JP2012100466A - Cooling device of power conversion equipment - Google Patents

Cooling device of power conversion equipment Download PDF

Info

Publication number
JP2012100466A
JP2012100466A JP2010247363A JP2010247363A JP2012100466A JP 2012100466 A JP2012100466 A JP 2012100466A JP 2010247363 A JP2010247363 A JP 2010247363A JP 2010247363 A JP2010247363 A JP 2010247363A JP 2012100466 A JP2012100466 A JP 2012100466A
Authority
JP
Japan
Prior art keywords
transformer
converter
panel
cooling air
wind tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247363A
Other languages
Japanese (ja)
Other versions
JP5720184B2 (en
Inventor
Tetsuya Maeda
哲也 前田
Hiroshi Shiroichi
洋 城市
Yutaka Azuma
裕 我妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010247363A priority Critical patent/JP5720184B2/en
Priority to CN201110346587.8A priority patent/CN102468739B/en
Publication of JP2012100466A publication Critical patent/JP2012100466A/en
Application granted granted Critical
Publication of JP5720184B2 publication Critical patent/JP5720184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device of power conversion equipment, capable of efficiently cooling a transformer by a simple configuration.SOLUTION: The cooling device of the power conversion equipment includes: a transformer board 3 where a transformer 2 is housed and ceiling fans 9a, 9b for exhaust are arranged on an upper surface; a converter board 5 communicated with the transformer board 3 and arranged, where a power converter is housed; cooling air suction parts 15a to 15d formed at least on the side face of the converter board; an air duct 12 disposed on the converter 5 to be supplied with cooling air sucked in the cooking air suction parts through the power converter and to supply the cooling air to the side face of the transformer 2; and a partition plate 17 for narrowing a converter board side exit 16 of the air duct 12. A cooling air path is formed from the cooling air suction parts through the air duct, through the converter board side exit 16 narrowed by the partition plate 17, and through the winding part of the transformer 2 to the ceiling fans 9a, 9b for the exhaust.

Description

本発明は、変圧器を収納する変圧器盤と電力変換器を収納する変換器盤とを連通させて配置した電力変換装置の冷却装置に関する。   The present invention relates to a cooling device for a power conversion device in which a transformer panel that houses a transformer and a converter panel that houses a power converter are placed in communication with each other.

半導体電力変換装置において、主回路を構成する半導体電力変換ユニット、主回路変圧器等の発熱機器を冷却する部分、及び比較的熱に弱い制御プリント板の電機機器で構成した制御ユニットを冷却する部分を、それぞれ個別の盤(筐体)に分離して収納するようにしている(例えば、特許文献1参照)。
この特許文献1に記載の従来例では、監視盤、制御保護盤、電力変換器盤、連系変圧器盤、補機盤を連通させ、制御保護盤に設けた吸気用ファンで冷風を吸気するとともに、補機盤に設けた排出用ファンで排出することにより、冷風を制御保護盤、電力変換器盤及び連系変圧器盤を通じて補機盤から外部に排出する。
In a semiconductor power conversion device, a semiconductor power conversion unit that constitutes a main circuit, a part that cools a heat generating device such as a main circuit transformer, and a part that cools a control unit constituted by an electrical device of a control printed board that is relatively resistant to heat Are separately stored in individual boards (housings) (see, for example, Patent Document 1).
In the conventional example described in Patent Document 1, the monitoring panel, the control protection panel, the power converter panel, the interconnection transformer panel, and the auxiliary machine panel are communicated, and cold air is sucked by the intake fan provided in the control protection panel. At the same time, by discharging with a discharge fan provided in the auxiliary machine panel, the cool air is discharged from the auxiliary machine panel to the outside through the control protection panel, power converter panel and interconnection transformer panel.

特に、発熱量の多い変圧器を収納する変圧器盤(筐体)は、少なくとも正面に吸気口を設けて天井ファンで排気する強制換気方式を採用している(例えば、特許文献2参照)。この特許文献2に記載の従来例では、変圧器を収納した盤の天井に排気ファンを前後方向の中央部で変圧器に上方から対向するように配置し、盤の正面下部に吸気口を設ける。そして、盤内底部の背面側に送風ファンと組み合わせた導風ダクトを配備し、この導風ダクトに変圧器の背面に向けて開口部を形成し、吸気口を通じて盤内に取り込んだ外気の一部を導風ダクトの送風口から変圧器の背面に向けて分流送風するようにしている。   In particular, a transformer panel (housing) that houses a transformer with a large amount of heat generation employs a forced ventilation system in which an air inlet is provided at least in front and exhausted by a ceiling fan (see, for example, Patent Document 2). In the conventional example described in Patent Document 2, an exhaust fan is disposed on the ceiling of a panel housing a transformer so as to face the transformer from above at the center in the front-rear direction, and an air inlet is provided at the lower front of the panel. . An air duct combined with a blower fan is installed on the back side of the bottom of the panel, and an opening is formed in the air duct toward the back of the transformer. The air is diverted from the air duct duct to the back of the transformer.

また、筐体内を上部空間及び下部空間に仕切るとともに、冷却ファンにより発生する冷却風が上部空間及び下部空間相互で流通するのを阻止する筐体内部空間仕切部材となる変圧器側絶縁板と、筐体側絶縁支持部材と、吸気整流板とを設け、さらに冷却ファンの回転により筐体内に発生する冷却風を変圧器のコイルの外周部を包囲する筒状絶縁物内へ導き、変圧器のコイルを冷却するようにした変圧器盤も知られている(例えば、特許文献3参照)。   A transformer-side insulating plate serving as a housing internal space partition member that partitions the inside of the housing into an upper space and a lower space and prevents cooling air generated by the cooling fan from flowing between the upper space and the lower space; A casing-side insulating support member and an air intake rectifying plate are provided, and cooling air generated in the casing by the rotation of the cooling fan is guided into a cylindrical insulator surrounding the outer periphery of the transformer coil. There is also known a transformer panel that cools the battery (for example, see Patent Document 3).

