JP2012097416A - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP2012097416A
JP2012097416A JP2010244014A JP2010244014A JP2012097416A JP 2012097416 A JP2012097416 A JP 2012097416A JP 2010244014 A JP2010244014 A JP 2010244014A JP 2010244014 A JP2010244014 A JP 2010244014A JP 2012097416 A JP2012097416 A JP 2012097416A
Authority
JP
Japan
Prior art keywords
retaining wall
underground structure
outer peripheral
constructed
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010244014A
Other languages
Japanese (ja)
Other versions
JP5668971B2 (en
Inventor
Hiroyuki Hotta
洋之 堀田
Tadashi Sakamoto
忠 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010244014A priority Critical patent/JP5668971B2/en
Publication of JP2012097416A publication Critical patent/JP2012097416A/en
Application granted granted Critical
Publication of JP5668971B2 publication Critical patent/JP5668971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure workability while setting the width dimension of the outer peripheral part of an underground structure constructed in advance to the absolute minimum and making the outer peripheral part of the underground structure constructed in advance appropriately function as earth retaining timbering.SOLUTION: A construction method of an underground structure includes: a step of constructing an earth retaining wall 1; a step of excavating the inner side of the earth retaining wall 1; a step of constructing a skeleton 11a of the outer peripheral part of the underground structure along the inner surface of the earth retaining wall 1; a step of excavating the inner side of the earth retaining wall 1 and executing bedding; and a step of constructing the remaining skeleton of the underground structure on the excavated inner side of the earth retaining wall 1. In the construction method, data indicating the relation between the maximum displacement ratio of the earth retaining wall 1 and the width dimension W of the outer peripheral part in the case of constructing the entire underground structure and in the case of constructing the outer peripheral part of the underground structure is prepared for each soil type, the width dimension W for turning the ratio to 1 or to the ratio of the allowable displacement of the earth retaining wall 1 is read on the basis of the data corresponding to the soil type of a construction site, and the skeleton 11a of the outer peripheral part of the underground structure is constructed by the width dimension W.

Description

本発明は、地下構造物の施工方法に関するものである。   The present invention relates to a construction method for an underground structure.

従来、地下構造物の施工方法として、例えば下記特許文献1に記載されているような、地下構造物の外周部分の躯体を山留め壁の内面に沿って先行構築し、この躯体を山留め支保工として利用する工法が提案されている。詳しく説明すると、まず、掘削領域の外縁に沿って山留め壁を構築する。次に、その山留め壁の内側を掘削して山留め壁の内面を露出させた後、地下構造物の外周部分の躯体を山留め壁の内面に沿って構築する。次に、山留め壁の内側を掘削して床付けを行い、その後、掘削された山留め壁の内側に、外周部分の躯体と一体に地下構造物の残りの躯体を構築する。   Conventionally, as a construction method of an underground structure, for example, as described in Patent Document 1 below, a structure of an outer peripheral portion of the underground structure is constructed in advance along the inner surface of the retaining wall, and this structure is used as a retaining structure for retaining the mountain. The construction method to be used has been proposed. More specifically, first, a retaining wall is constructed along the outer edge of the excavation area. Next, after excavating the inside of the retaining wall to expose the inner surface of the retaining wall, a frame of the outer peripheral portion of the underground structure is constructed along the inner surface of the retaining wall. Next, the inside of the retaining wall is excavated and floored, and then the remaining casing of the underground structure is built inside the excavated retaining wall and integrally with the outer peripheral casing.

上記した工法によれば、山留め壁を支持する支保工を省略することができ、仮設設備を軽減させることができる。また、適用条件の制限が少なく、様々な条件の場合に広く適用することができる。さらに、山留め壁の内側の空間自由度を向上させることができ、外周部分の躯体の内側の開口部分を通して掘削残土の搬出や躯体構築の資機材の搬出入が行われることで施工性を向上させることができる。   According to the above construction method, the support work for supporting the retaining wall can be omitted, and the temporary facilities can be reduced. In addition, there are few restrictions on application conditions, and the present invention can be widely applied to various conditions. Furthermore, the degree of freedom of space inside the retaining wall can be improved, and workability is improved by carrying out excavation residual soil and carrying in / out of building construction materials through the opening inside the outer peripheral frame. be able to.

特開2010−1701号公報JP 2010-1701 A

しかしながら、上記した従来の地下構造物の施工方法では、先行構築する地下構造物の外周部分の幅寸法が小さいと、山留め壁に生じる水平変位を十分に抑制することができないという問題がある。一方、先行構築する地下構造物の外周部分の幅寸法が大きすぎると、外周部分の躯体の内側の開口面積が小さくなり、施工性が低下するという問題がある。したがって、上記した従来の地下構造物の施工方法では、先行構築する地下構造物の外周部分を山留め支保工として適正に機能させつつ施工性が確保されるよう、先行構築する地下構造物の外周部分の幅寸法を最適に設定する必要があるが、従来、前記幅寸法を決定する方法がなかった。   However, in the conventional underground structure construction method described above, there is a problem that the horizontal displacement generated in the retaining wall cannot be sufficiently suppressed if the width dimension of the outer peripheral portion of the underground structure to be constructed in advance is small. On the other hand, if the width dimension of the outer peripheral portion of the underground structure to be constructed in advance is too large, there is a problem that the opening area inside the outer casing of the outer peripheral portion is reduced and the workability is lowered. Therefore, in the conventional construction method of the underground structure described above, the outer peripheral portion of the underground structure to be constructed in advance so that the workability can be ensured while the outer peripheral portion of the underground structure to be constructed in advance is functioning properly as a retaining support. However, there is no conventional method for determining the width dimension.

本発明は、上記した従来の問題が考慮されたものであり、先行構築する地下構造物の外周部分の幅寸法を必要最小限に設定することができ、先行構築する地下構造物の外周部分を山留め支保工として適正に機能させつつ施工性を確保することができる地下構造物の施工方法を提供することを目的としている。   In the present invention, the above-described conventional problems are considered, and the width dimension of the outer peripheral portion of the underground structure to be constructed in advance can be set to the minimum necessary. It aims at providing the construction method of an underground structure which can ensure workability, making it function properly as a mountain retaining work.

本発明に係る地下構造物の施工方法は、掘削領域の外縁に沿って山留め壁を構築する工程と、前記山留め壁の内側を掘削して前記山留め壁の内面を露出させる工程と、地下構造物の外周部分の躯体を前記山留め壁の内面に沿って構築する工程と、前記山留め壁の内側を掘削して床付けを行う工程と、掘削された前記山留め壁の内側に、前記外周部分の躯体と一体に前記地下構造物の残りの躯体を構築する工程と、を備える地下構造物の施工方法において、前記地下構造物の躯体を全平面に亘って構築した場合の前記山留め壁の最大変位に対する前記地下構造物の外周部分の躯体を構築した場合の前記山留め壁の最大変位の比率と、前記地下構造物の外周部分の幅寸法と、の関係を示すデータを、想定される複数の地盤種別ごとにそれぞれ作成しておき、施工場所の地盤種別に応じた前記データに基づいて、前記比率が1となる前記幅寸法を読み取り、該幅寸法で前記地下構造物の外周部分の躯体を構築することを特徴としている。   The construction method of an underground structure according to the present invention includes a step of constructing a retaining wall along an outer edge of an excavation region, a step of excavating the inside of the retaining wall to expose an inner surface of the retaining wall, and an underground structure A step of constructing a frame of the outer peripheral portion along the inner surface of the retaining wall, a step of excavating the inside of the retaining wall and flooring, and a case of the outer peripheral portion inside the excavated retaining wall And a step of constructing the remaining frame of the underground structure integrally with the above, in a construction method of the underground structure, with respect to the maximum displacement of the retaining wall when the frame of the underground structure is constructed over the entire plane The data indicating the relationship between the ratio of the maximum displacement of the retaining wall and the width of the outer periphery of the underground structure when the outer structure of the outer structure of the underground structure is constructed are a plurality of assumed ground types. Create each In addition, based on the data according to the ground type of the construction site, the width dimension at which the ratio is 1 is read, and the frame of the outer peripheral portion of the underground structure is constructed with the width dimension. .

このような特徴により、先行構築される地下構造物の外周部分の幅寸法を必要最低限に抑えつつ、地下構造物の躯体を全平面に亘って構築した場合と同程度まで山留め壁の変位が抑制されるように、地下構造物の外周部分の幅寸法が決定される。   Due to such features, the retaining wall can be displaced to the same extent as the case where the frame of the underground structure is constructed over the entire plane, while keeping the width dimension of the outer peripheral part of the previously constructed underground structure to the minimum necessary. The width dimension of the outer peripheral portion of the underground structure is determined so as to be suppressed.

また、本発明に係る地下構造物の施工方法は、掘削領域の外縁に沿って山留め壁を構築する工程と、前記山留め壁の内側を掘削して前記山留め壁の内面を露出させる工程と、地下構造物の外周部分の躯体を前記山留め壁の内面に沿って構築する工程と、前記山留め壁の内側を掘削して床付けを行う工程と、掘削された前記山留め壁の内側に、前記外周部分の躯体と一体に前記地下構造物の残りの躯体を構築する工程と、を備える地下構造物の施工方法において、前記地下構造物の躯体を全平面に亘って構築した場合の前記山留め壁の最大変位に対する前記地下構造物の外周部分の躯体を構築した場合の前記山留め壁の最大変位の比率と、前記地下構造物の外周部分の幅寸法と、の関係を示すデータを、想定される複数の地盤種別ごとにそれぞれ作成しておき、施工場所の地盤種別に応じた前記データに基づいて、前記比率が、前記地下構造物の躯体を全平面に亘って構築した場合の前記山留め壁の最大変位に対する前記山留め壁の許容変位の比率となる前記幅寸法を読み取り、該幅寸法で前記地下構造物の外周部分の躯体を構築する方法であってもよい。   The construction method of the underground structure according to the present invention includes a step of constructing a retaining wall along the outer edge of the excavation region, a step of excavating the inside of the retaining wall to expose the inner surface of the retaining wall, A step of constructing a frame of the outer peripheral portion of the structure along the inner surface of the retaining wall, a step of excavating the floor of the retaining wall to perform flooring, and the outer peripheral portion on the inner side of the excavated retaining wall. A step of constructing the remaining structure of the underground structure integrally with the structure of the underground structure, and a method of constructing the underground structure including the maximum of the retaining wall when the structure of the underground structure is constructed over the entire plane. The data indicating the relationship between the ratio of the maximum displacement of the retaining wall and the width dimension of the outer peripheral portion of the underground structure when a frame of the outer peripheral portion of the underground structure with respect to the displacement is assumed. For each ground type Created and based on the data according to the ground type of the construction site, the ratio of the retaining wall with respect to the maximum displacement of the retaining wall when the underground structure is constructed over the entire plane The method may be a method of reading the width dimension that is a ratio of the allowable displacement and constructing a frame of the outer peripheral portion of the underground structure with the width dimension.

このような特徴により、先行構築される地下構造物の外周部分の幅寸法を必要最低限に抑えつつ、山留め壁の変位が所望の許容変位以下に抑制されるように、地下構造物の外周部分の幅寸法が決定される。   Due to such characteristics, the outer peripheral portion of the underground structure is controlled so that the displacement of the retaining wall is suppressed to a desired allowable displacement or less while suppressing the width dimension of the outer peripheral portion of the previously constructed underground structure to the minimum necessary. The width dimension is determined.

本発明に係る地下構造物の施工方法によれば、先行構築する地下構造物の外周部分の幅寸法を必要最小限に設定することができるため、先行構築する地下構造物の外周部分を山留め支保工として適正に機能させることができ、且つ、先行構築する地下構造物の外周部分の内側の開口面積が広くて施工性を確保することができる。   According to the construction method of an underground structure according to the present invention, since the width dimension of the outer peripheral portion of the underground structure to be constructed in advance can be set to the minimum necessary, It can function properly as a work, and the opening area inside the outer peripheral part of the underground structure to be constructed in advance can be widened to ensure workability.

本発明の実施の形態を説明するためのフローチャート図である。It is a flowchart figure for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための平面図である。It is a top view for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための平面図である。It is a top view for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating embodiment of this invention. (a)は建物地下掘削部の平面形状が正方形である場合における山留め壁最大変位比率[δmax/δmaxful]と外周スラブ幅比[W/LE]との関係を示すグラフであり、(b)は建物地下掘削部の平面形状が長方形である場合における長辺最大変位/等辺最大変位比率[δmaxL/δmaxE]と長辺/短辺比率[LL/LS]との関係を示すグラフである。(A) is a graph showing the relationship between the maximum displacement ratio [δmax / δmaxful] of the retaining wall and the width ratio [W / L E ] of the outer periphery when the planar shape of the underground excavation part is a square, (b) Is a graph showing the relationship between the long side maximum displacement / equal side maximum displacement ratio [δmaxL / δmaxE] and the long side / short side ratio [L L / L S ] when the planar shape of the building underground excavation is rectangular. . 地下構造物の外周部分の幅寸法Wの決定方法を表したフローチャート図である。It is a flowchart figure showing the determination method of the width dimension W of the outer peripheral part of an underground structure. 図11に示すグラフを作成する際に想定された地下構造物の施工方法を表した平面図である。It is a top view showing the construction method of the underground structure assumed when creating the graph shown in FIG. 図11に示すグラフを作成する際に想定された地下構造物の施工方法を表した断面図である。It is sectional drawing showing the construction method of the underground structure assumed when creating the graph shown in FIG. 図11に示すグラフを作成する際に想定された地盤の土質柱状図である。It is a soil soil columnar figure assumed when creating the graph shown in FIG. 図11に示すグラフを作成する際の解析モデルの模式図である。It is a schematic diagram of the analysis model at the time of creating the graph shown in FIG. 図11に示すグラフを作成する際に想定された各構造部材の諸元を示した表である。It is the table | surface which showed the item of each structural member assumed when producing the graph shown in FIG. 最大変位比率[δmax/δmaxful]と地下構造物の外周部分の幅寸法Wとの関係を示すグラフである。It is a graph which shows the relationship between the maximum displacement ratio [(delta) max / (delta) maxful] and the width dimension W of the outer peripheral part of an underground structure. 本発明の他の実施の形態を説明するためのフローチャート図である。It is a flowchart figure for demonstrating other embodiment of this invention. 本発明の他の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating other embodiment of this invention. 本発明の他の実施の形態を説明するための平面図である。It is a top view for demonstrating other embodiment of this invention. 本発明の他の実施の形態を説明するための平面図である。It is a top view for demonstrating other embodiment of this invention. 本発明の他の実施の形態を説明するための平面図である。It is a top view for demonstrating other embodiment of this invention. 本発明の他の実施の形態を説明するための平面図である。It is a top view for demonstrating other embodiment of this invention. 本発明の他の実施の形態を説明するための平面図である。It is a top view for demonstrating other embodiment of this invention.

以下、本発明に係る地下構造物の施工方法の実施の形態について、図面に基いて説明する。   Hereinafter, an embodiment of a construction method for an underground structure according to the present invention will be described with reference to the drawings.

[山留め工程]
まず、図1から図3に示すように、掘削領域Xの外縁に沿って山留め壁1を構築する山留め工程を行う。掘削領域Xは、後述する地下構造物10(図10に示す)を構築するために掘削する領域であり、地下構造物10の外形に沿った形状の領域に限らず、内側に少なくとも地下構造物10を配置させることが可能な大きさの領域である。なお、図2では、掘削領域Xが平面視矩形状を成しているが、掘削領域Xの形状は適宜変更可能であり、例えば平面視L字形状やその他の形状であってもよい。山留め壁1は、地下構造物10の外側に配設される壁体であり、その内面が上記した掘削領域Xの外縁に接するように構築される。この山留め壁1の構築方法としては、例えば地中連続壁工法やソイルセメント柱列壁工法、親杭横矢板工法等の公知の山留め工法を採用することが可能である。
[Mounting process]
First, as shown in FIGS. 1 to 3, a mountain retaining process for constructing a mountain retaining wall 1 along the outer edge of the excavation region X is performed. The excavation area X is an area excavated for constructing an underground structure 10 (shown in FIG. 10) described later, and is not limited to an area having a shape along the outer shape of the underground structure 10, but at least an underground structure on the inside. 10 is an area of a size that can be arranged. In FIG. 2, the excavation area X has a rectangular shape in plan view, but the shape of the excavation area X can be changed as appropriate, and may be, for example, an L shape in plan view or other shapes. The retaining wall 1 is a wall body arranged outside the underground structure 10 and is constructed such that its inner surface is in contact with the outer edge of the excavation region X described above. As a method for constructing the mountain retaining wall 1, a known mountain retaining method such as an underground continuous wall method, a soil cement column wall method, a parent pile sheet pile method, or the like can be employed.

[1次掘削工程]
次に、図1、図4に示すように、山留め壁1の内側を掘削する一次掘削工程を行う。この工程では、山留め壁1の上部の内面を露出させるとともに、後述する1階梁スラブ11の外周部11a(図5に示す)が施工できる程度の深さまで掘削する。
[Primary excavation process]
Next, as shown in FIGS. 1 and 4, a primary excavation process for excavating the inside of the retaining wall 1 is performed. In this step, the inner surface of the upper portion of the retaining wall 1 is exposed and excavated to such a depth that an outer peripheral portion 11a (shown in FIG. 5) of the first-story beam slab 11 described later can be constructed.

[1階梁スラブ外周先行構築工程]
次に、図1、図5、図6に示すように、1階梁スラブ11の外周部11aを山留め壁1の内面に沿って構築する1階梁スラブ外周先行構築工程を行う。上記した1階梁スラブ11の外周部11aは、鉄筋コンクリート造の地下構造物10の構造体であり、山留め壁1の内面に沿って平面視矩形枠(環状)に形成されている。詳しく説明すると、1階梁スラブ11の外周部11aは、地下構造物10の1階スラブ12の外周部分12aと、地下構造物10の外縁に沿って延設されて前記した1階スラブ12の外周部分12aを支持する1階外周梁13と、1階外周梁13に直交する方向に延設されて前記した1階スラブ12の外周部分12aを支持する1階内側梁14の外端部14aと、から構成されている。
[1st floor beam slab outer circumference advance construction process]
Next, as shown in FIGS. 1, 5, and 6, a first-story beam slab outer periphery advance construction process for constructing the outer peripheral portion 11 a of the first-story beam slab 11 along the inner surface of the retaining wall 1 is performed. The outer peripheral part 11 a of the first-story beam slab 11 described above is a structure of the underground structure 10 made of reinforced concrete, and is formed in a rectangular frame (annular shape) in plan view along the inner surface of the retaining wall 1. More specifically, the outer peripheral portion 11a of the first floor beam slab 11 is extended along the outer peripheral portion 12a of the first floor slab 12 of the underground structure 10 and the outer edge of the underground structure 10, and the first floor slab 12 described above. A first floor outer beam 13 that supports the outer peripheral portion 12a and an outer end portion 14a of the first floor inner beam 14 that extends in a direction orthogonal to the first floor outer beam 13 and supports the outer peripheral portion 12a of the first floor slab 12 described above. And is composed of.

1階梁スラブ11の外周部11aを構築する方法としては、例えば、まず、山留め壁1の内面に沿って1階梁スラブ11の外周部11aの図示せぬ梁スラブ型枠を建て込み、その梁スラブ型枠内に1階梁スラブ11の外周部11aの図示せぬ鉄筋材を配筋し、その後、上記した梁スラブ型枠内にコンクリートを打設する。そして、そのコンクリートの固化後に上記した梁スラブ型枠を脱型し、1階梁スラブ11の外周部11aを完成させる。これにより、先行して構築された1階梁スラブ11の外周部11aが支保工として機能し、この外周部11aによって山留め壁1が支持される。なお、1階梁スラブ11の外周部11aは、一次掘削工程前に地盤に打設された図示せぬ構真柱によって鉛直方向に支持してもよく、或いは、山留め壁1の内面と1階内側梁14の外端部14aの下面との間に斜めに架設された方杖によって鉛直方向に支持してもよく、或いは、山留め壁1の鋼材に突設されて1階外周梁13に定着されたスタッドコネクタによって鉛直方向に支持してもよい。   As a method of constructing the outer peripheral part 11a of the first-story beam slab 11, for example, first, a beam slab form (not shown) of the outer peripheral part 11a of the first-story beam slab 11 is built along the inner surface of the retaining wall 1, Reinforcing bars (not shown) of the outer peripheral portion 11a of the first floor beam slab 11 are placed in the beam slab formwork, and then concrete is placed in the beam slab formwork. Then, after the concrete is solidified, the above-described beam slab form is removed, and the outer peripheral portion 11a of the first-story beam slab 11 is completed. Thereby, the outer peripheral part 11a of the first-story beam slab 11 constructed in advance functions as a support work, and the retaining wall 1 is supported by the outer peripheral part 11a. In addition, the outer peripheral part 11a of the first-story beam slab 11 may be supported in the vertical direction by a not-shown construction pillar placed on the ground before the primary excavation process, or the inner surface of the retaining wall 1 and the first floor It may be supported in the vertical direction by a cane that is obliquely installed between the lower surface of the outer end portion 14 a of the inner beam 14, or is projected on the steel material of the retaining wall 1 and fixed to the first floor outer beam 13. You may support in the perpendicular direction by the made stud connector.

[n次以降掘削工程]
次に、図1、図7に示すように、山留め壁1の内側を掘削する2次以降の掘削工程を行う掘削工程を行う。この掘削工程では、山留め壁1の内側を段階的に掘削し、山留め壁1の内面を露出させていき、所定の深さまで掘削したところで床付けを行う。また、先行して構築された1階梁スラブ11の外周部11aの内側は開放された状態となっているので、この外周部11aの内側を通して掘削残土の搬出が行われる。
[Drilling process after n]
Next, as shown in FIGS. 1 and 7, an excavation process is performed in which a secondary excavation process for excavating the inside of the retaining wall 1 is performed. In this excavation process, the inside of the retaining wall 1 is excavated stepwise, the inner surface of the retaining wall 1 is exposed, and flooring is performed when the interior is excavated to a predetermined depth. Moreover, since the inner side of the outer peripheral part 11a of the first-story beam slab 11 constructed in advance is in an open state, the excavated residual soil is carried out through the inner side of the outer peripheral part 11a.

[基礎構築工程]
次に、図1、図8に示すように、山留め壁1の内側の床付け面2上に基礎15を構築する。基礎15は、例えば耐圧盤などの鉄筋コンクリート造の構造体であり、床付け面2全体の上に形成される。具体的に説明すると、床付け面2上に鉄筋材を配筋した後、コンクリートを打設して基礎15を形成する。このとき、基礎15の鉄筋材等の資材は、先行して構築された1階梁スラブ11の外周部11aの内側を通して山留め壁1内の床付け面2上に搬入する。
[Basic construction process]
Next, as shown in FIGS. 1 and 8, a foundation 15 is constructed on the flooring surface 2 inside the mountain retaining wall 1. The foundation 15 is a reinforced concrete structure such as a pressure platen, and is formed on the entire flooring surface 2. More specifically, after arranging reinforcing bars on the flooring surface 2, concrete is placed to form the foundation 15. At this time, materials such as reinforcing bars of the foundation 15 are carried on the flooring surface 2 in the retaining wall 1 through the inside of the outer peripheral portion 11a of the first-story beam slab 11 constructed in advance.

[地下躯体構築工程]
次に、図1、図9、図10に示すように、山留め壁1の内側に地下階の躯体12,16〜18を下階から順次構築していく。具体的に説明すると、まず、図9に示すように、上記した基礎15の上に、B2階の柱壁16とB1階の梁スラブ17とを構築する工程を行う。次に、図10に示すように、B1階の梁スラブ17の上にB1階の柱壁18と1階スラブ12の残りの部分(内側部分12b)と1階内側梁14の残りの部分(中央部分14b)とを、前記した1階梁スラブ11の外周部11aと一体に構築する工程を行う。このとき、地下階の躯体12,16〜18の鉄筋材や型枠等の資材、及びその施工に用いる機材は、先行して構築された1階梁スラブ11の外周部11aの内側を通して山留め壁1内に搬入する。
以上の工程により、地下構造物10が構築される。
[Underground building construction process]
Next, as shown in FIGS. 1, 9, and 10, the underground floors 12, 16 to 18 are sequentially constructed from the lower floor inside the retaining wall 1. More specifically, first, as shown in FIG. 9, a step of constructing the B2 floor column wall 16 and the B1 floor beam slab 17 on the foundation 15 is performed. Next, as shown in FIG. 10, on the B1 floor beam slab 17, the B1 floor column wall 18, the remaining portion of the first floor slab 12 (inner portion 12b) and the remaining portion of the first floor inner beam 14 ( A step of constructing the central portion 14b) integrally with the outer peripheral portion 11a of the first-story beam slab 11 is performed. At this time, materials such as reinforcing bars and forms for the frame bodies 12 and 16 to 18 in the basement floor, and equipment used for the construction are mountain retaining walls through the inner side of the outer peripheral portion 11a of the first floor beam slab 11 constructed in advance. Carry in 1.
The underground structure 10 is constructed by the above steps.

ところで、上記した1階梁スラブ11の外周部11aの幅寸法Wは、施工場所の地盤種別によって異なる算定方法で決定される。   By the way, the width dimension W of the outer peripheral part 11a of the above-mentioned first floor beam slab 11 is determined by a different calculation method depending on the ground type of the construction site.

まず、想定される施工場所の地盤種別ごとに、建物地下掘削部の平面形状が等辺長LEの正方形の場合の山留め壁1の最大変位比率[δmaxE/δmaxful]と外周スラブ幅比[W/LE]との関係を示したデータ1(図11(a)に示すグラフ)、及び建物地下掘削部の平面形状が短辺長LS=LE、長辺長LL≧LSの長方形の場合の山留め壁1の長辺最大変位/等辺最大変位比率[δmaxL/δmaxE]と長辺/短辺比率[LL/LS]との関係を示したデータ2(図11(b)に示すグラフ)を予め作成しておく。前記した最大変位比率[δmaxE/δmaxful]は、1階梁スラブ11の躯体を全平面(等辺長LEの正方形)に亘って構築した場合の山留め壁1の最大変位δmaxfulに対する1階梁スラブ11の外周部11aの躯体を構築した場合の山留め壁1の最大変位δmaxEの比率である。外周スラブ幅比[W/LE]は、1階梁スラブ11の等辺長LEに対する外周部11aの幅寸法Wの比率である。長辺最大変位/等辺最大変位比率[δmaxL/δmaxE]は、1階梁スラブ11の外周部11aの躯体を構築した場合であって、建物地下掘削部の平面形状が等辺長LEの正方形である場合の山留め壁1の等辺最大変位δmaxEに対する、建物地下掘削部の平面形状が短辺長LS=LE、長辺長LL≧LSの長方形の場合の山留め壁1の長辺最大変位δmaxLの比率である。長辺/短辺比率[LL/LS]は、建物地下掘削部の平面形状が短辺長LS=LE、長辺長LL≧LSの短辺長LSに対する長辺長LLの比率である。 First, for each soil type of construction where it is assumed, the maximum displacement ratio [δmaxE / δmaxful] and the outer peripheral slab width ratio of earth retaining wall 1 when the planar shape of a building underground excavation is square equilateral length L E [W / L E ] and the data 1 (graph shown in FIG. 11A) and the plan shape of the building underground excavation are rectangles having a short side length L S = L E and a long side length L L ≧ L S Data 2 showing the relationship between the long side maximum displacement / equal side maximum displacement ratio [δmaxL / δmaxE] and the long side / short side ratio [L L / L S ] of the retaining wall 1 in FIG. Graph) shown in FIG. Maximum displacement ratio [δmaxE / δmaxful] is 1 Kaihari precursor whole plane 1 Kaihari slab to the maximum displacement Derutamaxful the earth retaining wall 1 when constructed over the (square equilateral length L E) 11 of the slab 11 and the This is the ratio of the maximum displacement δmaxE of the retaining wall 1 when the casing of the outer peripheral portion 11a is constructed. Periphery slab width ratio [W / L E] is the ratio of the width W of the outer peripheral portion 11a with respect equilateral length L E of 1 Kaihari slab 11. Long side maximum displacement / equilateral maximum displacement ratio [δmaxL / δmaxE] is 1 in a case where to construct a skeleton of the outer peripheral portion 11a of the Kaihari slab 11, the planar shape of a building underground excavation is a square equilateral length L E The maximum long side of the retaining wall 1 when the plan shape of the underground excavation part is a rectangle with a short side length L S = L E and a long side length L L ≧ L S with respect to the maximum equal displacement δmaxE of the retaining wall 1 in some cases This is the ratio of the displacement ΔmaxL. The long side / short side ratio [L L / L S ] is the long side length with respect to the short side length L S when the plan shape of the building underground excavation part is short side length L S = L E and long side length L L ≧ L S L is the ratio of L.

続いて、図12に示すように、1階梁スラブ11の躯体を全平面に亘って構築した場合と同程度の変位抑制効果を、先行構築される1階梁スラブ11の外周部11aに期待するか否かを選択するステップを行う。そして、前記変位抑制効果を期待する場合には、図11に示すデータのうち、施工場所の地盤種別、短辺長LS、長辺/短辺比率[LL/LS]に応じたデータ1若しくはデータ2に基づいて、長辺最大変位比率[δmaxL/δmaxful]=[δmaxL/δmaxE]×[δmaxE/δmaxful]が1となる外周スラブ幅比[W/LE]を読み取る。そして、その読み取った外周スラブ幅比[W/LE]に短辺長LS=LEを乗じた幅寸法Wで1階梁スラブ11の外周部11aの躯体を構築する。 Subsequently, as shown in FIG. 12, the same level of displacement suppression effect as that of the case where the frame of the first-story beam slab 11 is constructed over the entire plane is expected in the outer peripheral portion 11a of the first-story beam slab 11 constructed in advance. The step of selecting whether or not to perform is performed. When the displacement suppression effect is expected, data corresponding to the ground type of the construction site, the short side length L S , and the long side / short side ratio [L L / L S ] among the data shown in FIG. Based on 1 or data 2, the outer peripheral slab width ratio [W / L E ] at which the long side maximum displacement ratio [δmaxL / δmaxful] = [δmaxL / δmaxE] × [δmaxE / δmaxful] is 1 is read. Then, a frame of the outer peripheral portion 11a of the first-story beam slab 11 is constructed with a width dimension W obtained by multiplying the read outer peripheral slab width ratio [W / L E ] by the short side length L S = L E.

一方、1階梁スラブ11の躯体を全平面に亘って構築した場合と同程度の変位抑制効果を期待しない場合には、1階梁スラブ11の外周部11aの幅寸法Wを施工上許容される寸法に設定する。この場合、まず、図12に示すように、山留め壁1の許容変位δalを設定する。また、1階梁スラブ11の躯体を全平面に亘って構築した場合の最大変位δmaxfulを計算する。この最大変位δmaxfulの計算方法としては、梁・ばねモデル、板・ばねモデル、有限要素法や、その他の経験的手法などを用いることができる。   On the other hand, when the displacement suppression effect of the same level as the case where the frame of the first floor beam slab 11 is constructed over the entire plane is not expected, the width dimension W of the outer peripheral portion 11a of the first floor beam slab 11 is allowed in construction. Set to the desired dimension. In this case, first, as shown in FIG. 12, an allowable displacement δal of the retaining wall 1 is set. Further, the maximum displacement δmaxful when the frame of the first-story beam slab 11 is constructed over the entire plane is calculated. As a calculation method of the maximum displacement δmaxful, a beam / spring model, a plate / spring model, a finite element method, and other empirical methods can be used.

続いて、図12に示すように、上記した許容変位δalが上記した最大変位δmaxful以上か否かを選択するステップを行う。そして、許容変位δalが最大変位δmaxful以上の場合には、図11に示すデータのうち、施工場所の地盤種別、短辺長LS、長辺/短辺比率[LL/LS]に応じたデータ1若しくはデータ2に基づいて、長辺最大変位比率[δmaxL/δmaxful]=[δmaxL/δmaxE]×[δmaxE/δmaxful]が許容変位比率[δal/δmaxful]となる外周スラブ幅比[W/LE]を読み取る。そして、その読み取った外周スラブ幅比[W/LE]に短辺長LS=LEを乗じた幅寸法Wで1階梁スラブ11の外周部11aの躯体を構築する。なお、前記した許容変位比率[δal/δmaxful]は、1階梁スラブ11の躯体を全平面に亘って構築した場合の山留め壁1の最大変位δmaxfulに対する前記許容変位δalの比率である。 Subsequently, as shown in FIG. 12, a step of selecting whether or not the allowable displacement δal is equal to or larger than the maximum displacement δmaxful is performed. When the allowable displacement δal is equal to or greater than the maximum displacement δmaxful, the data shown in FIG. 11 corresponds to the ground type of the construction site, the short side length L S , and the long side / short side ratio [L L / L S ]. Based on the data 1 or data 2, the longest side maximum displacement ratio [δmaxL / δmaxful] = [δmaxL / δmaxE] × [δmaxE / δmaxful] becomes the permissible displacement ratio [δal / δmaxful] [W / Read [L E ]. Then, a frame of the outer peripheral portion 11a of the first-story beam slab 11 is constructed with a width dimension W obtained by multiplying the read outer peripheral slab width ratio [W / L E ] by the short side length L S = L E. The allowable displacement ratio [δal / δmaxful] is a ratio of the allowable displacement δal to the maximum displacement δmaxful of the retaining wall 1 when the frame of the first-story beam slab 11 is constructed over the entire plane.

また、許容変位δalが最大変位δmaxfulよりも小さい場合には、要求される変位抑制効果を1階梁スラブ11の外周部11aだけで発揮することができないため、1階梁スラブ11の外周部11aを山留め壁1の支保工とする工法を採用するか否かを検討する。そして、前記工法を採用する場合には、山留め壁1の変位を抑制する補助工法を施した上で、上述した1階梁スラブ11の躯体を全平面に亘って構築した場合と同程度の変位抑制効果を1階梁スラブ11の外周部11aに期待するか否かを選択するステップに戻って再検討を行う。なお、上記した補助工法としては、例えば後述する図24に示すような切梁31や腹起し30を山留め壁1の内側に設置したり、或いは、後述する図25に示すような土留めアンカー32を地盤に設置したり、或いは地盤に公知の地盤改良工法を行うことなどが挙げられる。   Further, when the allowable displacement δal is smaller than the maximum displacement δmaxful, the required displacement suppressing effect cannot be exhibited only by the outer peripheral portion 11a of the first floor beam slab 11, and therefore the outer peripheral portion 11a of the first floor beam slab 11 is. Whether or not to adopt a method for supporting the retaining wall 1 is considered. And when employ | adopting the said construction method, after giving the auxiliary construction method which suppresses the displacement of the retaining wall 1, it is a displacement comparable as the case where the frame of the 1st floor beam slab 11 mentioned above is constructed | assembled over all planes. Returning to the step of selecting whether or not the suppression effect is expected on the outer peripheral portion 11a of the first floor beam slab 11, the review is performed. In addition, as the above-mentioned auxiliary construction method, for example, a cut beam 31 and an erection 30 as shown in FIG. 24 to be described later are installed inside the retaining wall 1 or a retaining anchor as shown in FIG. 25 to be described later. 32 is installed on the ground, or a known ground improvement method is performed on the ground.

また、上記した図11に示すデータの作成方法について説明する。
まず、図11に示すデータを作成する上で想定する地下構造物は、平面寸法が8m×8m(8m×8mグリッド1スパン×1スパン)から80m×80m(8m×8mグリッド10スパン×10スパン)の正方形、又は短辺長が24 m(8mグリッド3スパン)で長辺長が32m(8mグリッド4スパン)から80m(8mグリッド10スパン)の長方形であって、基礎構造がべた基礎である地下2階の鉄筋コンクリート造の構造物であり、その下端深度(掘削深度)はGL(グランドライン)-12mとする。構造物の平面寸法の一例として、24m×40m(8m×8mグリッド短辺方向3スパン、長辺方向5スパン)のものを図13に示す。また、想定する山留め壁はソイルセメント柱列壁(山留め芯材:H-500×200×10×16@600)とし、その下端深度はGL-20mとする。
Also, a method for creating the data shown in FIG. 11 will be described.
First, the underground structure assumed when creating the data shown in Fig. 11 is from 8m x 8m (8m x 8m grid 1 span x 1 span) to 80m x 80m (8m x 8m grid 10 span x 10 span) ) Square or a rectangle with a short side length of 24 m (8 m grid, 3 spans) and a long side length of 32 m (8 m grid, 4 spans) to 80 m (8 m grid, 10 spans), and the foundation structure is a solid foundation It is a reinforced concrete structure on the 2nd basement floor, and its lower end depth (excavation depth) is GL (ground line) -12m. As an example of the planar dimensions of the structure, a 24 m × 40 m (8 m × 8 m grid short side direction 3 span, long side direction 5 span) is shown in FIG. The assumed retaining wall is a soil cement column wall (mounting core: H-500 × 200 × 10 × 16 @ 600), and the lower end depth is GL-20m.

また、想定する施工手順としては、図14に示すように、想定する山留め壁101を施工した後、(1)GL-2mまで一次掘削を行う。ただし、飽和砂質土層の場合にはGL-3mまで水位低下させておく。(2)次に、GL-2mまでの外壁(外周梁)113と1階床スラブ(上面レベル:GL±0m)の外周部112の躯体を施工する。(3)次に、GL-6mまで二次掘削を行う。ただし、飽和砂質土層の場合にはGL-7mまで水位低下させておく。(4)次に、GL-5mまでの外壁(外周梁)123と地下1階床スラブ(上面レベル:GL-4m)の外周部122の躯体を施工する。(5)次に、GL-12mまで三次掘削を行って床付けする。ただし、飽和砂質土層の場合にはGL-13mまで水位低下させておく。   Moreover, as an assumed construction procedure, as shown in FIG. 14, after constructing the assumed retaining wall 101, (1) primary excavation to GL-2m is performed. However, in the case of a saturated sandy soil layer, the water level is lowered to GL-3m. (2) Next, the outer wall (outer peripheral beam) 113 up to GL-2m and the outer periphery 112 of the first floor slab (upper surface level: GL ± 0m) are constructed. (3) Next, secondary excavation is performed up to GL-6m. However, in the case of a saturated sandy soil layer, the water level is lowered to GL-7m. (4) Next, the outer wall (outer peripheral beam) 123 up to GL-5m and the outer periphery 122 of the first basement floor slab (upper surface level: GL-4m) are constructed. (5) Next, perform the third excavation to GL-12m and floor it. However, in the case of a saturated sandy soil layer, the water level is lowered to GL-13m.

また、想定される地盤種別としては、硬質地盤及び軟弱地盤の2つの地盤種別をモデルとする。本モデル地盤の硬質地盤には洪積台地や沖積平野のうち生成年代が古くて地下水位が低いものが含まれ、軟弱地盤には沖積平野のうち生成年代が新しくて地下水位が高いものや、埋立地が含まれる。   As assumed ground types, two ground types, a hard ground and a soft ground, are used as models. The hard ground of this model ground includes those with old age and low groundwater level among the Hirosaki Plateau and alluvial plains, and soft ground with new ground age and high groundwater level among alluvial plains, Includes landfill.

数値解析は、図16に示すように、梁・ばねモデルを三次元に拡張した板・ばねモデルにより行う。なお、この解析モデルでは、短辺及び長辺両方向の対称面で切断した1/4の部分について、図14に示す床スラブの外周部112,122、外壁113,123及び山留め壁101(ソイルセメント壁)を弾性板要素で、山留め芯材を弾性梁要素で、地盤をばね要素でモデル化する。また、地盤ばねは、圧縮側のみに作用する線形弾性ばね(ばね力の上限値は設定しない)を山留め壁101の両面(山留め芯材の両側)に鉛直方向及び水平方向に各々1mピッチで設置する。なお、柱、梁及び内壁は構造要素として考慮しない。また、構造部材の諸元は図17に示すとおりである。また、境界条件は対称面上が水平及び鉛直の両方向の回転拘束ローラーで、下端(GL-20m)が水平2方向ピンローラーである。   As shown in FIG. 16, the numerical analysis is performed using a plate / spring model in which the beam / spring model is expanded three-dimensionally. In this analysis model, the quarter slab cut along the symmetry planes in both the short side and the long side directions, the outer peripheral portions 112 and 122 of the floor slab, the outer walls 113 and 123, and the mountain retaining wall 101 (soil cement 101) shown in FIG. The wall) is modeled with an elastic plate element, the retaining core is modeled with an elastic beam element, and the ground is modeled with a spring element. For the ground spring, linear elastic springs (no upper limit of spring force) acting only on the compression side are installed on both sides of the retaining wall 101 (on both sides of the retaining core) at 1 m pitches in the vertical and horizontal directions. To do. Columns, beams and inner walls are not considered as structural elements. The specifications of the structural members are as shown in FIG. In addition, the boundary condition is a rotation restraint roller in both horizontal and vertical directions on the symmetry plane, and a lower end (GL-20m) is a horizontal bi-directional pin roller.

また、本解析は、施工手順に対応して、掘削部分の地盤ばねを除去して山留め壁101の弾性板要素に側圧を作用させる手順と構造要素を付加する手順を繰り返すことにより行う。側圧は上載荷重として20kN/m2を考慮し、側圧係数法により算定する。山留め壁101の根入れ部分については掘削側の平衡側圧及び水圧の低下を考慮する。側圧の平面分布は各辺一様とする。 Further, this analysis is performed by repeating the procedure of removing the ground spring at the excavation portion and applying a side pressure to the elastic plate element of the retaining wall 101 and the procedure of adding the structural element corresponding to the construction procedure. The lateral pressure is calculated by the lateral pressure coefficient method, considering 20kN / m 2 as an overload. Considering the decrease of the equilibrium side pressure and the water pressure on the excavation side for the root portion of the retaining wall 101. The plane pressure distribution is uniform on each side.

そして、上記した想定地盤種別の各々に対して躯体外周部111(床スラブの外周部112,122)の幅寸法Wを変化させた解析を行い、平面寸法24m×40mの場合について図18に示すように、地下構造物の躯体を全平面に亘って構築した場合の山留め壁101の最大変位δmaxfulに対する、二次掘削時及び三次掘削時における山留め壁101の最大変位δmaxの比率[δmax/δmaxful]をプロットする。   Then, for each of the above assumed ground types, analysis is performed by changing the width dimension W of the outer periphery 111 of the casing (the outer periphery 112, 122 of the floor slab), and FIG. 18 shows a case where the planar dimension is 24 m × 40 m. Thus, the ratio [δmax / δmaxful] of the maximum displacement δmax of the retaining wall 101 during the secondary excavation and the tertiary excavation with respect to the maximum displacement δmaxful of the retaining wall 101 when the frame of the underground structure is constructed over the entire plane Plot.

平面形状が正方形の場合について等辺長LEを8mから80mまで変化させた一連の解析を行い、結果の回帰分析を行って、山留め壁101の最大変位比率[δmaxE/δmaxful]と等辺長LEに対する躯体外周部111の幅寸法Wの比[W/LE]の関係を、地盤種別及び等辺長LEに対して示したものが図11(a)のデータ1である。 A series of analyzes in which the equilateral length L E is changed from 8 m to 80 m when the planar shape is a square is performed, and a regression analysis of the result is performed to determine the maximum displacement ratio [δmaxE / δmaxful] of the retaining wall 101 and the equilateral length L E. that the relationship between the ratio of the width dimension W of the building frame peripheral portion 111 [W / L E], indicated for soil type and equilateral length L E for is data 1 in FIG. 11 (a).

さらに、平面形状が長方形の場合について、短辺長LSを24mに固定し、長辺長LLを24mから80mまで変化させた一連の解析を行い、結果の回帰分析を行って、正方形平面における山留め壁101の最大変位δmaxEに対して長辺長LLを増加させた場合の最大変位δmaxLの比率[δmaxL/δmaxE]と短辺長LSに対する長辺長LLの比率[LL/LS]との関係を、地盤種別及び短辺長LSに対する躯体外周部111の幅寸法Wの比[W/LS]に対して示したものが図11(b)のデータ2である。 Furthermore, when the planar shape is rectangular, the short side length L S is fixed at 24 m, the long side length L L is changed from 24 m to 80 m, a series of analyzes are performed, and the regression analysis of the results is performed. maximum displacement DerutamaxL ratio [δmaxL / δmaxE] with short side length L ratio of long side length L L for S in the case of increasing the long side length L L with respect to the maximum displacement DerutamaxE the earth retaining wall 101 in the [L L / the relationship between L S], is a data 2 shown in FIG. 11 (b) shows relative ratio of the width dimension W of the skeleton outer peripheral portion 111 for soil type and short side length L S [W / L S] .

図11(a)のデータ1と図11(b)のデータ2を組み合わせて用いることにより、任意の矩形平面における山留め壁の長辺最大変位比率[δmaxL/δmaxful]を求めることができる。すなわち、図11(a)のデータ1から地盤種別及び等辺長LEに対して山留め壁の等辺最大変位比率[δmaxE/δmaxful]を読み取り、図11(b)のデータ2から地盤種別及び外周スラブ幅比[W/LS]に対して山留め壁の長辺最大変位/等辺最大変位比率[δmaxL/δmaxE]を読み取り、これらを乗じることにより長辺最大変位比率[δmaxL/δmaxful]の値が得られる。
なお、躯体外周部の幅寸法Wが短辺・長辺両方向で同じ場合には短辺方向の山留め壁の最大変位δmaxSは長辺方向の山留め壁の最大変位δmaxLよりも小さいため、長辺方向についてのみ検討を行えばよい。
By using a combination of data 1 in FIG. 11A and data 2 in FIG. 11B, the long-side maximum displacement ratio [δmaxL / δmaxful] of the retaining wall in an arbitrary rectangular plane can be obtained. That reads 11 Retaining wall equilateral maximum displacement ratio to soil type and equilateral length L E from the data 1 (a) [δmaxE / δmaxful] , soil type and the outer peripheral slabs from the data 2 shown in FIG. 11 (b) The long side maximum displacement / equal side maximum displacement ratio [δmaxL / δmaxE] is read from the width ratio [W / L S ] and multiplied to obtain the value of the long side maximum displacement ratio [δmaxL / δmaxful]. It is done.
When the width W of the outer periphery of the frame is the same in both the short and long sides, the maximum displacement δmaxS of the retaining wall in the short side direction is smaller than the maximum displacement δmaxL of the retaining wall in the long side direction. Only need to be considered.

図18において掘削深さの異なる二次掘削と三次掘削における値がほぼ一致していることから、掘削深度が変化しても図18における結果は変わらないものと見なすことができる。図12は図18の二次掘削と三次掘削における値の平均値から求めた分析結果であり、掘削深度によらず汎用的に適用可能なものであると言える。   In FIG. 18, since the values in the secondary excavation and the tertiary excavation having different excavation depths are almost the same, even if the excavation depth is changed, it can be considered that the result in FIG. 18 does not change. FIG. 12 is an analysis result obtained from the average value of the secondary excavation and the tertiary excavation in FIG. 18, and can be said to be applicable for general purposes regardless of the excavation depth.

上記した地下構造物10の施工方法によれば、施工場所の地盤種別に応じたデータ(図11に示す。)に基づいて最大変位比率[δmaxL/δmaxful]が1となる幅寸法Wを読み取ることで、先行構築される1階梁スラブ11の外周部11aの幅寸法Wを必要最低限に抑えつつ、1階梁スラブ11の躯体を全平面に亘って構築した場合と同程度まで山留め壁1の変位が抑制されるように、1階梁スラブ11の外周部11aの幅寸法Wが決定される。   According to the construction method of the underground structure 10 described above, the width dimension W where the maximum displacement ratio [δmaxL / δmaxful] is 1 is read based on the data (shown in FIG. 11) according to the ground type of the construction site. Thus, the retaining wall 1 to the same extent as when the frame of the first-story beam slab 11 is constructed over the entire plane while suppressing the width dimension W of the outer peripheral portion 11a of the first-story beam slab 11 to be constructed to the minimum necessary. The width dimension W of the outer peripheral portion 11a of the first floor beam slab 11 is determined so that the displacement of the first floor beam slab 11 is suppressed.

また、施工場所の地盤種別に応じたデータ(図11に示す。)に基づいて最大変位比率[δmaxL/δmaxful]が許容変位比率[δal/δmaxful]となる幅寸法W を読み取ることで、1階梁スラブ11の外周部11aの幅寸法Wを必要最低限に抑えつつ、山留め壁1の変位が所望の許容変位δal以下に抑制されるように、1階梁スラブ11の外周部11aの幅寸法Wが決定される。   Further, by reading the width dimension W where the maximum displacement ratio [δmaxL / δmaxful] becomes the allowable displacement ratio [δal / δmaxful] based on the data according to the ground type of the construction site (shown in FIG. 11), the first floor The width dimension of the outer peripheral part 11a of the first floor beam slab 11 is controlled so that the displacement of the retaining wall 1 is suppressed to a desired allowable displacement δal or less while the width dimension W of the outer peripheral part 11a of the beam slab 11 is minimized. W is determined.

以上のように、先行構築する1階梁スラブ11の外周部11aの幅寸法Wを必要最小限に設定することができるため、先行構築する1階梁スラブ11の外周部11aを山留め支保工として適正に機能させることができ、且つ、先行構築する1階梁スラブ11の外周部11aの内側の開口面積が広くて施工性を確保することができる。   As described above, since the width dimension W of the outer peripheral portion 11a of the first floor beam slab 11 to be constructed in advance can be set to the minimum necessary, the outer peripheral portion 11a of the first floor beam slab 11 to be constructed in advance is used as a mountain support work. It can be made to function properly, and the opening area inside the outer peripheral part 11a of the first-story beam slab 11 to be constructed in advance can be widened to ensure workability.

以上、本発明に係る地下構造物の施工方法の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記した実施の形態では、1階梁スラブ11の外周部11aだけを先行構築しているが、本発明は、地盤状況や掘削規模に応じて途中地下階の梁スラブの外周部についても順次先行構築してもよい。詳しく説明すると、図19に示すように、1次掘削工程の後、1階梁スラブ11の外周部11aを先行構築する1階梁スラブ外周先行構築工程を行い、その後、2次掘削工程を行う。この2次掘削工程では、1階梁スラブ11の外周部11aの下方の山留め壁1の内面を露出させるとともに、B1階梁スラブ17の外周部17aが施工できる程度の深さまで掘削する。その後、上述した1階梁スラブ11の外周部11aと同様に、B1階梁スラブ17の外周部17aを山留め壁1の内面に沿って構築するB1階梁スラブ外周先行構築工程を行う。そして、B1階梁スラブ17の外周部17aの完了後に、図19、図20に示すように、3次掘削工程を行う。これにより、山留め壁1の倒れ(水平変位)をより確実に抑えることができる。なお、地下構造物10の地下階が地下3階以上である場合には、上述した掘削工程と地下階の梁スラブ外周先行構築工程とを交互に繰り返し行いながら掘削を進める。
As mentioned above, although embodiment of the construction method of the underground structure which concerns on this invention was described, this invention is not limited to above-described embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the above-described embodiment, only the outer peripheral portion 11a of the first floor beam slab 11 is preliminarily constructed. However, the present invention also applies to the outer peripheral portion of the beam slab on the intermediate underground floor according to the ground condition and the excavation scale. You may build ahead sequentially. More specifically, as shown in FIG. 19, after the primary excavation process, the first-stage beam slab outer periphery advance construction process for constructing the outer peripheral portion 11a of the first-floor beam slab 11 is performed, and then the second excavation process is performed. . In this secondary excavation process, the inner surface of the retaining wall 1 below the outer peripheral portion 11a of the first-story beam slab 11 is exposed and excavated to such a depth that the outer peripheral portion 17a of the B1 floor-beam slab 17 can be constructed. Then, the B1 floor beam slab outer periphery advance construction | assembly process which builds the outer peripheral part 17a of the B1 floor beam slab 17 along the inner surface of the retaining wall 1 is performed similarly to the outer periphery part 11a of the 1st floor beam slab 11 mentioned above. Then, after the outer peripheral portion 17a of the B1 floor beam slab 17 is completed, a tertiary excavation process is performed as shown in FIGS. Thereby, the fall (horizontal displacement) of the mountain retaining wall 1 can be suppressed more reliably. In addition, when the underground floor of the underground structure 10 is three or more underground floors, excavation is advanced while the above excavation process and the beam slab outer periphery advance construction process of the underground floor are alternately repeated.

また、上記した実施の形態では、先行構築される1階梁スラブ11の外周部11aが、1階梁スラブ11の全周に亘って延設されて環状を成しているが、本発明は、図21に示すように、地下構造物10の外周部分のうちの一部分の躯体を先行構築してもよい。例えば、図21(a)に示すように、地下構造物10の外周部分のうち、1面側の部分を形成せずに残りの部分を先行構築し、平面視略コ字形状の外周部11bを形成してもよい。また、図21(b)に示すように、地下構造物10の外周部分のうち、隣り合う2面側の部分を形成せずに残りの部分を先行構築し、平面視略L字形状の外周部11cを形成してもよい。また、図21(c)に示すように、地下構造物10の外周部分のうち、対向する2面側の部分を形成せずに残りの部分を先行構築し、平面視において平行するI字形状の外周部11dを形成してもよい。また、図21(d)に示すように、地下構造物10の外周部分のうち、1面側の部分だけを先行構築し、平面視I字形状の外周部11eを形成してもよい。さらに、図22の(a)〜(c)に示すように、地下構造物10の平面視形状が矩形以外である場合には、その地下構造物10の平面形状に応じて様々な平面視形状の外周部11f〜11hを先行構築することが可能である。   Further, in the above-described embodiment, the outer peripheral portion 11a of the first floor beam slab 11 constructed in advance is extended over the entire circumference of the first floor beam slab 11 to form an annular shape. As shown in FIG. 21, a part of the outer periphery of the underground structure 10 may be preliminarily constructed. For example, as shown in FIG. 21A, the outer peripheral portion of the underground structure 10 is preliminarily constructed without forming a portion on one side, and the outer peripheral portion 11b having a substantially U-shape in plan view. May be formed. Further, as shown in FIG. 21 (b), among the outer peripheral portions of the underground structure 10, the remaining portions are constructed in advance without forming the adjacent two surface side portions, and the outer periphery is substantially L-shaped in plan view. The part 11c may be formed. Moreover, as shown in FIG.21 (c), the remaining part is formed ahead of the outer peripheral part of the underground structure 10, without forming the part of 2 surfaces which oppose, and it is I character shape which is parallel in planar view The outer peripheral portion 11d may be formed. Moreover, as shown in FIG.21 (d), only the part of the 1st surface side among the outer peripheral parts of the underground structure 10 may be constructed | assembled in advance, and the outer peripheral part 11e of planar view I shape may be formed. Furthermore, as shown to (a)-(c) of FIG. 22, when the planar view shape of the underground structure 10 is other than a rectangle, according to the planar shape of the underground structure 10, various planar view shapes The outer peripheral portions 11f to 11h can be constructed in advance.

また、上記した実施の形態では、先行構築された1階梁スラブ11の外周部11aの内側に何も無く完全に開放された状態になっているが、本発明は、図23に示すように、地下構造物10の外周部分の躯体(1階梁スラブ11の外周部11a)の内側に中間スラブ11iを架設させてもよい。
また、上記した実施の形態では、先行構築された1階梁スラブ11の外周部11aだけで山留め壁1を支持しているが、本発明は、地下構造物10の外周部分の躯体(1階梁スラブ11の外周部11a)と仮設の支保工部材を併用して山留め壁1を支持することも可能である。例えば、図24に示すように、先行構築された1階梁スラブ11の外周部11dと、腹起し30及び切梁31からなる支保工と、を併用することも可能であり、或いは、図25に示すように、先行構築された1階梁スラブ11の外周部11bと、土留めアンカー32と、を併用することも可能である。
Further, in the above-described embodiment, there is nothing inside the outer peripheral portion 11a of the first-stage beam slab 11 constructed in advance, and the state is completely opened. However, the present invention is as shown in FIG. The intermediate slab 11i may be installed inside the frame (the outer peripheral portion 11a of the first floor beam slab 11) in the outer peripheral portion of the underground structure 10.
Moreover, in the above-described embodiment, the retaining wall 1 is supported only by the outer peripheral portion 11a of the first-story beam slab 11 constructed in advance, but the present invention is a frame (first floor) of the outer peripheral portion of the underground structure 10 It is also possible to support the retaining wall 1 by using the outer peripheral portion 11a) of the beam slab 11 in combination with a temporary support member. For example, as shown in FIG. 24, it is possible to use both the outer peripheral portion 11d of the first-stage beam slab 11 constructed in advance and the support work composed of the erection 30 and the cut beam 31, or As shown in FIG. 25, it is also possible to use the outer peripheral portion 11b of the first floor beam slab 11 constructed in advance and the earth retaining anchor 32 in combination.

また、上記した実施の形態では、1次掘削工程の後、1階梁スラブ11の外周部11aを構築する工程を行っているが、本発明は、1次掘削工程の後に構築する躯体は1階梁スラブ11の外周部11aに限定されず、地下構造物10の外周部分の躯体であればよい。例えば、1階梁の外周部だけを構築してもよく、或いは、地下構造物10の外周部分に位置する地下1階壁や地下1階柱等を構築してもよい。   In the above-described embodiment, the step of constructing the outer peripheral portion 11a of the first-story beam slab 11 is performed after the primary excavation step. However, in the present invention, the casing constructed after the primary excavation step is 1 It is not limited to the outer peripheral part 11 a of the floor beam slab 11, and may be a frame of the outer peripheral part of the underground structure 10. For example, only the outer peripheral part of the first-floor beam may be constructed, or the underground first-floor wall, the underground first-floor pillar, and the like located in the outer peripheral part of the underground structure 10 may be constructed.

また、上記した実施の形態では、鉄筋コンクリート造の1階梁スラブ11の外周部11aを現場打ち工法で先行構築しているが、本発明は、これに限定されず、他の工法で1階梁スラブ11の外周部11aを先行構築してもよく、或いは、他の構造の1階梁スラブ11の外周部11aを先行構築することも可能である。例えば、1階スラブ12、1階外周梁13及び1階内側梁14のうちの何れか1つがプレキャストコンクリート(PC)からなり、PC部材を組み立てるPC工法や、PC部材を組み立てた後にコンクリート打設を行うハーフPC工法によって1階梁スラブ11の外周部11aを先行構築することも可能である。或いは、1階スラブ12がデッキスラブ構造のスラブであってもよく、或いは、1階外周梁13や1階内側梁14が鉄骨造の梁であってもよい。   In the above-described embodiment, the outer peripheral portion 11a of the reinforced concrete first-story beam slab 11 is preliminarily constructed by the in-situ construction method. However, the present invention is not limited to this, and the first-story beam is constructed by other construction methods. The outer peripheral part 11a of the slab 11 may be constructed in advance, or the outer peripheral part 11a of the first-story beam slab 11 having another structure may be constructed in advance. For example, any one of the first floor slab 12, the first floor outer beam 13 and the first floor inner beam 14 is made of precast concrete (PC), and the PC method for assembling the PC member or the concrete placement after the PC member is assembled. It is also possible to pre-construct the outer peripheral portion 11a of the first-story beam slab 11 by the half PC method for performing the above. Alternatively, the first-floor slab 12 may be a slab having a deck slab structure, or the first-floor outer peripheral beam 13 and the first-floor inner beam 14 may be steel frames.

その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。   In addition, in the range which does not deviate from the main point of this invention, it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.

1 山留め壁
10 地下構造物
11a 外周部(外周部分の躯体)
1 mountain retaining wall 10 underground structure 11a outer peripheral part (frame of outer peripheral part)

Claims (2)

掘削領域の外縁に沿って山留め壁を構築する工程と、
前記山留め壁の内側を掘削して前記山留め壁の内面を露出させる工程と、
地下構造物の外周部分の躯体を前記山留め壁の内面に沿って構築する工程と、
前記山留め壁の内側を掘削して床付けを行う工程と、
掘削された前記山留め壁の内側に、前記外周部分の躯体と一体に前記地下構造物の残りの躯体を構築する工程と、
を備える地下構造物の施工方法において、
前記地下構造物の躯体を全平面に亘って構築した場合の前記山留め壁の最大変位に対する前記地下構造物の外周部分の躯体を構築した場合の前記山留め壁の最大変位の比率と、前記地下構造物の外周部分の幅寸法と、の関係を示すデータを、想定される複数の地盤種別ごとにそれぞれ作成しておき、
施工場所の地盤種別に応じた前記データに基づいて、前記比率が1となる前記幅寸法を読み取り、該幅寸法で前記地下構造物の外周部分の躯体を構築することを特徴とする地下構造物の施工方法。
Building a retaining wall along the outer edge of the excavation area;
Drilling the inside of the retaining wall to expose the inner surface of the retaining wall;
Constructing a frame of the outer peripheral portion of the underground structure along the inner surface of the retaining wall;
Excavating the inside of the retaining wall for flooring;
A step of constructing the remaining frame of the underground structure integrally with the frame of the outer peripheral portion inside the excavated retaining wall;
In the construction method of the underground structure comprising
The ratio of the maximum displacement of the retaining wall when constructing the outer periphery of the underground structure to the maximum displacement of the retaining wall when the underground structure is constructed over the entire plane, and the underground structure Create the data indicating the relationship between the width dimension of the outer peripheral part of the object for each of a plurality of assumed ground types,
Based on the data according to the ground type of the construction site, the width dimension at which the ratio is 1 is read, and the outer peripheral portion of the underground structure is constructed with the width dimension. Construction method.
掘削領域の外縁に沿って山留め壁を構築する工程と、
前記山留め壁の内側を掘削して前記山留め壁の内面を露出させる工程と、
地下構造物の外周部分の躯体を前記山留め壁の内面に沿って構築する工程と、
前記山留め壁の内側を掘削して床付けを行う工程と、
掘削された前記山留め壁の内側に、前記外周部分の躯体と一体に前記地下構造物の残りの躯体を構築する工程と、
を備える地下構造物の施工方法において、
前記地下構造物の躯体を全平面に亘って構築した場合の前記山留め壁の最大変位に対する前記地下構造物の外周部分の躯体を構築した場合の前記山留め壁の最大変位の比率と、前記地下構造物の外周部分の幅寸法と、の関係を示すデータを、想定される複数の地盤種別ごとにそれぞれ作成しておき、
施工場所の地盤種別に応じた前記データに基づいて、前記比率が、前記地下構造物の躯体を全平面に亘って構築した場合の前記山留め壁の最大変位に対する前記山留め壁の許容変位の比率となる前記幅寸法を読み取り、該幅寸法で前記地下構造物の外周部分の躯体を構築することを特徴とする地下構造物の施工方法。
Building a retaining wall along the outer edge of the excavation area;
Drilling the inside of the retaining wall to expose the inner surface of the retaining wall;
Constructing a frame of the outer peripheral portion of the underground structure along the inner surface of the retaining wall;
Excavating the inside of the retaining wall for flooring;
A step of constructing the remaining frame of the underground structure integrally with the frame of the outer peripheral portion inside the excavated retaining wall;
In the construction method of the underground structure comprising
The ratio of the maximum displacement of the retaining wall when constructing the outer periphery of the underground structure to the maximum displacement of the retaining wall when the underground structure is constructed over the entire plane, and the underground structure Create the data indicating the relationship between the width dimension of the outer peripheral part of the object for each of a plurality of assumed ground types,
Based on the data according to the ground type of the construction site, the ratio is the ratio of the allowable displacement of the retaining wall to the maximum displacement of the retaining wall when the frame of the underground structure is constructed over all planes. The construction method of the underground structure characterized by reading the said width dimension, and constructing the frame of the outer peripheral part of the said underground structure with this width dimension.
JP2010244014A 2010-10-29 2010-10-29 Construction method for underground structures Active JP5668971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244014A JP5668971B2 (en) 2010-10-29 2010-10-29 Construction method for underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244014A JP5668971B2 (en) 2010-10-29 2010-10-29 Construction method for underground structures

Publications (2)

Publication Number Publication Date
JP2012097416A true JP2012097416A (en) 2012-05-24
JP5668971B2 JP5668971B2 (en) 2015-02-12

Family

ID=46389642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244014A Active JP5668971B2 (en) 2010-10-29 2010-10-29 Construction method for underground structures

Country Status (1)

Country Link
JP (1) JP5668971B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106968271A (en) * 2017-03-09 2017-07-21 中国建筑第八工程局有限公司 The construction method that underground pipe gallery is excavated and supported
JP2017193867A (en) * 2016-04-20 2017-10-26 清水建設株式会社 Liquefaction countermeasure structure of construction and design method of liquefaction countermeasure structure of construction
JP2018091107A (en) * 2016-12-07 2018-06-14 鹿島建設株式会社 Method for constructing underground structure
JP2019127748A (en) * 2018-01-24 2019-08-01 株式会社竹中工務店 Construction method for structure
CN113324617A (en) * 2021-05-12 2021-08-31 中国地质科学院水文地质环境地质研究所 Underground water on-line monitoring and early warning system and method for expansive and contractible soil environment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106638683B (en) * 2017-01-26 2019-04-05 上海建工二建集团有限公司 Contrary sequence method takes the outspoken fast closure construction connecting node of soil and construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147927A (en) * 1989-11-06 1991-06-24 Ohbayashi Corp Basement construction method
JPH0892983A (en) * 1994-09-28 1996-04-09 Kajima Corp Construction method of permanent structure underground exterior wall and earth retaining wall head in inverted construction method
JPH08158368A (en) * 1994-12-07 1996-06-18 Kajima Corp T-shaped self-standing landslide protection wall
JP2010001701A (en) * 2008-06-23 2010-01-07 Shimizu Corp Method of constructing underground structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147927A (en) * 1989-11-06 1991-06-24 Ohbayashi Corp Basement construction method
JPH0892983A (en) * 1994-09-28 1996-04-09 Kajima Corp Construction method of permanent structure underground exterior wall and earth retaining wall head in inverted construction method
JPH08158368A (en) * 1994-12-07 1996-06-18 Kajima Corp T-shaped self-standing landslide protection wall
JP2010001701A (en) * 2008-06-23 2010-01-07 Shimizu Corp Method of constructing underground structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193867A (en) * 2016-04-20 2017-10-26 清水建設株式会社 Liquefaction countermeasure structure of construction and design method of liquefaction countermeasure structure of construction
JP2018091107A (en) * 2016-12-07 2018-06-14 鹿島建設株式会社 Method for constructing underground structure
CN106968271A (en) * 2017-03-09 2017-07-21 中国建筑第八工程局有限公司 The construction method that underground pipe gallery is excavated and supported
CN106968271B (en) * 2017-03-09 2019-05-10 中国建筑第八工程局有限公司 Underground pipe gallery excavates and the construction method of support
JP2019127748A (en) * 2018-01-24 2019-08-01 株式会社竹中工務店 Construction method for structure
JP7173460B2 (en) 2018-01-24 2022-11-16 株式会社竹中工務店 Construction method of structures
CN113324617A (en) * 2021-05-12 2021-08-31 中国地质科学院水文地质环境地质研究所 Underground water on-line monitoring and early warning system and method for expansive and contractible soil environment
CN113324617B (en) * 2021-05-12 2022-10-14 中国地质科学院水文地质环境地质研究所 Underground water on-line monitoring and early warning system and method for expansive and contractible soil environment

Also Published As

Publication number Publication date
JP5668971B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5668971B2 (en) Construction method for underground structures
JP2008013926A (en) Existing building foundation reinforcing method
JP6543176B2 (en) Building method
JP2010001701A (en) Method of constructing underground structure
JP7232714B2 (en) how to build a foundation
JP3608568B1 (en) The structure of the foundation of the building consisting of the ground improvement body and the solid foundation, and the foundation construction method for the ground improvement
JP6855296B2 (en) Building foundation structure and its construction method
JP2007070858A (en) Base isolation structure and base isolation construction method for building
JP6678487B2 (en) How to build an underground structure
JP5728300B2 (en) Ground improvement body and piled raft foundation equipped with the same
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP2006348531A (en) Building foundation construction method and building foundation structure
JP5270255B2 (en) Foundation reinforcement method for existing wooden houses
JP2005002671A (en) Underpinning method and viaduct
JP5953218B2 (en) Base-isolated building structure
JP5024696B2 (en) Seismic reinforcement structure for existing buildings
JP6827256B2 (en) How to rebuild the building
JP2009068312A (en) Underground structure, designing technique for underground structure, and construction method of underground structure
JP2008150859A (en) Reinforcing structure of ground level different part
JP6534026B2 (en) Seismic isolation building and its construction method
JP3799284B2 (en) Manufacturing method for underground structures
JP2010121372A (en) Structure of newly-built structure using existing pile and existing foundation, and method for constructing the newly-built structure using existing pile and existing foundation
JP2012136932A (en) Seismic strengthening structure of existing builing
JP4657759B2 (en) Building pile foundation structure
JP2001059228A (en) Mat foundation structure for detached house and its constructing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5668971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150