JP2012103732A - Manufacturing method of optical transmitter and receiver - Google Patents

Manufacturing method of optical transmitter and receiver Download PDF

Info

Publication number
JP2012103732A
JP2012103732A JP2012028806A JP2012028806A JP2012103732A JP 2012103732 A JP2012103732 A JP 2012103732A JP 2012028806 A JP2012028806 A JP 2012028806A JP 2012028806 A JP2012028806 A JP 2012028806A JP 2012103732 A JP2012103732 A JP 2012103732A
Authority
JP
Japan
Prior art keywords
resin layer
light emitting
optical
optical waveguide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012028806A
Other languages
Japanese (ja)
Other versions
JP5277326B2 (en
Inventor
Yoshihiro Terada
佳弘 寺田
Itaru Ishida
格 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012028806A priority Critical patent/JP5277326B2/en
Publication of JP2012103732A publication Critical patent/JP2012103732A/en
Application granted granted Critical
Publication of JP5277326B2 publication Critical patent/JP5277326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical transmitter and receiver with high reliability which can suppress optical axis deviation, destruction of an element and the like due to temperature change of resin for fixing.SOLUTION: The manufacturing method of the optical transmitter and receiver of the present invention comprises: a step A of mounting a light emitting/receiving element on an upper surface of a flat printed board; a step B of arranging an optical waveguide so that the optical waveguide can be optically coupled with the light emitting/receiving element, and providing an inside resin layer on the upper surface of the printed board so as to cover the whole of the light emitting/receiving element and an end part of the optical waveguide; a step C of providing an intermediate resin layer having a refractive index lower than that of the inside resin layer so as to cover the inside resin layer; and a step D of providing an outside resin layer including heat-conductive filler so as to cover the intermediate resin layer.

Description

本発明は、発光素子、受光素子と光導波路を結合してなる光送受信装置の製造方法に関する。本発明の光送受信装置の製造方法によって製造された光送受信装置は、スーパーコンピュータ、サーバコンピュータ、ルータ装置などの高速通信機器、自動車内光配線、携帯電話機などの小型電子機器に用いられる。  The present invention relates to a method of manufacturing an optical transmitter / receiver formed by combining a light emitting element, a light receiving element, and an optical waveguide. The optical transmitter / receiver manufactured by the method of manufacturing an optical transmitter / receiver of the present invention is used for high-speed communication devices such as supercomputers, server computers, and router devices, in-vehicle optical wiring, and small electronic devices such as cellular phones.

近年、サーバなどの高速通信機器、自動車内光配線、携帯電話機などの小型電子機器に光配線が適用されつつある。これらの機器は、小型化と低コスト化がすすみ、それに伴い、光送受信装置にも小型化と低コスト化の要求が強い。低コスト化と小型化を達成するため、従来より様々な構造の光送受信装置が提案されている。  In recent years, optical wiring is being applied to high-speed communication devices such as servers, optical wiring in automobiles, and small electronic devices such as mobile phones. These devices are becoming smaller and lower in cost, and accordingly, there is a strong demand for downsizing and lowering the cost of the optical transceiver. In order to achieve cost reduction and miniaturization, optical transmission / reception apparatuses having various structures have been proposed.

従来の光送受信装置の構造の一つとして、発光素子と受光素子と光導波路とを、高分子材料で覆って固定するものが提案されている(例えば、特許文献1,2参照。)。
特許文献1には、受光素子又は発光素子の受・発光部と光ファイバなどの光導波路端を紫外線硬化樹脂で結合する構造が開示されている。このように、受光素子又は発光素子と光導波路を、高分子材料で覆って一体化する構造は、小型化、低コスト化に有利である。
特許文献2には、光導波路を接着剤でサブマウントに固定し、基板上に実装された発光素子に位置を合わせ、固定する構造が開示されている。
As one of the structures of a conventional optical transmission / reception apparatus, a structure in which a light emitting element, a light receiving element, and an optical waveguide are covered and fixed with a polymer material has been proposed (for example, see Patent Documents 1 and 2).
Patent Document 1 discloses a structure in which a light receiving element or a light receiving / emitting part of a light emitting element and an optical waveguide end such as an optical fiber are coupled with an ultraviolet curable resin. Thus, the structure in which the light receiving element or the light emitting element and the optical waveguide are covered and integrated with the polymer material is advantageous for downsizing and cost reduction.
Patent Document 2 discloses a structure in which an optical waveguide is fixed to a submount with an adhesive, aligned with a light emitting element mounted on a substrate, and fixed.

特開2004−245861号公報Japanese Patent Laid-Open No. 2004-245861 特開昭61−231514号公報JP 61-231514 A

しかしながら、前述した特許文献1,2の従来技術では、固定のために使用している紫外線硬化樹脂や接着剤の線膨張係数が大きいため、樹脂剥がれが生じたり、受光素子又は発光素子に強い応力が加わるおそれがある。その結果、光軸ズレや、受光素子又は発光素子の破損が起こる可能性がある。  However, in the above-described prior arts of Patent Documents 1 and 2, since the linear expansion coefficient of the ultraviolet curable resin or adhesive used for fixing is large, the resin peels off or strong stress is applied to the light receiving element or the light emitting element. May be added. As a result, there is a possibility that the optical axis shifts or the light receiving element or the light emitting element is damaged.

