members, and the detailed description will be appropriately omitted. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and one member is used in common as a plurality of elements, or conversely, the function of one member is realized by a plurality of members It can be shared and realized.
 電源装置は、車両の駆動用に好適に利用できる。例えば、プラグインハイブリッド車や電気自動車等、電動駆動される車両走行用のモータに電力を供給する装置に使用される。以下では、車両走行用のモータを駆動する電源装置に本発明を適用する例を説明する。なお本発明は、車両に限らず、電動駆動させる他のモータ、例えばクレーン等の重機や向上等のライン、あるいはモータ以外の電気機器の駆動用の電源等にも適用できる。 The power supply device can be suitably used for driving a vehicle. For example, it is used in a device for supplying power to a motor for driving a vehicle, such as a plug-in hybrid vehicle or an electric vehicle, which is electrically driven. Below, the example which applies this invention to the power supply device which drives the motor for vehicle travel is demonstrated. The present invention is not limited to vehicles, and can be applied to other motors that are electrically driven, for example, heavy machines such as cranes, lines for improvement, etc., or power supplies for driving electric devices other than motors.
 本発明の一実施形態に係る電源装置を、図1のブロック図に基づいて説明する。この図に示す電源装置100は、組電池1と、電流検出部2と、電圧検出部3と、温度検出部4と、充電率検出部6と、劣化率演算部7と、動作制限判定部8と、通信処理部9と、メモリ11と、冷却制御部14と、冷却機構15とを備えている。
(組電池1)
A power supply apparatus according to an embodiment of the present invention will be described based on the block diagram of FIG. The power supply device 100 shown in this figure includes the battery assembly 1, the current detection unit 2, the voltage detection unit 3, the temperature detection unit 4, the charging rate detection unit 6, the deterioration rate calculation unit 7, and the operation restriction determination unit A communication processing unit 9, a memory 11, a cooling control unit 14, and a cooling mechanism 15 are provided.
(A battery pack 1)
 組電池1は、充電可能な二次電池セルを一又は複数で構成している。複数の二次電池セル同士を用いる場合は、直列又は並列に接続して構成される。二次電池セルには、リチウムイオン二次電池やリチウムポリマー電池が利用できる。また二次電池セルに、全固体電池や空気電池、あるいはニッケル水素電池やニッケルカドミウム電池などを用いてもよい。
(電流検出部2)
The battery assembly 1 includes one or more rechargeable secondary battery cells. When using a plurality of secondary battery cells, they are connected in series or in parallel. A lithium ion secondary battery or a lithium polymer battery can be used for the secondary battery cell. Further, an all solid battery, an air battery, a nickel hydrogen battery, a nickel cadmium battery or the like may be used for the secondary battery cell.
(Current detection unit 2)
 電流検出部2は、組電池1の充放電の電流を検出するための部材である。この電流検出部2は、組電池1と直列に接続している電流検出抵抗10の両端に発生する電圧を検出して充電電流と放電電流を検出する。電流検出部2は、電流検出抵抗10の両端に誘導される電圧をアンプで増幅し、アンプの出力信号であるアナログ信号をA/Dコンバータでデジタル信号に変換して出力する。電流検出抵抗10は、組電池1に流れる電流に比例した電圧が発生するので、電圧で電流を検出することができる。アンプは、+-の信号を増幅できるオペアンプで、出力電圧の+-で充電電流と放電電流を識別する。電流検出部2は、容量演算部5と充電率検出部6と通信処理部9に組電池1の電流信号を出力する。
(電圧検出部3)
The current detection unit 2 is a member for detecting the charge / discharge current of the assembled battery 1. The current detection unit 2 detects a voltage generated at both ends of a current detection resistor 10 connected in series to the battery assembly 1 to detect a charge current and a discharge current. The current detection unit 2 amplifies the voltage induced across the current detection resistor 10 with an amplifier, converts an analog signal that is an output signal of the amplifier into a digital signal with an A / D converter, and outputs the digital signal. The current detection resistor 10 generates a voltage proportional to the current flowing to the assembled battery 1, so that the current can be detected by the voltage. The amplifier is an operational amplifier capable of amplifying a +-signal, and identifies the charging current and the discharging current by the output voltage +-. The current detection unit 2 outputs a current signal of the battery pack 1 to the capacity calculation unit 5, the charging rate detection unit 6, and the communication processing unit 9.
(Voltage detection unit 3)
 電圧検出部3は、組電池1の電圧を検出するための部材である。電圧検出部3は、組電池1の電圧を検出したアナログ信号を、A/Dコンバータでデジタル信号に変換して出力する。電圧検出部3は、充電率検出部6と通信処理部9に検出した組電池1の電圧信号を出力する。複数の二次電池セルを直列に接続している電源装置にあっては、各々の二次電池セルの電池電圧を検出して、その平均値を出力することもできる。また、複数の二次電池セルを直列に接続して電池モジュールとし、さらに複数の電池モジュールを直列に接続している電源装置にあっては、電池モジュールの平均値や中央値を電池電圧として出力してもよい。例えば、並列接続された電池ブロックを複数、直列に接続している場合は、並列接続のブロック毎に電池電圧を検出する。これによって、効率良く電池電圧を検出できる。
(温度検出部4)
The voltage detection unit 3 is a member for detecting the voltage of the assembled battery 1. The voltage detection unit 3 converts an analog signal obtained by detecting the voltage of the battery pack 1 into a digital signal by an A / D converter and outputs the digital signal. The voltage detection unit 3 outputs the detected voltage signal of the assembled battery 1 to the charging rate detection unit 6 and the communication processing unit 9. In the power supply device in which a plurality of secondary battery cells are connected in series, the battery voltage of each secondary battery cell can be detected and the average value thereof can be output. In addition, in a power supply apparatus in which a plurality of secondary battery cells are connected in series to form a battery module, and further in which a plurality of battery modules are connected in series, the average value or the median value of the battery modules is output as the battery voltage You may For example, when a plurality of battery blocks connected in parallel are connected in series, a battery voltage is detected for each block connected in parallel. Thus, the battery voltage can be detected efficiently.
(Temperature detection unit 4)
 温度検出部4は、組電池1の温度を検出するための部材である。温度検出部4は、組電池1の温度を検出した信号をA/Dコンバータでデジタル信号に変換して出力する。温度検出部4は、容量演算部5と充電率検出部6と通信処理部9とに温度信号を出力する。なお温度検出部も、組電池が複数の二次電池セルを接続して構成している場合は、各々の二次電池セルの温度を検出して、その平均値や中央値を出力することもできる。
(通信処理部9)
The temperature detection unit 4 is a member for detecting the temperature of the assembled battery 1. The temperature detection unit 4 converts a signal obtained by detecting the temperature of the battery pack 1 into a digital signal by an A / D converter and outputs the digital signal. The temperature detection unit 4 outputs a temperature signal to the capacity calculation unit 5, the charging rate detection unit 6, and the communication processing unit 9. In the case where the temperature detection unit is also configured by connecting a plurality of secondary battery cells to the battery pack, the temperature of each secondary battery cell may be detected and the average value or the median value may be output. it can.
(Communication processing unit 9)
 通信処理部9は、組電池1を電源として使用する本体側の車両に、電池情報を伝送するための部材である。
(冷却機構15)
The communication processing unit 9 is a member for transmitting battery information to a vehicle on the main body side using the battery pack 1 as a power supply.
(Cooling mechanism 15)
 冷却機構15は、組電池1を冷却するための部材である。例えば空冷式の冷却ファンを回転させて、組電池1に冷却風を送風して冷却する。この場合組電池1は、冷却ファンで送風される冷却風の風路を画定している。あるいは水冷式の場合は、水等の冷媒をポンプで循環させて熱交換させて冷却を行う。この場合の組電池1は、組電池1の底面や側面などを冷却プレートと熱伝導状態に結合し、冷却プレートの内部に冷媒を循環させて冷却を行う。
(冷却制御部14)
The cooling mechanism 15 is a member for cooling the assembled battery 1. For example, the air-cooling type cooling fan is rotated to blow cooling air to the battery assembly 1 for cooling. In this case, the battery assembly 1 defines an air path of the cooling air blown by the cooling fan. Alternatively, in the case of a water-cooling type, cooling is performed by circulating a refrigerant such as water with a pump for heat exchange. In this case, in the battery assembly 1, the bottom and side surfaces of the battery assembly 1 and the cooling plate are thermally coupled to the cooling plate, and the refrigerant is circulated in the cooling plate to perform cooling.
(Cooling control unit 14)
 冷却機構15の動作は、冷却制御部14で行われる。冷却制御部14は、冷却機構15の動作を行う。例えば冷却機構15が冷却ファンの場合、冷却制御部14は冷却ファンを回転させるモータのON/OFFを制御する。また冷却機構15が水冷式の場合は、冷却制御部14は水等の冷媒を循環させるポンプのON/OFFを制御する。 The operation of the cooling mechanism 15 is performed by the cooling control unit 14. The cooling control unit 14 operates the cooling mechanism 15. For example, when the cooling mechanism 15 is a cooling fan, the cooling control unit 14 controls ON / OFF of a motor that rotates the cooling fan. Further, when the cooling mechanism 15 is a water cooling type, the cooling control unit 14 controls ON / OFF of a pump that circulates a refrigerant such as water.