このような電力変換装置の冷却装置の具体的構成としては、図6〜図9に示すように、構成されている。
すなわち、電力変換装置は、図6及び図7に示すように、変圧器100を収納する変圧器盤101と、複数の半導体電力変換器102を収納する変換器盤103とを互いに連通させて配置した構成を有する。
変圧器盤101には、変圧器100がその奥行き方向の中央部が変換器盤103の奥行き方向の中央部より背面側となるように配置され、この変圧器100の背面側の上部側に左右に2台の排気用天井ファン104a及び104bが配置されている。また、変圧器盤101の前面にはその下部側に2つの冷風吸気口105a及び105bが配置されている。
The specific configuration of the cooling device for such a power converter is configured as shown in FIGS.
That is, in the power converter, as shown in FIGS. 6 and 7, a transformer panel 101 that houses the transformer 100 and a converter board 103 that houses a plurality of semiconductor power converters 102 are arranged in communication with each other. The configuration is as follows.
In the transformer panel 101, the transformer 100 is arranged so that the center part in the depth direction is on the back side from the center part in the depth direction of the converter board 103. Two exhaust ceiling fans 104a and 104b are arranged. In addition, two cold air inlets 105a and 105b are disposed on the lower side of the front surface of the transformer panel 101.

このため、変圧器盤101では、排気用天井ファン104a及び104bを回転駆動することにより、冷風吸気口105a及び105bから吸気された冷風が変圧器100のコイル部の正面側を冷却してから排気用天井ファン104a及び104bから排出される。
一方、変換器盤103は、図6に示すように、前面に4つの吸気口106a〜106dが配置されている。また、変換器盤103は、図7に示すように、これら吸気口106a〜106dに対向するように左右2列で上下6段の計12台の半導体電力変換器102が配設されている。さらに、変換器盤103は、図9に示すように、各半導体電力変換器102の背面側に変圧器盤101に連通する風洞108が形成されている。
Therefore, in the transformer panel 101, the exhaust ceiling fans 104a and 104b are driven to rotate, so that the cool air sucked from the cool air intake ports 105a and 105b cools the front side of the coil portion of the transformer 100 before the exhaust. Are discharged from the ceiling fans 104a and 104b.
On the other hand, as shown in FIG. 6, the converter board 103 has four air inlets 106a to 106d arranged on the front surface. In addition, as shown in FIG. 7, the converter board 103 has a total of 12 semiconductor power converters 102 arranged in two rows on the left and right and in six stages on the upper and lower sides so as to oppose the intake ports 106 a to 106 d. Furthermore, as shown in FIG. 9, the converter panel 103 is formed with a wind tunnel 108 communicating with the transformer panel 101 on the back side of each semiconductor power converter 102.

このため、変換器盤103では、吸気口106a〜106dから吸気された冷却風が各半導体電力変換器102を通って風洞108に達し、風洞108を通って変換器盤101の変圧器100の背面側を冷却して排気用天井ファン104a及び104bから排出される。   For this reason, in the converter panel 103, the cooling air sucked from the air inlets 106 a to 106 d reaches the wind tunnel 108 through each semiconductor power converter 102, and passes through the wind tunnel 108 to the rear surface of the transformer 100 of the converter panel 101. The side is cooled and discharged from the exhaust ceiling fans 104a and 104b.

特開2008−35635号公報JP 2008-35635 A 特開2009−303354号公報JP 2009-303354 A 特開2009−76825号公報JP 2009-76825 A

ここで、上記特許文献1に記載された従来例にあっては、監視盤、制御保護盤、電力変換器盤、連系変圧器盤、補機盤を連通させ、制御保護盤に設けた吸気用ファンによって監視盤に設けた吸気用開口部から吸気した冷風を制御保護盤、電力変換器盤、連系変圧器盤に送り、補機盤に設けた排気用ファンによって外部に排出するようにしており、冷却構造が大型化し、全体の構成も大型化するという未解決の課題がある。   Here, in the conventional example described in the above-mentioned Patent Document 1, the monitoring board, the control protection board, the power converter board, the interconnection transformer board, and the auxiliary machine board are communicated, and the intake air provided in the control protection board The cool air sucked in from the intake opening provided in the monitoring panel by the fan is sent to the control protection panel, power converter panel, and interconnection transformer panel, and discharged to the outside by the exhaust fan provided in the auxiliary panel. Therefore, there is an unsolved problem that the cooling structure is enlarged and the entire configuration is also enlarged.

また、上記特許文献2及び3に記載された従来例にあっては、変圧器を収納する筐体の正面側からのみ空気をとりこみ、筐体内に取込んだ冷却風を変圧器の回りを通って上方に配置した冷却ファンで外部に排気する強制換気方式となっている。
しかしながら、上記特許文献2及び3に記載された従来例にあっては、ともに筐体の正面から取込んだ冷却風を変圧器の回りに案内するために、送風ファン及び導風ダクトや変圧器のコイルの外周部を包囲する筒状絶縁物及びこの筒状絶縁部の下部に冷却風を案内する導風機構を必要とし、構成が複雑となるとともに、変圧器盤の筐体が大形化するという未解決の課題がある。
Further, in the conventional examples described in Patent Documents 2 and 3, air is taken in only from the front side of the casing housing the transformer, and the cooling air taken into the casing passes around the transformer. It is a forced ventilation system that exhausts to the outside with a cooling fan placed above.
However, in the conventional examples described in Patent Documents 2 and 3, in order to guide the cooling air taken from the front of the casing around the transformer, a blower fan, a wind guide duct, and a transformer are used. This requires a cylindrical insulator that surrounds the outer periphery of the coil and a wind guide mechanism that guides the cooling air to the lower part of the cylindrical insulating part, which complicates the configuration and enlarges the casing of the transformer panel There is an unresolved issue to do.

さらに、図6〜9に示す従来例にあっては、変圧器盤101に設けた排気用天井ファン104a及び104bを駆動することによって、図8に示すように、冷風吸気口105a及び105bから吸気された冷風が変圧器100のコイル部の正面側を冷却する。これと同時に、変換器盤103の吸気口106a〜106dから吸気された冷風が、図9に示すように、半導体電力変換器102を通って背面側の風洞108に達し、この風洞108から変圧器100の背面側に達して、変圧器100の背面側を冷却する。このため、変圧器の冷却効率を向上させることはできるが、変換器盤側から風洞108を通って変圧器100に供給される冷風は、風洞108の断面積が広いことにより、変圧器100に供給する風速が遅くなってしまい大きな冷却効果を発揮できないという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、簡易な構成で、変圧器を効率よく冷却することができる電力変換装置の冷却装置を提供することを目的としている。
Further, in the conventional example shown in FIGS. 6 to 9, by driving the exhaust ceiling fans 104a and 104b provided in the transformer panel 101, as shown in FIG. 8, the air is sucked from the cold air intake ports 105a and 105b. The cool air thus cooled cools the front side of the coil portion of the transformer 100. At the same time, as shown in FIG. 9, the cool air sucked from the air inlets 106a to 106d of the converter panel 103 reaches the wind tunnel 108 on the back side through the semiconductor power converter 102, and from this wind tunnel 108 to the transformer The back side of the transformer 100 is reached and the back side of the transformer 100 is cooled. For this reason, although the cooling efficiency of the transformer can be improved, the cold air supplied to the transformer 100 from the converter panel side through the wind tunnel 108 is applied to the transformer 100 because the cross-sectional area of the wind tunnel 108 is wide. There is an unsolved problem that the wind speed to be supplied becomes slow and a large cooling effect cannot be exhibited.
Therefore, the present invention has been made paying attention to the unsolved problems of the conventional example, and provides a cooling device for a power conversion device that can cool a transformer efficiently with a simple configuration. It is aimed.

上記目的を達成するために、本発明の一の形態に係る電力変換装置の冷却装置は、変圧器を収納し且つ上面に排気用天井ファンを配置した変圧器盤と、該変圧器盤と連通して配置された電力変換器を収納した変換器盤と、少なくとも前記変換器盤の側面に形成された冷却風吸気部と、前記冷却風吸気部で吸気された冷却風が前記電力変換器を介して供給され、当該冷却風を前記変圧器の側面に供給する前記変換器盤に配設された風洞と、該風洞の前記変換器盤側出口を狭める仕切板とを備えている。そして、前記冷却風吸気部から前記風洞を介し、前記仕切板で狭められた変換器盤側出口を介し、前記変圧器の巻線部を通じて前記排気用天井ファンに至る冷却風通路を形成した。   In order to achieve the above object, a cooling device for a power conversion device according to an embodiment of the present invention includes a transformer board that houses a transformer and has an exhaust ceiling fan disposed on an upper surface thereof, and communicates with the transformer board. A converter board containing the power converters arranged in a manner, a cooling air intake part formed at least on a side surface of the converter board, and cooling air sucked in the cooling air intake part And a wind tunnel disposed in the converter panel for supplying the cooling air to the side surface of the transformer, and a partition plate for narrowing the converter panel side outlet of the wind tunnel. Then, a cooling air passage was formed from the cooling air intake section through the wind tunnel, through the converter panel side outlet narrowed by the partition plate, and through the winding portion of the transformer to the exhaust ceiling fan.

この構成によると、変圧器盤の排気用天井ファンを駆動することにより、変換器盤の冷風吸気部から吸気された冷風が電力変換器を通って風洞から変圧器盤に供給される。このとき、風洞の変圧器盤側出口が仕切板で狭められているので、冷却風を大きな風速で変圧器の側面に供給することができる。このため、変圧器の冷却効率を向上させることができる。   According to this configuration, by driving the ceiling fan for exhaust of the transformer panel, the cool air sucked from the cool wind intake portion of the converter panel is supplied from the wind tunnel to the transformer panel through the power converter. At this time, since the transformer panel side outlet of the wind tunnel is narrowed by the partition plate, the cooling air can be supplied to the side surface of the transformer at a high wind speed. For this reason, the cooling efficiency of a transformer can be improved.

また、本発明の他の形態に係る電力変換装置の冷却装置は、前記変圧器盤に、前記排気用天井ファンが前記変圧器の背面側における上部に配設されている。また、前記変換器盤に、前記冷却風吸気部を前記排気用天井ファンの設置位置とは反対側の正面に形成するとともに、前記風洞を前記排気用天井ファン側に配設している。そして、前記冷却風吸気部から吸気された冷却風を、前記電力変換器を通じて前記風洞に案内する。さらに、前記仕切板が前記風洞の前記変換器盤側出口の上部側を閉塞するように配設されている。   In the cooling device for a power conversion device according to another aspect of the present invention, the exhaust ceiling fan is disposed on the transformer panel and on the upper side on the back side of the transformer. In addition, the cooling wind intake portion is formed on the converter panel on the front side opposite to the installation position of the exhaust ceiling fan, and the wind tunnel is disposed on the exhaust ceiling fan side. Then, the cooling air sucked from the cooling air intake section is guided to the wind tunnel through the power converter. Further, the partition plate is disposed so as to close the upper side of the converter panel side outlet of the wind tunnel.

この構成によると、変圧器盤の排気用天井ファンを駆動することにより、変換器盤の前面に配設された冷風吸気部から冷風が各電力変換器を通じて風洞に案内され、この風洞から変圧器盤に収納された変圧器の側面に供給される。このとき、風洞の上部が仕切板で閉塞されているので、冷却風が風洞の下側から大きな風速で変圧器の側面に供給され、最後に排気用天井ファンから外部に排気される。このため、変圧器の側面に下側から風速の大きな冷却風を供給することができ、変圧器の冷却効率を向上させることができる。   According to this configuration, by driving the ceiling fan for exhaust of the transformer panel, the cool air is guided to the wind tunnel from each of the cool air intakes disposed on the front surface of the converter panel through each power converter, and the transformer is transmitted from this wind tunnel. Supplied to the side of the transformer housed in the panel. At this time, since the upper part of the wind tunnel is closed by the partition plate, the cooling air is supplied from the lower side of the wind tunnel to the side surface of the transformer at a high wind speed, and finally exhausted to the outside from the exhaust ceiling fan. For this reason, cooling air with a high wind speed can be supplied to the side surface of the transformer from the lower side, and the cooling efficiency of the transformer can be improved.

また、本発明の他の形態に係る電力変換装置の冷却装置は、前記変圧器盤の前記排気用天井ファンとは反対側の正面下部に前記冷却風吸気部より小さい面積の冷風吸気口が形成されていることを特徴としている。
この構成によると、変圧器盤の正面の吸気口からも冷却風を吸気して、変圧器を通じて排気用天井ファンから排気する冷却通路が形成されるので、変圧器の冷却効率をより向上させることができる。
In the cooling device for a power conversion device according to another aspect of the present invention, a cold air intake port having an area smaller than the cooling air intake portion is formed in a lower front portion of the transformer panel opposite to the exhaust ceiling fan. It is characterized by being.
According to this configuration, the cooling air is also drawn from the air inlet in front of the transformer panel and exhausted from the exhaust ceiling fan through the transformer, so that the cooling efficiency of the transformer is further improved. Can do.

本発明によれば、変圧器を収納する変圧器盤の変圧器の背面側に排気用天井ファンを配設し、変圧器盤に連通する電力変換器を収納した変換器盤の排気用天井ファンとは反対側の側面に冷風吸気部を形成するとともに、冷風吸気部とは電力変換器を介して反対側に風洞を形成し、この風洞の変換器盤側出口を仕切板で狭めるようにしている。
このため、排気用天井ファンを駆動することにより、変換器盤の冷風吸気部から吸気された冷却風が電力変換器を介して風洞に供給され、この風洞の仕切板で狭められた変圧器盤側出口から変圧器の側面を通って排気用天井ファンから排気される冷却風通路が形成される。したがって、風洞の変圧器盤側出口が仕切板で狭められていることにより、冷却風が高い風速で変圧器の側面に供給されて冷却効率を向上させることができる。
このとき、風洞の変圧器盤側出口の上部側を仕切板で閉塞することにより、変圧器の側面の下側から冷却風を高い風速で供給することができ、より冷却効率を向上させることができる。
According to the present invention, an exhaust ceiling fan is disposed on the back side of the transformer of the transformer panel that houses the transformer, and the exhaust fan of the converter panel that houses the power converter that communicates with the transformer panel. A cold air intake part is formed on the side opposite to the air flow, and a wind tunnel is formed on the opposite side of the cold air intake part via a power converter, and the converter panel side outlet of this wind tunnel is narrowed by a partition plate. Yes.
Therefore, by driving the exhaust ceiling fan, the cooling air sucked from the cold air intake part of the converter panel is supplied to the wind tunnel through the power converter, and the transformer panel is narrowed by the partition plate of this wind tunnel A cooling air passage is formed from the side outlet through the side surface of the transformer and exhausted from the exhaust ceiling fan. Therefore, since the transformer panel side outlet of the wind tunnel is narrowed by the partition plate, the cooling air is supplied to the side surface of the transformer at a high wind speed, and the cooling efficiency can be improved.
At this time, by closing the upper side of the transformer panel side outlet of the wind tunnel with the partition plate, the cooling air can be supplied at a high wind speed from the lower side of the side surface of the transformer, and the cooling efficiency can be further improved. it can.

本発明の一実施形態を示す正面図である。It is a front view showing one embodiment of the present invention. 図1の正面板部を取り外した正面図である。It is the front view which removed the front board part of FIG. 図2のA−A線上の断面図である。It is sectional drawing on the AA line of FIG. 図2のB−B線上の断面図である。It is sectional drawing on the BB line of FIG. 本発明の他の実施形態を示す正面板部を取り外した正面図である。It is the front view which removed the front board part which shows other embodiment of this invention. 従来例を示す正面図である。It is a front view which shows a prior art example. 図6の正面板部を取り外した正面図である。It is the front view which removed the front board part of FIG. 図7のC−C線上の断面図である。It is sectional drawing on the CC line of FIG. 図7のD−D線上の断面図である。It is sectional drawing on the DD line of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
図1〜図4は本発明の一実施形態を示す図である。
図中、1は電力変換装置であって、この電力変換装置1は、主回路変圧器2を収納する主回路変圧器盤3と、この主回路変圧器盤3と連通して配設された半導体電力変換ユニット4を収納する主回路変換器盤5とで構成されている。
変圧器盤3は、直方体状の筐体6を有し、この筐体6の底面板部6aにおける前後方向の中央部よりやや後方側に幅方向の中央部が位置するように主回路変圧器2が固定されている。ここで、主回路変圧器2は、図2に示すように、三相の巻線Lu、Lv及びLwを幅方向に並列させた状態で筐体6内に収納されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1-4 is a figure which shows one Embodiment of this invention.
In the figure, reference numeral 1 denotes a power converter, and the power converter 1 is disposed in communication with a main circuit transformer board 3 that houses a main circuit transformer 2 and the main circuit transformer board 3. The main circuit converter board 5 which accommodates the semiconductor power conversion unit 4 is comprised.
The transformer panel 3 has a rectangular parallelepiped housing 6, and the main circuit transformer is positioned so that the center portion in the width direction is located slightly rearward of the center portion in the front-rear direction of the bottom plate portion 6 a of the housing 6. 2 is fixed. Here, as shown in FIG. 2, the main circuit transformer 2 is housed in the housing 6 in a state where the three-phase windings Lu, Lv, and Lw are arranged in parallel in the width direction.

また、筐体6の正面に2列2段の計4つの開閉扉7a〜7dが配設され、これら開閉扉7a〜7dのうち下側の開閉扉7c及び7dの下部側にそれぞれ冷風吸気口8a及び8bが形成されている。これら冷風吸気口8a及び8bの合計面積が主回路変換器盤5の後述する冷風吸気部15a〜15dの合計面積よりも十分に小さい面積(1/6程度)に設定されている。
さらに、筐体6の上面板部6bにおける変圧器2の背面側に、左右方向に所定距離だけ離間した左右一対の排気用天井ファン9a及び9bが配設されている。
In addition, a total of four open / close doors 7a to 7d in two rows and two stages are disposed on the front surface of the housing 6, and a cold air intake port is provided on the lower side of the lower open / close doors 7c and 7d among the open / close doors 7a to 7d. 8a and 8b are formed. The total area of the cold air intake ports 8a and 8b is set to an area (about 1/6) sufficiently smaller than the total area of the cool air intake portions 15a to 15d described later of the main circuit converter board 5.
Further, a pair of left and right exhaust ceiling fans 9 a and 9 b that are spaced apart from each other by a predetermined distance in the left-right direction are disposed on the back side of the transformer 2 in the upper surface plate portion 6 b of the housing 6.

一方、変換器盤5は、変圧器盤3と同様に直方体状の筐体11を有し、この筐体11内に左右2列で上下6段の計12個の半導体電力変換ユニット4が背面板部11aとの間に左右方向に延長する風洞12を形成するように整列配置されている。ここで、半導体電力変換ユニット4は、インバータ、コンバータ等の半導体電力変換器を内装しており、半導体電力変換器を冷却する冷風通路13が前後方向に貫通形成されている。
また、筐体11の前面側には2列2段の開閉扉14a〜14dが配設され、これら開閉扉14a〜14dのそれぞれに比較的大きな面積(前述した主回路変圧器盤3の吸気口8a〜8bの合計面積の6倍程度の合計面積を有する冷風吸気部15a〜15dが形成されている。
On the other hand, the converter panel 5 has a rectangular parallelepiped casing 11 like the transformer panel 3, and a total of twelve semiconductor power conversion units 4 in six rows in the upper and lower rows in the casing 11 are arranged in the back. Arranged so as to form a wind tunnel 12 extending in the left-right direction between the face plate portion 11a. Here, the semiconductor power conversion unit 4 includes a semiconductor power converter such as an inverter or a converter, and a cold air passage 13 for cooling the semiconductor power converter is formed through the front and rear direction.
In addition, two rows and two stages of opening / closing doors 14a to 14d are disposed on the front surface side of the housing 11, and each of the opening and closing doors 14a to 14d has a relatively large area (the intake port of the main circuit transformer panel 3 described above). Cold air intake portions 15a to 15d having a total area approximately six times the total area of 8a to 8b are formed.

風洞12は、図4に示すように、筐体11の背面板部11aと半導体電力変換ユニット4の背面との間に所定の奥行き(筐体11の奥行きの1/4.5程度)で且つ筐体11の上面板部11b及び底面板部11c間に延長する上下方向に細長い断面形状に形成されている。そして、この風洞12の主回路変圧器盤3及び主回路変換器盤4との連通部となる筐体6及び11の隣接する側壁6c及び11dの背面側に貫通形成した変圧器盤側出口16に、筐体11の上面板部11b側から下方に延長する仕切板17が開口面積を例えば4割程度狭めるように配設されている(図2及び図4参照)。   As shown in FIG. 4, the wind tunnel 12 has a predetermined depth (about 1 / 4.5 of the depth of the housing 11) between the back plate portion 11 a of the housing 11 and the back surface of the semiconductor power conversion unit 4. The casing 11 is formed in a cross-sectional shape elongated in the vertical direction extending between the upper surface plate portion 11b and the bottom surface plate portion 11c. Then, the transformer panel side outlet 16 is formed through the rear side of the adjacent side walls 6c and 11d of the casings 6 and 11 that serve as communication portions between the main circuit transformer panel 3 and the main circuit converter panel 4 of the wind tunnel 12. Further, a partition plate 17 extending downward from the upper surface plate portion 11b side of the housing 11 is disposed so as to narrow the opening area by, for example, about 40% (see FIGS. 2 and 4).

次に、上記実施形態の動作を説明する。
主回路変圧器盤3に設けられた排気用天井ファン9a及び9bを回転駆動することにより、主回路変圧器盤3の筐体6内が負圧となり、これによって、開閉扉7c及び7dに形成された吸気口8a及び8bから冷却風が吸気され、この冷却風が図3に示すように、主回路変圧器2の巻線Lu〜Lwの正面側の下部側から放物線状に上昇して巻線Lu〜Lwの正面側半部を冷却して排気用天井ファン9a及び9bに至る冷却通路が形成される。
Next, the operation of the above embodiment will be described.
By rotating and driving the exhaust ceiling fans 9a and 9b provided on the main circuit transformer board 3, the inside of the housing 6 of the main circuit transformer board 3 becomes negative pressure, thereby forming the doors 7c and 7d. Cooling air is sucked from the intake ports 8a and 8b, and the cooling air rises in a parabolic manner from the lower side on the front side of the windings Lu to Lw of the main circuit transformer 2, as shown in FIG. Cooling passages are formed which cool the front half of the lines Lu to Lw and reach the exhaust ceiling fans 9a and 9b.

これと同時に、主回路変圧器盤3に連通する主回路変換器盤5の風洞12も負圧となることから、主回路変換器盤5の正面に配置された開閉扉14a〜14dに形成された冷風吸気部15a〜15dから冷却風が図4に示すように吸気される。吸気された冷却風は、半導体電力変換ユニット4の周囲及び冷風通路13を通ることにより、半導体電力変換ユニット4に内装された半導体電力変換器を冷却して背面側の風洞12に至る。   At the same time, since the wind tunnel 12 of the main circuit converter board 5 communicating with the main circuit transformer board 3 also has negative pressure, it is formed in the open / close doors 14a to 14d arranged in front of the main circuit converter board 5. Cooling air is sucked from the cool air intake portions 15a to 15d as shown in FIG. The sucked cooling air passes through the periphery of the semiconductor power conversion unit 4 and the cool air passage 13 to cool the semiconductor power converter built in the semiconductor power conversion unit 4 and reach the wind tunnel 12 on the back side.

風洞12に達した冷却風は、排気用天井ファン9a及び9bに吸引されて主回路変圧器盤3側に移動することになる。このとき、風洞12の主回路変圧器側出口16の上部側が仕切板17によって主回路変圧器2の巻線Lu〜Lwの上部に対向する位置まで閉塞されて、この主回路変圧器側出口16の開口面積が4割程度狭められている。
このため、風洞12に入った冷却風は、図2に示すように、仕切板17の下方側の開口部を通って主回路変圧器盤3の筐体6内に供給される。このとき、主回路変圧器側出口16が仕切板17によって絞られているので、主回路変圧器側出口16が全開されている場合に比較して十分に速い風速で且つ少なくとも上部側が乱流状態で主回路変圧器盤3の筐体6内に流入される。
The cooling air reaching the wind tunnel 12 is sucked by the exhaust ceiling fans 9a and 9b and moves to the main circuit transformer panel 3 side. At this time, the upper side of the main circuit transformer side outlet 16 of the wind tunnel 12 is closed by the partition plate 17 to a position facing the upper part of the windings Lu to Lw of the main circuit transformer 2. The opening area is reduced by about 40%.
Therefore, the cooling air entering the wind tunnel 12 is supplied into the housing 6 of the main circuit transformer panel 3 through the opening on the lower side of the partition plate 17 as shown in FIG. At this time, since the main circuit transformer side outlet 16 is narrowed by the partition plate 17, the wind speed is sufficiently high compared with the case where the main circuit transformer side outlet 16 is fully opened, and at least the upper side is in a turbulent state. And flows into the housing 6 of the main circuit transformer panel 3.

したがって、この主回路変圧器側出口16から供給される速い風速の冷却風が主回路変圧器2の背面側を通って排気用天井ファン9a及び9bの双方に吸引されることになり、主回路変圧器2の巻線Lu〜Lwの背面側を効率良く冷却することができる。このため、主回路変圧器2の冷却効率を向上させることができる。
因みに、前述した図6〜図9に示す従来例のように風洞108を全開状態とした場合に、変圧器盤101内に流入する冷却風は層流状態となるので、風洞の上部側の冷却風は、そのまま変圧器盤101側の排気用天井ファン104a,104bで吸引されて、変圧器100を冷却することなく外部に排気されることになり、変圧器の冷却効率が大幅に低下する。
Therefore, the fast cooling air supplied from the main circuit transformer side outlet 16 passes through the back side of the main circuit transformer 2 and is sucked into both the exhaust ceiling fans 9a and 9b. The back side of the windings Lu to Lw of the transformer 2 can be efficiently cooled. For this reason, the cooling efficiency of the main circuit transformer 2 can be improved.
Incidentally, when the wind tunnel 108 is fully opened as in the conventional examples shown in FIGS. 6 to 9, the cooling air flowing into the transformer panel 101 is in a laminar flow state, so that the cooling of the upper side of the wind tunnel is performed. The wind is directly sucked by the exhaust ceiling fans 104a and 104b on the transformer panel 101 side and exhausted to the outside without cooling the transformer 100, so that the cooling efficiency of the transformer is greatly reduced.

しかしなから、本実施形態によれば、上述したように、風洞12の主回路変圧器盤側出口16の上部側が仕切板17によって閉塞されているので、風洞12内の冷却風が全て主回路変圧器2の背面側を通ることになり、主回路変圧器2の冷却効率を格段に向上させることができる。
しかも、上記実施形態では、冷却機構として、吸気用ファンを設ける必要がなく、排気用冷却ファン9a及び9bのみを設けるだけでよいので、全体の構成を簡易小型化することができる。
However, according to the present embodiment, as described above, since the upper side of the main circuit transformer panel side outlet 16 of the wind tunnel 12 is closed by the partition plate 17, all the cooling air in the wind tunnel 12 is main circuit. It will pass the back side of the transformer 2, and the cooling efficiency of the main circuit transformer 2 can be improved markedly.
Moreover, in the above-described embodiment, it is not necessary to provide an intake fan as a cooling mechanism, and only the exhaust cooling fans 9a and 9b need be provided. Therefore, the entire configuration can be simplified and reduced in size.

また、主回路変圧器盤3側の冷風吸気口8a及び8bの合計面積に対して主回路変換器盤5側の冷風吸気部15a〜15dの合計面積が大きく設定されているので、主回路変換器盤5側での冷風吸気量を主回路変圧器盤3側での冷風吸気量より多くして、半導体電力変換ユニット及びこれに内蔵された半導体電力変換器の冷却を効率良く行うことができる。   Further, the total area of the cold air intake portions 15a to 15d on the main circuit converter board 5 side is set larger than the total area of the cold air inlets 8a and 8b on the main circuit transformer board 3 side. The amount of cold air intake on the side of the device panel 5 is made larger than the amount of cold air intake on the side of the main circuit transformer panel 3, so that the semiconductor power conversion unit and the semiconductor power converter incorporated therein can be efficiently cooled. .

なお、上記実施形態においては、主回路変換器盤5の風洞12の上部側のみを仕切板17で閉塞した場合について説明したが、これに限定されるものではなく、図5に示すように、主回路変換器側出口16の下部側の主回路変圧器2の脚部に対向する位置に第2の仕切板21を設けて、主回路変圧器2の巻線Lu〜Lwに対向する開口部を形成するようにしてもよい。この場合には主回路変圧器2の巻線Lu〜Lwの冷却効率をより向上させることができる。   In the above embodiment, the case where only the upper side of the wind tunnel 12 of the main circuit converter board 5 is closed by the partition plate 17 has been described, but the present invention is not limited to this, as shown in FIG. The second partition plate 21 is provided at a position facing the leg of the main circuit transformer 2 on the lower side of the main circuit converter side outlet 16, and the opening facing the windings Lu to Lw of the main circuit transformer 2 May be formed. In this case, the cooling efficiency of the windings Lu to Lw of the main circuit transformer 2 can be further improved.

また、図5に示すように、仕切板17の主回路変圧器2側における主回路変圧器2の上端部に対向する位置に、その上端部近傍まで延長する突出板部22を邪魔板として形成するようにしてもよく、この場合にも主体回路変換器側出口16を通る冷却風を全量主回路変圧器2側に確実に案内することができ、冷却効率をより向上させることができる。
さらに、上記実施形態においては、正面側に冷風吸気口8a,8b及び冷風吸気部15a〜15dを形成する場合について説明したが、これに限定されるものではなく、主回路変圧器盤3の前面側に排気用天井ファン9a,9bを設ける場合には、冷風吸気口8a,8b及び冷風吸気部15a〜15dを背面側に設けるようにしてもよい。
Further, as shown in FIG. 5, a protruding plate portion 22 extending to the vicinity of the upper end portion is formed as a baffle plate at a position facing the upper end portion of the main circuit transformer 2 on the main circuit transformer 2 side of the partition plate 17. In this case as well, the cooling air passing through the main circuit converter side outlet 16 can be reliably guided to the main circuit transformer 2 side, and the cooling efficiency can be further improved.
Furthermore, in the said embodiment, although the case where the cold wind inlets 8a and 8b and the cold wind inlet parts 15a-15d were formed in the front side was demonstrated, it is not limited to this, The front of the main circuit transformer board 3 When the exhaust ceiling fans 9a and 9b are provided on the side, the cold air intake ports 8a and 8b and the cold air intake portions 15a to 15d may be provided on the back side.

さらに、上記実施形態においては、主回路変圧器盤3に2つの排気用天井ファン9a,9bを設けた場合について説明したが、これに限定されるものではなく、主回路変圧器盤3に1つ又は3つ以上の排気用天井ファンを設けるようにしてもよい。
また、上記実施形態においては、変圧器として主回路変圧器を適用した場合について説明したが、これに限定されるものではなく、筐体1に任意の変圧器を収納する場合に本発明を適用することができる。
さらに、冷風吸気口8a,8bと冷風吸気部15a〜15dとの面積比は上記に限定されるものではなく、任意に設定することができる。同様に、仕切板17による風洞12の主回路変圧器側出口16の閉塞面積も上記に限定されるものではなく任意に設定することができる。
Furthermore, although the case where the two exhaust ceiling fans 9a and 9b are provided in the main circuit transformer panel 3 has been described in the above embodiment, the present invention is not limited to this. One or three or more exhaust ceiling fans may be provided.
Moreover, in the said embodiment, although the case where the main circuit transformer was applied as a transformer was demonstrated, it is not limited to this, This invention is applied when accommodating arbitrary transformers in the housing | casing 1. can do.
Furthermore, the area ratio between the cold air intake ports 8a and 8b and the cold air intake portions 15a to 15d is not limited to the above, and can be arbitrarily set. Similarly, the closed area of the main circuit transformer side outlet 16 of the wind tunnel 12 by the partition plate 17 is not limited to the above, and can be arbitrarily set.

1…電力変換装置、2…主回路変圧器、3…主回路変圧器盤、4…半導体電力変換ユニット、5…主回路変換器盤、6…筐体、8a,8b…冷風吸気口、9a,9b…排気用天井ファン、11…筐体、12…風洞、13…冷風通路、15a〜15d…冷風吸気部、16…主回路変圧器側出口、17…仕切板   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Main circuit transformer, 3 ... Main circuit transformer board, 4 ... Semiconductor power conversion unit, 5 ... Main circuit converter board, 6 ... Case, 8a, 8b ... Cold-air inlet, 9a , 9b ... Ceiling fan for exhaust, 11 ... Housing, 12 ... Wind tunnel, 13 ... Cold air passage, 15a to 15d ... Cold air intake part, 16 ... Main circuit transformer side outlet, 17 ... Partition plate

Claims (5)

変圧器を収納し且つ上面に排気用天井ファンを配置した変圧器盤と、
該変圧器盤と連通して配置された電力変換器を収納した変換器盤と、
少なくとも前記変換器盤の側面に形成された冷却風吸気部と、
前記冷却風吸気部で吸気された冷却風が前記電力変換器を介して供給され、当該冷却風を前記変圧器の側面に供給する前記変換器盤に配設された風洞と、
該風洞の前記変換器盤側出口を狭める仕切板とを備え、
前記冷却風吸気部から前記風洞を介し、前記仕切板で狭められた変換器盤側出口を介し、前記変圧器の巻線部を通じて前記排気用天井ファンに至る冷却風通路を形成した
ことを特徴とする電力変換装置の冷却装置。
A transformer panel that houses the transformer and has a ceiling fan for exhaust on the top surface;
A converter board containing a power converter arranged in communication with the transformer board;
A cooling air intake section formed on at least a side surface of the converter panel;
Cooling air sucked by the cooling air intake section is supplied via the power converter, and a wind tunnel disposed in the converter panel that supplies the cooling air to the side surface of the transformer;
A partition plate for narrowing the converter panel side outlet of the wind tunnel,
A cooling air passage is formed from the cooling air intake portion through the wind tunnel, through the converter panel side outlet narrowed by the partition plate, and through the winding portion of the transformer to the exhaust ceiling fan. Power converter cooling device.
前記変圧器盤は、前記排気用天井ファンを前記変圧器の背面側における上部に配設し、
前記変換器盤は、前記冷却風吸気部を前記排気用天井ファンの設置位置とは反対側の正面に形成するとともに、前記風洞を前記排気用天井ファン側に配設し、前記冷却風吸気部から吸気された冷却風を、前記電力変換器を通じて前記風洞に案内するように構成され、
前記仕切板は前記風洞の前記変換器盤側出口の上部側を閉塞するように配設されていることを特徴とする請求項1に記載の電力変換装置の冷却装置。
The transformer panel is arranged with the exhaust ceiling fan on the upper side on the back side of the transformer,
The converter panel forms the cooling air intake portion on the front side opposite to the installation position of the exhaust ceiling fan, and the wind tunnel is disposed on the exhaust ceiling fan side, and the cooling air intake portion The cooling air sucked from is configured to guide the wind tunnel through the power converter,
The cooling device for a power converter according to claim 1, wherein the partition plate is disposed so as to close an upper side of the converter panel side outlet of the wind tunnel.
前記変圧器盤は、前記排気用天井ファンとは反対側の正面下部に前記冷却風吸気部より小さい面積の冷風吸気口が形成されていることを特徴とする請求項1又は2項に記載の電力変換装置の冷却装置。   The said transformer panel is formed with a cold air inlet having an area smaller than that of the cooling air intake portion at a lower front portion opposite to the exhaust ceiling fan. Cooling device for power converter. 前記風洞の前記変換器盤側出口の下部側に第2の仕切板が配設され、前記仕切板と前記第2の仕切板とにより、前記風洞の変換器盤側出口に前記変圧器の巻線部に対向する開口部が形成されていることを特徴とする請求項1又は2項に記載の電力変換装置の冷却装置。   A second partition plate is disposed on a lower side of the converter panel side outlet of the wind tunnel, and the winding of the transformer is wound at the converter panel side outlet of the wind tunnel by the partition plate and the second partition plate. The cooling device for a power conversion device according to claim 1, wherein an opening facing the line portion is formed. 前記仕切板には、前記変圧器の上端部に対向する位置に、その上端部近傍まで延長する突出板が形成されていることを特徴とする請求項1又は2項に記載の電力変換装置の冷却装置。   3. The power converter according to claim 1, wherein the partition plate is formed with a protruding plate extending to the vicinity of the upper end portion at a position facing the upper end portion of the transformer. Cooling system.
JP2010247363A 2010-11-04 2010-11-04 Cooling device for power converter Active JP5720184B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010247363A JP5720184B2 (en) 2010-11-04 2010-11-04 Cooling device for power converter
CN201110346587.8A CN102468739B (en) 2010-11-04 2011-11-04 Cooling device of electric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247363A JP5720184B2 (en) 2010-11-04 2010-11-04 Cooling device for power converter

Publications (2)

Publication Number Publication Date
JP2012100466A true JP2012100466A (en) 2012-05-24
JP5720184B2 JP5720184B2 (en) 2015-05-20

Family

ID=46072012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247363A Active JP5720184B2 (en) 2010-11-04 2010-11-04 Cooling device for power converter

Country Status (2)

Country Link
JP (1) JP5720184B2 (en)
CN (1) CN102468739B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561552A (en) * 2013-10-25 2014-02-05 华为技术有限公司 Heat dissipation structure and electronic device
JP2015204415A (en) * 2014-04-15 2015-11-16 富士電機株式会社 Semiconductor power converter
CN107318271A (en) * 2015-03-04 2017-11-03 株式会社日立制作所 Electric power conversion unit and power-converting device
CN107732714A (en) * 2016-08-12 2018-02-23 株洲联诚集团有限责任公司 A kind of compound locomotive auxiliary filter cabinet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464153B (en) * 2014-05-28 2019-04-02 三菱电机株式会社 Power inverter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795007U (en) * 1980-12-02 1982-06-11
JPH11220887A (en) * 1998-01-30 1999-08-10 Toshiba Corp Power converter
JP2007020295A (en) * 2005-07-07 2007-01-25 Toshiba Mitsubishi-Electric Industrial System Corp Cabinet device
JP2008277482A (en) * 2007-04-27 2008-11-13 Meidensha Corp Air-cooled transformer panel
JP2009303354A (en) * 2008-06-12 2009-12-24 Fuji Electric Systems Co Ltd Air cooling apparatus of transformer board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074865A (en) * 2005-09-08 2007-03-22 Fuji Electric Systems Co Ltd Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795007U (en) * 1980-12-02 1982-06-11
JPH11220887A (en) * 1998-01-30 1999-08-10 Toshiba Corp Power converter
JP2007020295A (en) * 2005-07-07 2007-01-25 Toshiba Mitsubishi-Electric Industrial System Corp Cabinet device
JP2008277482A (en) * 2007-04-27 2008-11-13 Meidensha Corp Air-cooled transformer panel
JP2009303354A (en) * 2008-06-12 2009-12-24 Fuji Electric Systems Co Ltd Air cooling apparatus of transformer board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561552A (en) * 2013-10-25 2014-02-05 华为技术有限公司 Heat dissipation structure and electronic device
CN103561552B (en) * 2013-10-25 2016-03-30 华为技术有限公司 Radiator structure and electronic installation
JP2015204415A (en) * 2014-04-15 2015-11-16 富士電機株式会社 Semiconductor power converter
CN107318271A (en) * 2015-03-04 2017-11-03 株式会社日立制作所 Electric power conversion unit and power-converting device
CN107732714A (en) * 2016-08-12 2018-02-23 株洲联诚集团有限责任公司 A kind of compound locomotive auxiliary filter cabinet

Also Published As

Publication number Publication date
CN102468739B (en) 2015-02-11
JP5720184B2 (en) 2015-05-20
CN102468739A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4943405B2 (en) Engine generator
JP5720184B2 (en) Cooling device for power converter
JP6589295B2 (en) Power converter
TW201249322A (en) Rack mounted computer system and cooling structure thereof
JP2007074865A (en) Power converter
JP5549480B2 (en) Transformer cooling system
JP5811609B2 (en) Transformer cooling system
JP2008187014A (en) Cooling device of transformer
WO2010050479A1 (en) Engine generator
JP6260625B2 (en) Power storage device
EP3499525B1 (en) Power supply device for ozone generator, and ozone generating device
JP5444513B2 (en) control panel
JP4870408B2 (en) Power supply
JP2008035635A (en) Power receiving and distributing board
JP2001358487A (en) Cooler for control panel
JP2009180395A (en) Heat exchanging device and heating element storage device using the same
JP2002242760A (en) Structure of cogeneration apparatus
JP2006311679A (en) Power converter board
JP6296303B2 (en) Semiconductor power converter
JP5700528B2 (en) Cooling device for shelf using wind guide plate, shelf having cooling device, and cooling method
JP2002242759A (en) Structure of cogeneration apparatus
JP6007714B2 (en) Transformer cooling system
JP2008014164A (en) Engine power generator
JP6569888B2 (en) Semiconductor device with cooling function
JP5869093B1 (en) control panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250