本発明は、前記事情に鑑みてなされ、固定用樹脂の温度変化による光軸ズレや素子の破壊等を抑制でき、信頼性の高い光送受信装置の製造方法の提供を目的とする。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly reliable manufacturing method of an optical transceiver that can suppress optical axis misalignment, element destruction, and the like due to temperature change of a fixing resin.

前記目的を達成するため、本発明は、平坦なプリント基板の上面に、受発光素子を実装する工程と、前記受発光素子と光結合可能に、光導波路を配置し、前記受発光素子の全体と、前記光導波路の端部とを覆うように、前記プリント基板の上面に内側樹脂層を設ける工程と、前記内側樹脂層を覆うように、前記内側樹脂層よりも屈折率が低い中間樹脂層を設ける工程と、前記中間樹脂層を覆うように、熱伝導性フィラーを含有する外側樹脂層を設ける工程と、を有することを特徴とする光送受信装置の製造方法を提供する。  In order to achieve the above object, the present invention provides a step of mounting a light emitting / receiving element on an upper surface of a flat printed board, an optical waveguide disposed so as to be optically coupled to the light receiving / emitting element, and the entire light receiving / emitting element. A step of providing an inner resin layer on the upper surface of the printed circuit board so as to cover the end of the optical waveguide, and an intermediate resin layer having a refractive index lower than that of the inner resin layer so as to cover the inner resin layer And a step of providing an outer resin layer containing a thermally conductive filler so as to cover the intermediate resin layer. A method for manufacturing an optical transceiver is provided.

本発明の光送受信装置の製造方法において、前記受発光素子を実装する工程において、前記受発光素子を、その発光または受光方向が、前記プリント基板の上面と交差する方向に実装し、前記光導波路の少なくとも端部を、前記発光または受光方向に沿って配置することもできる。  In the method for manufacturing an optical transceiver according to the present invention, in the step of mounting the light emitting / receiving element, the light emitting / receiving element is mounted in a direction in which the light emission or light receiving direction intersects the upper surface of the printed circuit board. It is also possible to arrange at least the end of the light source along the light emitting or light receiving direction.

本発明の光送受信装置の製造方法において、前記内側樹脂層を設ける工程において、前記内側樹脂層に、通信光に対して透明なフィラーを混合することもできる。  In the method of manufacturing an optical transceiver according to the present invention, in the step of providing the inner resin layer, a filler that is transparent to communication light can be mixed into the inner resin layer.

本発明の光送受信装置の製造方法において、前記中間樹脂層を設ける工程において、前記中間樹脂層に、通信光に対して透明なフィラーを混合することもできる。  In the method for manufacturing an optical transceiver according to the present invention, in the step of providing the intermediate resin layer, a filler that is transparent to communication light can be mixed into the intermediate resin layer.

本発明の光送受信装置の製造方法において、前記光導波路は、石英ガラスからなる光ファイバであり、この光ファイバ端を覆う内側樹脂層の波長850nmにおける屈折率が1.45以上1.55以下であることが好ましい。  In the method for manufacturing an optical transceiver according to the present invention, the optical waveguide is an optical fiber made of quartz glass, and an inner resin layer covering the end of the optical fiber has a refractive index of 1.45 to 1.55 at a wavelength of 850 nm. Preferably there is.

本発明の光送受信装置の製造方法において、前記光導波路は、ポリマークラッドファイバとすることもできる。  In the method for manufacturing an optical transceiver according to the present invention, the optical waveguide may be a polymer clad fiber.

本発明の光送受信装置の製造方法によれば、素子と光導波路を複数の樹脂層で固定する構造とし、且つ最外層の樹脂層に熱伝導性フィラーを含有させたものなので、発光素子又は受光素子の放熱を促進でき、固定樹脂の温度上昇を抑制し、温度変化による樹脂の膨張・収縮に伴う光軸ズレや素子の破損を抑制することができる。
また、内側樹脂層、又は内側樹脂層と中間樹脂層に、通信光に対して透明なフィラーを混合したことによって、受光素子又は発光素子と光導波路を固定する樹脂の線膨張係数を小さくすることができ、光軸ズレや素子の破損をさらに抑制することができる。
According to the method for manufacturing an optical transceiver of the present invention, since the element and the optical waveguide are fixed by a plurality of resin layers, and the outermost resin layer contains a heat conductive filler, the light emitting element or the light receiving element is provided. The heat dissipation of the element can be promoted, the temperature rise of the fixing resin can be suppressed, and the optical axis shift and the element damage due to the expansion / contraction of the resin due to the temperature change can be suppressed.
Also, by mixing the inner resin layer or the inner resin layer and the intermediate resin layer with a filler that is transparent to communication light, the linear expansion coefficient of the resin that fixes the light receiving element or the light emitting element and the optical waveguide is reduced. It is possible to further suppress optical axis misalignment and element damage.

本発明の光送受信装置の第1実施形態を示す要部断面図である。It is principal part sectional drawing which shows 1st Embodiment of the optical transmission / reception apparatus of this invention. 本発明の光送受信装置の第2実施形態を示す要部断面図である。It is principal part sectional drawing which shows 2nd Embodiment of the optical transmitter / receiver of this invention. 実施例で行ったヒートサイクル試験の温度条件を示すグラフである。It is a graph which shows the temperature conditions of the heat cycle test done in the Example.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の光送受信装置の第1実施形態を示す要部断面図である。図1中、符号1は光送受信装置、2はプリント基板、3は発光素子又は受光素子(以下、受発光素子と記す)、4は発光部又は受光部(以下、受発光部と記す)、5は光導波路、6は内層樹脂層、7は外層樹脂層、8は熱伝導性フィラーである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a main part showing a first embodiment of the optical transceiver of the present invention. In FIG. 1, reference numeral 1 denotes an optical transceiver, 2 denotes a printed circuit board, 3 denotes a light emitting element or a light receiving element (hereinafter referred to as a light receiving / emitting element), 4 denotes a light emitting part or a light receiving part (hereinafter referred to as a light receiving / emitting part), 5 is an optical waveguide, 6 is an inner resin layer, 7 is an outer resin layer, and 8 is a thermally conductive filler.

本実施形態において、プリント基板2としては、従来より周知の各種プリント基板、例えばフレキシブルプリント基板、リジッドプリント基板、リジッド−フレキ基板などの中から適宜選択して用いることができる。このプリント基板2表面の所定の実装位置には、受発光素子3を実装するための電極パッドが設けられていることが好ましい。このプリント基板2上には、受発光素子3が実装されるだけでなく、駆動用のICやLSI、液晶表示素子などの種々の電子機器や、これらを電気的に接続する回路(配線)などを適宜設けることができる。  In the present embodiment, the printed circuit board 2 can be appropriately selected and used from conventionally known various printed circuit boards such as a flexible printed circuit board, a rigid printed circuit board, and a rigid-flexible circuit board. It is preferable that an electrode pad for mounting the light emitting / receiving element 3 is provided at a predetermined mounting position on the surface of the printed board 2. On this printed board 2, not only the light emitting / receiving element 3 is mounted, but also various electronic devices such as driving ICs, LSIs, liquid crystal display elements, and circuits (wirings) for electrically connecting them. Can be provided as appropriate.

本実施形態において、受発光素子3としては、面発光レーザ(以下、VCSELと記す。)、レーザダイオード(以下、LDと記す。)、発光ダイオード(LED)などの発光素子、フォトダイオード(以下、PDと記す。)などの受光素子を用いることができる。  In the present embodiment, the light emitting / receiving element 3 includes a surface emitting laser (hereinafter referred to as VCSEL), a laser diode (hereinafter referred to as LD), a light emitting element such as a light emitting diode (LED), and a photodiode (hereinafter referred to as “light emitting diode”). A light receiving element such as PD can be used.

本実施形態において、受発光素子3は、図1に示すようにプリント基板2の上面(実装面)に実装された状態で、その受発光部4の受発光方向がプリント基板2の上面と直交する、又はほぼ直交する構造となっている。このような構造を持つ発光素子で、サーバなどの高速通信機器、自動車内光配線、携帯電話など小型電子機器に適用できる発光素子としては、例えば、VCSELがある。前記の構造をしたVCSELは、受発光方向に対して低背であり、従来のLDと比較し価格が安いという特徴を持つ。また素子構造上、発光閾値電流が低く、その結果、消費電力が低いという特徴がある。前記の用途では、低価格で低消費電力の光源は、大きな利点である。  In the present embodiment, the light emitting / receiving element 3 is mounted on the upper surface (mounting surface) of the printed circuit board 2 as shown in FIG. 1, and the light emitting / receiving direction of the light emitting / receiving unit 4 is orthogonal to the upper surface of the printed circuit board 2. Or a substantially orthogonal structure. As a light emitting element having such a structure and applicable to a high-speed communication device such as a server, an optical wiring in a car, and a small electronic device such as a mobile phone, for example, there is a VCSEL. The VCSEL having the above-described structure has a feature that it has a low profile in the light emitting / receiving direction and is cheaper than a conventional LD. In addition, due to the element structure, the light emission threshold current is low, and as a result, the power consumption is low. In such applications, low cost and low power light sources are a great advantage.

本実施形態において、光導波路5としては、シート型光導波路やファイバ型光導波路などを用いることができる。特にファイバ型光導波路は、長尺の導波路を作製することが可能であり、安価に光導波路を得ることができるので有利である。ファイバ型光導波路としては、石英ガラスファイバ、プラスチックファイバなどを用いることができる。また、石英ガラスファイバの一種であるが、光を導波させるコアが石英ガラスからなり、コア周辺のクラッド部がポリマーからなるポリマークラッドファイバを用いることもできる。これらのファイバ型導波路は、ケーブル化、テープ化するなどして複数本を一括して実装することもできる。また、クラッド部がポリマーからなるポリマークラッドファイバは、ファイバを構成するガラス部分の径が小さいため、ファイバをより小さい曲率で曲げることができる。  In the present embodiment, as the optical waveguide 5, a sheet type optical waveguide, a fiber type optical waveguide, or the like can be used. In particular, the fiber-type optical waveguide is advantageous because a long waveguide can be produced and the optical waveguide can be obtained at low cost. As the fiber-type optical waveguide, quartz glass fiber, plastic fiber, or the like can be used. Moreover, although it is a kind of quartz glass fiber, a polymer clad fiber in which a core for guiding light is made of quartz glass and a clad portion around the core is made of a polymer can also be used. A plurality of these fiber-type waveguides can be mounted in a lump by making them into cables or tapes. Moreover, since the diameter of the glass part which comprises a fiber is small, the polymer clad fiber which a clad part consists of a polymer can bend a fiber with a smaller curvature.

本実施形態において、プリント基板2に実装された受発光素子3の全体と、その受発光部4に近接した光導波路5の端部とは、内側樹脂層6によって覆われ、また内側樹脂層6の外側は、熱伝導性フィラー8を含有する外側樹脂層7で覆われることによって固定されている。  In the present embodiment, the entire light emitting / receiving element 3 mounted on the printed circuit board 2 and the end of the optical waveguide 5 adjacent to the light emitting / receiving portion 4 are covered with the inner resin layer 6 and the inner resin layer 6. The outside is fixed by being covered with an outer resin layer 7 containing a thermally conductive filler 8.

内側樹脂層6としては、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ポリシラン系樹脂などを用いることができる。硬化方法は、UV硬化型、熱硬化型、二液混合(化学反応)硬化型、水分反応硬化型などがある。特に、UV硬化型樹脂は硬化時間が短く、硬化中に光導波路と受発光素子との位置ずれが起きにくいため、望ましい。  As the inner resin layer 6, an epoxy resin, an acrylic resin, a silicone resin, a polyimide resin, a polysilane resin, or the like can be used. Curing methods include UV curing, thermosetting, two-component mixed (chemical reaction) curing, and moisture reaction curing. In particular, the UV curable resin is desirable because the curing time is short and the optical waveguide and the light emitting / receiving element are not easily displaced during curing.

また、内側樹脂層6の硬化後の屈折率が光導波路5のコアと同値の樹脂を用いることで、フレネル反射を防ぎ、受発光素子3と光導波路5との結合損を少なくすることができる。例えば、光導波路5として石英ガラス光ファイバを用いる場合、内側樹脂層6の硬化後屈折率は、1.40〜1.60の範囲のもの、より好ましくは1.45〜1.55の範囲のものを用いることが望ましい。
この内側樹脂層6を形成するには、未硬化の樹脂液を所定の箇所に滴下し、UV光照射などの手段により硬化させることによって形成できる。樹脂液の滴下には、ディスペンサなどを用いることができる。
Further, by using a resin whose refractive index after curing of the inner resin layer 6 is the same as that of the core of the optical waveguide 5, Fresnel reflection can be prevented and the coupling loss between the light emitting / receiving element 3 and the optical waveguide 5 can be reduced. . For example, when a silica glass optical fiber is used as the optical waveguide 5, the post-curing refractive index of the inner resin layer 6 is in the range of 1.40 to 1.60, more preferably in the range of 1.45 to 1.55. It is desirable to use one.
The inner resin layer 6 can be formed by dropping an uncured resin liquid at a predetermined location and curing it by means such as UV light irradiation. A dispenser or the like can be used for dropping the resin liquid.

外側樹脂層7としては、熱伝導性フィラー8を含有していること以外は特に限定されず、例えば、内側樹脂層6と同様の樹脂に熱伝導性フィラー8を混合した材料を用いることができる。熱伝導性フィラー8の材料、形状は特に制限されず、例えば、カーボンフィラーなどを用いることができる。このように外側樹脂層7に熱伝導性フィラー8を混合することにより、受発光素子3から生じた熱を外部に放熱する効果が高められる。その結果、受発光素子3の発熱に起因する内側樹脂層6の温度変化が小さくなり、光軸ズレや、受発光素子3の破損といった問題を解決できる。  The outer resin layer 7 is not particularly limited except that it contains a heat conductive filler 8. For example, a material in which the heat conductive filler 8 is mixed with the same resin as the inner resin layer 6 can be used. . The material and shape of the heat conductive filler 8 are not particularly limited, and for example, a carbon filler can be used. By mixing the heat conductive filler 8 with the outer resin layer 7 in this way, the effect of radiating the heat generated from the light emitting / receiving element 3 to the outside is enhanced. As a result, the temperature change of the inner resin layer 6 caused by the heat generation of the light emitting / receiving element 3 is reduced, and the problems such as the optical axis shift and the damage of the light receiving / emitting element 3 can be solved.

図2は、本発明の光送受信装置の第2実施形態を示す要部断面図である。本実施形態の光送受信装置11は、前述した図1に示す第1実施形態の光送受信装置1と同様の構成要素を備えており、同じ構成要素には同一符号を付している。
本実施形態の光送受信装置11は、プリント基板2に実装された受発光素子3の全体と、その受発光部4に近接した光導波路5の端部とを、内側樹脂層6で覆い、該内側樹脂層6を中間樹脂層9で覆い、更に該中間樹脂層9を、熱伝導性フィラー8を含有する外側樹脂層7で覆った3層の樹脂被覆を有する構造になっている。
FIG. 2 is a cross-sectional view of a main part showing a second embodiment of the optical transceiver of the present invention. The optical transmission / reception apparatus 11 of this embodiment includes the same components as those of the optical transmission / reception apparatus 1 of the first embodiment shown in FIG. 1 described above, and the same components are denoted by the same reference numerals.
The optical transceiver 11 of the present embodiment covers the entire light emitting / receiving element 3 mounted on the printed circuit board 2 and the end of the optical waveguide 5 adjacent to the light emitting / receiving unit 4 with an inner resin layer 6. The inner resin layer 6 is covered with an intermediate resin layer 9, and the intermediate resin layer 9 is further covered with an outer resin layer 7 containing a heat conductive filler 8 to have a three-layer resin coating.

本実施形態において、3層の樹脂層のうち、内側樹脂層6の屈折率を中間樹脂層9よりも高くした構成としてもよい。この構造とすることで、内側樹脂層6と中間樹脂層9でコア・クラッド構造となり、受発光素子3と光導波路5の結合効率が向上する。また、外側樹脂層7に前述した熱伝導性フィラー8を混合することにより、受発光素子3から生じた熱を外部に放熱する効果が高められ、受発光素子3の発熱に起因する内側樹脂層6及び中間樹脂層9の温度変化が小さくなる。
この場合、中間樹脂層9は、内側樹脂層6と同様、通信光に対して透明な樹脂で構成される。透明樹脂の材質は特に制限されないが、エポキシ樹脂、アクリル樹脂などを用いることができる。
In the present embodiment, among the three resin layers, the refractive index of the inner resin layer 6 may be higher than that of the intermediate resin layer 9. With this structure, the inner resin layer 6 and the intermediate resin layer 9 form a core / cladding structure, and the coupling efficiency between the light emitting / receiving element 3 and the optical waveguide 5 is improved. Further, by mixing the above-described heat conductive filler 8 with the outer resin layer 7, the effect of radiating the heat generated from the light emitting / receiving element 3 to the outside is enhanced, and the inner resin layer resulting from the heat generation of the light receiving / emitting element 3. 6 and the temperature change of the intermediate resin layer 9 become small.
In this case, like the inner resin layer 6, the intermediate resin layer 9 is made of a resin that is transparent to communication light. The material of the transparent resin is not particularly limited, but an epoxy resin, an acrylic resin, or the like can be used.

また本実施形態において、3層の樹脂層のうち、内側樹脂層6(及び中間樹脂層9)に透明性フィラーを混合した構成としてもよい。内側樹脂層6(及び中間樹脂層9)の透明性フィラーにより、受発光素子3と光導波路5端の結合部の線膨張係数が下がり、効果的に光軸ズレや、受発光素子3の破損といった問題を解決できる。  Moreover, in this embodiment, it is good also as a structure which mixed the transparent filler with the inner side resin layer 6 (and intermediate | middle resin layer 9) among the three resin layers. Due to the transparent filler of the inner resin layer 6 (and the intermediate resin layer 9), the coefficient of linear expansion at the joint between the light emitting / receiving element 3 and the end of the optical waveguide 5 is lowered, effectively causing an optical axis shift or damage to the light receiving / emitting element 3. Can be solved.

この場合、言うまでもないが、内側樹脂層6に用いる透明性フィラーの屈折率は、内側樹脂層6に用いる樹脂の屈折率と同じか又はほとんど同じであることが望ましい。両者の屈折率の差が大きくなると、散乱が顕著になり、通信光のロスが大きくなるので望ましくない。この透明性フィラーの材質は特に制限されない。通信に用いる波長が、可視光〜近赤外光の場合、石英ガラスフィラーを用いることができる。透明性フィラーの形状は、針状、粒状など、特に制限されないが、特開2006−257353号公報に開示されているように、球状であり、かつ、粒径が波長の数分の一から波長の数倍までのミー散乱を起こしやすい領域を避けることで、通信光の散乱を抑制することができるものが好ましい。  In this case, needless to say, the refractive index of the transparent filler used for the inner resin layer 6 is preferably the same as or almost the same as the refractive index of the resin used for the inner resin layer 6. When the difference between the refractive indexes of the two becomes large, scattering becomes remarkable and the loss of communication light becomes large. The material for the transparent filler is not particularly limited. When the wavelength used for communication is visible light to near infrared light, a quartz glass filler can be used. The shape of the transparent filler is not particularly limited, such as needle-like or granular, but as disclosed in JP-A-2006-257353, it is spherical and the particle size is from a fraction of the wavelength to the wavelength. It is preferable to avoid scattering of communication light by avoiding a region where Mie scattering is likely to occur up to several times.

中間樹脂層9にも透明性フィラーを用いる場合、内側樹脂層6の場合と同様、中間樹脂層9に用いる樹脂の屈折率と近い屈折率を持った透明性フィラーを用いることが好ましい。  When a transparent filler is used also for the intermediate resin layer 9, it is preferable to use a transparent filler having a refractive index close to that of the resin used for the intermediate resin layer 9 as in the case of the inner resin layer 6.

このように樹脂を複数層設ける場合、内側樹脂層6は、少なくとも受発光素子3全体と光導波路5端部とをすっぽり覆って設けることが望ましい。これにより、受発光素子3と光導波路5との結合強度の向上を図ることができ、信頼性を向上させることができる。さらに、内側樹脂層6に透明性フィラーが混合されている場合、内側樹脂層6の線膨張係数が低くなることから、温度変化に強くなり、信頼性をより向上させることができる。  When a plurality of resin layers are provided as described above, the inner resin layer 6 is desirably provided so as to completely cover at least the entire light emitting / receiving element 3 and the end of the optical waveguide 5. Thereby, the coupling strength between the light emitting / receiving element 3 and the optical waveguide 5 can be improved, and the reliability can be improved. Furthermore, when a transparent filler is mixed in the inner resin layer 6, the linear expansion coefficient of the inner resin layer 6 is lowered, so that it is resistant to temperature changes and the reliability can be further improved.

(実施例)
図2に示す構造の光送受信装置を作製した。発光素子3としては、発光中心波長850nmのVCSELを用いた。内側樹脂層6には、硬化後の屈折率が1.457で、屈折率を調整した石英ガラスフィラーを10質量%混合した紫外線硬化型エポキシ樹脂を用いた。中間樹脂層9には、硬化後の屈折率が1.452で、屈折率を調整した石英ガラスフィラーを10質量%混合した紫外線硬化型エポキシ樹脂を用いた。外側樹脂層7には、熱伝導性フィラー8としてカーボンフィラーを10質量%混合した紫外線硬化樹脂を用いた。
光導波路5には、石英ガラス製光ファイバを用いた。
(Example)
An optical transceiver having the structure shown in FIG. 2 was produced. As the light emitting element 3, a VCSEL having an emission center wavelength of 850 nm was used. For the inner resin layer 6, an ultraviolet curable epoxy resin having a refractive index after curing of 1.457 and mixed with 10% by mass of quartz glass filler whose refractive index was adjusted was used. For the intermediate resin layer 9, an ultraviolet curable epoxy resin having a refractive index after curing of 1.452 and 10% by mass of a quartz glass filler whose refractive index was adjusted was used. For the outer resin layer 7, an ultraviolet curable resin mixed with 10% by mass of carbon filler as the heat conductive filler 8 was used.
A quartz glass optical fiber was used for the optical waveguide 5.

(比較例)
比較のため、内側、中間及び外側の各樹脂層にフィラーを含まないエポキシ樹脂を用い、それ以外は前記実施例と同様である光送受信装置も作製した。
(Comparative example)
For comparison, an optical transceiver that uses the epoxy resin that does not contain a filler in each of the inner, middle, and outer resin layers, and is otherwise similar to the above-described example, was also manufactured.

(ヒートサイクル試験)
作製した実施例、比較例の各サンプルについてヒートサイクル試験を行った。試験は、VCSELを発光出力0.3mWで発光させながら行った。図3に示すダイヤグラムを1サイクルとして、500サイクル処理を行い、処理後の各サンプルのVCSELと樹脂層と光ファイバとの接合部を光学顕微鏡で観察した。
(Heat cycle test)
A heat cycle test was performed on each sample of the manufactured examples and comparative examples. The test was performed while the VCSEL was made to emit light with a light emission output of 0.3 mW. The cycle shown in FIG. 3 was set to one cycle, and 500 cycles were performed. The joint between the VCSEL, the resin layer, and the optical fiber of each sample after the treatment was observed with an optical microscope.

比較例(フィラー無し)では、VCSELと樹脂の接合部、及び、光ファイバと樹脂との接合部が剥がれているサンプルが少数であるが見つかった。
一方、樹脂層にフィラーを加えた実施例では、接合剥がれはほとんど見つからなかった。この結果、樹脂層にフィラーを加えた実施例は熱サイクルに強いことがわかった。
In the comparative example (no filler), a small number of samples were found where the joint between the VCSEL and the resin and the joint between the optical fiber and the resin were peeled off.
On the other hand, in the example in which a filler was added to the resin layer, almost no joint peeling was found. As a result, it was found that the example in which the filler was added to the resin layer was resistant to thermal cycling.

なお、本実施例では、石英ガラスフィラーとして市販のフィラーを用いた。市販の石英ガラスフィラーで屈折率調整が困難な場合、気相合成法を用いて石英ガラスフィラーを合成し、用いることができる。原料としては、例えば、四塩化珪素を用いることができる。
四塩化珪素の蒸気を、アルゴン、窒素などのキャリアガスと、酸素と混合して合成チャンバーに搬送し、800℃〜1500℃程度に加熱することで、球状の石英ガラスフィラーを得ることができる。石英ガラスフィラーの屈折率を調整するには、例えば、四塩化ゲルマニウム、三塩化アルミニウムなどの蒸気を四塩化珪素の蒸気と混合し、合成すればよい。ゲルマニウム、アルミニウムなどの元素は石英ガラスに添加することで、石英ガラスの屈折率を上昇させることができる。添加する分量に応じて、屈折率上昇量を調整することができる。
In this example, a commercially available filler was used as the quartz glass filler. When it is difficult to adjust the refractive index with a commercially available quartz glass filler, the quartz glass filler can be synthesized using a vapor phase synthesis method and used. As a raw material, for example, silicon tetrachloride can be used.
A spherical quartz glass filler can be obtained by mixing silicon tetrachloride vapor with a carrier gas such as argon or nitrogen and oxygen, transporting the mixture to a synthesis chamber, and heating to about 800 ° C to 1500 ° C. In order to adjust the refractive index of the quartz glass filler, for example, vapor such as germanium tetrachloride or aluminum trichloride may be mixed with vapor of silicon tetrachloride and synthesized. By adding elements such as germanium and aluminum to quartz glass, the refractive index of quartz glass can be increased. The amount of increase in refractive index can be adjusted according to the amount to be added.

1,11・・・光送受信装置、2・・・プリント基板、3・・・受発光素子、4・・・受発光部、5・・・光導波路、6・・・内層樹脂層、7・・・外層樹脂層、8・・・熱伝導性フィラー、9・・・中間樹脂層。 DESCRIPTION OF SYMBOLS 1,11 ... Optical transmission / reception apparatus, 2 ... Printed circuit board, 3 ... Light emitting / receiving element, 4 ... Light emitting / receiving part, 5 ... Optical waveguide, 6 ... Inner layer resin layer, 7. ..Outer resin layer, 8 ... thermally conductive filler, 9 ... intermediate resin layer.

Claims (6)

平坦なプリント基板の上面に、受発光素子を実装する工程と、
前記受発光素子と光結合可能に、光導波路を配置し、前記受発光素子の全体と、前記光導波路の端部とを覆うように、前記プリント基板の上面に内側樹脂層を設ける工程と、
前記内側樹脂層を覆うように、前記内側樹脂層よりも屈折率が低い中間樹脂層を設ける工程と、
前記中間樹脂層を覆うように、熱伝導性フィラーを含有する外側樹脂層を設ける工程と、
を有することを特徴とする光送受信装置の製造方法。
Mounting a light emitting / receiving element on the upper surface of a flat printed circuit board;
A step of disposing an optical waveguide so as to be optically coupled to the light emitting / receiving element, and providing an inner resin layer on the upper surface of the printed circuit board so as to cover the entire light receiving / emitting element and an end of the optical waveguide;
Providing an intermediate resin layer having a refractive index lower than that of the inner resin layer so as to cover the inner resin layer;
Providing an outer resin layer containing a thermally conductive filler so as to cover the intermediate resin layer;
The manufacturing method of the optical transmitter / receiver characterized by the above-mentioned.
前記受発光素子を実装する工程において、前記受発光素子を、その発光または受光方向が、前記プリント基板の上面と交差する方向に実装し、前記光導波路の少なくとも端部を、前記発光または受光方向に沿って配置することを特徴とする請求項1に記載の光送受信装置の製造方法。  In the step of mounting the light emitting / receiving element, the light emitting / receiving element is mounted in a direction in which the light emitting or receiving direction intersects the upper surface of the printed circuit board, and at least the end of the optical waveguide is disposed in the light emitting or receiving direction. The method of manufacturing an optical transceiver according to claim 1, wherein the optical transmitter / receiver is arranged along the line. 前記内側樹脂層を設ける工程において、前記内側樹脂層に、通信光に対して透明なフィラーを混合することを特徴とする請求項1または2に記載の光送受信装置の製造方法。  3. The method of manufacturing an optical transceiver according to claim 1, wherein in the step of providing the inner resin layer, a filler that is transparent to communication light is mixed in the inner resin layer. 前記中間樹脂層を設ける工程において、前記中間樹脂層に、通信光に対して透明なフィラーを混合することを特徴とする請求項1〜3のいずれか1項に記載の光送受信装置の製造方法。  The method for manufacturing an optical transceiver according to claim 1, wherein in the step of providing the intermediate resin layer, a filler that is transparent to communication light is mixed in the intermediate resin layer. . 前記光導波路は、石英ガラスからなる光ファイバであり、この光ファイバ端を覆う内側樹脂層の波長850nmにおける屈折率が1.45以上1.55以下であることを特徴とする請求項1〜4のいずれか1項に記載の光送受信装置の製造方法。  The optical waveguide is an optical fiber made of quartz glass, and the refractive index at a wavelength of 850 nm of the inner resin layer covering the end of the optical fiber is 1.45 or more and 1.55 or less. The manufacturing method of the optical transmitter-receiver of any one of these. 前記光導波路は、ポリマークラッドファイバであることを特徴とする請求項1〜4のいずれか1項に記載の光送受信装置の製造方法。  The method of manufacturing an optical transceiver according to claim 1, wherein the optical waveguide is a polymer clad fiber.
JP2012028806A 2012-02-13 2012-02-13 Manufacturing method of optical transceiver Expired - Fee Related JP5277326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028806A JP5277326B2 (en) 2012-02-13 2012-02-13 Manufacturing method of optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028806A JP5277326B2 (en) 2012-02-13 2012-02-13 Manufacturing method of optical transceiver

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007150339A Division JP4932606B2 (en) 2007-06-06 2007-06-06 Optical transceiver

Publications (2)

Publication Number Publication Date
JP2012103732A true JP2012103732A (en) 2012-05-31
JP5277326B2 JP5277326B2 (en) 2013-08-28

Family

ID=46394096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028806A Expired - Fee Related JP5277326B2 (en) 2012-02-13 2012-02-13 Manufacturing method of optical transceiver

Country Status (1)

Country Link
JP (1) JP5277326B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961812A (en) * 1982-09-30 1984-04-09 Omron Tateisi Electronics Co Photocoupler
JPH1126646A (en) * 1997-07-03 1999-01-29 Nec Corp Optical semiconductor module and manufacture thereof
JP2001305393A (en) * 2000-04-19 2001-10-31 Sumitomo Electric Ind Ltd Optical device
JP2002232018A (en) * 2000-11-28 2002-08-16 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing ultraviolet ray light source, and method of manufacturing ultraviolet ray light source parts and optical device
JP2005064155A (en) * 2003-08-08 2005-03-10 Ricoh Co Ltd Optical coupling device
JP2005251966A (en) * 2004-03-04 2005-09-15 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2005252219A (en) * 2004-02-06 2005-09-15 Toyoda Gosei Co Ltd Light emitting device and sealing member
JP2006114879A (en) * 2004-09-16 2006-04-27 Sharp Corp Optical semiconductor device and electronic apparatus
JP2007133427A (en) * 2007-01-22 2007-05-31 Seiko Epson Corp Coupling method of optical element and optical fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961812A (en) * 1982-09-30 1984-04-09 Omron Tateisi Electronics Co Photocoupler
JPH1126646A (en) * 1997-07-03 1999-01-29 Nec Corp Optical semiconductor module and manufacture thereof
JP2001305393A (en) * 2000-04-19 2001-10-31 Sumitomo Electric Ind Ltd Optical device
JP2002232018A (en) * 2000-11-28 2002-08-16 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing ultraviolet ray light source, and method of manufacturing ultraviolet ray light source parts and optical device
JP2005064155A (en) * 2003-08-08 2005-03-10 Ricoh Co Ltd Optical coupling device
JP2005252219A (en) * 2004-02-06 2005-09-15 Toyoda Gosei Co Ltd Light emitting device and sealing member
JP2005251966A (en) * 2004-03-04 2005-09-15 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006114879A (en) * 2004-09-16 2006-04-27 Sharp Corp Optical semiconductor device and electronic apparatus
JP2007133427A (en) * 2007-01-22 2007-05-31 Seiko Epson Corp Coupling method of optical element and optical fiber

Also Published As

Publication number Publication date
JP5277326B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP4932606B2 (en) Optical transceiver
US8113724B2 (en) Optical communication module, manufacturing method therefor, and optical transceiver
US7734125B2 (en) Optoelectronic wiring board, optical communication device, and method of manufacturing the optical communication device
US8611704B2 (en) Photoelectric conversion module
US20110135248A1 (en) Printed circuit board element and method for the production thereof
TW200404487A (en) A light reception/emission device built-in module with optical and electrical wiring combined therein and method of making the same
JP2006091241A (en) Optoelectronic composite wiring component and electronic equipment using the same
JP2011053269A (en) Photoelectric composite wiring module and method for producing the same
US20130183014A1 (en) Optical waveguide structure and electronic device
JP2008010837A (en) Optical communication module, its manufacturing method, and optical transmission/reception device
JP6050248B2 (en) Optical printed circuit board
JP2010152319A (en) Flexible waveguide structure and optical interconnecting assembly
JP5692581B2 (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
JP7031125B2 (en) Optical Waveguide, Optical Waveguide Connectivity and Electronic Devices
JP6251989B2 (en) Opto-electric hybrid board and electronic equipment
JP5277326B2 (en) Manufacturing method of optical transceiver
JP2007086367A (en) Optical pin, optical pin connector and optical path conversion module
JP2010192883A (en) Optical and electric combined substrate and method of manufacturing optical and electric combined substrate
JP2013057718A (en) Optical module
JP2011128435A5 (en) Optical waveguide substrate and opto-electric hybrid device
JP6958063B2 (en) Manufacturing method of optical waveguide
JP2015106099A (en) Optical wiring component, optical module, photo-electric hybrid board, and electronic equipment
US9122023B2 (en) Optical waveguide device and method of manufacturing the same
US20100316329A1 (en) Optical element package and substrate comprising the same
WO2013191175A1 (en) Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees