JP2012101953A - Method for manufacturing deformed silica fine particle and toner external additive for developing electrostatic charge image - Google Patents

Method for manufacturing deformed silica fine particle and toner external additive for developing electrostatic charge image Download PDF

Info

Publication number
JP2012101953A
JP2012101953A JP2010249529A JP2010249529A JP2012101953A JP 2012101953 A JP2012101953 A JP 2012101953A JP 2010249529 A JP2010249529 A JP 2010249529A JP 2010249529 A JP2010249529 A JP 2010249529A JP 2012101953 A JP2012101953 A JP 2012101953A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
hydrophilic
toner
shaped silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010249529A
Other languages
Japanese (ja)
Other versions
JP5631699B2 (en
Inventor
Kazuyuki Matsumura
和之 松村
Muneo Kudo
宗夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010249529A priority Critical patent/JP5631699B2/en
Publication of JP2012101953A publication Critical patent/JP2012101953A/en
Application granted granted Critical
Publication of JP5631699B2 publication Critical patent/JP5631699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide deformed silica fine particle which is not spherical but deformed, which has high dispersibility and low cohesive property, and which is excellent in adhesiveness to toner and providing efficiency of flowability to toner and toner external additive for developing an electrostatic charge image comprising the deformed silica fine particle.SOLUTION: The method for producing the deformed silica fine particle has a step for generating nuclear particle of hydrophilic silica fine particle by hydrolyzing and condensing tetrafunctional silane compound represented by a general formula (1): Si(OR)or partially hydrolyzed and condensed product of the same in mixed medium of hydrophilic organic solvent and water in the presence of basic substance while reaction temperatures of each of steps are within the range of 40°C to 100°C, a step for adding deformation accelerating catalyst in the system, and a step for generating the deformed silica fine particle by adding the tetrafunctional silane compound represented by the general formula (1) or the partially hydrolyzed and condensed product of the same into the system.

Description

本発明はシリカ微粒子に関し、特に異形シリカ微粒子及び静電荷像現像用トナー外添剤として好適に用いることのできる異形シリカ微粒子の製造方法に関する。   The present invention relates to silica fine particles, and more particularly, to a method for producing irregularly shaped silica particles that can be suitably used as irregularly shaped silica particles and an external toner additive for developing electrostatic images.

電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別できる。これらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。特に、流動性、耐ケーキング性、定着性、クリーニング性を高めるために、無機微粒子をトナーに添加することがしばしば行われている。   Dry developers used in electrophotography and the like can be roughly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin and a two-component developer in which a carrier is mixed with the toner. When performing a copying operation using these developers, in order to have process compatibility, the developer needs to be excellent in fluidity, caking resistance, fixing properties, charging properties, cleaning properties, and the like. . In particular, inorganic fine particles are often added to the toner in order to improve fluidity, caking resistance, fixing properties, and cleaning properties.

トナー表面に混合機を用いて外添剤とトナーを混合させた場合に、外添剤の凝集体を解きほぐしながらトナー表面に付着させることが必要であり、その際に外添剤がトナー表面に付着せず遊離した状態のまま存在したり、あるいはある程度付着しているが現像器内のストレス、摺擦等によりトナー表面より脱離し遊離状態となる場合もある。これらの遊離外添剤は、感光体表面にトナーが現像される際にトナーと共に感光体に移行し、転写後も感光体表面にとどまり、クリーニングされずに感光体表面に付着することがしばしば認められる。   When the external additive and the toner are mixed on the toner surface using a mixer, it is necessary to adhere the external additive to the toner surface while unpacking the aggregate of the external additive. In some cases, the toner remains in a free state without adhering, or is adhering to some extent, but may be detached from the toner surface due to stress, rubbing, etc. in the developing device. It is often recognized that these free external additives migrate to the photoreceptor together with the toner when the toner is developed on the photoreceptor surface, remain on the photoreceptor surface after transfer, and adhere to the photoreceptor surface without being cleaned. It is done.

これらの遊離外添剤が感光体表面に蓄積されると、コピー上の画質欠陥の原因(フィルミング、その他)となったり、感光体表面にキズをつけることがしばしば見られ、感光体の寿命を短くする原因となっている。また、現像時に現像機からこれら遊離外添剤がこぼれ落ちて複写機内を汚染するという問題もある。あるいは、現像剤中のキャリア表面に付
着しキャリアとトナー間での電荷授受を阻害し、結果としてトナーの帯電を低下させる一要因となることもある。そのため、外添剤のトナーへの付着性が課題であった。
When these free external additives accumulate on the surface of the photoconductor, they often cause image quality defects on the copy (filming, etc.) or scratch the photoconductor surface. Is a cause of shortening. Another problem is that these free external additives spill from the developing machine during development and contaminate the copying machine. Alternatively, it may adhere to the carrier surface in the developer and inhibit charge transfer between the carrier and the toner, resulting in a factor that lowers the charge of the toner. Therefore, the adhesion of the external additive to the toner has been a problem.

これに対し、無機系の外添剤としてヒュームドシリカの使用が報告されている(例えば、特許文献1参照)。しかし、ヒュームドシリカは、その複雑な粒子構造からトナーへの流動性の付与効果において不十分であるという問題があった。また、球状溶融シリカをトナー用外添剤として使用することも報告されている(例えば、特許文献2参照)。しかし、この場合も、球状であるがためにトナー樹脂粒子の表面への付着力が乏しく、シリカ微粒子が脱落したトナー粒子表面がコピー機の感光体表面と接触し、トナーが所定の用紙に転写されず、感光体表面に残存し易い等の問題を有している。そのため、流動性、耐ケーキング性、定着性、クリーニング性等を高めながらもトナーへの付着性、及びトナーへの流動性の付与効果が良好な外添剤の開発が望まれていた。   On the other hand, use of fumed silica as an inorganic external additive has been reported (for example, see Patent Document 1). However, fumed silica has a problem that its fluidity imparting effect to the toner is insufficient due to its complicated particle structure. It has also been reported that spherical fused silica is used as an external additive for toner (for example, see Patent Document 2). However, in this case as well, the adhesion to the surface of the toner resin particles is poor due to the spherical shape, and the surface of the toner particles from which the silica fine particles have dropped contacts the photoconductor surface of the copying machine, so that the toner is transferred to a predetermined paper. However, there is a problem that it tends to remain on the surface of the photoreceptor. Therefore, there has been a demand for the development of an external additive that improves the adhesion to the toner and the fluidity imparting effect to the toner while improving the fluidity, caking resistance, fixing property, and cleaning property.

特開2002−116575号公報JP 2002-116575 A 特開2002−154820号公報JP 2002-154820 A

本発明は、上記問題を解決するためになされたものであり、球状でなく異形のシリカ微粒子であり、特に高分散性、低凝集性を有する異形シリカ微粒子であって、トナーへの付着性、及びトナーへの流動性の付与効果が良好で、トナーの流動性は保ちながら、トナーからの脱落が少ない異形シリカ微粒子の製造方法、及び該異形シリカ微粒子からなる静電荷像現像用トナー外添剤を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and is a non-spherical, irregularly shaped silica fine particle, particularly an irregularly shaped silica fine particle having high dispersibility and low cohesion, And a method for producing irregularly shaped silica fine particles having good fluidity imparting effect to the toner and maintaining the fluidity of the toner, and less dropping from the toner, and a toner external additive for developing electrostatic images comprising the irregularly shaped silica fine particles The purpose is to provide.

上記課題を解決するため、本発明では、
平均粒子径が5〜500nmの範囲の異形シリカ微粒子を製造する方法であって、
下記各工程の反応温度を40℃〜100℃の範囲内とし、
(A)一般式(1):Si(OR (1)
[上記一般式(1)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性シリカ微粒子の核粒子を生成する工程と、
(B)異形化促進触媒を系内に添加する工程と、
(C)引き続き、前記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を系内に更に添加し、前記親水性シリカ微粒子の核粒子を成長し、異形化することで親水性異形シリカ微粒子を生成する工程とを有することを特徴とする異形シリカ微粒子の製造方法を提供する。
In order to solve the above problems, in the present invention,
A method for producing irregularly shaped silica fine particles having an average particle diameter of 5 to 500 nm,
The reaction temperature of each of the following steps is within the range of 40 ° C to 100 ° C,
(A) General formula (1): Si (OR 1 ) 4 (1)
[In the general formula (1), R 1 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
At least one compound selected from the group consisting of a tetrafunctional silane compound represented by formula (II) and a partial hydrolysis-condensation product of the tetrafunctional silane compound, in the presence of a basic substance, Hydrolyzing and condensing in a mixed medium to produce core particles of hydrophilic silica fine particles,
(B) adding a heteromorphization promoting catalyst into the system;
(C) Subsequently, at least one compound selected from the group consisting of the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system. And forming a hydrophilic silica fine particle by growing and deforming the core particle of the hydrophilic silica fine particle, and providing a method for producing the irregular silica fine particle.

このように、上記異形シリカ微粒子の製造方法であれば、球状でなく異形のシリカ微粒子を製造することができ、特に高分散性、低凝集性を有する異形シリカ微粒子であって、トナーへの付着性、及びトナーへの流動性の付与効果が良好で、トナーの流動性は保ちながら、トナーからの脱落が少ない異形シリカ微粒子を製造することができる異形シリカ微粒子の製造方法となる。   As described above, according to the method for producing irregularly shaped silica fine particles, it is possible to produce irregularly shaped silica fine particles that are not spherical, and in particular, irregularly shaped silica fine particles having high dispersibility and low agglomeration property, which adhere to the toner. This is a method for producing irregularly shaped silica fine particles that can produce irregularly shaped silica fine particles that have good properties and the effect of imparting fluidity to the toner, and that retain the fluidity of the toner and that are less likely to fall out of the toner.

また、前記異形化促進触媒として、縮合触媒類、二官能性化合物類、塩類のいずれかを用いることができる。さらに、前記縮合触媒類であれば、Ti、Zr、Zn、Al系の有機金属化合物錯体のいずれかを用いることが好ましく、前記塩類であれば、水酸化テトラアルキルアンモニウム化合物を用いることが好ましく、さらに、前記二官能性化合物類であれば、アミノアルコール類、ジアミン類、グリコール類のいずれかを用いることが好ましい。   In addition, any of condensation catalysts, bifunctional compounds, and salts can be used as the catabolization promoting catalyst. Furthermore, it is preferable to use any one of Ti, Zr, Zn, and Al-based organometallic compound complexes as long as the condensation catalysts are used, and tetraalkylammonium hydroxide compounds are preferably used as the salts. Furthermore, if it is the said bifunctional compounds, it is preferable to use any of amino alcohols, diamines, and glycols.

このように、前記異形化促進触媒として、縮合触媒類、二官能性化合物類、塩類のいずれかを用いることで、平均粒子径が5〜500nmの範囲であり、繊維状、柱状、回転楕円体状などの異形状と見做される形状、すなわち球状とは見なされない形状をとる異形シリカ微粒子をより効率よく得ることができる。   Thus, by using any of condensation catalysts, bifunctional compounds, and salts as the catabolization promoting catalyst, the average particle diameter is in the range of 5 to 500 nm, and the fibrous, columnar, and spheroids are used. It is possible to more efficiently obtain irregular shaped silica fine particles having a shape that is regarded as an irregular shape such as a shape, that is, a shape that is not considered spherical.

また、前記親水性有機溶媒として、一般式(2):ROH (2)
[一般式(2)中、Rは炭素原子数1〜6の1価炭化水素基である]で示されるアルコール溶媒を用いることが好ましい。
Further, as the hydrophilic organic solvent, the general formula (2): R 2 OH ( 2)
[In general formula (2), it is preferable to use an alcohol solvent represented by R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms].

このように、前記親水性有機溶媒として、上記一般式(2)で示されるアルコール溶媒を用いることで、(A)〜(C)工程において一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物と水とを良好に溶解することができ、加水分解、縮合反応を良好に進行させることができる。また、上記一般式(2)で示されるアルコールの炭素原子数が増えると、生成する異形シリカ微粒子の粒子径が大きくなる。従って、上記一般式(2)で示されるアルコールの種類を選択することで、目的とする異形シリカ微粒子の粒子径とすることができる。   As described above, by using the alcohol solvent represented by the general formula (2) as the hydrophilic organic solvent, the tetrafunctional silane compound represented by the general formula (1) in the steps (A) to (C) and At least one compound selected from the group consisting of partial hydrolysis-condensation products of the tetrafunctional silane compound and water can be dissolved satisfactorily, and the hydrolysis and condensation reaction can proceed favorably. Further, when the number of carbon atoms of the alcohol represented by the general formula (2) increases, the particle size of the deformed silica fine particles to be generated increases. Therefore, by selecting the type of alcohol represented by the general formula (2), the particle size of the target irregular shaped silica fine particles can be obtained.

さらに、前記塩基性物質としてアンモニアを用いることが好ましい。   Furthermore, it is preferable to use ammonia as the basic substance.

このように、前記塩基性物質としてアンモニアを用いることで、加水分解、縮合反応に適した反応条件を満たすことができ、加水分解、縮合反応を良好に進行させることができる。   Thus, by using ammonia as the basic substance, the reaction conditions suitable for the hydrolysis and condensation reaction can be satisfied, and the hydrolysis and condensation reaction can proceed favorably.

また、本発明では前記異形シリカ微粒子の製造方法において、前記(C)異形シリカ微粒子を生成する工程の後、
(D)前記系内から親水性有機溶媒を除去して媒体を水に置換して、前記親水性異形シリカ微粒子の水分散液を得る工程と、
(E)前記親水性異形シリカ微粒子の水分散液中の前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である]を導入し、第一次疎水性異形シリカ微粒子を生成する工程と、
(F)更に、該第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]を導入して第二次疎水性異形シリカ微粒子を生成する工程とを有することを特徴とする異形シリカ微粒子の製造方法を提供する。
In the present invention, in the method for producing irregularly shaped silica particles, after the step (C) of producing irregularly shaped silica particles,
(D) removing the hydrophilic organic solvent from the system and substituting the medium with water to obtain an aqueous dispersion of the hydrophilic deformed silica fine particles;
(E) R 3 SiO 3/2 unit on the surface of the hydrophilic deformed silica fine particles in the aqueous dispersion of the hydrophilic deformed silica fine particles [wherein R 3 is a substituted or unsubstituted carbon atom number of 1 to 20 Is a monovalent hydrocarbon group] to produce primary hydrophobic deformed silica fine particles,
(F) Furthermore, R 5 3 SiO 1/2 unit [wherein R 5 is the same or different, substituted or unsubstituted, substituted or unsubstituted 1 to 6 carbon atoms on the surface of the primary hydrophobic irregularly shaped silica fine particles. And a step of producing secondary hydrophobic irregularly shaped silica particles by introducing a valent hydrocarbon group].

このように、上記異形シリカ微粒子の製造方法であれば、球状でなく異形の疎水性シリカ微粒子を製造することができ、特に高分散性、低凝集性を有する異形シリカ微粒子であって、トナーへの付着性、及びトナーへの流動性の付与効果が良好で、トナーの流動性は保ちながら、トナーからの脱落が少ない異形シリカ微粒子を製造することができる異形シリカ微粒子の製造方法となる。   Thus, according to the method for producing irregularly shaped silica fine particles, it is possible to produce irregularly shaped hydrophobic silica fine particles that are not spherical, and in particular, irregularly shaped silica fine particles having high dispersibility and low agglomeration properties. This is a method for producing irregularly shaped silica fine particles that can produce irregularly shaped silica fine particles that have good adhesion and fluidity imparting effects to the toner, and that retain the fluidity of the toner and that are less likely to fall out of the toner.

さらに、前記(E)工程において、前記親水性異形シリカ微粒子の水分散液に、
一般式(3):RSi(OR (3)
[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される3官能性シラン化合物、該3官能性シラン化合物の部分加水分解縮合生成物、又は該3官能性シラン化合物と該部分加水分解縮合生成物との混合物を添加することで、前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは上記と同じである]を導入し、第1次疎水性異形シリカ微粒子を生成することが好ましい。
Furthermore, in the step (E), an aqueous dispersion of the hydrophilic irregular shaped silica fine particles is used.
Formula (3): R 3 Si (OR 4 ) 3 (3)
[Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms]
By adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture of the trifunctional silane compound and the partial hydrolysis condensation product, the hydrophilic property is increased. Preferably, R 3 SiO 3/2 units [wherein R 3 is the same as described above] are introduced into the surface of the irregular shaped silica fine particles to produce primary hydrophobic irregular shaped silica fine particles.

このように、前記(E)工程において、前記親水性異形シリカ微粒子の水分散液に、
上記一般式(3)で示される3官能性シラン化合物、該3官能性シラン化合物の部分加水分解縮合生成物、又は該3官能性シラン化合物と該部分加水分解縮合生成物との混合物を添加することで、簡便に前記親水性異形シリカ微粒子の表面にRSiO3/2単位を導入することができる。
Thus, in the step (E), the aqueous dispersion of hydrophilic irregularly shaped silica particles is used.
A trifunctional silane compound represented by the general formula (3), a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture of the trifunctional silane compound and the partial hydrolysis condensation product is added. Thus, R 3 SiO 3/2 units can be easily introduced onto the surface of the hydrophilic irregular shaped silica fine particles.

また、前記(F)工程において、前記第一次疎水性異形シリカ微粒子の分散媒である水分散液をケトン系溶媒に置換し、第一次疎水性異形シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性異形シリカ微粒子のケトン系溶媒分散液に
一般式(4):R SiNHSiR (4)
[一般式(4)中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]
で示されるシラザン化合物、
一般式(5):R SiX (5)
[一般式(5)中、Rは上記と同じであり、XはOH基又は加水分解性基である]
で示される1官能性シラン化合物、又は該シラザン化合物と該1官能性シラン化合物との混合物を添加し、前記第一次疎水性異形シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化することで、第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは上記と同じである]を導入して第二次疎水性異形シリカ微粒子を生成することが好ましい。
Further, in the step (F), the aqueous dispersion which is a dispersion medium of the primary hydrophobic irregular shaped silica fine particles is replaced with a ketone solvent to obtain a ketone solvent dispersion of the primary hydrophobic irregular shaped silica fine particles. In the ketone solvent dispersion of the primary hydrophobic irregular shaped silica fine particles, the general formula (4): R 5 3 SiNHSiR 5 3 (4)
[In General Formula (4), R 5 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms]
A silazane compound represented by
General formula (5): R 5 3 SiX (5)
[In General Formula (5), R 5 is the same as above, and X is an OH group or a hydrolyzable group]
Or a mixture of the silazane compound and the monofunctional silane compound is added to triorganosilylate the reactive groups remaining on the surface of the primary hydrophobic deformed silica fine particles. Thus, R 5 3 SiO 1/2 unit [wherein R 5 is the same as above] is introduced into the surface of the primary hydrophobic irregularly shaped silica fine particles to produce secondary hydrophobic irregularly shaped silica fine particles. It is preferable.

このように、前記(F)工程において、前記第一次疎水性異形シリカ微粒子の分散媒である水分散液をケトン系溶媒に置換し、第一次疎水性異形シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性異形シリカ微粒子のケトン系溶媒分散液に上記一般式(4)で示されるシラザン化合物、上記一般式(5)で示される1官能性シラン化合物、又は該シラザン化合物と該1官能性シラン化合物との混合物を添加することで、簡便に前記第一次疎水性異形シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化することができ、第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位を導入して第二次疎水性異形シリカ微粒子を生成することができる。 Thus, in the step (F), the aqueous dispersion which is the dispersion medium of the primary hydrophobic irregular shaped silica fine particles is replaced with a ketone solvent, and the ketone solvent dispersion of the primary hydrophobic irregular shaped silica fine particles is obtained. A silazane compound represented by the general formula (4), a monofunctional silane compound represented by the general formula (5), or the silazane compound in a ketone solvent dispersion of the primary hydrophobic irregular-shaped silica fine particles. And the monofunctional silane compound can be added to easily triorganosilylate the reactive groups remaining on the surface of the primary hydrophobic irregularly shaped silica fine particles. R 5 3 SiO 1/2 units can be introduced on the surface of the irregular shaped silica fine particles to produce secondary hydrophobic irregular shaped silica fine particles.

さらに、前記ケトン系溶媒が、メチルイソブチルケトンであることが好ましい。   Furthermore, the ketone solvent is preferably methyl isobutyl ketone.

このように、前記ケトン系溶媒が、メチルイソブチルケトンであれば、第一次疎水性異形シリカ微粒子、上記一般式(4)で示されるシラザン化合物、上記一般式(5)で示される一官能性シラン化合物、前記シラザン化合物及び前記一官能性シラン化合物の混合物及び生成する第二次疎水性異形シリカ微粒子を良好に溶解することができ、加水分解、縮合反応を良好に進行させることができる。   Thus, when the ketone solvent is methyl isobutyl ketone, the primary hydrophobic irregular shaped silica fine particles, the silazane compound represented by the general formula (4), and the monofunctionality represented by the general formula (5). The mixture of the silane compound, the silazane compound and the monofunctional silane compound, and the produced secondary hydrophobic irregular-shaped silica fine particles can be dissolved satisfactorily, and the hydrolysis and condensation reaction can proceed favorably.

また、本発明では前記異形シリカ微粒子の製造方法により製造された疎水性異形シリカ微粒子からなる静電荷像現像用トナー外添剤を提供する。   In addition, the present invention provides a toner external additive for developing an electrostatic charge image comprising hydrophobic irregularly shaped silica fine particles produced by the method for producing irregularly shaped silica fine particles.

このように、前記異形シリカ微粒子の製造方法により製造された疎水性異形シリカ微粒子からなる静電荷像現像用トナー外添剤であれば、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、トナーへの付着性、及びトナーへの流動性の付与効果が良好で、トナーの流動性は保ちながら、トナーからの脱落が少ない静電荷像現像用トナー外添剤となる。そのため、本発明の静電荷像現像用トナー外添剤を電子写真法、静電記録法等における静電荷像の現像に用いることにより、高画質化が期待できる。   As described above, if the toner external additive for developing an electrostatic charge image is composed of hydrophobic irregular-shaped silica fine particles produced by the method for producing irregular-shaped silica fine particles, the toner fluidity, caking resistance, fixing property, and cleaning properties are improved. In addition to the general characteristics of external additives, it has good adhesion to toner and fluidity imparting effect to toner, and it is for electrostatic charge image development with less dropout from toner while maintaining toner fluidity Toner external additive. Therefore, high image quality can be expected by using the toner external additive for developing an electrostatic image of the present invention for developing an electrostatic image in electrophotography, electrostatic recording method or the like.

以上説明したように、本発明の高分散性、低凝集性を有する異形シリカ微粒子、特に疎水性異形シリカ微粒子であればトナー外添剤として有用であり、トナーの流動性を改良することができ、更に粒子が不定形状の異形粒子であるため、付着性が高くトナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることを抑制することができる。そのため、本発明により製造することができる異形シリカ微粒子からなる静電荷像現像用トナー外添剤を電子写真法、静電記録法等における静電荷像の現像に用いることにより、高画質化が期待できる。   As described above, irregularly shaped silica fine particles having high dispersibility and low agglomeration property, particularly hydrophobic irregularly shaped silica fine particles according to the present invention are useful as toner external additives and can improve toner fluidity. Further, since the particles are irregularly shaped particles having an irregular shape, they have high adhesion and are less likely to be detached and released from the toner surface, thereby suppressing the occurrence of image quality defects (filming, etc.) on the copy. it can. Therefore, high image quality can be expected by using the toner external additive for developing an electrostatic charge image composed of deformed silica fine particles, which can be produced according to the present invention, for developing an electrostatic charge image in an electrophotographic method or an electrostatic recording method. it can.

本発明の異形シリカ微粒子の製造方法により得られた異形シリカ微粒子の電子顕微鏡の観察写真である。4 is an electron microscopic observation photograph of deformed silica fine particles obtained by the method for producing deformed silica fine particles of the present invention.

以下、本発明の異形シリカ微粒子の製造方法、及び静電荷像現像用トナー外添剤について詳細に説明するが、本発明はこれらに限定されるものではない。
前述のように、流動性、耐ケーキング性、定着性、クリーニング性等を高めながらもトナーへの付着性、及びトナーへの流動性の付与効果が良好な外添剤の開発が望まれていた。
Hereinafter, the method for producing deformed silica fine particles and the toner external additive for developing an electrostatic charge image of the present invention will be described in detail, but the present invention is not limited thereto.
As described above, there has been a demand for the development of an external additive that has good fluidity, caking resistance, fixing property, cleaning property, etc., but has good adhesion to toner and fluidity imparting effect to toner. .

本発明者らは、上記課題を達成するため鋭意検討を重ねた結果、下記各工程の反応温度を40℃〜100℃の範囲内とし、(A)一般式(1):Si(OR (1)[上記一般式(1)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性シリカ微粒子の核粒子を生成する工程と、(B)異形化促進触媒を系内に添加する工程と、(C)引き続き、前記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を系内に更に添加し、前記親水性シリカ微粒子の核粒子を成長し、異形化することで親水性異形シリカ微粒子を生成する工程とを有することを特徴とする異形シリカ微粒子の製造方法であれば、平均粒子径が5〜500nmの範囲の異形シリカ微粒子を製造することができることを見出し、該異形シリカ微粒子、特に該異形シリカ微粒子を疎水化した疎水性異形シリカ微粒子であればトナー外添剤として有用であり、トナーの流動性を改良することができ、更に粒子が不定形状の異形粒子であるため、付着性が高くトナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることを抑制することができることを見出し、その上、本発明により製造することができる異形シリカ微粒子からなるトナー外添剤を電子写真法、静電記録法等における静電荷像の現像に用いることにより、高画質化が期待できることを見出して、本発明を完成させた。 As a result of intensive studies in order to achieve the above-mentioned problems, the present inventors set the reaction temperature in the following steps within the range of 40 ° C. to 100 ° C., and (A) General formula (1): Si (OR 1 ) 4 (1) [In the general formula (1), R 1 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms] and the tetrafunctional silane compound Hydrophilic silica fine particles obtained by hydrolyzing and condensing at least one compound selected from the group consisting of partial hydrolysis-condensation products in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance. (B) a step of adding a deforming promotion catalyst to the system, (C) a tetrafunctional silane compound represented by the general formula (1) and the tetrafunctional silane Selected from the group consisting of partially hydrolyzed condensation products of compounds And a step of adding at least one kind of compound to the system, and growing and deforming the hydrophilic silica fine particle core particles to produce hydrophilic deformed silica fine particles. The method for producing fine particles has found that irregular-shaped silica fine particles having an average particle diameter in the range of 5 to 500 nm can be produced, and the irregular-shaped fine silica particles, particularly hydrophobic irregular-shaped silica fine particles obtained by hydrophobizing the irregular-shaped silica fine particles. If it is useful as a toner external additive, the fluidity of the toner can be improved. Further, since the particles are irregularly shaped irregular particles, the adhesion is high and it is less likely to be detached from the toner surface and released. It has been found that it is possible to suppress the occurrence of image quality defects (filming, etc.) on a copy, and in addition, the deformed sheet that can be manufactured according to the present invention. The present invention has been completed by discovering that high image quality can be expected by using an external toner additive composed of Rica fine particles for development of an electrostatic charge image in electrophotography, electrostatic recording method or the like.

さらに、本発明者らは、本発明に係る疎水性異形シリカ微粒子からなる静電荷像現像用トナー外添剤であれば、現像剤への流動性、耐ケーキング性、定着性、クリーニング性等の付与という所望の特性に加えて、粒子が非球状の異形粒子であるため、トナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることがなく、高画質化が可能であることを見出し、本発明を完成させた。   Furthermore, the present inventors have provided the toner external additive for electrostatic charge image development comprising the hydrophobic irregularly shaped silica fine particles according to the present invention, such as fluidity to the developer, caking resistance, fixing property, and cleaning property. In addition to the desired properties of imparting, the particles are non-spherical irregularly shaped particles, so they are less likely to be detached and released from the toner surface, and do not cause image quality defects on the copy (filming, etc.) The inventors have found that high image quality can be achieved and completed the present invention.

<従来の合成シリカ微粒子の製造方法>
合成シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうちアルカリ条件で合成したものを沈降法シリカ、酸性条件で合成したものをゲル法シリカという)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法)に大別される。本発明は、このうち、ゾルゲル法シリカに関するものであり、ゾルゲル法を改良した異形シリカ微粒子の製造方法である。
<Conventional method for producing synthetic silica fine particles>
Synthetic silica fine particles are produced by combustion method silica obtained by burning a silane compound (that is, fumed silica), deflagration silica obtained by explosively burning metal silicon powder, sodium silicate and mineral acid. Wet silica obtained by the neutralization reaction of the above (the one synthesized under alkaline conditions is precipitated silica, the one synthesized under acidic conditions is gel silica), the sol-gel silica obtained by hydrolysis of hydrocarbyloxysilane (so-called (Stober method). Among these, the present invention relates to sol-gel silica, and is a method for producing irregular shaped silica fine particles by improving the sol-gel method.

<異形シリカ微粒子の特徴>
まず、本発明に係る異形シリカ微粒子の特徴について説明する。図1に本発明の異形シリカ微粒子の製造方法により得られた異形シリカ微粒子の電子顕微鏡による観察写真を示す。本発明における異形シリカ微粒子とは、平均粒子径が5〜500nmの範囲であり、繊維状、柱状、回転楕円体状などの異形状と見做される形状、すなわち球状とは見なされない形状をとるものである。このような本発明に係る異形シリカ微粒子の短径/長径比は0.01〜0.8の範囲であることが好ましい。この範囲の短径/長径比である場合は、より繊維状、柱状、回転楕円体状などの異形状と見做される形状、すなわち球状とは見なされない形状をとるものとなる。この範囲の短径/長径比である場合は、短径/長径比が0.8以下であれば球状となりすぎず好ましい。また、短径/長径比が0.01以上であれば製造が容易であるため好ましい。また、短径/長径比のより好適な範囲は0.1〜0.7である。この範囲にあると、外添剤に応用したときに、従来公知の球状シリカよりもトナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)をより抑制できる。
<Characteristics of irregular shaped silica particles>
First, the characteristics of the irregular shaped silica fine particles according to the present invention will be described. FIG. 1 shows an electron microscopic observation photograph of deformed silica fine particles obtained by the method for producing deformed silica fine particles of the present invention. The irregular-shaped silica fine particles in the present invention have an average particle diameter in the range of 5 to 500 nm, and are regarded as irregular shapes such as fibrous shapes, columnar shapes, and spheroid shapes, that is, shapes that are not considered spherical. It is something to take. The minor axis / major axis ratio of the modified silica fine particles according to the present invention is preferably in the range of 0.01 to 0.8. When the minor axis / major axis ratio is within this range, a shape that is more regarded as a different shape, such as a fiber shape, a column shape, or a spheroid shape, that is, a shape that is not regarded as a spherical shape. In the case of the minor axis / major axis ratio in this range, it is preferable that the minor axis / major axis ratio is 0.8 or less because it is not too spherical. Further, it is preferable that the ratio of the minor axis / major axis is 0.01 or more because the production is easy. A more preferable range of the minor axis / major axis ratio is 0.1 to 0.7. Within this range, when applied to an external additive, it is less likely to be detached and released from the toner surface than conventionally known spherical silica, further suppressing the causes of image quality defects (filming, etc.) on the copy. it can.

<異形シリカ微粒子の短径/長径比の測定・算出方法>
短径/長径比の測定・算出は下記の方法で行った。まず、走査型電子顕微鏡により、異形シリカ微粒子を倍率50万倍(ないしは100万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(L)とした。次に、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(S)とした。そして、これら長径(L)と短径(S)より短径/長径比(S/L)を算出することで求めることとした。この測定を任意の50個の粒子について行い、その平均値を短径/長径比とした。なお、ひとつの粒子について、長軸を複数設定可能な場合は、対応する複数の短径長さの平均値を求め、短径の長さ(S)とした。
<Measurement and calculation method of minor diameter / major diameter ratio of irregular shaped silica fine particles>
The measurement / calculation of the minor axis / major axis ratio was performed by the following method. First, in a photographic projection view obtained by taking a photograph of irregular-shaped silica fine particles with a scanning electron microscope at a magnification of 500,000 times (or 1,000,000 times), the maximum diameter of the particles is taken as the major axis, and the length is measured. The value was taken as the major axis (L). Next, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (S). . And it decided to calculate | require by calculating a short diameter / long diameter ratio (S / L) from these long diameters (L) and short diameters (S). This measurement was performed on any 50 particles, and the average value was defined as the minor axis / major axis ratio. When a plurality of major axes can be set for one particle, an average value of a plurality of corresponding minor axis lengths was obtained and used as the minor axis length (S).

<異形シリカ微粒子の割合(%)>
異形シリカ微粒子の割合の測定は、上記「短径/長径比の測定方法」にて短径/長径比の測定対象とした50個の粒子において、下記(i)に該当する粒子数を測定し、[((i)の個数/50個)×100]の値を、全シリカ微粒子の個数に対する異形シリカ微粒子の個数の割合(%)とした。
(i)短径/長径比の範囲が0.01〜0.8の範囲にある粒子
<Ratio of irregular shaped silica fine particles (%)>
The proportion of irregularly shaped silica fine particles was measured by measuring the number of particles corresponding to the following (i) in the 50 particles to be measured for the short diameter / long diameter ratio in the above “Measurement method of short diameter / long diameter ratio”. , [(Number of (i) / 50) × 100] was defined as the ratio (%) of the number of deformed silica fine particles to the total number of silica fine particles.
(I) Particles having a minor axis / major axis ratio in the range of 0.01 to 0.8

この異形シリカ微粒子の割合としては50%以上が好ましく、より好ましくは70〜100%である。この割合が50%以上であれば、外添剤に応用したときにトナー表面より脱離し遊離する割合がより少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)が発生することを抑制できるため好ましい。   The proportion of the irregular shaped silica fine particles is preferably 50% or more, more preferably 70 to 100%. If this ratio is 50% or more, the ratio of detachment and separation from the toner surface when applied to an external additive is reduced, and the occurrence of image quality defects (filming, etc.) on the copy is suppressed. This is preferable because it is possible.

<異形シリカ微粒子の製造方法>
次に、上記異形シリカ微粒子を製造するための本発明の異形シリカ微粒子の製造方法について詳細に説明する。本発明は、平均粒子径が5〜500nmの範囲の異形シリカ微粒子を製造する方法であって、
下記各工程の反応温度を40℃〜100℃の範囲内とし、
(A)一般式(1):Si(OR (1)
[上記一般式(1)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性シリカ微粒子の核粒子を生成する工程と、
(B)異形化促進触媒を系内に添加する工程と、
(C)引き続き、前記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を系内に更に添加し、前記親水性シリカ微粒子の核粒子を成長し、異形化することで親水性異形シリカ微粒子を生成する工程とを有する異形シリカ微粒子の製造方法を提供する。
<Method for producing irregular shaped silica fine particles>
Next, the method for producing irregularly shaped silica particles of the present invention for producing the irregularly shaped silica particles will be described in detail. The present invention is a method for producing irregularly shaped silica fine particles having an average particle diameter in the range of 5 to 500 nm,
The reaction temperature of each of the following steps is within the range of 40 ° C to 100 ° C,
(A) General formula (1): Si (OR 1 ) 4 (1)
[In the general formula (1), R 1 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
At least one compound selected from the group consisting of a tetrafunctional silane compound represented by formula (II) and a partial hydrolysis-condensation product of the tetrafunctional silane compound, in the presence of a basic substance, Hydrolyzing and condensing in a mixed medium to produce core particles of hydrophilic silica fine particles,
(B) adding a heteromorphization promoting catalyst into the system;
(C) Subsequently, at least one compound selected from the group consisting of the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system. And forming a hydrophilic silica fine particle by growing and deforming the core particle of the hydrophilic silica fine particle.

<反応温度>
まず、前記(A)〜(C)工程を行う際の反応温度は40〜100℃の間で設定する。この反応温度を40℃未満とすると球状粒子や会合粒子が製造されるため、目的の異形シリカ微粒子の合成が困難である。また、100℃より高くすると系内から加水分解用の水が揮発してしまい、加水分解が設定通りいかなくなるので目的の異形シリカ微粒子の合成が困難である。前記反応温度として、好ましくは40〜60℃の温度範囲で反応を行うことが好ましい。
<Reaction temperature>
First, the reaction temperature for performing the steps (A) to (C) is set between 40 and 100 ° C. When this reaction temperature is less than 40 ° C., spherical particles and associated particles are produced, and therefore it is difficult to synthesize target irregular-shaped silica fine particles. On the other hand, when the temperature is higher than 100 ° C., the water for hydrolysis volatilizes from the system, and the hydrolysis does not work as set, so that it is difficult to synthesize the desired modified silica fine particles. The reaction temperature is preferably 40 to 60 ° C.

この様な反応温度で親水性シリカ微粒子の核粒子を作成すると比較的非球状の歪んだ形の親水性シリカ微粒子の核微粒子が生成し((A)工程)、該親水性シリカ微粒子の核微粒子が生成した系内に(B)工程で異形化促進触媒を添加すること、更に(C)工程で前記親水性シリカ微粒子の核粒子を前記反応温度で成長させることにより、粒度分布は狭いが、球状ではない目的とする異形のシリカ微粒子を得ることができる。以下、各工程を説明する。   When core particles of hydrophilic silica fine particles are prepared at such a reaction temperature, core particles of hydrophilic silica fine particles having a relatively non-spherical shape are formed (step (A)). The particle size distribution is narrowed by adding a catabolization-promoting catalyst in step (B) to the system in which nuclei are formed, and by growing the core particles of the hydrophilic silica fine particles at the reaction temperature in step (C). It is possible to obtain the desired irregularly shaped silica fine particles that are not spherical. Hereinafter, each process will be described.

−親水性シリカ微粒子の核粒子の生成((A)工程)−
本工程では、(A)一般式(1):Si(OR (1)
[上記一般式(1)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性シリカ微粒子の核粒子を生成する。
-Generation of core particles of hydrophilic silica fine particles (step (A))-
In this step, (A) general formula (1): Si (OR 1 ) 4 (1)
[In the general formula (1), R 1 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
At least one compound selected from the group consisting of a tetrafunctional silane compound represented by formula (II) and a partial hydrolysis-condensation product of the tetrafunctional silane compound, in the presence of a basic substance, Hydrolysis and condensation in a mixed medium produce core particles of hydrophilic silica fine particles.

上記一般式(1)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基であり、より好ましくは1〜4、さらに好ましくは1〜2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等、好ましくは、メチル基、エチル基、プロピル基、ブチル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (1), R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms, more preferably 1 to 4, more preferably 1 to 2 monovalent hydrocarbon group. is there. Examples of the monovalent hydrocarbon group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and particularly preferably , Methyl group, and ethyl group.

上記一般式(1)で示される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、特に好ましくは、テトラメトキシシラン、テトラエトキシシランが挙げられる。また、一般式(1)で示される4官能性シラン化合物の部分加水分解縮合生成物としては、例えば、これらの部分加水分解縮合生成物、特にメチルシリケート、エチルシリケート等が挙げられる。   Examples of the tetrafunctional silane compound represented by the general formula (1) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, tetraphenoxysilane, and the like. Silane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, particularly preferably tetramethoxysilane and tetraethoxysilane. Moreover, as a partial hydrolysis-condensation product of the tetrafunctional silane compound shown by General formula (1), these partial hydrolysis-condensation products, especially methyl silicate, ethyl silicate, etc. are mentioned, for example.

前記親水性有機溶媒としては、一般式(1)で示される4官能性シラン化合物と、該4官能性シラン化合物の部分加水分解縮合生成物と、水とを溶解するものであれば特に制限されず、例えば、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等、好ましくは、アルコール類、セロソルブ類、特に好ましくはアルコール類が挙げられる。   The hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (1), the partial hydrolysis-condensation product of the tetrafunctional silane compound, and water. E.g., alcohols, methyl cellosolve, ethyl cellosolve, buticellosolve, cellosolves such as cellosolve acetate, ketones such as acetone and methylethylketone, ethers such as dioxane and tetrahydrofuran, preferably alcohols, cellosolves, especially Preferably, alcohols are used.

前記アルコール類としては、
一般式(2):ROH (2)
[一般式(2)中、Rは炭素原子数1〜6の1価炭化水素基である]
で示されるアルコール溶媒を用いることが好ましい。
As the alcohols,
Formula (2): R 2 OH (2)
[In General Formula (2), R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
It is preferable to use the alcohol solvent shown by these.

上記一般式(2)中、Rは炭素原子数1〜6の1価炭化水素基であり、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、より好ましくはメチル基、エチル基が挙げられる。一般式(2)で示されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等、好ましくは、メタノール、エタノールが挙げられる。アルコールの炭素原子数が増えると、生成する異形シリカ微粒子の粒子径が大きくなる。従って、目的とする異形シリカ微粒子の粒子径によりアルコールの種類を選択することが望ましい。 In the general formula (2), R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1-2. Examples of the monovalent hydrocarbon group represented by R 2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, More preferably, a methyl group and an ethyl group are mentioned. Examples of the alcohol represented by the general formula (2) include methanol, ethanol, propanol, isopropanol, butanol and the like, preferably methanol and ethanol. As the number of carbon atoms in the alcohol increases, the particle size of the deformed silica fine particles produced increases. Therefore, it is desirable to select the type of alcohol according to the particle diameter of the target irregular shaped silica fine particles.

また、前記塩基性物質としてはアンモニア、及びジメチルアミン、ジエチルアミン等のジ低級アルキルアミン、好ましくは、アンモニア及びジエチルアミン、特に好ましくはアンモニアが挙げられる。前記塩基性物質としてアンモニアを用いることで、加水分解、縮合反応に適した反応条件を満たすことができ、加水分解、縮合反応を良好に進行させることができる。これらの塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を前記親水性有機溶媒と混合すればよい。   Examples of the basic substance include ammonia and di-lower alkylamines such as dimethylamine and diethylamine, preferably ammonia and diethylamine, and particularly preferably ammonia. By using ammonia as the basic substance, the reaction conditions suitable for the hydrolysis and condensation reaction can be satisfied, and the hydrolysis and condensation reaction can proceed well. These basic substances may be dissolved in water in a required amount, and the obtained aqueous solution (basic) may be mixed with the hydrophilic organic solvent.

前記(A)工程の前記親水性シリカ微粒子の核粒子形成時の加水分解反応において、上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物の使用量は、(A)工程及び(C)工程で使用する全使用量に対して、0.3〜15mol%であることが好ましく、より好ましくは0.5〜7mol%である。前記使用量が0.3mol%以上であれば前記親水性シリカ微粒子の核粒子が凝集して得られる粒子群が塊状になることを抑制できるため好ましい。また、前記使用量が15mol%以下であれば前記親水性シリカ微粒子の核粒子が大きくなりすぎて、凝集・沈降することを抑制できるため好ましい。   In the hydrolysis reaction during the formation of the core particles of the hydrophilic silica fine particles in the step (A), the tetrafunctional silane compound represented by the general formula (1) and the partial hydrolysis condensation product of the tetrafunctional silane compound The amount of at least one compound selected from the group consisting of is preferably 0.3 to 15 mol%, more preferably based on the total amount used in the step (A) and the step (C). 0.5-7 mol%. If the amount used is 0.3 mol% or more, it is preferable because the particle group obtained by agglomerating the core particles of the hydrophilic silica fine particles can be prevented from becoming agglomerated. Moreover, if the usage-amount is 15 mol% or less, since the core particle of the said hydrophilic silica fine particle becomes large too much and it can suppress that it aggregates and settles, it is preferable.

前記(A)工程で使用される水の量は、上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物中に含まれるアルコキシ基のモル数に対して0.5〜7当量であることが好ましい。前記(A)工程で使用される水と親水性有機溶媒の比率は、親水性有機溶媒を1として重量比で0.1〜10であることが好ましい。さらに、前記塩基性物質の量は、上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物中に含まれるアルコキシ基のモル数に対して0.01〜1当量であることが好ましい。   The amount of water used in the step (A) is at least 1 selected from the group consisting of a tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound. The amount is preferably 0.5 to 7 equivalents relative to the number of moles of alkoxy groups contained in the seed compound. The ratio of water and the hydrophilic organic solvent used in the step (A) is preferably 0.1 to 10 in terms of a weight ratio with the hydrophilic organic solvent being 1. Further, the amount of the basic substance is at least one compound selected from the group consisting of a tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis-condensation product of the tetrafunctional silane compound. It is preferable that it is 0.01-1 equivalent with respect to the number of moles of the alkoxy group contained in.

上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物の加水分解及び縮合による核粒子の形成は、前記塩基性物質を含む前記親水性有機溶媒と水との混合媒体中に、上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を添加することにより行われる。   Formation of core particles by hydrolysis and condensation of at least one compound selected from the group consisting of the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound From the tetrafunctional silane compound represented by the general formula (1) and the partial hydrolysis-condensation product of the tetrafunctional silane compound in a mixed medium of the hydrophilic organic solvent containing the basic substance and water. It is carried out by adding at least one compound selected from the group consisting of:

−異形化促進触媒を系内に添加する工程((B)工程)−
(B)工程は、(A)工程により生成された前記親水性シリカ微粒子の核粒子が存在している系内に、異形化を促すような触媒(異形化促進触媒)を添加する工程である。シリカ微粒子を異形にするための異形化促進触媒として有効なものとして、縮合触媒類、二官能性化合物類、塩類等が挙げられる。このように、前記異形化促進触媒として、縮合触媒類、二官能性化合物類、塩類のいずれかを用いることで、より効率よく平均粒子径が5〜500nmの範囲であり、繊維状、柱状、回転楕円体状などの異形状と見做される形状、すなわち球状とは見なされない形状をとる異形シリカ微粒子を得ることができる。
-Step of adding a modification catalyst to the system (step (B))-
Step (B) is a step of adding a catalyst (catalyzing reforming catalyst) that promotes deforming into the system in which the core particles of the hydrophilic silica fine particles produced by (A) are present. . Condensation catalysts, bifunctional compounds, salts and the like are effective as a catalyst for promoting the modification of the silica fine particles. Thus, by using any of condensation catalysts, bifunctional compounds, and salts as the catabolism promoting catalyst, the average particle diameter is more efficiently in the range of 5 to 500 nm, and the fibrous, columnar, It is possible to obtain deformed silica fine particles having a shape that is regarded as a deformed shape such as a spheroid, that is, a shape that is not regarded as spherical.

前記縮合触媒類としては、Ti,Zr、Zn、Al系の有機金属化合物錯体が好ましく、例えば、チタンジ−n−ブトキサイド(ビス2,4−ペンタジオネート)、ジルコニウム2,4−ペンタジオネート、亜鉛2,4−ペンタジオネート、アルミニウム(III)2,4−ペンタジオネートあるいはそれらの混合物等が例示される。またこれらを加水分解したものを縮合触媒類として使用することもできる。   As the condensation catalysts, Ti, Zr, Zn, Al-based organometallic compound complexes are preferable, for example, titanium di-n-butoxide (bis 2,4-pentadionate), zirconium 2,4-pentadionate, Examples include zinc 2,4-pentadionate, aluminum (III) 2,4-pentadionate, or a mixture thereof. Moreover, what hydrolyzed these can also be used as a condensation catalyst.

前記二官能性化合物類としては、アミノアルコール類、ジアミン類、グリコール類が好ましい。前記アミノアルコール類としては、例えばモノエタノールアミン、イソプロパノールアミン、2−ジメチルアミノエタノール、2−ジエチルアミノエタノールあるいはそれらの混合物等が例示される。   As the bifunctional compounds, amino alcohols, diamines, and glycols are preferable. Examples of the amino alcohols include monoethanolamine, isopropanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, and mixtures thereof.

前記ジアミン類としては、例えばエチレンジアミン、テトラメチルエチレンジアミンあるいはそれらの混合物等が例示される。   Examples of the diamines include ethylene diamine, tetramethyl ethylene diamine, and mixtures thereof.

前記グリコール類としては、例えばジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、1,6−ヘキサンジオールあるいはそれらの混合物が例示される。   Examples of the glycols include diethylene glycol, trimethylene glycol, tetramethylene glycol, 1,6-hexanediol, and mixtures thereof.

前記塩類としては、水酸化テトラアルキルアンモニウムが好ましく、具体的には水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、あるいはそれらの混合物のなかから選択される。   The salt is preferably a tetraalkylammonium hydroxide, specifically selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, or a mixture thereof. .

上記異形化促進触媒を添加し、介在させることにより、前記親水性シリカ微粒子の核粒子の異形が促進され、異形シリカ微粒子が生成しやすくなる。   By adding and interposing the deforming promotion catalyst, deforming of the core particles of the hydrophilic silica particles is promoted, and deformed silica particles are easily generated.

前記(B)工程における異形化促進触媒の添加量は前記親水性シリカ微粒子の核粒子に含まれるSiO4/2単位100質量部に対し0.5〜150質量部添加するのが望ましい。より好ましくは2〜80質量部である。この量が0.5質量部以上であれば異形率が悪化することを抑制できるため好ましい。またこの量が150質量部以下であれば、粒子の凝集が発生したり、外添剤に使用した場合の帯電特性に与える悪影響を抑制できるため好ましい。 In the step (B), it is desirable to add 0.5 to 150 parts by mass of the modification catalyst for addition to 100 parts by mass of SiO 4/2 units contained in the core particles of the hydrophilic silica fine particles. More preferably, it is 2-80 mass parts. If this amount is 0.5 parts by mass or more, it is preferable because the deformation rate can be prevented from deteriorating. Moreover, if this amount is 150 parts by mass or less, it is preferable because aggregation of particles can occur or adverse effects on charging characteristics when used as an external additive can be suppressed.

−粒子を成長、異形化させる工程((C)工程)−
(C)工程は、前記(B)工程において異形化促進触媒を系内に添加した後、引き続き上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を更に添加していき、前記親水性シリカ微粒子の核粒子を成長し、異形化することで親水性異形シリカ微粒子を生成する工程である。
-Process of growing and deforming particles (process (C))-
In the step (C), after adding the heteromorphization promoting catalyst to the system in the step (B), the tetrafunctional silane compound represented by the general formula (1) and the partial hydrolysis of the tetrafunctional silane compound are continued. In this step, at least one compound selected from the group consisting of condensation products is further added, and the core particles of the hydrophilic silica fine particles are grown and deformed to produce hydrophilic deformed silica fine particles.

(C)工程における前記親水性シリカ微粒子の核粒子成長・異形化時の加水分解反応において、上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物の使用量は、(A)工程及び(C)工程で使用する全使用量に対して、好ましくは99.7〜85.0mol%、より好ましくは99.5〜93.0mol%である。   (C) In the hydrolysis reaction at the time of core particle growth / deformation of the hydrophilic silica fine particles in the step (C), the tetrafunctional silane compound represented by the general formula (1) and the partial hydrolytic condensation of the tetrafunctional silane compound The amount of at least one compound selected from the group consisting of products is preferably 99.7 to 85.0 mol%, more preferably, based on the total amount used in step (A) and step (C). Is 99.5-93.0 mol%.

(C)工程において使用される水の量は上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物に含まれるアルコキシ基のモル数に対して0.5〜5当量であることが好ましい。また、前記水と前記親水性有機溶媒の比率は、水を1として重量比で0.5〜10であることが好ましい。さらに、前記塩基性物質の量は上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物に含まれるアルコキシ基のモル数に対して0.01〜2当量であることが好ましい。   The amount of water used in the step (C) is at least one selected from the group consisting of the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound. It is preferably 0.5 to 5 equivalents relative to the number of moles of alkoxy groups contained in the compound. Moreover, it is preferable that the ratio of the said water and the said hydrophilic organic solvent is 0.5-10 by weight ratio by making water into 1. Furthermore, the amount of the basic substance is included in at least one compound selected from the group consisting of the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis-condensation product of the tetrafunctional silane compound. It is preferable that it is 0.01-2 equivalent with respect to the number-of-moles of the alkoxy group.

前記親水性シリカ微粒子の核粒子を成長し、異形化する方法は、塩基性物質を含む親水性有機溶媒と水と核粒子の混合物中に、上記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を添加し、加水分解及び縮合させることにより行われる。   The method of growing and deforming the core particles of the hydrophilic silica fine particles includes a tetrafunctional silane represented by the above general formula (1) in a mixture of a hydrophilic organic solvent containing a basic substance, water, and core particles. It is carried out by adding at least one compound selected from the group consisting of a compound and a partial hydrolysis-condensation product of the tetrafunctional silane compound, followed by hydrolysis and condensation.

以上、各工程の反応温度を40〜100℃の範囲として、(A)工程から(C)工程を行うことにより、平均粒子径が5〜500nmの範囲の異形シリカ微粒子を製造することができる。これにより、球状でなく異形のシリカ微粒子であり、特に高分散性、低凝集性を有する異形シリカ微粒子であって、トナー外添剤として有用であり、トナーの流動性を改良することができ、更に粒子が不定形状の異形粒子であるため、付着性が高くトナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることを抑制することができる異形シリカ微粒子を得ることができる。   As described above, irregular silica fine particles having an average particle diameter in the range of 5 to 500 nm can be produced by performing the steps (A) to (C) with the reaction temperature in each step in the range of 40 to 100 ° C. As a result, irregularly shaped silica particles that are not spherical, particularly irregularly shaped silica particles having high dispersibility and low cohesiveness, are useful as toner external additives, and can improve the fluidity of the toner. Further, since the particles are irregularly shaped particles, they have high adhesion and are less likely to be detached and released from the toner surface, thereby suppressing image quality defects on the copy (filming, etc.). Deformed silica fine particles can be obtained.

さらに、前記(C)異形シリカ微粒子を生成する工程の後、
(D)前記系内から親水性有機溶媒を除去して媒体を水に置換して、前記親水性異形シリカ微粒子の水分散液を得る工程と、
(E)前記親水性異形シリカ微粒子の水分散液中の前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である]を導入し、第一次疎水性異形シリカ微粒子を生成する工程と、
(F)更に、該第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]を導入して第二次疎水性異形シリカ微粒子を生成する工程より異形シリカ微粒子を製造することで、特に高分散性、低凝集性を有する疎水性異形シリカ微粒子であって、トナー外添剤として有用であり、トナーの流動性を改良することができ、更に粒子が不定形状の異形粒子であるため、付着性が高くトナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることを一層抑制することができる疎水性異形シリカ微粒子を生成することができる。以下、疎水化の各工程について詳しく説明する。
Furthermore, after the step of producing the (C) deformed silica fine particles,
(D) removing the hydrophilic organic solvent from the system and substituting the medium with water to obtain an aqueous dispersion of the hydrophilic deformed silica fine particles;
(E) R 3 SiO 3/2 unit on the surface of the hydrophilic deformed silica fine particles in the aqueous dispersion of the hydrophilic deformed silica fine particles [wherein R 3 is a substituted or unsubstituted carbon atom number of 1 to 20 Is a monovalent hydrocarbon group] to produce primary hydrophobic deformed silica fine particles,
(F) Furthermore, R 5 3 SiO 1/2 unit [wherein R 5 is the same or different, substituted or unsubstituted, substituted or unsubstituted 1 to 6 carbon atoms on the surface of the primary hydrophobic irregularly shaped silica fine particles. Is a hydrophobic hydrocarbon group, and is produced from the step of producing secondary hydrophobic irregularly shaped silica particles to produce hydrophobic irregularly shaped silica particles having particularly high dispersibility and low agglomeration. It is useful as an external toner additive, can improve the fluidity of the toner, and because the particles are irregularly shaped irregular particles, it has high adhesion and is less likely to be detached and released from the toner surface. Hydrophobic irregular-shaped silica fine particles that can further suppress the occurrence of image quality defects on copying (filming, etc.) can be generated. Hereinafter, each process of hydrophobization will be described in detail.

−親水性異形シリカ微粒子の水分散液を得る工程((D)工程)−
(D)工程は、前記(C)工程により生成した親水性異形シリカ微粒子が分散する系内から親水性有機溶媒を除去して媒体を水に置換して、前記親水性異形シリカ微粒子の水分散液を得る工程である。系内から親水性有機溶媒を除去して媒体を水に置換する操作は、例えば、系内に水を添加し前記親水性有機溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。このときに添加される水の合計量は、(A)工程及び(C)工程で使用した親水性有機溶媒及び加水分解縮合反応により生成したアルコールの量の合計に対して、質量基準で、好ましくは2倍量を超える量、より好ましくは2.5〜3.5倍量、特に好ましくは3倍量である。
-Step of obtaining an aqueous dispersion of hydrophilic irregular shaped silica fine particles (step (D))-
In the step (D), the hydrophilic organic solvent is removed from the system in which the hydrophilic deformed silica fine particles generated in the step (C) are dispersed, the medium is replaced with water, and the hydrophilic deformed silica fine particles are dispersed in water. This is a step of obtaining a liquid. The operation of removing the hydrophilic organic solvent from the system and replacing the medium with water is, for example, an operation of adding water to the system and distilling off the hydrophilic organic solvent (repeat this operation as necessary). It can be carried out. The total amount of water added at this time is preferably on a mass basis with respect to the total amount of the hydrophilic organic solvent used in steps (A) and (C) and the amount of alcohol produced by the hydrolysis condensation reaction. Is more than twice the amount, more preferably 2.5 to 3.5 times the amount, particularly preferably 3 times the amount.

このようにして得られる水分散液中の親水性異形シリカ微粒子は、(E)工程で第1段階の疎水化処理に供される。   The hydrophilic deformed silica fine particles in the aqueous dispersion thus obtained are subjected to a first-stage hydrophobization treatment in step (E).

(D)工程で得られる水分散液の水の含有量は90質量%以上であることが好ましい。水分散液中の水の含有量が90質量%以上であれば、水分散液中の水の量が多いため、続く(E)工程において、ヒドロカルビルオキシ基の加水分解を十分に進行させることができ、親水性異形シリカ微粒子中の残存ヒドロカルビルオキシ基含量は少なくなるため好ましい。   (D) It is preferable that content of the water of the aqueous dispersion obtained at a process is 90 mass% or more. If the content of water in the aqueous dispersion is 90% by mass or more, the amount of water in the aqueous dispersion is large. Therefore, in the subsequent step (E), hydrolysis of the hydrocarbyloxy group can be sufficiently advanced. This is preferable because the residual hydrocarbyloxy group content in the hydrophilic irregular-shaped silica fine particles is reduced.

−親水性異形シリカ微粒子の表面疎水化処理((E)工程)−
(E)工程は、前記親水性異形シリカ微粒子の水分散液中の前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である]を導入し、第一次疎水性異形シリカ微粒子を生成する工程である。即ち、第1段階の疎水化処理を行う工程である。
-Surface hydrophobization treatment of hydrophilic irregular-shaped silica fine particles (step (E))-
The step (E) includes the step of forming R 3 SiO 3/2 units on the surface of the hydrophilic deformed silica fine particles in the aqueous dispersion of the hydrophilic deformed silica fine particles, wherein R 3 is a substituted or unsubstituted carbon atom number. 1 to 20 monovalent hydrocarbon groups] are introduced to produce primary hydrophobic irregular-shaped silica fine particles. That is, it is a step of performing a first-stage hydrophobization treatment.

前記親水性異形シリカ微粒子の表面にRSiO3/2単位を導入する方法としては、例えば、上記親水性異形シリカ微粒子を含み、水の含有量が90質量%以上の水分散液に、
一般式(3):RSi(OR (3)
[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される3官能性シラン化合物、該3官能性シラン化合物の部分加水分解縮合生成物、又は該3官能性シラン化合物と該部分加水分解縮合生成物との混合物を添加することで、前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは上記と同じである]を導入する方法が挙げられる。これにより、前記親水性異形シリカ微粒子の表面を処理して第1次疎水性異形シリカ微粒子を生成することができる。
As a method for introducing R 3 SiO 3/2 units into the surface of the hydrophilic irregular shaped silica fine particles, for example, in an aqueous dispersion containing the hydrophilic irregular shaped silica fine particles and having a water content of 90% by mass or more,
Formula (3): R 3 Si (OR 4 ) 3 (3)
[Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms]
By adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture of the trifunctional silane compound and the partial hydrolysis condensation product, the hydrophilic property is increased. Examples thereof include a method of introducing R 3 SiO 3/2 units [wherein R 3 is the same as described above] onto the surface of the irregular shaped silica fine particles. Thereby, the surface of the hydrophilic irregular shaped silica fine particles can be treated to produce the first hydrophobic irregular shaped silica fine particles.

上記一般式(3)中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、好ましくは炭素原子数1〜8、特に好ましくは1〜4の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基、フェニル基等が例示され、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくはフッ素原子で置換されていてもよい。 In the general formula (3), R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, particularly preferably 1 to 4 monovalent hydrocarbon groups. It is a hydrocarbon group. Examples of the monovalent hydrocarbon group represented by R 3 include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, and a hexyl group, and a phenyl group. A methyl group, an ethyl group, an n-propyl group, and an isopropyl group, particularly preferably a methyl group and an ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(3)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基であり、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (3), R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, particularly preferably 1 to 2 monovalent hydrocarbon groups. It is a group. Examples of the monovalent hydrocarbon group represented by R 4 include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, preferably a methyl group, an ethyl group, and a propyl group, and particularly preferably a methyl group. Group and ethyl group.

上記一般式(3)で示される3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシラン等、好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等が例示され、より好ましくは、メチルトリメトキシシラン、メチルトリエトキシシランが挙げられる。また、該3官能性シラン化合物の部分加水分解縮合生成物としては、例えばこれらの部分加水分解縮合生成物が挙げられる。   Examples of the trifunctional silane compound represented by the general formula (3) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltrimethoxysilane. Trialkoxysilane such as ethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, etc. Examples thereof include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane, and more preferably methyltrimethoxysilane and methyltrimethoxysilane. Tokishishiran and the like. Moreover, as a partial hydrolysis-condensation product of this trifunctional silane compound, these partial hydrolysis-condensation products are mentioned, for example.

上記一般式(3)で示される3官能性シラン化合物の添加量は、前記水分散液に含まれる親水性異形シリカ微粒子に含まれるSiO4/2単位1モル当り0.001〜1モル、好ましくは0.01〜0.1モル、特に好ましくは0.01〜0.05モルである。 The addition amount of the trifunctional silane compound represented by the general formula (3) is preferably 0.001 to 1 mol per 1 mol of SiO 4/2 units contained in the hydrophilic deformed silica fine particles contained in the aqueous dispersion. Is 0.01 to 0.1 mol, particularly preferably 0.01 to 0.05 mol.

−疎水性異形シリカ微粒子の表面トリオルガノシリル化処理((F)工程)−
(F)更に、該第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]を導入して第二次疎水性異形シリカ微粒子を生成する工程である。即ち、第2段階の疎水化処理を行う工程である。
-Surface triorganosilylation treatment of hydrophobic irregular shaped silica fine particles (step (F))-
(F) Furthermore, R 5 3 SiO 1/2 unit [wherein R 5 is the same or different, substituted or unsubstituted, substituted or unsubstituted 1 to 6 carbon atoms on the surface of the primary hydrophobic irregularly shaped silica fine particles. This is a step of producing secondary hydrophobic irregularly shaped silica fine particles by introducing a valent hydrocarbon group]. That is, it is a step of performing the second stage hydrophobization treatment.

前記第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位を導入する方法としては、例えば、前記第一次疎水性異形シリカ微粒子の分散媒である水分散液をケトン系溶媒に置換し、第一次疎水性異形シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性異形シリカ微粒子のケトン系溶媒分散液に
一般式(4):R SiNHSiR (4)
[一般式(4)中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]
で示されるシラザン化合物、
一般式(5):R SiX (5)
[一般式(5)中、Rは上記と同じであり、XはOH基又は加水分解性基である]
で示される1官能性シラン化合物、又は該シラザン化合物と該1官能性シラン化合物との混合物を添加し、前記第一次疎水性異形シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化することで、第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは上記と同じである]を導入する方法が挙げられる。これにより、第2次疎水性異形シリカ微粒子を生成することができる。
Examples of a method for introducing R 5 3 SiO 1/2 units into the surface of the primary hydrophobic irregularly shaped silica fine particles include, for example, an aqueous dispersion that is a dispersion medium for the primary hydrophobic irregularly shaped silica fine particles and a ketone solvent. To obtain a ketone-based solvent dispersion of primary hydrophobic irregular-shaped silica fine particles, and to the ketone-based solvent dispersion of primary hydrophobic irregular-shaped silica fine particles, a general formula (4): R 5 3 SiNHSiR 5 3 ( 4)
[In General Formula (4), R 5 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms]
A silazane compound represented by
General formula (5): R 5 3 SiX (5)
[In General Formula (5), R 5 is the same as above, and X is an OH group or a hydrolyzable group]
Or a mixture of the silazane compound and the monofunctional silane compound is added to triorganosilylate the reactive groups remaining on the surface of the primary hydrophobic deformed silica fine particles. Thus, a method of introducing R 5 3 SiO 1/2 unit [wherein R 5 is the same as above] to the surface of the primary hydrophobic irregularly shaped silica fine particles can be mentioned. Thereby, secondary hydrophobic irregular shaped silica fine particles can be produced.

上記一般式(4)及び(5)中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基であり、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the general formulas (4) and (5), R 5 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, Preferably it is a 1-2 monovalent hydrocarbon group. Examples of the monovalent hydrocarbon group represented by R 5 include, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, preferably a methyl group, an ethyl group, and a propyl group. Includes a methyl group and an ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(5)中、XはOH基又は加水分解性基であり、Xで表される加水分解性基としては、例えば、塩素原子、メトキシ基、エトキシ基等のアルコキシ基、アミノ基、アセトキシ基、プロピオニルオキシ基等のアシルオキシ基等、好ましくは、アルコキシ基、アミノ基、特に好ましくは、アルコキシ基が挙げられる。   In the general formula (5), X represents an OH group or a hydrolyzable group, and examples of the hydrolyzable group represented by X include an alkoxy group such as a chlorine atom, a methoxy group, and an ethoxy group, an amino group, Examples include an acyloxy group such as an acetoxy group and a propionyloxy group, preferably an alkoxy group and an amino group, and particularly preferably an alkoxy group.

前記第一次疎水性異形シリカ微粒子の分散媒である水分散液をケトン系溶媒に置換する操作は、例えば該水分散液にケトン系溶媒を添加し、前記混合物から水又は混合溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。   The operation of replacing the aqueous dispersion, which is the dispersion medium of the primary hydrophobic irregularly shaped silica fine particles, with a ketone solvent is, for example, adding a ketone solvent to the aqueous dispersion and distilling off the water or the mixed solvent from the mixture. This operation can be performed (repeating this operation as necessary).

このとき添加されるケトン系溶媒の量は、前記第1次疎水性異形シリカ微粒子に対して質量比で0.5〜5倍量が好ましく、より好ましくは2〜5倍量、特に好ましくは3〜4倍量である。このケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等が挙げられ、より好ましくはメチルイソブチルケトンが挙げられる。   The amount of the ketone solvent added at this time is preferably 0.5 to 5 times, more preferably 2 to 5 times, particularly preferably 3 with respect to the primary hydrophobic irregularly shaped silica fine particles. ~ 4 times the amount. Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, and acetyl acetone, and more preferably methyl isobutyl ketone.

上記一般式(4)で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、好ましくはヘキサメチルジシラザンが挙げられる。上記一般式(5)で示される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシランが挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール、トリメチルメトキシシランが挙げられる。   Examples of the silazane compound represented by the general formula (4) include hexamethyldisilazane and hexaethyldisilazane, and preferably hexamethyldisilazane. Examples of the monofunctional silane compound represented by the general formula (5) include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, monomonosilanes such as trimethylmethoxysilane and trimethylethoxysilane. Examples include monoaminosilanes such as alkoxysilane, trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane and trimethylsilyldiethylamine, particularly preferably trimethylsilanol and trimethylmethoxysilane. Can be mentioned.

これら上記一般式(4)及び上記一般式(5)の使用量は、ケトン系溶媒中の前記第1次疎水性異形シリカ微粒子に含まれるSiO単位1モルに対して0.05〜0.5モル、好ましくは0.1〜0.3モル、特に好ましくは0.15〜0.25モルである。 The use amount of the above general formula (4) and the above general formula (5) is 0.05 to 0.00 per 1 mol of SiO 2 unit contained in the first hydrophobic irregularly shaped silica fine particles in the ketone solvent. 5 mol, preferably 0.1 to 0.3 mol, particularly preferably 0.15 to 0.25 mol.

(F)工程で得られる第2次疎水性異形シリカ微粒子は、常法によって粉体として得てもよいし、上記一般式(4)で示されるシラザン化合物、上記一般式(5)で示される1官能性シラン化合物、又は該シラザン化合物と該1官能性シラン化合物との混合物との反応後に有機化合物を添加して分散体として得てもよい。   The secondary hydrophobic irregularly shaped silica fine particles obtained in the step (F) may be obtained as a powder by a conventional method, or a silazane compound represented by the general formula (4) or the general formula (5). After the reaction between the monofunctional silane compound or the mixture of the silazane compound and the monofunctional silane compound, an organic compound may be added to obtain a dispersion.

また、例えば上記で示したような(D)〜(F)工程による高度な疎水化処理を必要としない用途向けとして、異形シリカ粒子を取り出す場合、(C)工程に引き続き、一般的に知られているような常法、たとえばシリル化剤などを添加して疎水化処理を行ってもよい。   In addition, for example, when taking out irregular shaped silica particles for applications that do not require a high degree of hydrophobization treatment by the steps (D) to (F) as described above, it is generally known following the step (C). For example, a hydrophobizing treatment may be performed by adding a silylating agent, for example.

<疎水性異形シリカ微粒子からなるトナー外添剤>
本発明により製造することができる異形シリカ微粒子、特に前記(D)〜(F)工程により生成した疎水性異形シリカ微粒子は、トナー外添剤等、特に静電荷像現像用トナー外添剤として好適に用いることができる。該疎水性異形シリカ微粒子からなる静電荷像現像用トナー外添剤のトナーに対する配合量は、トナー100質量部に対して、通常0.01〜20質量部であり、好ましくは0.1〜5質量部、特に好ましくは1〜2質量部である。この配合量が0.01質量部以上であれば、トナーへの付着量は十分で、十分な流動性が得られるため好ましく、20質量部以下であればトナーの帯電性に悪影響を及ぼすことが抑制できるため好ましい。
<Toner external additive comprising hydrophobic irregular shaped silica fine particles>
The irregular-shaped silica fine particles that can be produced according to the present invention, particularly the hydrophobic irregular-shaped silica fine particles produced by the steps (D) to (F) are suitable as toner external additives, particularly as toner external additives for developing electrostatic images. Can be used. The blending amount of the external toner additive for electrostatic image development comprising the hydrophobic irregularly shaped silica fine particles is usually 0.01 to 20 parts by weight, preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the toner. Part by mass, particularly preferably 1 to 2 parts by mass. If the blending amount is 0.01 parts by mass or more, the adhesion amount to the toner is sufficient and sufficient fluidity is obtained, and if it is 20 parts by mass or less, the chargeability of the toner is adversely affected. Since it can suppress, it is preferable.

前記疎水性異形シリカ微粒子のトナー粒子表面への付着状態は、単に機械的に付着していても、ゆるく固着されていてもよい。また、この付着した微粒子は、トナー粒子の表面全体を覆っていても、一部だけを覆っていてもよい。さらに、該微粒子は、その一部が凝集体を形成してトナー粒子の表面を覆っていてもよいが、単層粒子の状態で覆っていることが好ましい。   The hydrophobic irregularly shaped silica fine particles may be adhered to the toner particle surface merely mechanically or loosely fixed. The adhered fine particles may cover the entire surface of the toner particles or only a part thereof. Further, the fine particles may partially form aggregates and cover the surface of the toner particles, but are preferably covered in the form of single-layer particles.

本発明により製造することができる異形シリカ微粒子を適用可能なトナー粒子としては、結着樹脂と着色剤とを主成分として含有する公知のトナー粒子等が挙げられ、必要に応じて、さらに帯電制御剤等が添加されていてもよい。   Examples of the toner particles to which the modified silica fine particles that can be produced according to the present invention can be applied include known toner particles containing a binder resin and a colorant as main components, and if necessary, further charge control. An agent or the like may be added.

本発明により製造することができる異形シリカ微粒子からなるトナー外添剤を添加されたトナーは、例えば、電子写真法、静電記録法等により、静電荷像を現像するために使用される静電荷像現像用等に使用される。前記トナーは、一成分現像剤として使用することができるが、それをキャリアと混合し、二成分現像剤として使用することもできる。二成分現像剤として使用する場合には、上記トナー外添剤を予めトナー粒子に添加せず、トナーとキャリアとの混合時に添加してトナーの表面被覆を行ってもよい。該キャリアとしては、公知のもの、例えば、フェライト、鉄粉等、又は、それらの表面に樹脂コーティングされたもの等が使用できる。   The toner to which a toner external additive composed of deformed silica fine particles that can be produced according to the present invention is added is an electrostatic charge used for developing an electrostatic charge image by, for example, electrophotography or electrostatic recording. Used for image development and the like. The toner can be used as a one-component developer, but it can also be used as a two-component developer by mixing it with a carrier. When used as a two-component developer, the toner external coating may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to cover the surface of the toner. As the carrier, known ones, for example, ferrite, iron powder, etc., or those coated on the surface with resin can be used.

本発明により製造することができる疎水性異形シリカ微粒子からなるトナー外添剤は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、特に高分散性、低凝集性を有し、異形粒子であるためトナー表面への吸着が良好であり、トナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることがなく、高画質化を可能とするトナー外添剤となる。   The toner external additive comprising hydrophobic modified silica fine particles that can be produced according to the present invention has the general characteristics of an external additive that enhances the fluidity, caking resistance, fixability, and cleaning properties of the toner, and is particularly high. Dispersibility, low agglomeration, irregularly shaped particles, good adsorption to the toner surface, less detachment from the toner surface, and cause of image quality defects on the copy (filming, etc.) Therefore, the toner external additive enables high image quality.

以下、本発明の異形シリカ微粒子の製造方法、及び静電荷像現像用トナー外添剤の実施例及び比較例を示して本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples of the method for producing irregularly shaped silica fine particles of the present invention, and toner external additives for developing electrostatic images, and comparative examples, but the present invention is not limited thereto. is not.

[疎水性異形シリカ微粒子の合成]
<実施例1>
攪拌機と、滴下ロートと、温度計とを備えた1リットルのガラス製反応器にメタノール264gと、水10.7gと、28質量%アンモニア水13.5gとを入れて混合した。この溶液を45℃となるように調整し、攪拌しながらテトラメトキシシラン10g(0.065mol)及び5.5質量%アンモニア水10gを同時に添加し始め、両方を20分で滴下した。その後45℃を保ちながら、30分間攪拌し、核粒子を生成した。そこに異形化促進触媒として、チタンジ−n−ブトキサイド(ビス2,4−ペンタジオネート)を過剰のアンモニア水で加水分解させたものの20%メタノール水溶液0.49gを添加した。その後、テトラメトキシシラン205.5g(1.35mol)、5.5質量%アンモニア水46.3gを同時に滴下し始め、テトラメトキシシラン、アンモニア水を3時間かけて、それぞれを滴下した。それらの滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性異形シリカ微粒子の懸濁液を得た。
[Synthesis of Hydrophobic Deformed Silica Fine Particles]
<Example 1>
In a 1 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 264 g of methanol, 10.7 g of water, and 13.5 g of 28% by mass ammonia water were mixed. This solution was adjusted to 45 ° C., 10 g (0.065 mol) of tetramethoxysilane and 10 g of 5.5 mass% ammonia water were simultaneously added while stirring, and both were added dropwise in 20 minutes. Thereafter, the mixture was stirred for 30 minutes while maintaining 45 ° C. to produce core particles. Thereto was added 0.49 g of a 20% aqueous methanol solution obtained by hydrolyzing titanium di-n-butoxide (bis 2,4-pentadionate) with an excess of ammonia water, as a catalyst for promoting modification of the shape. Thereafter, 205.5 g (1.35 mol) of tetramethoxysilane and 46.3 g of 5.5% by mass ammonia water were simultaneously added dropwise, and tetramethoxysilane and ammonia water were added dropwise over 3 hours. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hour to carry out hydrolysis to obtain a suspension of hydrophilic irregularly shaped silica fine particles.

次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記懸濁液を60〜70℃に加熱してメタノール330gを留去し、その後、水330gを添加した。次いで、懸濁液が100℃になるまでメタノール水100g留去、水100g添加を3回繰り返し、さらにメタノール水100gを留去し、親水性異形シリカ微粒子の水懸濁液を得た。得られた水懸濁液に室温でメチルトリメトキシシラン2.1g(0.015mol)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続した。こうして、シリカ微粒子表面を第1段階の疎水化処理することにより、第1次疎水性異形シリカ微粒子水分散液を得た。   Next, an ester adapter and a condenser tube were attached to the glass reactor, and the suspension was heated to 60 to 70 ° C. to distill off 330 g of methanol, and then 330 g of water was added. Subsequently, 100 g of methanol water was distilled off until the suspension reached 100 ° C., and 100 g of water was added three times. Further, 100 g of methanol water was distilled off to obtain an aqueous suspension of hydrophilic irregular shaped silica fine particles. To the obtained aqueous suspension, 2.1 g (0.015 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition. Thus, the surface of the silica fine particles was subjected to a first-stage hydrophobization treatment to obtain a first hydrophobic irregular shaped silica fine particle aqueous dispersion.

得られた分散液にメチルイソブチルケトン270gを添加した後、この分散液を80〜110℃に加熱することにより、水540gを5時間かけて留去した。得られた分散液に、室温において、ヘキサメチルジシラザン45.6g(0.28mol)を添加した後、この分散液を110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を80℃、減圧下(6650Pa)で留去することにより、疎水性異形シリカ微粒子95.0gを粉体として得た。   After adding 270 g of methyl isobutyl ketone to the obtained dispersion, 540 g of water was distilled off over 5 hours by heating the dispersion to 80 to 110 ° C. After adding 45.6 g (0.28 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, the dispersion is heated to 110 ° C. and reacted for 3 hours, whereby silica fine particles in the dispersion are obtained. Was trimethylsilylated. Next, the solvent in the dispersion was distilled off at 80 ° C. under reduced pressure (6650 Pa) to obtain 95.0 g of hydrophobic irregularly shaped silica fine particles as powder.

得られた最終的な疎水性異形シリカ微粒子について、下記の測定方法に従って、それぞれの測定を行った。なお、得られた結果を表1に示す。   The final hydrophobic irregular-shaped silica fine particles obtained were measured according to the following measurement methods. The obtained results are shown in Table 1.

・測定方法1:疎水性異形シリカ微粒子の粒子径測定
メタノールに実施例1で得られた疎水性異形シリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、該疎水性異形シリカ微粒子を分散させた。このように処理した疎水性異形シリカ微粒子の粒度分布を、レーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA910)により測定し、その体積基準メジアン径を粒子径とした。なお、メジアン径とは粒径分布を累積分布として表したときの累積50%に相当する粒子径である。
Measurement method 1: Particle size measurement of hydrophobic irregular-shaped silica fine particles By adding the hydrophobic irregular-shaped silica fine particles obtained in Example 1 to methanol so as to be 0.5% by mass and applying ultrasonic waves for 10 minutes. The hydrophobic irregular shaped silica fine particles were dispersed. The particle size distribution of the hydrophobic irregularly shaped silica fine particles treated in this way was measured by a laser diffraction / scattering particle size distribution analyzer (trade name: LA910, manufactured by Horiba, Ltd.), and the volume-based median diameter was defined as the particle diameter. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

・測定方法2:疎水性異形シリカ微粒子の形状測定
電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって実施例1で得られた疎水性異形シリカ微粒子の観察を行い、形状を確認した。
Measurement method 2: Shape measurement of hydrophobic irregular-shaped silica fine particles Observation of hydrophobic irregular-shaped silica fine particles obtained in Example 1 with an electron microscope (manufactured by Hitachi, trade name: S-4700 type, magnification: 100,000 times) Performed and confirmed the shape.

・測定方法3:異形シリカ微粒子の短径/長径比の測定・算出
短径/長径比の測定・算出は下記の方法で行った。まず、走査型電子顕微鏡により、実施例1で得られた疎水性異形シリカ微粒子を倍率50万倍(ないしは100万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(L)とした。次に、その長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(S)とした。そして、これら長径(L)と短径(S)より短径/長径比(S/L)を算出することで求めた。この測定を任意の50個の粒子について行い、その平均値を短径/長径比とした。なお、ひとつの粒子について、長軸を複数設定可能な場合は、対応する複数の短径長さの平均値を求め、短径の長さ(S)とした。
Measurement method 3: Measurement / calculation of minor diameter / major diameter ratio of irregular shaped silica fine particles Measurement / calculation of minor diameter / major diameter ratio was performed by the following method. First, in the photograph projection drawing obtained by photographing the hydrophobic irregularly shaped silica fine particles obtained in Example 1 with a scanning electron microscope at a magnification of 500,000 times (or 1,000,000 times), the maximum diameter of the particles is defined as the major axis. The length was measured, and the value was defined as the major axis (L). Next, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain the minor axis (S) did. And it calculated | required by calculating a short diameter / long diameter ratio (S / L) from these long diameters (L) and short diameters (S). This measurement was performed on any 50 particles, and the average value was defined as the minor axis / major axis ratio. When a plurality of major axes can be set for one particle, an average value of a plurality of corresponding minor axis lengths was obtained and used as the minor axis length (S).

・測定方法4:異形シリカ微粒子の割合の測定
異形シリカ微粒子の割合の測定は、測定方法3の「短径/長径比の測定方法」にて短径/長径比の測定対象とした50個の粒子において、下記(i)に該当する粒子数を測定し、((i)の個数/50個)×100の値を、全シリカ微粒子の個数に対する異形シリカ微粒子の割合(%)とした。
(i)短径/長径比の範囲が0.01〜0.8の範囲にある粒子
Measurement method 4: Measurement of the ratio of irregular-shaped silica fine particles The ratio of irregular-shaped silica fine particles was measured by measuring 50 short-axis / major-axis ratios in “Measurement method of minor axis / major axis ratio” of measurement method 3. In the particles, the number of particles corresponding to the following (i) was measured, and the value of (number of (i) / 50) × 100 was defined as the ratio (%) of deformed silica fine particles to the total number of silica fine particles.
(I) Particles having a minor axis / major axis ratio in the range of 0.01 to 0.8

[外添剤混合トナーの作製]
ガラス転移温度Tg60℃、軟化点110℃であるポリエステル樹脂96質量部と、着色剤(住友カラー(株)製、商品名:カーミン6BC)4質量部とを、溶融混練、粉砕及び分級することにより、平均粒径7μmのトナーを得た。このトナー40gに実施例1で得られた疎水性異形シリカ微粒子1gをサンプルミルにより混合し、外添剤混合トナーとした。これを用いて、下記の測定方法5に従ってトナー流動性を測定した。なお、得られた結果を表2に示す。
[Preparation of external additive mixed toner]
By melt-kneading, pulverizing and classifying 96 parts by mass of a polyester resin having a glass transition temperature Tg of 60 ° C. and a softening point of 110 ° C. and 4 parts by mass of a colorant (manufactured by Sumitomo Color Co., Ltd., trade name: Carmine 6BC) A toner having an average particle diameter of 7 μm was obtained. 40 g of this toner was mixed with 1 g of the hydrophobic irregularly shaped silica fine particles obtained in Example 1 by a sample mill to obtain an external additive mixed toner. Using this, the toner fluidity was measured according to the following measurement method 5. The results obtained are shown in Table 2.

・測定方法5:トナー流動性の測定
トナーの流動性は、粉体流動性分析装置FT−4(シスメックス(株)製)を用いて測定した。この装置の測定原理を説明する。垂直に置かれた筒状容器に粉体を充填し、該粉体中を垂直な軸棒の先端に設けられた二枚の回転翼(ブレード)を回転させながら一定の距離(高さH1からH2まで)下降させる。このときに粉体から受ける力をトルク成分と荷重成分とに分けて測定することにより、ブレードがH1からH2まで下降するのに伴うそれぞれの仕事量(エネルギー)を求め、次いで両者のトータルエネルギー量を求める。こうして測定されたトータルエネルギー量が小さいほど粉体の流動性が良好であることを意味するので、粉体流動性の指標として使用することができる。
Measurement method 5: Measurement of toner fluidity The toner fluidity was measured using a powder fluidity analyzer FT-4 (manufactured by Sysmex Corporation). The measurement principle of this apparatus will be described. A cylindrical container placed vertically is filled with powder, and while rotating two rotating blades (blades) provided at the tip of a vertical shaft rod in the powder, a certain distance (from height H1) Down to H2. The force received from the powder at this time is measured separately for the torque component and the load component, so that each work (energy) associated with the blade descending from H1 to H2 is obtained, and then the total energy amount of both Ask for. The smaller the total energy amount measured in this way, the better the fluidity of the powder, so it can be used as an index of powder fluidity.

トナーの流動性は上記の測定原理に従い、以下に詳細に説明する異なる測定条件を有する安定性試験、流速試験、通気試験、及び圧縮試験を行なった。なお、以下に説明するように、用いる容器とブレードはそれぞれの試験に応じて使い分けるものとする。   The fluidity of the toner was subjected to a stability test, a flow rate test, an aeration test, and a compression test having different measurement conditions, which will be described in detail below, in accordance with the above measurement principle. As will be described below, the container and blade to be used are properly used according to each test.

容器:
安定性、流速及び通気の試験では、容積120ml、内径80mm、長さ60mmのガラス製円筒型容器を使用した。圧縮試験では容積25ml、内径25mm、長さ52.5mmのガラス製円筒型容器を使用した。容器の下部から空気を導入することができるように構成されている。
container:
In the stability, flow rate and ventilation tests, a glass cylindrical container having a volume of 120 ml, an inner diameter of 80 mm, and a length of 60 mm was used. In the compression test, a glass cylindrical container having a volume of 25 ml, an inner diameter of 25 mm, and a length of 52.5 mm was used. It is comprised so that air can be introduce | transduced from the lower part of a container.

ブレード:
円筒型容器内の中央に鉛直に装入されるステンレス製の軸棒の先端に水平に対向する形で二枚取り付けられている。ブレードは、容積120mlの容器の場合は直径48mmのものを使用し、容積25mlの容器の場合には直径23.5mlのものを使用する。
blade:
Two stainless steel shaft rods are vertically mounted in the center of the cylindrical container so as to be horizontally opposed to each other. A blade with a diameter of 48 mm is used for a container with a volume of 120 ml, and a blade with a diameter of 23.5 ml is used for a container with a volume of 25 ml.

H1からH2までの長さ:容積120mlの容器の場合は50mmであり、容積25mlの容器の場合には47.5mmである。   Length from H1 to H2: 50 mm for a container with a volume of 120 ml and 47.5 mm for a container with a volume of 25 ml.

安定性試験:
上記のようにして、測定容器に充填した粉体を静置した状態から流動させた場合の粉体流動特性をみる。ブレード先端の回転速度を100mm/secの条件とし、トータルエネルギー量を7回連続して測定する。7回目のトータルエネルギー量(最も安定した状態であるので基本流動性エネルギーと称される)を表2に示した。小さいほど安定性が高い。
Stability test:
As described above, the powder flow characteristics when the powder filled in the measurement container is caused to flow from a stationary state are observed. The total energy amount is measured seven times continuously under the condition that the rotational speed of the blade tip is 100 mm / sec. Table 2 shows the total amount of energy for the seventh time (referred to as basic fluidity energy because it is the most stable state). The smaller the value, the higher the stability.

流速試験:
流速の変化に対する粉体流動特性をみる。ブレード先端の回転速度を10mm/secで測定した際のトータルエネルギー量を表2に示した。小さいほど流動性が高い。
Flow rate test:
The powder flow characteristics with respect to the change of flow velocity are observed. Table 2 shows the total energy amount when the rotational speed of the blade tip was measured at 10 mm / sec. The smaller the value, the higher the fluidity.

通気試験:
通気量に応じた粉体流動特性をみる。ブレード先端の回転速度を100mm/secとし、容器下部から導入する空気の通気量を0mm/secから0.1mm/secづつ増加させ0.5mm/secまでの6段階で別々に順序に測定し、最小の通気量(0mm/sec)及び最大の通気量(0.5mm/sec)でのトータルエネルギー量を表2に示した。小さいほど空気が関与する状態での粉体流動性が高い。
Ventilation test:
Check the powder flow characteristics according to the air flow rate. The rotational speed of the blade tip is set to 100 mm / sec, the amount of air introduced from the lower part of the container is increased in steps of 0.1 mm / sec from 0 mm / sec, and measured separately in six steps from 0.5 mm / sec. Table 2 shows the total energy amount at the minimum air flow rate (0 mm / sec) and the maximum air flow rate (0.5 mm / sec). The smaller the value, the higher the powder fluidity when air is involved.

圧縮試験:
圧縮に対する粉体流動特性をみるものである。粉体にピストンを介して加重を加えて10Nにて加圧して圧縮した後、ブレード先端の回転速度を100mm/secとして測定しトータルエネルギー量を求めた。結果を表2に示した。小さいほど粉体が圧縮を受けた場合の粉体流動性が高い。
Compression test:
The powder flow characteristics with respect to compression are observed. After applying a weight to the powder through a piston and compressing it by applying pressure at 10 N, the rotational speed of the blade tip was measured at 100 mm / sec to obtain the total energy amount. The results are shown in Table 2. The smaller the powder, the higher the powder fluidity when the powder is compressed.

[現像剤の調製]
上で調製した外添剤混合トナー5質量部と、平均粒径85μmのフェライトコアにパーフルオロアルキルアクリレート樹脂及びアクリル樹脂をポリブレンドしたポリマーでコーティングしたキャリア95質量部とを混合して、現像剤を調製した。この現像剤を用いて、下記の測定方法6に従ってトナー帯電量の測定し、測定方法7に従って感光体へのトナー付着を測定し、及び測定方法8に従ってクリーニング性について判断した。なお、得られた結果を表2に示す。
[Developer preparation]
5 parts by weight of the external additive mixed toner prepared above and 95 parts by weight of a carrier coated with a polymer obtained by polyblending a perfluoroalkyl acrylate resin and an acrylic resin on a ferrite core having an average particle diameter of 85 μm are mixed together to prepare a developer. Was prepared. Using this developer, the toner charge amount was measured according to the following measurement method 6, toner adhesion to the photoreceptor was measured according to measurement method 7, and cleaning property was judged according to measurement method 8. The results obtained are shown in Table 2.

・測定方法6:トナー帯電量の測定
上記現像剤を高温高湿(30℃、90%RH(relative humidity))又は低温低湿(10℃、15%RH)の条件下に1日放置した後、振とう機により30秒間混合して、摩擦帯電を行った。それぞれの試料の帯電量を、同一条件下で、ブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、商品名:TB−200型)を用いて測定した。上記2つの条件におけるトナー帯電量の差を求めることにより、該トナーの環境依存性について評価した。
Measurement method 6: Measurement of toner charge amount The developer was left for 1 day under conditions of high temperature and high humidity (30 ° C., 90% RH (relative humidity)) or low temperature and low humidity (10 ° C., 15% RH). The mixture was mixed for 30 seconds with a shaker to perform tribocharging. The charge amount of each sample was measured using a blow-off powder charge amount measuring device (trade name: TB-200, manufactured by Toshiba Chemical Corporation) under the same conditions. By determining the difference in toner charge amount under the above two conditions, the environmental dependency of the toner was evaluated.

・測定方法7:感光体へのトナー付着測定
上記現像剤を有機感光体が備えられた二成分改造現像機に入れ、30000枚のプリントテストを行った。該感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。白抜けの程度を次の基準で評価した。
白抜け10個以上/cm :多い
白抜け1〜9個/cm :少ない
白抜け0個/cm :なし
Measurement method 7: Measurement of toner adhesion to the photoconductor The above developer was placed in a two-component modified developer equipped with an organic photoconductor, and a print test of 30000 sheets was performed. The adhesion of toner to the photoreceptor can be detected as white spots in all solid images. The degree of white spots was evaluated according to the following criteria.
White spots more than 10 / cm 2: many white spots 1 to 9 / cm 2: little white spots 0 / cm 2: None

・測定方法8:クリーニング性
クリーニング性評価については、実機評価終了後、潜像担持体上表面の傷や残留トナーの固着発生状況と出力画像への影響を目視で評価した。
◎ : 未発生。
○ : 傷がわずかに認められるが、画像への影響はない。
△ : 残留トナーや傷が認められるが、画像への影響は少ない。
× : 残留トナーがかなり多く、縦スジ状の画像欠陥が発生。
× × : 残留トナーが固着して、画像欠陥も多数発生。
Measurement method 8: Cleaning property For the evaluation of cleaning property, after completion of the evaluation of the actual machine, scratches on the surface of the latent image carrier and the state of sticking of residual toner and the influence on the output image were visually evaluated.
A: Not generated.
○: Slight scratches are observed, but there is no effect on the image.
Δ: Residual toner and scratches are observed, but the influence on the image is small.
×: Residual toner is considerably large, and vertical stripe-like image defects occur.
× ×: Residual toner adheres and many image defects occur.

<実施例2>
実施例1において、工程(A)〜(C)の反応温度を55℃とした以外は同様にして、疎水性異形シリカ微粒子93.5gを乾燥粉体として得た。この疎水性異形シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Example 2>
93.5 g of hydrophobic irregularly shaped silica fine particles were obtained as a dry powder in the same manner as in Example 1 except that the reaction temperature in steps (A) to (C) was 55 ° C. Measurement was performed in the same manner as in Example 1 using the hydrophobic irregularly shaped silica fine particles. The results are shown in Tables 1 and 2.

<実施例3>
実施例1において用いた異形化促進触媒のチタンキレートの加水分解物(チタンジ−n−ブトキサイド(ビス2,4−ペンタジオネート)を過剰のアンモニア水で加水分解させたものの20%メタノール水溶液)を水酸化テトラメチルアンモニウムの20%水溶液1.95g(0.001mol)とした以外は同様にして、疎水性異形シリカ微粒子95.5gを乾燥粉体として得た。この疎水性異形シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Example 3>
Titanium chelate hydrolyzate (20% methanol aqueous solution of titanium di-n-butoxide (bis-2,4-pentadionate) hydrolyzed with excess ammonia water) used in Example 1 as a catabolism promoting catalyst. 95.5 g of hydrophobic irregularly shaped silica fine particles were obtained as a dry powder in the same manner except that 1.95 g (0.001 mol) of a 20% aqueous solution of tetramethylammonium hydroxide was used. Measurement was performed in the same manner as in Example 1 using the hydrophobic irregularly shaped silica fine particles. The results are shown in Tables 1 and 2.

<実施例4>
実施例1において用いた異形化促進触媒のチタンキレートの加水分解物(チタンジ−n−ブトキサイド(ビス2,4−ペンタジオネート)を過剰のアンモニア水で加水分解させたものの20%メタノール水溶液)をエチレンジアミンの0.20g(0.003mol)とし、更に工程(A)〜(C)の反応温度を60℃とした以外は同様にして、疎水性異形シリカ微粒子96.0gを乾燥粉体として得た。この疎水性異形シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Example 4>
Titanium chelate hydrolyzate (20% methanol aqueous solution of titanium di-n-butoxide (bis-2,4-pentadionate) hydrolyzed with excess ammonia water) used in Example 1 as a catabolism promoting catalyst. 96.0 g of hydrophobic irregularly shaped silica fine particles were obtained as a dry powder in the same manner except that 0.20 g (0.003 mol) of ethylenediamine was used and the reaction temperature in steps (A) to (C) was 60 ° C. . Measurement was performed in the same manner as in Example 1 using the hydrophobic irregularly shaped silica fine particles. The results are shown in Tables 1 and 2.

<比較例1>
実施例1において、異形化促進触媒をなしとした以外は同様にして、疎水性シリカ微粒子94.8gを乾燥粉体として得た。この疎水性シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Comparative Example 1>
94.8 g of hydrophobic silica fine particles were obtained as a dry powder in the same manner as in Example 1, except that the catalyst for promoting modification was not used. Measurement was performed in the same manner as in Example 1 using the hydrophobic silica fine particles. The results are shown in Tables 1 and 2.

<比較例2>
実施例1において、工程(A)〜(C)の反応温度を35℃とした以外は同様にして、疎水性シリカ微粒子95.1gを乾燥粉体として得た。この疎水性シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Comparative example 2>
95.1 g of hydrophobic silica fine particles were obtained as a dry powder in the same manner as in Example 1 except that the reaction temperature in steps (A) to (C) was 35 ° C. Measurement was performed in the same manner as in Example 1 using the hydrophobic silica fine particles. The results are shown in Tables 1 and 2.

<比較例3>
攪拌機と、滴下ロートと、温度計とを備えた1リットルのガラス製反応器にメタノール264gと、水13.5gと、28質量%アンモニア水13.5gとを入れて混合した。この溶液を45℃となるように調整し、攪拌しながらテトラメトキシシラン215.5g(1.42mol)及び5.5質量%アンモニア水53.6gを同時に添加し始め、テトラメトキシシラン、アンモニア水を4時間かけて、それぞれを滴下した。それらの滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性シリカ微粒子の懸濁液を得た。次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記懸濁液を60〜70℃に加熱してメタノール330gを留去し、その後、水330gを添加した。次いで、懸濁液が100℃になるまでメタノール水100g留去、水100g添加を3回繰り返し、さらにメタノール水100gを留去し、親水性シリカ微粒子の水懸濁液を得た。
<Comparative Example 3>
In a 1 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 264 g of methanol, 13.5 g of water, and 13.5 g of 28% by mass ammonia water were mixed. The solution was adjusted to 45 ° C., and 215.5 g (1.42 mol) of tetramethoxysilane and 53.6 g of 5.5 mass% ammonia water were simultaneously added while stirring, and tetramethoxysilane and ammonia water were added. Each was added dropwise over 4 hours. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours to carry out hydrolysis to obtain a suspension of hydrophilic silica fine particles. Next, an ester adapter and a condenser tube were attached to the glass reactor, and the suspension was heated to 60 to 70 ° C. to distill off 330 g of methanol, and then 330 g of water was added. Subsequently, 100 g of methanol water was distilled off until the suspension reached 100 ° C., and 100 g of water was added three times. Further, 100 g of methanol water was distilled off to obtain an aqueous suspension of hydrophilic silica fine particles.

得られた水懸濁液に室温でメチルトリメトキシシラン2.1g(0.015mol)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続した。こうして、シリカ微粒子表面を第1段階の疎水化処理することにより、第1次疎水性シリカ微粒子水分散液を得た。
得られた分散液にメチルイソブチルケトン270gを添加した後、この分散液を80〜110℃に加熱することにより、水540gを5時間かけて留去した。得られた分散液に、室温において、ヘキサメチルジシラザン45.6g(0.28mol)を添加した後、この分散液を110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を80℃、減圧下(6650Pa)で留去することにより、疎水性シリカ微粒子96.3gを粉体として得た。この疎水性シリカ微粒子を用いて、実施例1と同様に評価した。この結果を表1及び表2に示す。
To the obtained aqueous suspension, 2.1 g (0.015 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition. Thus, the first hydrophobic silica fine particle aqueous dispersion was obtained by subjecting the silica fine particle surface to the first-stage hydrophobization treatment.
After adding 270 g of methyl isobutyl ketone to the obtained dispersion, 540 g of water was distilled off over 5 hours by heating the dispersion to 80 to 110 ° C. After adding 45.6 g (0.28 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, the dispersion is heated to 110 ° C. and reacted for 3 hours, whereby silica fine particles in the dispersion are obtained. Was trimethylsilylated. Subsequently, the solvent in this dispersion was distilled off at 80 ° C. under reduced pressure (6650 Pa) to obtain 96.3 g of hydrophobic silica fine particles as a powder. Evaluation was performed in the same manner as in Example 1 using the hydrophobic silica fine particles. The results are shown in Tables 1 and 2.

Figure 2012101953
Figure 2012101953

Figure 2012101953
(1)7回目
(2)ブレードスピード 10mm/s
(3)通気量 0mm/s
(4)通気量 0.5mm/s
(5)加圧 10N
Figure 2012101953
(1) 7th time (2) Blade speed 10mm / s
(3) Aeration rate 0mm / s
(4) Aeration rate 0.5mm / s
(5) Pressure 10N

本発明の(B)工程を行わない比較例1、反応温度が40〜100℃の範囲にない比較例2、(B)工程及び(C)工程を行わない比較例3において示されるように、これら比較例において生成されたシリカ微粒子は異形シリカ微粒子とはならないことが明らかとなった(表1)。また、比較例1〜3において得られたシリカ微粒子は安定性試験、流速試験、通気試験、圧縮試験において粉体流動性に劣ることが明らかとなり、さらにトナー帯電量の測定よりトナーの環境依存性が悪くなることが示され、白抜けが多いことからトナー付着性が悪いことが示され、クリーニング性が悪いことも示された(表2)。特に、(B)工程を行わない比較例1及び3ではトナー付着性とクリーニング性が悪くなることが明らかとなった。また、反応温度が40〜100℃の範囲にない比較例2では通気試験の結果が著しく悪かった。一方で、実施例において示されるように、本発明の(A)から(F)工程により生成された異形シリカ微粒子は安定性試験、流速試験、通気試験、圧縮試験において粉体流動性に優れ、環境に依存したトナー帯電量の差がほとんどなく、トナー付着性、クリーニング性に優れていることが明らかとなった。   As shown in Comparative Example 1 in which the step (B) of the present invention is not performed, Comparative Example 2 in which the reaction temperature is not in the range of 40 to 100 ° C., and Comparative Example 3 in which the step (B) and the step (C) are not performed, It was revealed that the silica fine particles produced in these comparative examples were not deformed silica fine particles (Table 1). In addition, the silica fine particles obtained in Comparative Examples 1 to 3 were found to be inferior in powder flowability in the stability test, flow rate test, aeration test, and compression test. It was shown that the toner adhesion was poor because there were many white spots, and the cleaning ability was also poor (Table 2). In particular, in Comparative Examples 1 and 3 in which the step (B) is not performed, it became clear that the toner adhesion and the cleaning properties deteriorate. Further, in Comparative Example 2 where the reaction temperature was not in the range of 40 to 100 ° C., the results of the aeration test were remarkably bad. On the other hand, as shown in the examples, the deformed silica fine particles produced by the steps (A) to (F) of the present invention are excellent in powder flowability in the stability test, flow rate test, aeration test, and compression test, It was revealed that there was almost no difference in toner charge amount depending on the environment, and the toner adhesion and cleaning properties were excellent.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (12)

平均粒子径が5〜500nmの範囲の異形シリカ微粒子を製造する方法であって、
下記各工程の反応温度を40℃〜100℃の範囲内とし、
(A)一般式(1):Si(OR (1)
[上記一般式(1)中、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性シリカ微粒子の核粒子を生成する工程と、
(B)異形化促進触媒を系内に添加する工程と、
(C)引き続き、前記一般式(1)で示される4官能性シラン化合物及び該4官能性シラン化合物の部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を系内に更に添加し、前記親水性シリカ微粒子の核粒子を成長し、異形化することで親水性異形シリカ微粒子を生成する工程とを有することを特徴とする異形シリカ微粒子の製造方法。
A method for producing irregularly shaped silica fine particles having an average particle diameter of 5 to 500 nm,
The reaction temperature of each of the following steps is within the range of 40 ° C to 100 ° C,
(A) General formula (1): Si (OR 1 ) 4 (1)
[In the general formula (1), R 1 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
At least one compound selected from the group consisting of a tetrafunctional silane compound represented by formula (II) and a partial hydrolysis-condensation product of the tetrafunctional silane compound, in the presence of a basic substance, Hydrolyzing and condensing in a mixed medium to produce core particles of hydrophilic silica fine particles,
(B) adding a heteromorphization promoting catalyst into the system;
(C) Subsequently, at least one compound selected from the group consisting of the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system. And forming the hydrophilic silica fine particles by growing and deforming the core particles of the hydrophilic silica fine particles, and producing the deformed silica fine particles.
前記異形化促進触媒として、縮合触媒類、二官能性化合物類、塩類のいずれかを用いることを特徴とする請求項1に記載の異形シリカ微粒子の製造方法。   2. The method for producing deformed silica fine particles according to claim 1, wherein any one of a condensation catalyst, a bifunctional compound, and a salt is used as the deforming promotion catalyst. 前記縮合触媒類として、Ti、Zr、Zn、Al系の有機金属化合物錯体のいずれかを用いることを特徴とする請求項2に記載の異形シリカ微粒子の製造方法。   3. The method for producing irregularly shaped silica particles according to claim 2, wherein any one of Ti, Zr, Zn, and Al-based organometallic compound complexes is used as the condensation catalyst. 前記塩類として、水酸化テトラアルキルアンモニウム化合物を用いることを特徴とする請求項2に記載の異形シリカ微粒子の製造方法。   The method for producing deformed silica fine particles according to claim 2, wherein a tetraalkylammonium hydroxide compound is used as the salt. 前記二官能性化合物類として、アミノアルコール類、ジアミン類、グリコール類のいずれかを用いることを特徴とする請求項2に記載の異形シリカ微粒子の製造方法。   The method for producing deformed silica fine particles according to claim 2, wherein any one of amino alcohols, diamines, and glycols is used as the bifunctional compounds. 前記親水性有機溶媒として、
一般式(2):ROH (2)
[一般式(2)中、Rは炭素原子数1〜6の1価炭化水素基である]
で示されるアルコール溶媒を用いることを特徴とする請求項1乃至請求項5のいずれか1項に記載の異形シリカ微粒子の製造方法。
As the hydrophilic organic solvent,
Formula (2): R 2 OH (2)
[In General Formula (2), R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
6. The method for producing deformed silica fine particles according to any one of claims 1 to 5, wherein an alcohol solvent represented by the formula (1) is used.
前記塩基性物質としてアンモニアを用いることを特徴とする請求項1乃至請求項6のいずれか1項に記載の異形シリカ微粒子の製造方法。   The method for producing deformed silica fine particles according to any one of claims 1 to 6, wherein ammonia is used as the basic substance. 請求項1乃至請求項7のいずれか1項に記載の異形シリカ微粒子の製造方法において、前記(C)異形シリカ微粒子を生成する工程の後、
(D)前記系内から親水性有機溶媒を除去して媒体を水に置換して、前記親水性異形シリカ微粒子の水分散液を得る工程と、
(E)前記親水性異形シリカ微粒子の水分散液中の前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である]を導入し、第一次疎水性異形シリカ微粒子を生成する工程と、
(F)更に、該第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]を導入して第二次疎水性異形シリカ微粒子を生成する工程とを有することを特徴とする異形シリカ微粒子の製造方法。
In the method for producing deformed silica fine particles according to any one of claims 1 to 7, after the step of generating the (C) deformed silica fine particles,
(D) removing the hydrophilic organic solvent from the system and substituting the medium with water to obtain an aqueous dispersion of the hydrophilic deformed silica fine particles;
(E) R 3 SiO 3/2 unit on the surface of the hydrophilic deformed silica fine particles in the aqueous dispersion of the hydrophilic deformed silica fine particles [wherein R 3 is a substituted or unsubstituted carbon atom number of 1 to 20 Is a monovalent hydrocarbon group] to produce primary hydrophobic deformed silica fine particles,
(F) Furthermore, R 5 3 SiO 1/2 unit [wherein R 5 is the same or different, substituted or unsubstituted, substituted or unsubstituted 1 to 6 carbon atoms on the surface of the primary hydrophobic irregularly shaped silica fine particles. And a step of producing secondary hydrophobic irregularly shaped silica fine particles by introducing a valent hydrocarbon group].
前記(E)工程において、前記親水性異形シリカ微粒子の水分散液に、
一般式(3):RSi(OR (3)
[式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異なる、炭素原子数1〜6の1価炭化水素基である]
で示される3官能性シラン化合物、該3官能性シラン化合物の部分加水分解縮合生成物、又は該3官能性シラン化合物と該部分加水分解縮合生成物との混合物を添加することで、前記親水性異形シリカ微粒子の表面にRSiO3/2単位[式中、Rは上記と同じである]を導入し、第1次疎水性異形シリカ微粒子を生成することを特徴とする請求項8に記載の異形シリカ微粒子の製造方法。
In the step (E), in the aqueous dispersion of the hydrophilic irregularly shaped silica fine particles,
Formula (3): R 3 Si (OR 4 ) 3 (3)
[Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms]
By adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture of the trifunctional silane compound and the partial hydrolysis condensation product, the hydrophilic property is increased. 9. The first hydrophobic irregular-shaped silica fine particles are produced by introducing R 3 SiO 3/2 units [wherein R 3 is the same as above] into the surface of the irregular-shaped silica fine particles. The manufacturing method of the unusual shape silica fine particle of description.
前記(F)工程において、前記第一次疎水性異形シリカ微粒子の分散媒である水分散液をケトン系溶媒に置換し、第一次疎水性異形シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性異形シリカ微粒子のケトン系溶媒分散液に
一般式(4):R SiNHSiR (4)
[一般式(4)中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である]
で示されるシラザン化合物、
一般式(5):R SiX (5)
[一般式(5)中、Rは上記と同じであり、XはOH基又は加水分解性基である]
で示される1官能性シラン化合物、又は該シラザン化合物と該1官能性シラン化合物との混合物を添加し、前記第一次疎水性異形シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化することで、第一次疎水性異形シリカ微粒子の表面にR SiO1/2単位[式中、Rは上記と同じである]を導入して第二次疎水性異形シリカ微粒子を生成することを特徴とする請求項8又は請求項9に記載の異形シリカ微粒子の製造方法。
In the step (F), the aqueous dispersion that is the dispersion medium of the primary hydrophobic irregular-shaped silica fine particles is replaced with a ketone solvent to obtain a ketone-based solvent dispersion of the primary hydrophobic irregular-shaped silica fine particles, Formula (4): R 5 3 SiNHSiR 5 3 (4)
[In General Formula (4), R 5 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms]
A silazane compound represented by
General formula (5): R 5 3 SiX (5)
[In General Formula (5), R 5 is the same as above, and X is an OH group or a hydrolyzable group]
Or a mixture of the silazane compound and the monofunctional silane compound is added to triorganosilylate the reactive groups remaining on the surface of the primary hydrophobic deformed silica fine particles. Thus, R 5 3 SiO 1/2 unit [wherein R 5 is the same as above] is introduced into the surface of the primary hydrophobic irregularly shaped silica fine particles to produce secondary hydrophobic irregularly shaped silica fine particles. The method for producing irregularly shaped silica fine particles according to claim 8 or 9, wherein:
前記ケトン系溶媒が、メチルイソブチルケトンであることを特徴とする請求項10に記載の異形シリカ微粒子の製造方法。   The method for producing fine-shaped silica fine particles according to claim 10, wherein the ketone solvent is methyl isobutyl ketone. 請求項8乃至請求項11のいずれか1項に記載の異形シリカ微粒子の製造方法により製造された疎水性異形シリカ微粒子からなる静電荷像現像用トナー外添剤。   12. A toner external additive for developing an electrostatic charge image, comprising hydrophobic irregular-shaped silica fine particles produced by the method for producing irregular-shaped silica fine particles according to any one of claims 8 to 11.
JP2010249529A 2010-11-08 2010-11-08 Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image Active JP5631699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249529A JP5631699B2 (en) 2010-11-08 2010-11-08 Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249529A JP5631699B2 (en) 2010-11-08 2010-11-08 Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image

Publications (2)

Publication Number Publication Date
JP2012101953A true JP2012101953A (en) 2012-05-31
JP5631699B2 JP5631699B2 (en) 2014-11-26

Family

ID=46392842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249529A Active JP5631699B2 (en) 2010-11-08 2010-11-08 Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image

Country Status (1)

Country Link
JP (1) JP5631699B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040081A (en) * 2011-08-18 2013-02-28 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2014130198A (en) * 2012-12-28 2014-07-10 Nippon Zeon Co Ltd Toner for electrostatic charge image development
JP2014137600A (en) * 2013-01-18 2014-07-28 Xerox Corp Toner additives
JP2014163949A (en) * 2013-02-21 2014-09-08 Ricoh Co Ltd Toner for electrostatic charge image development
JP2014167524A (en) * 2013-02-28 2014-09-11 Ricoh Co Ltd Image forming apparatus
JP2014191108A (en) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2015000844A (en) * 2013-06-18 2015-01-05 富士ゼロックス株式会社 Silica composite particles and method of producing the same
JP2015143838A (en) * 2013-12-26 2015-08-06 キヤノン株式会社 magnetic toner
JP2015184569A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Indeterminate form inorganic particle, toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2017039618A (en) * 2015-08-19 2017-02-23 京セラドキュメントソリューションズ株式会社 Silica powder and positively-charged toner
CN107502875A (en) * 2017-07-19 2017-12-22 东南大学 It is a kind of that there is non-homogeneous super-hydrophobic coat for strengthening dropwise condensation effect and preparation method thereof
WO2018038027A1 (en) * 2016-08-23 2018-03-01 日産化学工業株式会社 Gas separation membrane containing irregularly shaped silica nanoparticles
JP2018118901A (en) * 2017-01-20 2018-08-02 日揮触媒化成株式会社 Silica particle dispersion and production method of the same
US10261431B2 (en) 2016-02-09 2019-04-16 Samsung Electronics Co., Ltd. External additive for toner, process for producing the same, and toner comprising the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275005A (en) * 1986-02-12 1987-11-30 Catalysts & Chem Ind Co Ltd Production of monodisperse particle
JPH08279480A (en) * 1995-02-06 1996-10-22 Nissan Chem Ind Ltd Polishing method for semiconductor wafer
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development
JP2007137972A (en) * 2005-11-16 2007-06-07 Catalysts & Chem Ind Co Ltd Silica sol for polishing and polishing composition containing the sol
JP2007153692A (en) * 2005-12-06 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2008266080A (en) * 2007-04-23 2008-11-06 Nippon Chem Ind Co Ltd Low-sodium nonspherical colloidal silica
JP2009184855A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd COLLOIDAL SILICA COMPOSED OF SILICA PARTICLES WITH FIXED epsilon-CAPROLACTAM
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010243664A (en) * 2009-04-02 2010-10-28 Ricoh Co Ltd Toner, developer using the same, and image forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275005A (en) * 1986-02-12 1987-11-30 Catalysts & Chem Ind Co Ltd Production of monodisperse particle
JPH08279480A (en) * 1995-02-06 1996-10-22 Nissan Chem Ind Ltd Polishing method for semiconductor wafer
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development
JP2007137972A (en) * 2005-11-16 2007-06-07 Catalysts & Chem Ind Co Ltd Silica sol for polishing and polishing composition containing the sol
JP2007153692A (en) * 2005-12-06 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2008266080A (en) * 2007-04-23 2008-11-06 Nippon Chem Ind Co Ltd Low-sodium nonspherical colloidal silica
JP2009184855A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd COLLOIDAL SILICA COMPOSED OF SILICA PARTICLES WITH FIXED epsilon-CAPROLACTAM
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010243664A (en) * 2009-04-02 2010-10-28 Ricoh Co Ltd Toner, developer using the same, and image forming method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040081A (en) * 2011-08-18 2013-02-28 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2014130198A (en) * 2012-12-28 2014-07-10 Nippon Zeon Co Ltd Toner for electrostatic charge image development
JP2014137600A (en) * 2013-01-18 2014-07-28 Xerox Corp Toner additives
JP2014163949A (en) * 2013-02-21 2014-09-08 Ricoh Co Ltd Toner for electrostatic charge image development
JP2014167524A (en) * 2013-02-28 2014-09-11 Ricoh Co Ltd Image forming apparatus
JP2014191108A (en) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US9176408B2 (en) 2013-03-26 2015-11-03 Fuji Xerox Co., Ltd. Electrostatic charge image developing toner, electrostatic charge image developer, and toner cartridge
JP2015000844A (en) * 2013-06-18 2015-01-05 富士ゼロックス株式会社 Silica composite particles and method of producing the same
JP2015143838A (en) * 2013-12-26 2015-08-06 キヤノン株式会社 magnetic toner
JP2015184569A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Indeterminate form inorganic particle, toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2017039618A (en) * 2015-08-19 2017-02-23 京セラドキュメントソリューションズ株式会社 Silica powder and positively-charged toner
US10261431B2 (en) 2016-02-09 2019-04-16 Samsung Electronics Co., Ltd. External additive for toner, process for producing the same, and toner comprising the same
WO2018038027A1 (en) * 2016-08-23 2018-03-01 日産化学工業株式会社 Gas separation membrane containing irregularly shaped silica nanoparticles
JPWO2018038027A1 (en) * 2016-08-23 2019-07-11 日産化学株式会社 Gas separation membrane containing heteromorphic silica nanoparticles
US11052355B2 (en) 2016-08-23 2021-07-06 Nissan Chemical Corporation Gas separation membrane containing heteromorphous shaped silica nanoparticles
JP2018118901A (en) * 2017-01-20 2018-08-02 日揮触媒化成株式会社 Silica particle dispersion and production method of the same
KR20190104534A (en) * 2017-01-20 2019-09-10 닛키 쇼쿠바이카세이 가부시키가이샤 Silica Particle Dispersions and Methods for Manufacturing the Same
JP7054628B2 (en) 2017-01-20 2022-04-14 日揮触媒化成株式会社 Silica particle dispersion and its manufacturing method
KR102495158B1 (en) 2017-01-20 2023-02-01 닛키 쇼쿠바이카세이 가부시키가이샤 Silica particle dispersion and manufacturing method thereof
CN107502875A (en) * 2017-07-19 2017-12-22 东南大学 It is a kind of that there is non-homogeneous super-hydrophobic coat for strengthening dropwise condensation effect and preparation method thereof

Also Published As

Publication number Publication date
JP5631699B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP5439308B2 (en) Method for producing associated silica fine particles
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP3927741B2 (en) Toner external additive for electrostatic image development
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP5655800B2 (en) Method for producing associated silica
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP3767788B2 (en) Toner external additive for electrostatic image development
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP3856744B2 (en) Toner external additive for electrostatic image development
JP3930236B2 (en) Toner external additive for electrostatic image development
JP2016126099A (en) Toner external additive and method for manufacturing the same
JP5915550B2 (en) Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness
JP4198108B2 (en) Toner external additive and toner for developing electrostatic image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5631699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150