 また冷却制御部14の動作は、後述する動作制限判定部8で行われる。動作制限判定部8は、組電池1が温度評価基準に合致していないと判定すると、冷却機構15を動作させ、組電池1の温度を温度評価基準に合致させるように冷却する。また組電池1の温度が低下して温度評価基準に合致するようになると、冷却機構15の動作を停止させる。
(容量演算部5)
The operation of the cooling control unit 14 is performed by the operation restriction determination unit 8 described later. If it is determined that the battery pack 1 does not match the temperature evaluation criteria, the operation restriction determination unit 8 operates the cooling mechanism 15 to cool the temperature of the battery pack 1 to match the temperature evaluation criteria. Further, when the temperature of the battery pack 1 is lowered to meet the temperature evaluation standard, the operation of the cooling mechanism 15 is stopped.
(Capacity calculator 5)
 容量演算部5は、電流検出部2の出力信号を演算して組電池1を充放電する電流を積算し、組電池1の容量(Ah)を検出するための部材である。この容量演算部5は、電流検出部2から入力されるデジタル信号の電流信号を演算して、組電池1の放電容量を演算する。この容量演算部5は、組電池1の充電容量から放電容量を減算して、組電池1の放電できる容量(Ah)を電流の積算値(Ah)として演算する。充電容量は、組電池1の充電電流の積算値で、あるいはこれに充電効率をかけて演算される。放電容量は、放電電流の積算値で演算される。容量演算部5は、温度検出部4から入力される信号で、充電容量と放電容量の積算値を補正して正確に容量を演算することができる。
(充電率検出部6)
The capacity calculation unit 5 is a member for calculating the output signal of the current detection unit 2 and integrating the current for charging and discharging the assembled battery 1 to detect the capacity (Ah) of the assembled battery 1. The capacity calculation unit 5 calculates a current signal of the digital signal input from the current detection unit 2 to calculate the discharge capacity of the assembled battery 1. The capacity calculation unit 5 subtracts the discharge capacity from the charge capacity of the assembled battery 1 to calculate the dischargeable capacity (Ah) of the assembled battery 1 as an integrated value (Ah) of current. The charge capacity is calculated by multiplying the charge current of the battery assembly 1 or by multiplying it by charge efficiency. The discharge capacity is calculated by the integrated value of the discharge current. The capacity calculation unit 5 can calculate the capacity accurately by correcting the integrated value of the charge capacity and the discharge capacity by the signal input from the temperature detection unit 4.
(Charging rate detection unit 6)
 充電率検出部6は、電圧検出部3の出力信号から組電池1の充電率(SOC[%])を判定するための部材である。充電率検出部6は、組電池1の開放電圧(VOCV)から組電池1の充電率(SOC[%])を、判定する。充電率検出部6は、電圧検出部3から入力される組電池1の電圧信号と、電流検出部2から入力される電流信号から組電池1の開放電圧(VOCV)を検出し、あるいは電流検出部2から入力される充放電の電流値が0となるタイミングにおいて、電圧検出部3から入力される電圧値を開放電圧(VOCV)として検出する。さらに、充電率検出部6は、検出した組電池1の開放電圧(VOCV)から組電池1の充電率(SOC[%])を判定するために、組電池1の開放電圧(VOCV)に対する充電率(SOC[%])を、関数又はルックアップテーブルとしてメモリ11に記憶している。メモリ11は、開放電圧-充電率の特性を関数として、あるいはテーブルとして記憶している。充電率検出部6は、メモリ11に記憶される関数やテーブルから、開放電圧(VOCV)に対する充電率(SOC[%])を判定する。 The charging rate detection unit 6 is a member for determining the charging rate (SOC [%]) of the assembled battery 1 from the output signal of the voltage detection unit 3. The charging rate detection unit 6 determines the charging rate (SOC [%]) of the assembled battery 1 from the open circuit voltage (V OCV ) of the assembled battery 1. The charging rate detection unit 6 detects the open circuit voltage (V OCV ) of the assembled battery 1 from the voltage signal of the assembled battery 1 input from the voltage detection unit 3 and the current signal input from the current detection unit 2 or At timing when the current value of the charge / discharge input from the detection unit 2 becomes 0, the voltage value input from the voltage detection unit 3 is detected as an open circuit voltage (V OCV ). Furthermore, the charging rate detector 6, to determine the charging rate of the battery pack 1 from the detected battery pack 1 of the open circuit voltage (V OCV) (SOC [% ]), open circuit voltage (V OCV) of the battery pack 1 Are stored in the memory 11 as a function or a look-up table. The memory 11 stores the characteristics of open circuit voltage-charge rate as a function or as a table. The charging rate detection unit 6 determines the charging rate (SOC [%]) with respect to the open circuit voltage (V OCV ) from the function or table stored in the memory 11.
 充電率検出部6は、必ずしも充放電の電流が0になるタイミングにおいて、開放電圧(VOCV)を検出する必要はなく、電流検出部2で検出される組電池1の充放電の電流から組電池1の開放電圧(VOCV)を演算して検出することもできる。この充電率検出部6は、組電池1の検出電圧(VCCV)と充放電の電流に対する開放電圧(VOCV)を、関数又はテーブルとしてメモリ11に記憶している。メモリ11は、電流-開放電圧の特性を関数として、あるいはテーブルとして記憶している。充電率検出部6は、メモリ11に記憶される関数やテーブルから、検出電圧と充放電の電流に対する開放電圧(VOCV)を演算し、さらに、演算された開放電圧(VOCV)から組電池1の充電率(SOC[%])を判定する。この充電率検出部6は、組電池1の充放電の状態にかかわらず、いいかえると、組電池1に充放電の電流が流れる状態においても、組電池1の開放電圧(VOCV)を推定できる。
(劣化率演算部7)
The charging rate detection unit 6 does not necessarily have to detect the open circuit voltage (V OCV ) at the timing when the charge / discharge current becomes 0, and the charge / discharge current is detected by the current detection unit 2. The open circuit voltage (V OCV ) of the battery 1 can also be calculated and detected. The charging rate detection unit 6 stores the detection voltage (V CCV ) of the battery pack 1 and the open voltage (V OCV ) for the charge / discharge current in the memory 11 as a function or a table. The memory 11 stores the current-open voltage characteristics as a function or as a table. The charging rate detection unit 6 calculates the open circuit voltage (V OCV ) for the detected voltage and the charge / discharge current from the function or table stored in the memory 11, and further, the assembled battery from the calculated open circuit voltage (V OCV ) Determine the charge rate of 1 (SOC [%]). In other words, regardless of the state of charge and discharge of the assembled battery 1, the charge ratio detection unit 6 can estimate the open circuit voltage (V OCV ) of the assembled battery 1 even in the state where the charge and discharge current flows in the assembled battery 1. .
(Deterioration rate calculator 7)
 劣化率演算部7は、組電池の劣化率を演算する。本明細書において組電池の劣化率とは、組電池の初期状態を100%と比較したときの電池容量の劣化状態(容量維持率)を意味する。すなわち The deterioration rate calculation unit 7 calculates the deterioration rate of the battery pack. In the present specification, the degradation rate of the battery pack means the degradation state (capacity maintenance rate) of the battery capacity when the initial state of the battery pack is compared with 100%. That is
 劣化率D[%]=100-{(現在の満充電電池容量)/(初期の満充電電池容量)}×100で表される。例えば、劣化していない新品の組電池の劣化率は0%、劣化して使用できなくなった電池の劣化度は100%となる。なお、満充電電池容量を直接測定するためには、SOCを0から100%まで変化させる必要があるため、通常、満充電電池容量を測定することは困難である。そのため、内部抵抗の変化等に基づいて推定される容量維持率(State Of Health:SOH)使って劣化率Dを演算してもよい。具体的には、劣化率D=100-SOH[%]と定義される。SOHは、二次電池セルの状態を知るうえで重要となるパラメータであるため、一般的には、種々の測定データに基づいて推定され、メモリ等に記録されているSOHのデータがその都度更新される。上記劣化率演算部7は、必要に応じて、メモリ等に記録されているSOHのデータを取得し、劣化率Dを算出するように構成されることが好ましい。なお、時刻tにおける組電池の劣化率をDtで表す。
(動作制限判定部8)
Deterioration rate D [%] = 100 − {(present fully charged battery capacity) / (initial fully charged battery capacity)} × 100. For example, the deterioration rate of a non-deteriorated new assembled battery is 0%, and the deterioration degree of the deteriorated and unusable battery is 100%. In addition, since it is necessary to change SOC from 0 to 100% in order to measure a full charge battery capacity directly, it is usually difficult to measure a full charge battery capacity. Therefore, the deterioration rate D may be calculated using a capacity maintenance rate (State Of Health: SOH) estimated based on a change in internal resistance or the like. Specifically, the deterioration rate D is defined as 100-SOH [%]. Since SOH is an important parameter to know the state of the secondary battery cell, it is generally estimated based on various measurement data, and the data of SOH recorded in the memory etc. is updated each time Be done. It is preferable that the deterioration rate calculation unit 7 is configured to acquire the data of SOH recorded in a memory or the like and calculate the deterioration rate D, as necessary. Note that represents the degradation rate of the assembled battery at time t in D t.
(Operation restriction determination unit 8)
 動作制限判定部8は、充電率検出部6で検出された組電池1の充電率と、温度検出部4で検出された組電池1の温度と、劣化率演算部7で演算された組電池1の劣化率に基づいて、メモリ11で実現される評価基準保持部に保持された温度評価基準に合致しているか否かを判定する。 The operation restriction determination unit 8 calculates the charge rate of the battery pack 1 detected by the charge rate detection unit 6, the temperature of the battery pack 1 detected by the temperature detection unit 4, and the assembled battery calculated by the deterioration rate calculation unit 7. Based on the deterioration rate of 1, it is determined whether the temperature evaluation criteria held in the evaluation criteria holding unit realized in the memory 11 are met.
 なお、上述した充電率検出部6、劣化率演算部7、動作制限判定部8、冷却制御部14等の部材は、必ずしも別部材として構成する必要はなく、共通の演算回路13で構成してもよい。例えばASIC等で構成したり、汎用のコンピュータのCPU等でソフトウェア的に実装したりしてもよい。
(評価基準保持部)
The members such as the charging rate detection unit 6, the deterioration rate calculation unit 7, the operation restriction determination unit 8, the cooling control unit 14, etc. do not necessarily need to be configured as separate members, and are configured by a common arithmetic circuit 13. It is also good. For example, it may be configured by an ASIC or the like, or may be implemented as software by a CPU of a general-purpose computer or the like.
(Evaluation criteria holding unit)
 評価基準保持部は、組電池1の温度評価基準を保持する。温度評価基準は、組電池1の動作を安全に行い得る充電率と温度の関係を規定したものである。このような評価基準保持部には、例えばE2PROM等の半導体メモリが利用できる。図1の例では、メモリ11が評価基準保持部として利用される。評価基準保持部に保持される組電池の温度評価基準は、例えば、組電池の動作に不適切と思われる充電率と温度の範囲を定めた動作制限領域として与えられる。
(通常動作領域)
The evaluation reference holding unit holds the temperature evaluation reference of the battery assembly 1. The temperature evaluation standard defines the relationship between the charging rate and the temperature at which the operation of the battery pack 1 can be performed safely. For example, a semiconductor memory such as an E 2 PROM can be used for such an evaluation reference holding unit. In the example of FIG. 1, the memory 11 is used as an evaluation reference holding unit. The temperature evaluation standard of the battery pack held in the evaluation standard holding unit is given, for example, as an operation limited area that defines the range of the charging rate and the temperature that seems inappropriate for the operation of the battery pack.
(Normal operating area)
 温度評価基準として、組電池の温度Tに対する組電池の充電率SOCの割合と、組電池を安全に使用できる領域を画定する動作制限領域を重ねて表示させた評価グラフを、図2に示す。ここで動作制限領域とは、温度と充電率で決まる、組電池の動作に適しない領域である。いいかえると、組電池が熱暴走連鎖等の異常動作をしない領域(通常動作領域)を画定するため、動作制限領域を定めている。そして電源装置100は、組電池が熱暴走連鎖等の異常動作をしないように、現在の組電池の温度と充電率に応じて、組電池の動作点が動作制限領域に入らないように組電池を制御している。いいかえると、通常動作領域は、制御が不要な動作領域(制御不要領域)ということができる。
(動作制限領域)
FIG. 2 shows an evaluation graph in which the ratio of the charging rate SOC of the battery pack to the temperature T of the battery pack and the operation restricted area for defining the area where the battery pack can be used safely are superimposed and displayed as the temperature evaluation standard. Here, the operation limited area is an area which is determined by the temperature and the charging rate and is not suitable for the operation of the battery pack. In other words, in order to define an area (normal operation area) in which the battery pack does not operate abnormally such as a thermal runaway chain, an operation restricted area is defined. Then, the power supply apparatus 100 prevents the operating point of the battery pack from entering the operation restriction region according to the current temperature and charging rate of the battery pack so that the battery pack does not perform abnormal operation such as thermal runaway chain. Control. In other words, the normal operation area can be said to be an operation area that requires no control (control unnecessary area).
(Operation restricted area)
 具体的には、動作制限領域は、組電池の充電率と温度の関係で決定される。例えば、図2に示すような評価グラフ上において画定された動作制限領域として与えられる。評価グラフは、組電池の充電率と温度を座標軸としている。この評価グラフ上に、組電池の充電率と温度の関係から組電池の動作に不適切と思われる動作制限領域内を画定する。そして、組電池の充電率と温度の現在値をそれぞれ検出して、組電池の動作点を評価グラフ上にプロットし、動作点が動作制限領域に含まれていないかどうかを、動作制限判定部8で判定する。 Specifically, the operation restricted area is determined by the relationship between the charging rate of the assembled battery and the temperature. For example, it is given as an operation restricted area defined on the evaluation graph as shown in FIG. The evaluation graph uses the charging rate and temperature of the battery pack as coordinate axes. On this evaluation graph, an operation restricted area which is considered to be unsuitable for the operation of the assembled battery is defined from the relationship between the charging rate of the assembled battery and the temperature. Then, the charging rate of the assembled battery and the current value of the temperature are respectively detected, and the operating point of the assembled battery is plotted on the evaluation graph to determine whether the operating point is included in the operation restricted area or not. Determined by 8.
 また動作制限領域は、組電池の劣化率によって変化させることが好ましい。これによって、電池の劣化度合いに応じて適切な安全管理が可能となる。特に、動作制限領域を、組電池の劣化率に応じて変化する可変領域とすることで、例えば新品の組電池では動作制限領域内であった動作点が、劣化によって通常動作領域となった場合には、動作制限を行う必要がなくなる。このように無用な冷却動作を省いて効率的な安全管理が実現される。 In addition, it is preferable to change the operation restricted area according to the deterioration rate of the assembled battery. This enables appropriate safety management according to the degree of deterioration of the battery. In particular, by setting the operation restricted area as a variable area that changes in accordance with the deterioration rate of the assembled battery, for example, in the case of a new assembled battery, the operating point in the operation restricted area becomes the normal operation area due to deterioration. There is no need to limit the operation. In this way, unnecessary safety operations can be eliminated to realize efficient safety management.
 また動作制限領域を複数用意し、組電池の劣化率に応じて切り替えるように構成してもよい。この方法であれば、予め用意した複数の制限領域を、組電池の劣化率に応じて選択すれば足り、処理を簡素化できる利点が得られる。例えば劣化率が0%の、新品の組電池は、図2において斜線で示すように比較的広い領域となる。一方、劣化率が10%、20%と大きくなるにつれて、動作制限領域は狭くなっていく。このように動作制限領域は、現在の組電池の劣化率によって決定され、劣化が進むと共に狭くなっていく。図2の例では、動作制限領域を、電池セルの劣化率に応じて、第一制限領域、第二制限領域、第三制限領域の3つに分けている。動作制限領域を変化させる数は、3つに限らず、2や4以上とすることもできる。 Also, a plurality of operation restricted areas may be prepared and switched according to the deterioration rate of the battery pack. According to this method, it is sufficient to select a plurality of limited regions prepared in advance according to the deterioration rate of the battery pack, and an advantage is obtained that the processing can be simplified. For example, a new assembled battery having a deterioration rate of 0% has a relatively wide area as indicated by hatching in FIG. On the other hand, as the deterioration rate increases to 10% and 20%, the operation restricted area narrows. As described above, the operation restricted area is determined by the deterioration rate of the current battery pack and becomes narrower as the deterioration progresses. In the example of FIG. 2, the operation restricted area is divided into three, a first restricted area, a second restricted area, and a third restricted area, according to the deterioration rate of the battery cell. The number of changes in the operation restriction area is not limited to three, and may be two or four or more.
 例えば、組電池が初期状態BOL(Beginning Of Life)の場合、すなわち劣化率0%の場合は、第一制限領域は図2において斜線で示す領域となる。ここでは劣化率0%の第一制限領域を、(SOC、温度)=(80%、45℃)以上の領域として、この動作制限領域内に現在の組電池の動作点が位置する場合は、冷却機構15を動作させる。そして動作点が通常動作領域となるまで冷却を継続し、動作点が動作制限領域を外れると、冷却機構15を停止させる。これにより、組電池を好ましい動作環境温度で動作させることが可能となり、熱暴走のリスクを低減できる利点が得られる。 For example, in the case where the battery pack is in the initial state BOL (Beginning Of Life), that is, when the deterioration rate is 0%, the first restricted area is an area indicated by hatching in FIG. Here, if the first restricted area with a deterioration rate of 0% is the area of (SOC, temperature) = (80%, 45 ° C.) or more, and the current battery pack operating point is located within this restricted area, The cooling mechanism 15 is operated. Then, the cooling is continued until the operating point becomes the normal operating area, and when the operating point goes out of the operating restricted area, the cooling mechanism 15 is stopped. This allows the battery pack to operate at a preferred operating environment temperature, and has the advantage of reducing the risk of thermal runaway.
 また、組電池が劣化していくにつれて、その動作制限領域は小さくなっていく。図2の例では、劣化率0%の第一制限領域を右上から左下に向かう斜線、劣化率10%の第二制限領域を左上から右下に向かう斜線、劣化率20%の第三制限領域を点状で、それぞれ示している。例えば劣化率20%の第三制限領域は、(SOC、温度)=(90%、55℃)以上の領域となり、劣化率0%の第一制限領域と比べて狭くなっていることが判る。すなわち組電池の劣化が進むにつれて、実質的な容量が低下する等、熱暴走し難くなることが判る。よって、このような劣化度合いに応じて、動作制限領域すなわち組電池の冷却を行う範囲を狭くし、もって処理の簡素化を図ることが可能となる。 In addition, as the battery pack deteriorates, its operation restricted area becomes smaller. In the example of FIG. 2, the first restricted area with a deterioration rate of 0% is hatched from upper right to lower left, the second restricted area with a deterioration rate of 10% is hatched from upper left to lower right, the third restricted area with a deterioration rate of 20% Are indicated by dots, respectively. For example, it can be seen that the third restricted area with a deterioration rate of 20% is an area of (SOC, temperature) = (90%, 55 ° C.) or more, and is narrower than the first restricted area with a deterioration rate of 0%. That is, it is understood that as the deterioration of the assembled battery progresses, the thermal runaway becomes difficult as the substantial capacity decreases. Therefore, according to such a degree of deterioration, it is possible to narrow the operation restricted area, that is, the range in which the assembled battery is cooled, thereby simplifying the process.
 原理的には、通常動作領域と動作制限領域を隔てる閾値は、組電池の温度Tを変数とする第一の領域関数で表現される。つまり、第一の領域関数は、ある組電池の温度Tに対して、通常動作領域と動作制限領域を隔てる閾値となる充電率SOCを表わす。なお、劣化率Dを考慮する場合には、図3に示すように、通常動作領域と動作制限領域を隔てる閾値は、時刻tにおける組電池の温度Tt、劣化率Dtを変数とする第一の領域関数f(Tt、Dt)で表現される。上述の説明では、二次電池セルの劣化率に応じて、第一制限領域、第二制限領域、第三制限領域の3つに分ける実施形態を例示しているが、劣化率を考慮した関数を用いる場合には、より厳密に組電池の状態を評価することが可能となる。 In principle, the threshold that separates the normal operation area and the operation restricted area is expressed by a first area function that uses the temperature T of the battery pack as a variable. That is, the first area function represents the state of charge SOC, which is a threshold separating the normal operation area and the operation restriction area with respect to the temperature T of a certain battery pack. When the deterioration rate D is taken into consideration, as shown in FIG. 3, the threshold for separating the normal operation area and the operation restricted area is the temperature T t of the battery pack at time t and the deterioration rate D t as variables. It is expressed by one area function f (T t , D t ). Although the above description exemplifies an embodiment in which the first restricted area, the second restricted area, and the third restricted area are divided into three according to the deterioration rate of the secondary battery cell, a function taking into consideration the deterioration rate In the case where is used, it is possible to evaluate the state of the battery pack more strictly.
 このような動作制限領域の監視は、電源装置が放電していない間、例えば車両のイグニッションスイッチ12がOFFされた状態においても、実行される。これにより、電源装置を常時安全に動作させることが可能となる。一般に車両は、イグニッションスイッチ12がONの状態では、様々な保護回路を動作させる一方、イグニッションスイッチ12がOFFされた状態では、殆どの回路が動作を停止する。そこで本実施形態に係る電源装置においては、イグニッションスイッチOFF時、一般にはキーOFF時においても、動作制限領域の監視動作を継続させることで、より安全性を高めることができる。特に車両は様々な環境下で使用されるため、周囲環境温度の影響によって組電池の熱暴走が生じるリスクを低減することで、より安全な電源装置が実現される。 Such monitoring of the operation restricted area is performed even while the power supply device is not discharged, for example, in a state where the ignition switch 12 of the vehicle is turned off. This makes it possible to operate the power supply device safely at all times. Generally, the vehicle operates various protection circuits when the ignition switch 12 is ON, while most of the circuits stop operating when the ignition switch 12 is OFF. Therefore, in the power supply device according to the present embodiment, the safety can be further improved by continuing the monitoring operation of the operation limited area even when the ignition switch is off, and generally, the key is off. In particular, since vehicles are used under various environments, a safer power supply can be realized by reducing the risk of thermal runaway of the battery pack due to the influence of ambient temperature.
 なお、上述した動作制限領域は、組電池の温度と充電率によって決まるところ、一般に組電池の充電率はイグニッションスイッチ12のON時、OFF時共に調整することが困難である。特に安全性を図る観点からは、組電池の充電率を低減させる、具体的には組電池を放電させる必要があるところ、このような制御は容易でない。そこで本実施形態においては、より簡便に実施可能な組電池の温度制御に着目して、イグニッションスイッチ12のON時、OFF時とも、組電池の充電率に応じて決まる安全な組電池の温度範囲内にあるか否かを監視し、温度範囲外となったとき、すなわち動作制限領域となった場合に、冷却機構15を動作させて温度を低下させることにより、動作制限領域から外れる方向に制御させる。この方法であれば、冷却機構15を構成する冷却ファンの回転や冷媒の循環ポンプをONさせるのみで足りるため、実現が容易となる。 In addition, since the operation restricted area mentioned above is decided by the temperature and charge rate of an assembled battery, it is difficult to adjust the charge rate of an assembled battery generally at the time of ON of ignition switch 12, and OFF. From the viewpoint of safety in particular, although it is necessary to reduce the charging rate of the battery pack, specifically, to discharge the battery pack, such control is not easy. Therefore, in the present embodiment, focusing on the temperature control of the assembled battery which can be carried out more simply, a safe temperature range of the assembled battery determined according to the charging rate of the assembled battery when the ignition switch 12 is ON and OFF. If the temperature is out of the temperature range, that is, when the operation restricted area is reached, the cooling mechanism 15 is operated to lower the temperature, and control is performed in a direction out of the operation restricted area. Let This method is easy to realize because it is sufficient to turn on only the rotation of the cooling fan that constitutes the cooling mechanism 15 and the circulation pump of the refrigerant.
 なお、冷却機構の動作のための電源として組電池を利用する場合は、冷却機構の動作時間に応じて組電池の充電率も低下していく。そこで、このような充電率の変化も検出しながら、動作制限領域の範囲内か否かの判定を行うようにしてもよい。ただ、冷却機構のサイズや方式によっては、電力消費量が少ない場合もあり、このような場合は冷却機構の駆動による充電率の変動分を無視した制御とすることも可能である。 When the battery assembly is used as a power supply for the operation of the cooling mechanism, the charging rate of the battery assembly also decreases according to the operation time of the cooling mechanism. Therefore, while detecting such a change in the charging rate, it may be determined whether or not it is within the range of the operation restriction area. However, depending on the size and method of the cooling mechanism, the power consumption may be small, and in such a case, it is possible to perform control in which the fluctuation of the charging rate due to the driving of the cooling mechanism is ignored.
 また、組電池の動作点が動作制限領域から外れるように冷却機構15を動作させる動作制限判定部8の制御は、動作点が動作制限領域に入らないように、動作点が動作制限領域に近付いた時点で冷却機構15を制御する方式とすることができる。あるいは、動作点が動作制限領域に入ったことを検知して、冷却機構15を動作させて、動作制限領域から外れるように制御することも可能である。また、動作制限領域の設定時において、このような動作開始タイミングのマージンを考慮することもできる。すなわち動作制限領域を広めに設定することで、より早いタイミングで組電池の冷却を開始して安全性を高めることが可能となる。
(領域関数)
Further, the control of the operation restriction determination unit 8 for operating the cooling mechanism 15 so that the operation point of the battery pack is out of the operation restriction area brings the operation point closer to the operation restriction area so that the operation point does not enter the operation restriction area. At this time, the cooling mechanism 15 can be controlled. Alternatively, it is possible to detect that the operating point has entered the operation limited area and operate the cooling mechanism 15 to control so as to be out of the operation restricted area. Also, when setting the operation restricted area, it is possible to consider the margin of such operation start timing. That is, by setting the operation restricted area to be wider, it is possible to start the cooling of the assembled battery at an earlier timing and to improve the safety.
(Area function)
 通常動作領域は、さらに、第二の領域関数(TU、D)を用いて二つの領域に分けることもできる。第二の領域関数によって分けられる領域(Zone)Aは、イグニッションスイッチOFF時には、動作制限領域の監視動作が停止されるあるいは、監視動作の頻度が少なくなる領域である。また、第二の領域関数によって分けられる領域(Zone)Bは、電源装置の充放電状態に関わらず、動作制限領域の監視動作が継続される領域である。ここで、領域関数は、劣化率Dtを変数とする関数で表される。具体的には、図3に示すように、上述の通常動作領域と動作制限領域を隔てる閾値を表す関数fに予め設定されている上限温度TUを代入したものが領域関数に相当する。なお、劣化率を考慮しない場合には、領域関数は、固定値になる。 The normal operating area can also be further divided into two areas using a second area function (T U , D). The area (Zone) A divided by the second area function is an area in which the monitoring operation of the operation limited area is stopped or the frequency of the monitoring operation decreases when the ignition switch is OFF. Further, the area (Zone) B divided by the second area function is an area in which the monitoring operation of the operation restricted area is continued regardless of the charge / discharge state of the power supply device. Here, the area function is represented by a function having the deterioration rate D t as a variable. Specifically, as shown in FIG. 3, obtained by substituting the upper limit temperature T U, which is previously set to a function f which represents the threshold separating normal operation area and the operation limit region described above corresponds to the area function. When the deterioration rate is not considered, the area function has a fixed value.
 ここで、上限温度TUは、電源装置が使用可能な温度領域の上限に相当する。つまり、上限温度TU以上の温度では電源装置の充放電が禁止されるため、上限温度TU以上の温度領域については考慮する必要がない。イグニッションスイッチOFF時に、組電池の状態が領域関数によって隔てられた領域Aの範囲に含まれていた場合、電源装置が充電されることはなく、自然放電によりSOCが低下する方向に変化するのみであるため、イグニッションスイッチOFFの状態のまま、動作制限領域に相当する領域(Zone)Cとの境界を越えるおそれはない。そのため、領域Aでは、イグニッションONの状態や外部充電器を介して電源装置が充電される状態などが検知可能であれば、動作制限領域の監視動作を停止したり、監視動作の頻度を少なくしたりすることができる。一方、領域Bでは、仮にイグニッションスイッチOFFのような電源装置の充放電が起こらない状態であったとしても、環境温度の変化に伴い、組電池の状態が動作制限領域に相当する領域Cとの境界を越える場合がある。そのため、領域Bでは、電源装置の充放電状態に関わらず、動作制限領域の監視動作が継続されるように構成されている。 Here, the upper limit temperature T U, the power supply is equivalent to the upper limit of the available temperature range. That is, since the charging and discharging of the power supply at a maximum temperature T U above temperature is inhibited, there is no need to consider the upper limit temperature T U or more temperature regions. If the state of the battery pack is included in the range of the region A separated by the region function when the ignition switch is turned off, the power supply device is not charged, but it changes only in the direction of decreasing SOC due to natural discharge. Because of this, there is no risk of crossing the boundary with the zone C corresponding to the operation limited zone while the ignition switch is in the OFF state. Therefore, in the area A, if detection of the state of ignition ON or the state in which the power supply is charged through the external charger, the monitoring operation of the operation limited area is stopped or the frequency of the monitoring operation is reduced. Can be On the other hand, in the region B, even if charging / discharging of the power supply device such as ignition switch OFF does not occur, the state of the battery pack is in the region C corresponding to the operation restricted region as the environmental temperature changes. It may cross boundaries. Therefore, in the area B, the monitoring operation of the operation limited area is continued regardless of the charge / discharge state of the power supply device.
 以上の通り、領域関数を用いて通常動作領域を2つの領域に分けることで、動作制限領域の監視動作を停止したり、頻度を低下させたりすることができるので、監視動作に伴う電力消費を低減することができる。 As described above, by dividing the normal operation area into two areas using the area function, the monitoring operation of the operation restricted area can be stopped or the frequency can be reduced, so that the power consumption associated with the monitoring operation can be reduced. It can be reduced.
 上述の通常動作領域と動作制限領域を隔てる関数fや領域関数は、予め電源装置が備えられる組電池に応じて与えられる。例えば電源装置の使用前や組電池の出荷時に、組電池の仕様として提供される。すなわち、組電池に対して実際に充電率と温度や劣化率を変化させて熱暴走の有無を測定して得られたデータに基づいて作成される。上述の通常動作領域と動作制限領域を隔てる関数fや領域関数は、評価基準保持部に保持されており、動作制限判定部8により読み出されて利用される。また、領域関数は、必ずしも関数の形式で保持する必要はなく、実データ、例えばルックアップテーブル等の形式で保持することも可能である。また、上述の説明では、充電率SOCを用いているが、充電率SOCは、二次電池セルの電圧Vと相関があるため、充電率SOCの代わりに二次電池セルの電圧Vを用いることもできる。電圧Vを用いる場合には、測定値をそのまま利用できるので演算量を低減することができる。
(電源装置の冷却方法)
The function f and the area function separating the above-mentioned normal operation area and the operation restricted area are given in advance according to the battery pack provided with the power supply device. For example, before use of the power supply device or at the time of shipment of the assembled battery, it is provided as a specification of the assembled battery. That is, it is created based on data obtained by measuring the presence or absence of thermal runaway by changing the charging rate, the temperature, and the deterioration rate for the battery pack. The function f and the area function separating the above-described normal operation area and the operation restricted area are held in the evaluation reference holding unit, and are read out and used by the operation restriction judging unit 8. In addition, the area function does not necessarily have to be held in the form of a function, and can also be held in the form of actual data, such as a look-up table. Further, although the charging rate SOC is used in the above description, since the charging rate SOC has a correlation with the voltage V of the secondary battery cell, the voltage V of the secondary battery cell should be used instead of the charging rate SOC You can also. When the voltage V is used, the measurement value can be used as it is, so that the amount of calculation can be reduced.
(How to cool the power supply)
 ここで、電源装置の冷却方法を、図3の評価グラフ及び図4のフローチャートに従って説明する。ここで図3の評価グラフは、温度検出部4で検出された組電池の温度と、電圧検出部3で検出された組電池の電圧で決まる組電池の動作点と、動作制限領域との関係を示している。 Here, the method of cooling the power supply device will be described according to the evaluation graph of FIG. 3 and the flowchart of FIG. Here, in the evaluation graph of FIG. 3, the relationship between the operating point of the battery pack determined by the temperature of the battery pack detected by the temperature detecting unit 4 and the voltage of the battery pack detected by the voltage detecting unit 3 and the operation restricted area Is shown.
 まずステップS1において、時刻tにおける組電池の温度Ttと、電圧Vtを検出し、劣化率Dtを取得する。例えば、組電池を構成する各二次電池セルの温度と電圧を、温度検出部4や電圧検出部3でそれぞれ規定のサンプリング周期で検出する。複数の温度や電圧を検出する場合は、これらの平均値でもって、それぞれ温度Tt、電圧Vtとする。この演算は、温度検出部4や電圧検出部3で行ってもよいし、充電率検出部6で行ってもよい。また、劣化率Dtを劣化率演算部7で取得する。なお組電池の劣化率Dtの演算方法は、劣化率を算出する既知のアルゴリズムを適宜利用でき、例えば容量維持率SOHに基づいて演算される。 First, in step S1, the temperature T t of the battery pack at time t and the voltage V t are detected, and the deterioration rate D t is acquired. For example, the temperature detection unit 4 and the voltage detection unit 3 detect the temperature and the voltage of each of the secondary battery cells that constitute the assembled battery at a predetermined sampling cycle. In the case of detecting a plurality of temperatures and voltages, the temperature T t and the voltage V t are respectively determined by their average value. This calculation may be performed by the temperature detection unit 4 or the voltage detection unit 3 or may be performed by the charging rate detection unit 6. Further, the deterioration rate D t is acquired by the deterioration rate calculator 7. Incidentally method of calculating the degradation rate D t of the assembled battery can be appropriately utilizing known algorithms for calculating the deterioration rate, for example, it is calculated on the basis of the capacity maintenance ratio SOH.
 次にステップS2において、上記で得られた時刻tにおける組電池の劣化率Dtと組電池の温度Ttに基づいて、第一、第二領域関数f(Tt,Dt)を決定する。ここでは、得られたDtに基づいて、適切な領域関数f(Tt,Dt)を選択する。例えば動作制限判定部8が、組電池の劣化率Dtに応じて評価基準保持部から領域関数を読み出す。 Next, in step S2, the first and second area functions f (T t , D t ) are determined based on the deterioration rate D t of the assembled battery at time t obtained above and the temperature T t of the assembled battery. . Here, an appropriate area function f (T t , D t ) is selected based on the obtained D t . For example, the operation restriction determination unit 8 reads out the area function from the evaluation reference holding unit according to the deterioration rate D t of the battery pack.
 このようにして、図3に示す評価グラフが得られる。ここでは、現在の組電池の劣化率に対応した領域関数f(Tt,Dt)がプロットされている。この評価グラフにおいて、組電池の動作点が取りうる領域は、組電池の上限温度Tuと上限電圧Vuで囲まれた領域内(図3において破線で示す)であり、この領域を領域関数f(Tt,Dt)を用いて第一ゾーンA、第二ゾーンB、第三ゾーンCに分ける。 Thus, the evaluation graph shown in FIG. 3 is obtained. Here, an area function f (T t , D t ) corresponding to the current deterioration rate of the battery pack is plotted. In this evaluation graph, the region that the operating point of the battery pack can have is in the region surrounded by the upper limit temperature Tu and the upper limit voltage V u of the battery assembly (indicated by a broken line in FIG. 3). It divides into the 1st zone A, the 2nd zone B, and the 3rd zone C using f ( Tt , Dt ).
 第一ゾーンAは、組電池の上限温度Tuにおける電圧、すなわちf(TU,Dt)よりも低い範囲である。電圧V=f(TU,Dt)は、領域関数f(Tt,Dt)で規定される内で最も低い電圧であるから、この電圧よりもさらに低い範囲内では、充電率が取り得る最大値であったとしても通常動作領域内となるため、組電池は安全に動作させることができる。すなわち組電池の冷却は不要である。 The first zone A is a range lower than the voltage at the upper limit temperature Tu of the assembled battery, that is, f (T U , D t ). Since the voltage V = f (T U , D t ) is the lowest voltage defined by the area function f (T t , D t ), the charge ratio is lower than this voltage. Even if it is the maximum value obtained, the battery pack can be operated safely since it is within the normal operation range. That is, cooling of the assembled battery is unnecessary.
 一方、第二ゾーンBは、電圧がVt=f(TU,Dt)よりも高く、かつ領域関数f(Tt,Dt)で規定される曲線よりも低い範囲内である。この範囲内では、温度によっては動作制限領域となるため、冷却機構15の動作が必要となる。 On the other hand, the second zone B is in a range in which the voltage is higher than V t = f (T U , D t ) and lower than the curve defined by the area function f (T t , D t ). Within this range, depending on the temperature, it becomes an operation limited area, so the operation of the cooling mechanism 15 is required.
 また第三ゾーンCは、電圧が領域関数f(Tt,Dt)で規定される曲線よりも高い領域であって、すべてが制限領域となるため、この領域内では冷却機構15は常時動作させる必要がある。 In addition, the third zone C is a region where the voltage is higher than the curve defined by the region function f (T t , D t ), and all become a limited region, so the cooling mechanism 15 always operates in this region You need to
 そしてステップS3において、組電池の動作点が動作制限領域内にあるか否かを判定する。ここでは、時刻tにおける電圧Vtを、上限温度Tuの際の電圧VU=f(TU,Dt)と比較して、これよりも低い場合、すなわちVt<f(TU,Dt)の場合は、組電池の動作点が第一ゾーンA内にあると判定される。この場合はステップS4に進み、冷却機構15を停止状態とする。そしてステップS5に進み、サンプリング周期に対応する所定の時間T0待機した後、ステップS1に戻って処理を繰り返す。 Then, in step S3, it is determined whether the operating point of the battery pack is within the operation restricted area. Here, the voltage V t at time t is lower than the voltage V U = f (T U , D t ) at the upper limit temperature T u , that is, V t <f (T U , In the case of D t ), it is determined that the operating point of the battery pack is in the first zone A. In this case, the process proceeds to step S4, and the cooling mechanism 15 is stopped. The process proceeds to step S5, after the predetermined time T 0 wait corresponding to the sampling period, the process returns to step S1.
 一方、ステップS3において時刻tにおける電圧Vtが、上限温度Tuの際の電圧VU=f(TU,Dt)よりも高く、かつ領域関数f(Tt,Dt)よりも低い場合、すなわちf(TU,Dt)<Vt<f(Tt,Dt)の場合は、組電池の動作点が第二ゾーンB内にあると判定される。この場合はステップS6に進み、冷却機構15を停止状態とする。そしてステップS7に進み、サンプリング周期に対応する所定の時間T1待機した後、ステップS1に戻って処理を繰り返す。なお第二ゾーンB内にある場合のサンプリング周期T1は、第一ゾーンB内にある場合のサンプリング周期T0と同じとすることもできるが、これよりも短くすることで、より早いタイミングで必要な場合に冷却機構15の動作を開始できるため、好ましい。 On the other hand, in step S3, the voltage V t at time t is higher than the voltage V U = f (T U , D t ) at the upper limit temperature T u and lower than the area function f (T t , D t ) In the case where f (T U , D t ) <V t <f (T t , D t ), it is determined that the operating point of the battery pack is in the second zone B. In this case, the process proceeds to step S6, and the cooling mechanism 15 is stopped. Then the process proceeds to step S7, after the predetermined time T 1 waits which corresponds to the sampling period, the process returns to step S1. The sampling period T 1 in the second zone B may be the same as the sampling period T 0 in the first zone B, but by setting it shorter than this, the timing is earlier. It is preferable because the operation of the cooling mechanism 15 can be started when necessary.
 さらにステップS3において時刻tにおける電圧Vtが、領域関数f(Tt,Dt)よりも高い場合、すなわちVt>f(Tt,Dt)の場合は、組電池の動作点が第三ゾーンC内にあると判定される。この場合はステップS8に進み、冷却機構15を作動させる。そしてステップS9に進み、サンプリング周期に対応する所定の時間T2待機した後、ステップS1に戻って処理を繰り返す。なお第三ゾーンC内にある場合のサンプリング周期T3は、T0やT1と同じとすることもできるが、同じくこれらよりも短くすることで、より早いタイミングで冷却機構15の停止状態に移行できる。 Furthermore, in step S3, if the voltage V t at time t is higher than the area function f (T t , D t ), that is, if V t > f (T t , D t ), the operating point of the battery pack is It is determined that the vehicle is in zone C. In this case, the process proceeds to step S8, and the cooling mechanism 15 is operated. The process proceeds to step S9, after the predetermined time T 2 waits which corresponds to the sampling period, the process returns to step S1. Note sampling period T 3 when it is in the third zone C, which may be the same as the T 0 and T 1, also by less than these, the stopped state of the cooling mechanism 15 at an earlier timing It can be migrated.
 以上のようにして、組電池の状態に応じて冷却機構15を動作させて冷却し、動作制限領域にある組電池、あるいは動作制限領域に近付きつつある組電池を速やかに通常動作領域に移行させることができ、組電池の熱暴走連鎖を未然に防止して安全性を高めることが実現される。特に、サンプリング周期の切り替えを適用することで、消費電力を考慮した制御が可能となる。すなわち、熱暴走連鎖のおそれの無い領域では、サンプリング周期を長くして組電池の監視頻度を低減し、例えば従来の車両のシャットダウンやスリープモードと同様の監視レベルに抑制することで、停車中の消費電力を抑制できる。一方で熱暴走連鎖の防止のための監視が必要な領域では、停車中であっても、動作中の監視と同様の高いサンプリング周期に切り替えることで、組電池の状態を監視する。このように、サンプリング周期を状況に応じて切り替えることで、停車中の消費電力の抑制と、安全性の確保を両立させることができる。
(変形例)
As described above, the cooling mechanism 15 is operated and cooled according to the state of the assembled battery, and the assembled battery in the operation restricted area or the assembled battery approaching the operation restricted area is promptly transferred to the normal operation area It is realized that the thermal runaway chain of the battery pack can be prevented in advance to enhance the safety. In particular, by applying switching of the sampling period, control in consideration of power consumption is possible. That is, in the area where there is no fear of thermal runaway chaining, the sampling cycle is extended to reduce the monitoring frequency of the assembled battery, for example, by stopping to the same monitoring level as the conventional vehicle shutdown or sleep mode. Power consumption can be reduced. On the other hand, in the area where the monitoring for preventing the thermal runaway chain is required, the state of the assembled battery is monitored by switching to a high sampling cycle similar to the monitoring in operation even while the vehicle is stopped. As described above, by switching the sampling cycle according to the situation, it is possible to achieve both suppression of power consumption while the vehicle is stopped and securing of safety.
(Modification)
 温度検出部4や電圧検出部3が組電池の温度や電圧を測定するタイミングであるサンプリング周期は、一定とすることができる。例えば、1分~60分、3分~15分、5分~10分等の間で調整できる。 The sampling period, which is the timing at which the temperature detection unit 4 and the voltage detection unit 3 measure the temperature and voltage of the battery pack, can be made constant. For example, it can be adjusted between 1 minute to 60 minutes, 3 minutes to 15 minutes, 5 minutes to 10 minutes and the like.
 ただ組電池の充電率と温度を検出するサンプリング周期は、上述の通り、固定値とする他、変更することもできる。例えば、サンプリング周期を可変とし、動作制限領域以外の通常動作領域において、組電池の動作点が動作制限領域から離れた領域内にあるときはサンプリング周期を長くしつつ、動作点が通常動作領域内にあるものの、動作制限領域に近い領域にあるときは、サンプリング周期を短くしてもよい。これによって、温度の変化等で組電池の動作点が通常動作領域から動作制限領域に入る場合には、動作制限領域に入るタイミングを早い段階で検出できるようになり、監視の精度を向上させつつ、通常動作領域に止まる平常時においては、サンプリング周期を長くして処理の負荷を軽減できる。一例として、動作制限領域の近傍では、サンプリング周期を1分として頻繁に情報を更新する一方、通常動作領域では5分として、通常動作領域(車のキーOFF時)での電力消費量を抑えることが可能となる。 However, as described above, the charging rate of the assembled battery and the sampling cycle for detecting the temperature can be changed as well as fixed values. For example, when the sampling cycle is variable and the operating point of the battery pack is in an area away from the operation restricted area in the normal operation area other than the operation restricted area, the operating point is in the normal operation area while the sampling cycle is extended. However, the sampling period may be shortened when it is in the area close to the operation limited area. As a result, when the operating point of the battery pack goes from the normal operation area to the operation restricted area due to a change in temperature, etc., the timing of entering the operation restricted area can be detected at an early stage, improving the monitoring accuracy. In the normal operation area, the sampling cycle can be extended to reduce the processing load. As an example, in the vicinity of the operation limited area, the information is frequently updated with the sampling cycle being 1 minute, while in the normal operation area 5 minutes, the power consumption in the normal operation area (when the car key is off) is suppressed. Is possible.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。なお、車両を駆動する電力を得るために、上述した電源装置を直列や並列に多数接続して、さらに必要な制御回路を付加した大容量、高出力の電源装置100を構築した例として説明する。
(ハイブリッド車用電源装置)
The above power supply device can be used as a vehicle-mounted power supply. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or plug-in hybrid vehicle traveling with both an engine and a motor, or an electric vehicle traveling only with a motor can be used. . In addition, in order to obtain electric power for driving a vehicle, a large-capacity, high-output power supply device 100 will be described as an example in which a large number of necessary control circuits are added by connecting a large number of the above-described power supply devices in series or in parallel. .
(Power supply for hybrid vehicles)
 図5に、エンジンとモータの両方で走行するハイブリッド車に電源装置100を搭載する例を示す。この図に示す電源装置100を搭載した車両HVは、車両本体90と、車両本体90を走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94と、モータ93とエンジン96で駆動されて車両本体90を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
FIG. 5 shows an example in which the power supply device 100 is mounted on a hybrid vehicle traveling with both an engine and a motor. A vehicle HV equipped with a power supply device 100 shown in this figure includes a vehicle body 90, an engine 96 for traveling the vehicle body 90, a motor 93 for traveling, a power supply device 100 for supplying electric power to the motor 93, and a power supply device 100. And a wheel 97 driven by a motor 93 and an engine 96 to travel the vehicle body 90. The power supply device 100 is connected to the motor 93 and the generator 94 via a DC / AC inverter 95. The vehicle HV travels with both the motor 93 and the engine 96 while charging and discharging the battery of the power supply device 100. The motor 93 is driven in a region where the engine efficiency is low, for example, at the time of acceleration or low speed traveling to drive the vehicle. The motor 93 is supplied with power from the power supply device 100 and is driven. The generator 94 is driven by the engine 96 or driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(Power supply for electric vehicles)
 また図6に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両本体90と、車両本体90を走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(蓄電用電源装置)
Further, FIG. 6 shows an example in which the power supply device is mounted on an electric vehicle traveling only by a motor. The vehicle EV mounted with the power supply device shown in this figure includes a vehicle body 90, a traveling motor 93 for traveling the vehicle body 90, a power supply device 100 for supplying power to the motor 93, and a battery of the power supply device 100. And a wheel 97 driven by a motor 93 to travel the vehicle body 90. The motor 93 is supplied with power from the power supply device 100 and is driven. The generator 94 is driven by energy when regenerative braking the vehicle EV, and charges the battery of the power supply device 100.
(Power storage device for storage)
 さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図7に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の二次電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。 Furthermore, this power supply device can be used not only as a power source for mobiles, but also as a storage type storage equipment. For example, as a power supply for home use or factory use, a power supply system that charges with sunlight or late-night power and discharges it when necessary, or a streetlight power supply that charges sunlight during the day and discharges it at night, It can also be used as a backup power supply for driving traffic signals. Such an example is shown in FIG. In the power supply device 100 shown in this figure, a plurality of battery packs 81 are connected in a unit form to constitute a battery unit 82. In each battery pack 81, a plurality of secondary battery cells are connected in series and / or in parallel. Each battery pack 81 is controlled by a power supply controller 84. The power supply device 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. Therefore, the power supply device 100 has a charge mode and a discharge mode. The load LD and the charging power supply CP are connected to the power supply device 100 through the discharge switch DS and the charging switch CS, respectively. The on / off of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply device 100. In the charge mode, the power supply controller 84 switches the charge switch CS to ON and the discharge switch DS to OFF to permit charging of the power supply device 100 from the charging power supply CP. Also, when the charging is completed and the battery is fully charged, or when the capacity more than a predetermined value is charged, the power supply controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge in response to a request from the load LD. It switches to the mode and permits discharge from the power supply device 100 to the load LD. In addition, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to simultaneously perform the power supply of the load LD and the charging of the power supply apparatus 100.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図7の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply device 100, the power supply controller 84 switches the discharge switch DS to ON, connects it to the load LD, and drives the load LD with the power from the power supply device 100. The discharge switch DS can use a switching element such as an FET. The ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power supply controller 84 also includes a communication interface for communicating with an external device. In the example of FIG. 7, the host device HT is connected according to the existing communication protocol such as UART or RS-232C. Also, if necessary, a user interface may be provided for the user to operate the power supply system.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。また電池ユニット82は、並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。 Each battery pack 81 includes a signal terminal and a power terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting a signal from another battery pack or the power supply controller 84, and the pack connecting terminal DO is for inputting / outputting a signal to / from another pack battery which is a child pack. It is a terminal of. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
 本発明に係る電源装置の冷却方法、冷却プログラム、コンピュータで読み取り可能な記録媒体及び記憶した機器、電源装置並びにこれを備える車両は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 A cooling method for a power supply device, a cooling program, a computer readable recording medium, a stored device, a power supply device, and a vehicle equipped with the same according to the present invention are plug-in hybrids capable of switching between an EV travel mode and a HEV travel mode It can be suitably used as a power supply device for electric vehicles, hybrid electric vehicles, electric vehicles and the like. In addition, a backup power supply that can be mounted in a rack of a computer server, a backup power supply for a wireless base station such as a mobile phone, a storage power for household use and a factory, a power supply for street lights, etc. It can also be suitably used for backup power sources such as traffic lights.
 100…電源装置、1…組電池、2…電流検出部、3…電圧検出部、4…温度検出部、5…容量演算部、6…充電率検出部、7…劣化率演算部、8…動作制限判定部、9…通信処理部、10…電流検出抵抗、11…メモリ、12…イグニッションスイッチ、13…演算回路、14…冷却制御部、15…冷却機構、81…電池ブロック、82…電池ユニット、84…電源コントローラ、85…並列接続スイッチ、90…車両本体、93…モータ、94…発電機、95…DC/ACインバータ、96…エンジン、97…車輪、HV…車両、EV…車両、CP…充電用電源、LD…負荷、DS…放電スイッチ、CS…充電スイッチ、OL…出力ライン、HT…ホスト機器、DI…入出力端子、DA…異常出力端子、DO…接続端子 100 Power supply device 1 Battery pack 2 Current detection unit 3 Voltage detection unit 4 Temperature detection unit 5 Capacity calculation unit 6 Charging rate detection unit 7 Degradation ratio calculation unit 8 Operation restriction determination unit 9 communication processing unit 10 current detection resistor 11 memory 12 ignition switch 13 arithmetic circuit 14 cooling control unit 15 cooling mechanism 81 battery block 82 battery Unit 84 84 power controller 85 parallel connection switch 90 vehicle body 93 motor 94 generator 95 DC / AC inverter 96 engine 97 wheel 97 HV vehicle EV vehicle CP: power supply for charging, LD: load, DS: discharge switch, CS: charge switch, OL: output line, HT: host device, DI: input / output terminal, DA: abnormal output terminal, DO: connection terminal

Claims (18)

  1.  電源装置の冷却方法であって、
     電源装置が備える複数の二次電池セルの集合体である組電池の充電率と温度を検出する工程と、
     前記検出された充電率と、前記検出された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定する工程と、
     温度評価基準に合致していないと判定された場合に、前記組電池を冷却する冷却機構を作動させて、前記組電池の温度が温度評価基準に合致するまで冷却を継続する工程と、を含む電源装置の冷却方法。
    A method of cooling a power supply, comprising
    Detecting a charging rate and temperature of an assembled battery that is an assembly of a plurality of secondary battery cells included in the power supply device;
    Determining whether or not a predetermined temperature evaluation standard is met based on the detected charging rate and the detected temperature;
    Operating the cooling mechanism for cooling the assembled battery when it is determined that the temperature evaluation criteria are not met, and continuing the cooling until the temperature of the assembled battery meets the temperature evaluation criteria Power supply cooling method.
  2.  請求項1に記載の電源装置の冷却方法であって、
     前記温度評価基準の合否判定が、組電池の充電率と温度の関係から組電池の動作に不適切と思われる予め画定された動作制限領域内に、組電池の充電率と温度の現在値で決まる動作点が含まれているかどうかの判定である電源装置の冷却方法。
    The method of cooling a power supply device according to claim 1, wherein
    The present value of the charge rate and temperature of the battery pack is within the predefined operation restricted area where the pass / fail judgment of the temperature evaluation criteria is considered to be unsuitable for the operation of the battery pack from the relationship between the charge rate of the battery pack and temperature. A method of cooling a power supply that is a determination of whether a determined operating point is included.
  3.  請求項2に記載の電源装置の冷却方法であって、
     温度評価基準の合否判定が、予め演算された前記組電池の劣化率と、前記検出された充電率と、前記検出された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定する工程である電源装置の冷却方法。
    The method of cooling a power supply device according to claim 2, wherein
    Whether the pass / fail judgment of the temperature evaluation criteria conforms to a predetermined temperature evaluation criteria based on the deterioration rate of the battery pack calculated in advance, the detected charging rate, and the detected temperature A method of cooling a power supply, which is a process of determining
  4.  請求項3に記載の電源装置の冷却方法であって、
     前記動作制限領域が、前記組電池の劣化率に応じて異なる複数の制限領域を有してなる電源装置の冷却方法。
    The method of cooling a power supply device according to claim 3, wherein
    A method of cooling a power supply device, wherein the operation restricted area has a plurality of restricted areas that differ according to the deterioration rate of the battery pack.
  5.  請求項1~4のいずれか一項に記載の電源装置の冷却方法であって、
     温度評価基準の合否判定が、組電池の充電率と温度を座標軸とする評価グラフ上で予め画定された、組電池の充電率と温度の関係から組電池の動作に不適切と思われる動作制限領域内に、組電池の充電率と温度の現在値で決まる動作点が含まれているかどうかの判定である電源装置の冷却方法。
    A method of cooling a power supply device according to any one of claims 1 to 4, wherein
    The operation restriction that seems to be unsuitable for the operation of the battery pack from the relationship between the charge ratio of the battery pack and temperature, which is defined in advance on the evaluation graph in which the coordinate rate is the charge rate and temperature of the battery pack. A method of cooling a power supply device, which determines whether an area includes an operating point determined by the current value of the charging rate of a battery pack and temperature.
  6.  請求項5に記載の電源装置の冷却方法であって、
     前記動作制限領域が、組電池の充電率と温度に基づいて予め定められた領域関数によって画定されてなる電源装置の冷却方法。
    The power supply device cooling method according to claim 5,
    A method of cooling a power supply device, wherein the operation restricted area is defined by an area function predetermined based on a charging rate and a temperature of a battery pack.
  7.  請求項5又は6に記載の電源装置の冷却方法であって、
     前記組電池の充電率と温度を検出する周期が、1分~60分である電源装置の冷却方法。
    A method of cooling a power supply device according to claim 5 or 6, wherein
    The method of cooling a power supply device, wherein a cycle of detecting a charging rate and a temperature of the assembled battery is 1 minute to 60 minutes.
  8.  請求項7に記載の電源装置の冷却方法であって、
     前記組電池の充電率と温度を検出する周期を可変としてなる電源装置の冷却方法。
    8. The method of cooling a power supply device according to claim 7, wherein
    A method of cooling a power supply device, wherein a cycle of detecting a charging rate and a temperature of the assembled battery is variable.
  9.  請求項8に記載の電源装置の冷却方法であって、
     前記組電池の充電率と温度を検出する周期が、前記動作制限領域に近付くと短くなるよう制御してなる電源装置の冷却方法。
    9. The method of cooling a power supply device according to claim 8, wherein
    A cooling method of a power supply device, wherein a cycle of detecting a charging rate and a temperature of the assembled battery is controlled to be short as it approaches the operation restricted area.
  10.  請求項1~9のいずれか一項に記載の電源装置の冷却方法であって、
     前記電源装置が車両の駆動用の電源装置であり、
     前記車両のイグニッションスイッチがOFFされた状態においても、前記冷却を実行させてなる電源装置の冷却方法。
    The method of cooling a power supply device according to any one of claims 1 to 9, wherein
    The power supply device is a power supply device for driving a vehicle,
    The cooling method of the power supply device which performs the said cooling, also in the state by which the ignition switch of the said vehicle was turned off.
  11.  電源装置の冷却プログラムであって、
     電源装置が備える複数の二次電池セルの集合体である組電池の充電率と温度を取得する機能と、
     前記取得された充電率と、前記取得された温度に基づいて、予め定められた温度評価基準に合致しているか否かを判定する機能と、
     温度評価基準に合致していないと判定された場合に、前記組電池を冷却する冷却機構を作動させて、前記組電池の温度が温度評価基準に合致するまで冷却を継続する機能と、をコンピュータに実現させるための電源装置の冷却プログラム。
    A power supply cooling program,
    A function of acquiring a charging rate and a temperature of an assembled battery that is an assembly of a plurality of secondary battery cells included in the power supply device;
    A function of determining whether or not a predetermined temperature evaluation standard is met based on the acquired charging rate and the acquired temperature;
    A function of operating a cooling mechanism for cooling the assembled battery when it is determined that the temperature evaluation criteria are not met, and continuing cooling until the temperature of the assembled battery meets the temperature evaluation criteria; Power supply cooling program to achieve.
  12.  請求項11に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体または記憶した機器。 A computer readable recording medium or device storing the program according to claim 11.
  13.  電源装置であって、
     複数の二次電池セルの集合体である組電池と、
     前記組電池の充電率を検出する充電率検出部と、
     前記組電池の温度を検出する温度検出部と、
     前記組電池の劣化率を演算する劣化率演算部と、
     前記組電池の動作を安全に行い得る該組電池の充電率と温度の関係を規定した温度評価基準を保持するための評価基準保持部と、
     前記組電池を冷却するための冷却機構と、
     前記充電率検出部で検出された前記組電池の充電率と、前記温度検出部で検出された前記組電池の温度と、前記劣化率演算部で演算された前記組電池の劣化率に基づいて、前記評価基準保持部に保持された温度評価基準に合致しているか否かを判定する動作制限判定部と、
     前記動作制限判定部で温度評価基準に合致していないと判定されると、前記組電池の温度が温度評価基準に合致するまで前記冷却機構を作動させる冷却制御部と、を備える電源装置。
    A power supply,
    An assembled battery that is an assembly of a plurality of secondary battery cells,
    A charging rate detection unit that detects a charging rate of the battery pack;
    A temperature detection unit that detects the temperature of the battery pack;
    A deterioration rate calculation unit that calculates the deterioration rate of the battery pack;
    An evaluation standard holding unit for holding a temperature evaluation standard that defines the relationship between the charging rate of the assembled battery and the temperature at which the assembled battery can be operated safely;
    A cooling mechanism for cooling the battery pack;
    Based on the charging rate of the battery pack detected by the charging rate detecting unit, the temperature of the battery pack detected by the temperature detecting unit, and the deterioration rate of the battery pack calculated by the deterioration rate calculating unit An operation restriction determination unit that determines whether the temperature evaluation criteria held in the evaluation criteria holding unit are met;
    And a cooling control unit configured to operate the cooling mechanism until the temperature of the assembled battery matches the temperature evaluation reference when the operation restriction judging unit determines that the temperature evaluation reference is not satisfied.
  14.  請求項13に記載の電源装置であって、
     前記冷却機構が、水冷式の冷却機構である電源装置。
    The power supply device according to claim 13, wherein
    The power supply device, wherein the cooling mechanism is a water cooling type cooling mechanism.
  15.  請求項13に記載の電源装置であって、
     前記冷却機構が、空冷式の冷却ファンである電源装置。
    The power supply device according to claim 13, wherein
    The power supply device, wherein the cooling mechanism is an air cooling type cooling fan.
  16.  請求項13~15のいずれか一項に記載の電源装置であって、
     車両の駆動用の電源装置である電源装置。
    The power supply device according to any one of claims 13 to 15, wherein
    A power supply device that is a power supply device for driving a vehicle.
  17.  請求項16に記載の電源装置であって、
     前記車両のイグニッションスイッチがOFFされた状態においても、前記冷却を実行させてなる電源装置。
    The power supply device according to claim 16, wherein
    The power supply device in which the said cooling is performed also in the state by which the ignition switch of the said vehicle was turned off.
  18.  請求項13~17のいずれか一に記載の電源装置を備えてなる車両であって、
     前記電源装置と、該電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備える車両。
    A vehicle comprising the power supply device according to any one of claims 13 to 17, wherein
    The power supply apparatus, a traveling motor supplied with power from the power supply apparatus, a vehicle body on which the power supply apparatus and the motor are mounted, and a wheel driven by the motor to cause the vehicle body to travel vehicle.
PCT/JP2018/042204 2017-12-19 2018-11-15 Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same WO2019123905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017243272A JP2021036485A (en) 2017-12-19 2017-12-19 Cooling method of power supply, cooling program, computer-readable recording media, and device storing recording media, power supply, and vehicle including the same
JP2017-243272 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019123905A1 true WO2019123905A1 (en) 2019-06-27

Family

ID=66992763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042204 WO2019123905A1 (en) 2017-12-19 2018-11-15 Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same

Country Status (2)

Country Link
JP (1) JP2021036485A (en)
WO (1) WO2019123905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930772A (en) * 2023-09-15 2023-10-24 东方电子股份有限公司 Battery SOC estimation method and device considering boundary constraint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185005A (en) * 2006-01-04 2007-07-19 Honda Motor Co Ltd Controller of electric vehicle
JP2008016230A (en) * 2006-07-03 2008-01-24 Mazda Motor Corp Temperature control device of battery
JP2012104458A (en) * 2010-11-15 2012-05-31 Honda Motor Co Ltd Battery cooling system and cooling method
JP2016103937A (en) * 2014-11-28 2016-06-02 日立工機株式会社 Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185005A (en) * 2006-01-04 2007-07-19 Honda Motor Co Ltd Controller of electric vehicle
JP2008016230A (en) * 2006-07-03 2008-01-24 Mazda Motor Corp Temperature control device of battery
JP2012104458A (en) * 2010-11-15 2012-05-31 Honda Motor Co Ltd Battery cooling system and cooling method
JP2016103937A (en) * 2014-11-28 2016-06-02 日立工機株式会社 Battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930772A (en) * 2023-09-15 2023-10-24 东方电子股份有限公司 Battery SOC estimation method and device considering boundary constraint
CN116930772B (en) * 2023-09-15 2023-11-24 东方电子股份有限公司 Battery SOC estimation method and device considering boundary constraint

Also Published As

Publication number Publication date
JP2021036485A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6084225B2 (en) Battery control device, secondary battery system
US9676281B2 (en) Hybrid battery system for electric vehicles
JP5477778B2 (en) Control device for battery parallel connection circuit
JP5331493B2 (en) Battery control device
JP4311363B2 (en) Power storage system and storage system abnormality processing method
US7768235B2 (en) Battery management system and method for automotive vehicle
US20140103859A1 (en) Electric storage system
JP5670556B2 (en) Battery control device
WO2013051688A1 (en) Battery state management device, battery state management method
JPWO2017130614A1 (en) Battery control device
JP2010108750A (en) Input and output control device of battery pack
JP2011135657A (en) Battery system and vehicle with the same, and method for detecting current limit state of the battery system
JPWO2020084964A1 (en) Temperature control device control device
JP2019138706A (en) Battery current detector, and electric vehicle and power storage device equipped with current detector
JP2018110072A (en) Secondary battery controller and secondary battery control method
CN114156546A (en) Battery management apparatus and energy storage system having the same
JP2016031876A (en) Battery cooling state determination device, electric vehicle and battery cooling state determination method
JP2013254664A (en) Control device for secondary batteries
KR102056476B1 (en) Small Rechargeable Battery Matrix Control Apparatus and Method For an Electric Vehicle
WO2019123905A1 (en) Method for cooling power supply device, cooling program, computer readable recording media and storage device thereof, power supply device, and vehicle comprising same
JP3625721B2 (en) Battery control device for electric vehicle
CN114103665B (en) Determination of association of battery modules and sub-packages in an electrical energy storage system
JP5626195B2 (en) Power storage system
KR20220032471A (en) Battery management apparatus, and Energy storage system
JP2001043902A (en) Controlling method of battery pack for automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP