US9937816B2 - Method for managing the temperature of a battery of an electric or hybrid vehicle - Google Patents
Method for managing the temperature of a battery of an electric or hybrid vehicle Download PDFInfo
- Publication number
- US9937816B2 US9937816B2 US14/787,365 US201414787365A US9937816B2 US 9937816 B2 US9937816 B2 US 9937816B2 US 201414787365 A US201414787365 A US 201414787365A US 9937816 B2 US9937816 B2 US 9937816B2
- Authority
- US
- United States
- Prior art keywords
- battery
- temperature
- value
- soc
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001816 cooling Methods 0.000 claims abstract description 36
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 230000001960 triggered effect Effects 0.000 claims abstract description 21
- 230000001172 regenerating effect Effects 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- B60L11/1872—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B60L11/1861—
-
- B60L11/1874—
-
- B60L11/1875—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/633—Control systems characterised by algorithms, flow charts, software details or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/44—Control modes by parameter estimation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y02T10/7005—
-
- Y02T10/7044—
-
- Y02T10/705—
Definitions
- the present invention relates to the field of thermal regulation of a battery for a motor vehicle, in particular a rechargeable electric or hybrid vehicle (PHEV for plug-in hybrid electric vehicle), of which the batteries can be charged by hooking up to an external energy source at different types of charging points, usually connected to a conventional electrical network.
- PHEV rechargeable electric or hybrid vehicle
- the performance of a battery is very sensitive to the usage temperature thereof.
- the usage temperature of a battery is dependent on the external temperature, but also on other parameters, such as the driving of the driver, for example.
- a battery At low temperature, a battery is weak. In other words, during a charge phase, the charge time of said battery is longer and it charges less energy; and during a discharge phase, the autonomy of the battery is lower and the performance of said battery is reduced (in this case, a battery has in particular low power absorption capacities in the case of regenerative braking).
- the battery At high temperature, the battery demonstrates an improved performance compared with that at low temperature (improved charge time, more stored energy, improved recovery of energy), but at the detriment to its service life, which is reduced.
- the current prior art solutions consist of using temperature thresholds that are constant over time for the triggering and stopping of the cooling/heating.
- the cooling can be triggered on the basis of a temperature of the battery greater than 28° C., and this cooling can be stopped as soon as the temperature of the battery reaches 15° C.
- the invention firstly relates to a method for managing the temperature of a battery of an electric or hybrid vehicle
- the method is essentially characterized in that it comprises, for two consecutive values of the state of charge of the battery (SOC(i), SOC(i ⁇ x)) in a predefined sequence:
- a step of initialization in which the value of the initial reference gradient (dT/dSOC)_target is stored beforehand in a map installed onboard the vehicle, or is determined as follows:
- a step includes defining the value of the reference gradient (dT/dSOC) (i)_target for a state of charge value (SOC(i)) given by the equation:
- the step of comparison comprises the calculation of a difference E, in absolute value, between the gradient (dT/dSOC)_real and the reference gradient (dT/dSOC)_target between said consecutive values of the state of charge of the battery (SOC(i), SOC(i ⁇ x)) in the predefined sequence.
- a step is provided that includes determining the driving type or the driving manner of the driver.
- a step is provided that includes
- Ts the trigger threshold temperature
- Ts the reduced value of the trigger temperature (Ts) for the following two consecutive values of the state of charge of the battery (SOC(i ⁇ x), SOC(i ⁇ 2x)) in the predefined sequence.
- a reduced value (T new client trigger threshold ) of the trigger temperature is calculated in accordance with the equation:
- T new ⁇ ⁇ client ⁇ ⁇ trigger ⁇ ⁇ threshold T old ⁇ ⁇ trigger ⁇ ⁇ threshold - Kp ⁇ d ⁇ ⁇ SOC d ⁇ ⁇ t ⁇ ⁇
- T old client trigger threshold the value of the trigger temperature not yet reduced.
- a step is provided that includes increasing the value of the recorded threshold temperature T old trigger threshold such that the cooling of the battery is triggered later.
- the invention also relates to a computer program, comprising program code instructions for the execution of the steps of the method according to the invention, when said program is executed on a computer.
- motor vehicle means any electric or hybrid motor vehicle.
- Each motor vehicle comprises at least one battery, hereinafter “a” or “the” battery.
- Each motor vehicle comprises means for cooling or heating the battery, hereinafter a “thermal system”.
- the state of charge SOC of the battery is typically expressed in percentages of charging, 100% corresponding to a battery charged to the maximum of its capacity and 0% corresponding to a discharged battery.
- the trigger threshold temperature Ts is recorded in a memory. When the real temperature of the battery crosses this threshold temperature Ts, the cooling or possibly the heating of the battery is triggered.
- T is the temperature of the battery
- dT is the development of the temperature of the battery
- SOC is the state of charge of the battery
- dSOC is the development of the state of charge of the battery.
- the value of the reference gradient (dT/dSOC)_target may be provided onboard the vehicle beforehand as a map.
- the value thereof may be dependent on different parameters, for example the external temperature, the country of use of the vehicle, topography, temperature and state of charge of the battery at the time of initialization, etc.
- the initial reference gradient (dT/dSOC)_target can also be determined at the time of initialization in the following manner:
- the initial target gradient is the line connecting the point of measurement of the initial temperature Tinitial and the maximum temperature Tmaximum_before_derating.
- the temperature T of the battery is measured and the development dT of the temperature of the battery is determined on the basis of the development dSOC of the state of charge thereof.
- the real gradient (dT/dSOC)_real is then determined.
- the temperature of the battery is typically measured by an assembly of at least one sensor integrated in the battery.
- the state of charge SOC of the battery is permanently known, by means known to a person skilled in the art.
- the battery is cooled as soon as it is detected that the real gradient is greater than the reference gradient.
- a predefined sequence of state of charge values SOC is defined: SOC(i), SOC(i ⁇ x), SOC(i ⁇ 2x), . . . , SOC(i ⁇ Nx); x defining a step value, which is preferably constant, and N defining a natural number.
- the step x is between 5% and 15%, and in this case is 10%.
- the temperature of the battery is measured at the minimum with each step, i.e. at each value SOC(i) of the predefined sequence, or continuously.
- N is selected such that
- SOC(i ⁇ Nx) SOC end _ of _ discharge for example 0%.
- the values T(i) of the temperature of the battery for a given state of charge value SOC(i) are recorded in a memory, at least for each value of the sequence SOC(i), SOC(i ⁇ x), SOC(i ⁇ 2x), . . . , SOC(i ⁇ Nx).
- the value of the reference gradient (dT/dSOC)_target can then be indexed by the index (i) and can be written (dT/dSOC) (i)_target, the value thereof being given, with reference to equation (1), by the equation:
- the value of the reference gradient (dT/dSOC) (i)_target can be calculated at any moment of the given cycle C(i; i ⁇ x) between SOC(i) and SOC(i ⁇ x), preferably at the start of the cycle.
- the value of the reference gradient (dT/dSOC) (i)_target is variable and calculated with each cycle, which makes it possible to determine the type of driving closest to the actual situation.
- a real gradient “Real gradient [40%;50%]” is illustrated by a dashed line between the state of charge 50%, for which the measured temperature is the initial temperature Tinitial, and the state of charge 40%, for which the measured temperature is the temperature T_40%.
- a real gradient “real gradient [30%;40%]” is illustrated by a dashed line between the state of charge 30%, for which the measured temperature is the initial temperature T_30%, and the state of charge 40%, for which the measured temperature is the temperature T_40%.
- a target gradient “target gradient [30%;40%]” is illustrated by the line connecting the point of measurement of the initial temperature T_40% and the maximum temperature Tmaximum_before_derating.
- a step of learning consisting of determining the driving type or the driving manner of the driver, preferably with each cycle, with the possible exception of the first cycle after the initialization.
- the step of comparison of the gradient (dT/dSOC)_real to the reference gradient (dT/dSOC)_target of the same cycle is implemented, after the initialization, for at least one cycle and preferably with each cycle.
- the step of comparison comprises the calculation of the difference E, in absolute value, between the gradient (dT/dSOC)_real and the reference gradient (dT/dSOC)_target of the same cycle.
- E ABS[( dT/d SOC)_real] ⁇ ABS[( dT/d SOC)_target]
- At least one of the two following configurations may be provided.
- the power of the means for cooling the battery is regulated.
- the regulator may be a PID.
- the threshold temperature at which the heating/cooling of the battery is triggered is regulated.
- the value of the trigger threshold temperature is typically lowered for the following cycle, such that the cooling of the battery is triggered earlier.
- the value of the recorded trigger threshold temperature is decreased for a given cycle C(i; i ⁇ x) by a value between 1° C. and 5° C., and typically by 2° C. or 3° C., so as to obtain a new trigger threshold temperature value recorded and used for the following cycle C(i ⁇ x; i ⁇ 2x).
- the value by which the trigger threshold temperature value is decreased can be recorded in a memory and may be constant or variable and be dependent on a certain number of parameters.
- the regulator may operate as follows:
- T new ⁇ ⁇ client ⁇ ⁇ trigger ⁇ ⁇ threshold T old ⁇ ⁇ trigger ⁇ ⁇ threshold - MCp hS ⁇ d ⁇ ⁇ SOC d ⁇ ⁇ t ⁇ ⁇ ( 4 )
- T new ⁇ ⁇ client ⁇ ⁇ trigger ⁇ ⁇ threshold T old ⁇ ⁇ trigger ⁇ ⁇ threshold - Kp ⁇ d ⁇ ⁇ SOC d ⁇ ⁇ t ⁇ ⁇ ( 5 )
- Kp designates a constant term which makes it possible to adjust the regulator.
- the target temperature “Ttarget_30%” illustrates the value of the target gradient “Target gradient [30%;40%]” for a state of charge of 30%.
- the target temperature “Ttarget_40%” is the value of the target gradient “Target gradient [40%;50%]”, in the present case the “Initial target gradient”, for a state of charge of 40%.
- the value of the recorded threshold temperature T old trigger threshold is increased, such that the cooling of the battery is triggered later.
- the value of the threshold temperature is increased by a value between 1° C. and 5° C., and typically by 2° C., so as to obtain a new threshold temperature T new client trigger threshold .
- the value of the threshold temperature thus modified T new client trigger threshold is used for the following cycle.
- a regulator makes it possible to control or regulate:
- the value of the trigger temperature Ts or of the delivered power determined for a given cycle C(i; i ⁇ x) is applied to the following cycle C(i ⁇ x; i ⁇ 2x).
- the step of learning can be implemented iteratively with each cycle whilst the motor vehicle is in operation, until the engine of said vehicle is stopped.
- the management of the temperature of the battery of the motor vehicle is adapted to each driver and to the driving conditions of said driver.
- the invention it is possible to modify the threshold at which the cooling of the battery is triggered so as to adapt to the real driving behavior of the driver.
- equations (1) and (2) make reference to the maximum value T maximum _ before _ derating .
- T_secure 1° C. or 2° C.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Description
-
- a step of recording in a memory a temperature value (Ts) at which the cooling or the heating of the battery is triggered.
-
- a step of comparing the value of a real gradient ((dT/dSOC)_real) of the temperature of the battery to a reference gradient ((dT/dSOC)_target) of the temperature of the battery; and
- a step of modifying, depending on the result of the step of comparison,
- the temperature value (Ts) at which the cooling or the heating of the battery is triggered; or
- the value of the power delivered by means for cooling or heating the battery;
and in that the method comprises a step including
- applying the modified trigger temperature value (Ts) or the modified delivered power value for the following two consecutive values of the state of charge of the battery (SOC(i−x), SOC(i−2x)) in the predefined sequence.
-
- Tmaximum _ before _ derating the maximum usage temperature of the battery corresponding to the acceptable limit of discharge or regenerative braking power, beyond which the available power decreases;
- Tinitial the temperature of the battery at the time of implementation of the step of initialization;
- SOCinitial the state of charge of the battery at the time of implementation of the step of initialization; and
- SOCend _ of _ discharge the state of charge of the battery corresponding to the end of discharge or to the state of minimal charge usable by the battery.
-
- Tmaximum _ before _ derating the maximum usage temperature of the battery corresponding to the acceptable limit of discharge or regenerative braking power, beyond which the available power decreases;
- TSOC(1) the value of the temperature of the battery measured at the state of charge SOC(i);
- SOCend _ of _ discharge the state of charge of the battery corresponding to the end of discharge or to the state of minimal charge usable by the battery.
-
- if E>0, the driving type is considered to be harsh; and
- if E<0, the driving type is considered to be normal or gentle.
-
- the temperature Ts at which the cooling or the heating of the battery by the thermal system is triggered; or
- the power delivered by the thermal system, for example via the ventilation flow or temperature.
-
- Tmaximum _ before _ derating the maximum usage temperature of the battery corresponding to the acceptable limit of discharge (and/or regenerative braking), beyond which the available power decreases;
- Tinitial the temperature of the battery at the time of implementation of the step of initialization;
- SOCinitial the state of charge of the battery at the time of implementation of the step of initialization;
- SOCend _ of _ discharge the state of charge of the battery corresponding to the end of discharge (state of minimal charge usable by the battery).
dT_real=T(i−x)−T(i);
dSOC_real=SOC(i−x)−SOC(i).
E=ABS[(dT/dSOC)_real]−ABS[(dT/dSOC)_target]
-
- if E>0, the driving type is considered harsh; and
- if E<0, the driving type is considered normal or gentle.
MCp dt dT
-
- Ttarget is the target temperature of the battery corresponding to the target gradient; i.e. for a given cycle C(i; i−x), the value of the temperature T(i−x) of the target gradient, see the sole FIGURE;
- ϕexternal designates the power exchanged between the battery and the ambient air;
- hS(Tcoolant−Ttarget) designates the convection term associated with the cooling system. This term is zero when the temperature of the battery T_target is lower than the threshold temperature at which cooling is triggered, i.e. when the cooling of the battery is inactive;
- Tcoolant designates the temperature of the cooling fluid of the cooling system;
- RItheoretical 2 designates the term for generation of theoretical heat within the battery; and
- MCp designates the inertia term of the battery.
-
- Treal the measured temperature; and
- RIreal 2 the term for generation of real heat within the battery.
with
-
- Tnew client trigger threshold the value of the threshold temperature Ts for a given cycle; and
- Told trigger threshold the value of the threshold temperature Ts for the previous cycle.
it can be deduced that
-
- the temperature at which the cooling or the heating of the battery is triggered; or
- the power delivered by the means for cooling or heating the battery, for example via the ventilation flow or temperature.
for example Tmax=T maximum before derating −T_secure,
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1354015A FR3005208B1 (en) | 2013-04-30 | 2013-04-30 | METHOD FOR CONTROLLING THE TEMPERATURE OF A BATTERY OF AN ELECTRIC OR HYBRID VEHICLE. |
FR1354015 | 2013-04-30 | ||
PCT/FR2014/050996 WO2014177793A1 (en) | 2013-04-30 | 2014-04-24 | Method for managing the temperature of a battery of an electric or hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160082860A1 US20160082860A1 (en) | 2016-03-24 |
US9937816B2 true US9937816B2 (en) | 2018-04-10 |
Family
ID=48906330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/787,365 Active 2034-10-22 US9937816B2 (en) | 2013-04-30 | 2014-04-24 | Method for managing the temperature of a battery of an electric or hybrid vehicle |
Country Status (7)
Country | Link |
---|---|
US (1) | US9937816B2 (en) |
EP (1) | EP2991855B1 (en) |
JP (1) | JP6351710B2 (en) |
KR (1) | KR102122819B1 (en) |
CN (1) | CN105307896A (en) |
FR (1) | FR3005208B1 (en) |
WO (1) | WO2014177793A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210408617A1 (en) * | 2020-06-24 | 2021-12-30 | Sungrow Power Supply Co., Ltd. | Temperature control method for energy storage system, and energy management system |
US11563247B2 (en) | 2019-10-15 | 2023-01-24 | Ford Global Technologies, Llc | Cold ambient battery cooling utilizing the climate cabin heating system |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015103548A1 (en) | 2014-01-03 | 2015-07-09 | Quantumscape Corporation | Thermal management system for vehicles with an electric powertrain |
US11011783B2 (en) | 2013-10-25 | 2021-05-18 | Quantumscape Battery, Inc. | Thermal and electrical management of battery packs |
US9834114B2 (en) | 2014-08-27 | 2017-12-05 | Quantumscape Corporation | Battery thermal management system and methods of use |
FR3042314B1 (en) * | 2015-10-07 | 2021-05-14 | Renault Sas | METHOD OF DETECTION OF A THERMAL INTERFACE FAULT BETWEEN A BATTERY AND ITS THERMAL CONDITIONING SYSTEM |
FR3057998B1 (en) * | 2016-10-25 | 2018-11-30 | Peugeot Citroen Automobiles Sa | DEVICE AND METHOD FOR CONTROLLING THE TEMPERATURE OF A BATTERY BASED ON THE GRADIENT OF THE ELECTRICAL POWER DELIVERED |
CN106926717B (en) * | 2016-11-21 | 2019-09-24 | 蔚来汽车有限公司 | Electrical changing station charging method and system based on greedy algorithm |
KR102639843B1 (en) * | 2016-12-20 | 2024-02-26 | 현대자동차주식회사 | System and method for managing battery of vehicle, and vehicle thereof |
KR102413075B1 (en) * | 2017-12-29 | 2022-06-24 | 두산산업차량 주식회사 | ELECTRIC forklift truck and method of driving the same |
KR102614129B1 (en) | 2018-06-08 | 2023-12-14 | 현대자동차주식회사 | Cooling system and method for electric power system of vehicle |
GB2577088A (en) * | 2018-09-13 | 2020-03-18 | Oxis Energy Ltd | Battery management |
KR20200128809A (en) | 2019-05-07 | 2020-11-17 | 현대자동차주식회사 | Cooling system and method for electric power system of vehicle |
KR20210104189A (en) | 2020-02-13 | 2021-08-25 | 현대자동차주식회사 | Multi-path cooling system and cooling system for eco-friendly vehicle applying the same |
KR20210129482A (en) | 2020-04-20 | 2021-10-28 | 현대자동차주식회사 | Cooling system of electric power system of vehicle |
CN111890985A (en) * | 2020-06-30 | 2020-11-06 | 汉腾汽车有限公司 | Method for adjusting available power of battery of electric vehicle |
CN112428876A (en) * | 2020-11-20 | 2021-03-02 | 宝能(广州)汽车研究院有限公司 | Electric vehicle charging heating control method and device, storage medium and electric vehicle |
CN113352944B (en) * | 2021-05-31 | 2022-05-06 | 重庆长安新能源汽车科技有限公司 | Method and system for determining thermal management parameters of power battery based on low-temperature quick charge |
CN114335791B (en) * | 2021-11-25 | 2024-07-12 | 武汉格罗夫氢能汽车有限公司 | Battery cooling method of new energy vehicle |
FR3132792A1 (en) * | 2022-02-17 | 2023-08-18 | Psa Automobiles Sa | CONTROL OF THE TEMPERATURE SETPOINT OF A HEAT EXCHANGE DEVICE COUPLED TO A SYSTEM BATTERY |
DE102023000904B3 (en) | 2023-03-10 | 2024-07-11 | Mercedes-Benz Group AG | Charging procedure for a secondary battery and vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090139781A1 (en) * | 2007-07-18 | 2009-06-04 | Jeffrey Brian Straubel | Method and apparatus for an electrical vehicle |
US20100072954A1 (en) * | 2009-11-05 | 2010-03-25 | Tesla Motors, Inc. | Battery charging time optimization system |
US20110018491A1 (en) | 2008-03-21 | 2011-01-27 | Toyota Jidosha Kabushiki Kaisha | Power supply control circuit |
US20120025762A1 (en) * | 2010-08-02 | 2012-02-02 | Gm Global Technology Operations, Inc. | Method for optimized design and operation of battery cooling system in electric vehicles |
JP2012104458A (en) | 2010-11-15 | 2012-05-31 | Honda Motor Co Ltd | Battery cooling system and cooling method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3583159B2 (en) * | 1994-03-25 | 2004-10-27 | 株式会社日本自動車部品総合研究所 | Battery state determination device |
JP4049959B2 (en) | 1999-11-11 | 2008-02-20 | 本田技研工業株式会社 | Battery charging method |
JP4129109B2 (en) | 2000-03-09 | 2008-08-06 | 松下電器産業株式会社 | Charge control apparatus and method |
KR100471249B1 (en) | 2002-08-23 | 2005-03-10 | 현대자동차주식회사 | Battery temperature management method of electric vehicle |
JP5076378B2 (en) * | 2006-07-03 | 2012-11-21 | マツダ株式会社 | Battery temperature control device |
JP4274257B2 (en) * | 2007-02-20 | 2009-06-03 | トヨタ自動車株式会社 | Hybrid vehicle |
JP4586832B2 (en) * | 2007-08-10 | 2010-11-24 | トヨタ自動車株式会社 | Electric vehicle |
CN102903976B (en) * | 2012-09-27 | 2015-09-09 | 惠州市亿能电子有限公司 | A kind of pure electric automobile charging process SOC modification method |
-
2013
- 2013-04-30 FR FR1354015A patent/FR3005208B1/en active Active
-
2014
- 2014-04-24 EP EP14729388.0A patent/EP2991855B1/en active Active
- 2014-04-24 JP JP2016511113A patent/JP6351710B2/en active Active
- 2014-04-24 KR KR1020157033785A patent/KR102122819B1/en active IP Right Grant
- 2014-04-24 US US14/787,365 patent/US9937816B2/en active Active
- 2014-04-24 CN CN201480034797.5A patent/CN105307896A/en active Pending
- 2014-04-24 WO PCT/FR2014/050996 patent/WO2014177793A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090139781A1 (en) * | 2007-07-18 | 2009-06-04 | Jeffrey Brian Straubel | Method and apparatus for an electrical vehicle |
US20110018491A1 (en) | 2008-03-21 | 2011-01-27 | Toyota Jidosha Kabushiki Kaisha | Power supply control circuit |
US20100072954A1 (en) * | 2009-11-05 | 2010-03-25 | Tesla Motors, Inc. | Battery charging time optimization system |
US20120025762A1 (en) * | 2010-08-02 | 2012-02-02 | Gm Global Technology Operations, Inc. | Method for optimized design and operation of battery cooling system in electric vehicles |
JP2012104458A (en) | 2010-11-15 | 2012-05-31 | Honda Motor Co Ltd | Battery cooling system and cooling method |
Non-Patent Citations (2)
Title |
---|
French Search Report dated Jan. 14, 2014 for French 1354015 filed Apr. 30, 2013. |
International Search Report dated Jul. 2, 2014 for PCT/FR2014/050996 filed Apr. 24, 2014. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11563247B2 (en) | 2019-10-15 | 2023-01-24 | Ford Global Technologies, Llc | Cold ambient battery cooling utilizing the climate cabin heating system |
US20210408617A1 (en) * | 2020-06-24 | 2021-12-30 | Sungrow Power Supply Co., Ltd. | Temperature control method for energy storage system, and energy management system |
Also Published As
Publication number | Publication date |
---|---|
FR3005208A1 (en) | 2014-10-31 |
EP2991855B1 (en) | 2017-03-01 |
EP2991855A1 (en) | 2016-03-09 |
KR20160003148A (en) | 2016-01-08 |
CN105307896A (en) | 2016-02-03 |
WO2014177793A1 (en) | 2014-11-06 |
KR102122819B1 (en) | 2020-06-15 |
US20160082860A1 (en) | 2016-03-24 |
JP2016524783A (en) | 2016-08-18 |
JP6351710B2 (en) | 2018-07-04 |
FR3005208B1 (en) | 2015-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9937816B2 (en) | Method for managing the temperature of a battery of an electric or hybrid vehicle | |
CN105789719B (en) | Temperature management method for power battery of electric automobile | |
US10818983B2 (en) | Battery management device and system, and hybrid vehicle control system for utilizing battery performance while maintaining battery life | |
KR102468385B1 (en) | Method of predicting for battery charging time of green vehicle | |
US9428074B2 (en) | Vehicle comprising a battery and means for determining a maximum allowable power for the battery, and corresponding method | |
CN107293821B (en) | Power battery heat treatment method and device and electric automobile | |
Padovani et al. | Optimal energy management strategy including battery health through thermal management for hybrid vehicles | |
US11518271B2 (en) | Charging control apparatus, transport device, and non-temporary computer-readable storage medium | |
US20150326038A1 (en) | System and method for battery power management | |
US20120139482A1 (en) | Battery charging management | |
US9197078B2 (en) | Battery parameter estimation | |
CN111267669A (en) | Method for charging a battery at low temperatures | |
US11850966B2 (en) | Vehicle and method of controlling the same | |
KR101748642B1 (en) | Apparatus and Method for Adjusting Power of Secondary Battery | |
US11085967B2 (en) | Battery control device | |
JP2019152551A (en) | Battery degradation determining device | |
JP2016513342A (en) | How to adjust the battery temperature | |
US11577714B2 (en) | Method and apparatus for controlling terrain driving mode of hybrid vehicle | |
US9428174B2 (en) | Forced charging method for PHEV vehicles using motor and HSG | |
US12005809B2 (en) | Method for the thermal conditioning of traction batteries | |
US11287480B2 (en) | Method and device for estimating state of charge of battery | |
JP7490460B2 (en) | Diagnostic Systems | |
US20220320875A1 (en) | Charge control device and charge control method | |
CN118235308A (en) | Method for optimizing the cooling of a battery of an electric or hybrid vehicle | |
CN115706276A (en) | Method for controlling a cell current limit value for a battery management system, and battery management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RENAULT S.A.S., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARCHAL, CAROLINE;RECOUVREUR, PHILIPPE;SIGNING DATES FROM 20151102 TO 20151105;REEL/FRAME:037141/0275 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: AMPERE S.A.S., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RENAULT S.A.S.;REEL/FRAME:067526/0311 Effective date: 20240426 |