JP2012096125A - Membrane-separation-type activated sludge process equipment and method for the same - Google Patents

Membrane-separation-type activated sludge process equipment and method for the same Download PDF

Info

Publication number
JP2012096125A
JP2012096125A JP2009051076A JP2009051076A JP2012096125A JP 2012096125 A JP2012096125 A JP 2012096125A JP 2009051076 A JP2009051076 A JP 2009051076A JP 2009051076 A JP2009051076 A JP 2009051076A JP 2012096125 A JP2012096125 A JP 2012096125A
Authority
JP
Japan
Prior art keywords
membrane
activated sludge
membrane separation
aerobic tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051076A
Other languages
Japanese (ja)
Inventor
Kotaro Kitamura
光太郎 北村
Minoru Morita
穣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009051076A priority Critical patent/JP2012096125A/en
Priority to PCT/JP2010/053349 priority patent/WO2010101152A1/en
Publication of JP2012096125A publication Critical patent/JP2012096125A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide membrane-separation-type activated sludge process equipment which carries out circulation of an aerobic tank, without reduction of the effective membrane separation area, with a uniform and stable flow rate of to-be-processed water required for washing of the surface of the membrane and a method for the equipment.SOLUTION: The membrane-separation-type activated sludge process equipment 10 includes an aerobic tank 12 treating target water 16 biologically and aerobically by using activated sludge 18 held within the tank, an air diffusion means 20 of supplying air required for the aerobic treatment and a membrane separation means 30 immersed in the aerobic tank 12. In the aerobic tank 12, there is formed a separation wall 50 dividing the membrane separation means 30 from the air diffusion means 20 vertically. The separation wall 50 has an upper opening 52 through which an ascending flow of the target water 16 produced in air diffusion by the air diffusion means 20 moves laterally under the water surface and flows into the side of the membrane separation means 30 and a lower opening 54 through which the ascending flow incoming from the upper opening 52 passes through the separation membranes of the membrane separation means 30 as a descending flow and flows out to the side of the air diffusion means 20.

Description

本発明は、特に活性汚泥を保持した好気槽内に膜分離手段を浸漬した膜分離式活性汚泥処理装置及びその方法に関する。   The present invention relates to a membrane separation type activated sludge treatment apparatus in which a membrane separation means is immersed in an aerobic tank holding activated sludge, and a method therefor.

被処理水中の有機物や窒素、リンなどを高効率に除去する装置として膜分離式活性汚泥処理装置が用いられている。図6はこの種の膜分離式活性汚泥処理装置100を模式的に示したものである。好気槽102には被処理水流入管102aから流入した被処理水108が満たされている。好気槽102内には活性汚泥109が予め高濃度に保持されるとともに、膜分離手段104が浸漬されている。膜分離手段104としては、両面に分離膜を張った方形の平膜を狭い間隔で横方向に多数枚、並列させた構造のものが一般的に採用されている。膜分離手段104の下方には散気手段106が配設され、ブロワ106aから供給された空気を膜分離手段106に向けて散気する。膜分離手段104には平膜を透過した処理水を装置外に排出する吸引ポンプ104aが排出管104bの途中に設けられている。   A membrane separation type activated sludge treatment apparatus is used as an apparatus for efficiently removing organic substances, nitrogen, phosphorus and the like in water to be treated. FIG. 6 schematically shows this type of membrane separation type activated sludge treatment apparatus 100. The aerobic tank 102 is filled with water to be treated 108 that has flowed from the water to be treated inflow pipe 102a. In the aerobic tank 102, the activated sludge 109 is held at a high concentration in advance, and the membrane separation means 104 is immersed therein. As the membrane separating means 104, one having a structure in which a large number of rectangular flat membranes with separation membranes on both sides is arranged in parallel in a transverse direction at a narrow interval is generally employed. An air diffuser 106 is disposed below the membrane separator 104 and diffuses air supplied from the blower 106 a toward the membrane separator 106. The membrane separation means 104 is provided with a suction pump 104a for discharging the treated water that has permeated through the flat membrane to the outside of the apparatus in the middle of the discharge pipe 104b.

上記の構成において、好気槽102内に流入した被処理水108は活性汚泥109によって生物学的に好気処理され、被処理水108中の有機物や窒素、リンなどが除去される。膜分離手段104では吸引ポンプ104aの吸引力によって膜分離が行われ、活性汚泥109と処理水とが固液分離される。平膜を透過した処理水は排出管104bを介して装置外に排出される。この結果、活性汚泥109が好気槽102内に留まることになり、好気処理による増殖分と合わせて、好気槽12内では活性汚泥が高濃度に保持される。   In the above configuration, the water to be treated 108 that has flowed into the aerobic tank 102 is biologically aerobically treated by the activated sludge 109, and organic matter, nitrogen, phosphorus, and the like in the water to be treated 108 are removed. In the membrane separation means 104, membrane separation is performed by the suction force of the suction pump 104a, and the activated sludge 109 and the treated water are separated into solid and liquid. The treated water that has permeated the flat membrane is discharged out of the apparatus through the discharge pipe 104b. As a result, the activated sludge 109 stays in the aerobic tank 102, and the activated sludge is kept at a high concentration in the aerobic tank 12 together with the proliferation by the aerobic treatment.

ここで、散気手段106からの散気には3つの目的がある。
第1の目的は好気槽102内を好気性に維持することである。活性汚泥109による生物学的な好気処理には酸素が消費されるので、散気によって酸素を補給して好気槽102内の被処理水108中の溶存酸素濃度を高く維持することができる。
Here, the aeration from the aeration means 106 has three purposes.
The first purpose is to keep the aerobic tank 102 aerobic. Since oxygen is consumed in the biological aerobic treatment by the activated sludge 109, oxygen can be replenished by aeration to maintain the dissolved oxygen concentration in the treated water 108 in the aerobic tank 102 high. .

第2の目的は膜分離手段104の分離膜を洗浄することである。平膜の膜面には膜分離によって活性汚泥や種々の固形分が付着、堆積し、そのまま放置すると分離膜の透過性が次第に低下するので、膜面の洗浄を目的として散気が行われる。すなわち、膜分離手段104の下方から散気された空気泡は浮力によって上昇する。その上昇過程で平膜の膜面に対して剪断力を付与し、膜面に付着、堆積した固形分を剥離させることができる。   The second purpose is to wash the separation membrane of the membrane separation means 104. Activated sludge and various solids adhere to and accumulate on the membrane surface of the flat membrane by membrane separation, and if left as it is, the permeability of the separation membrane gradually decreases, so that aeration is performed for the purpose of cleaning the membrane surface. That is, air bubbles diffused from below the membrane separation means 104 rise by buoyancy. In the ascending process, a shearing force is applied to the film surface of the flat film, and the solid content adhered and deposited on the film surface can be peeled off.

第3の目的は好気槽102内に被処理水108の循環流を形成することである。散気された空気泡の上昇力及び膜間水路内に気液混合液と、その外部液体との密度差を駆動力として、膜分離手段104内では被処理水108の上昇流が生じ、膜分離手段104の下方から被処理水108が吸い込まれる。膜分離手段104の上方に押し出された被処理水108は次に流路を下降し、再び膜分離手段104の下方から吸い込まれる。この被処理水108の循環過程で被処理水108と活性汚泥109とが十分に混合、接触し、活性汚泥109による好気処理が活発に進行する。   The third purpose is to form a circulation flow of the water to be treated 108 in the aerobic tank 102. Ascending force of the diffused air bubbles and the density difference between the gas-liquid mixed liquid and the external liquid in the intermembrane water channel are used as a driving force, and the upward flow of the water to be treated 108 is generated in the membrane separation means 104, and the membrane The treated water 108 is sucked from below the separating means 104. The to-be-processed water 108 pushed out above the membrane separation means 104 descends the flow path and is sucked again from below the membrane separation means 104. In the circulation process of the water to be treated 108, the water to be treated 108 and the activated sludge 109 are sufficiently mixed and brought into contact with each other, and the aerobic treatment with the activated sludge 109 proceeds actively.

このように膜分離式活性汚泥処理装置100は、好気槽102内で活性汚泥109による好気処理と固液分離を同時進行させることができる。このため、従前の沈殿池を備えた活性汚泥処理装置に比べて沈殿池を省略し、装置のコンパクト化と高効率化を図ることができる。   As described above, the membrane separation type activated sludge treatment apparatus 100 can simultaneously perform the aerobic treatment and the solid-liquid separation by the activated sludge 109 in the aerobic tank 102. For this reason, a sedimentation basin can be abbreviate | omitted compared with the activated sludge processing apparatus provided with the conventional sedimentation basin, and the compactness and high efficiency of an apparatus can be achieved.

しかしながら、上記散気の3つの目的を同時に達成するためには難しい問題がある。第1の目的を達成するためには、散気する空気泡をなるべく微細化して単位体積当たりの気液接触面積を増加させる必要がある。しかしながら、空気泡を微細化すると空気泡の上昇力が低下し、膜分離手段104の膜面に対して十分な剪断力を付与することができない。このため、第2の目的である膜面の洗浄効果が低下する。また、第3の目的である循環流の形成も不十分となる。逆に、第2、第3の目的を優先して散気する空気泡を粗大にすると被処理水108に対する酸素の溶解効率が低下し、活性汚泥による好気処理の効率も溶存酸素の不足により低下するという問題がある。   However, there are difficult problems to achieve the above three purposes of aeration. In order to achieve the first object, it is necessary to make the air bubbles to be diffused as fine as possible to increase the gas-liquid contact area per unit volume. However, when the air bubbles are made finer, the ascending force of the air bubbles decreases, and a sufficient shearing force cannot be applied to the membrane surface of the membrane separation means 104. For this reason, the cleaning effect of the film surface which is the second purpose is lowered. In addition, the formation of the circulation flow, which is the third purpose, becomes insufficient. On the contrary, if the air bubbles to be diffused are preferentially given priority for the second and third purposes, the dissolution efficiency of oxygen in the water to be treated 108 is lowered, and the efficiency of the aerobic treatment with activated sludge is also due to the lack of dissolved oxygen. There is a problem of lowering.

このように第1の目的と第2、第3の目的の間には散気する空気泡の大きさに関して二律背反の関係があり、散気のみによって3つの目的を同時に達成することは困難である。   Thus, there is a trade-off between the first objective and the second and third objectives regarding the size of the air bubbles to be diffused, and it is difficult to achieve the three objectives at the same time only by aeration. .

特許文献1には、上記問題を解決するため、槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、前記好気槽内に浸漬された膜分離手段と、前記膜分離手段の下方から空気を散気する散気手段と、前記膜分離手段で透過した処理水を排出する処理水排出手段とを備えた膜分離式活性汚泥処理装置において、前記散気手段から散気されて前記膜分離手段の上方域に到達した空気泡を回転羽根によって微細化する気泡微細化手段を設けた構成が開示されている。   In Patent Document 1, in order to solve the above problem, an aerobic tank for biologically aerobically treating the water to be treated with activated sludge held in the tank, and a membrane separation means immersed in the aerobic tank A membrane separation type activated sludge treatment apparatus comprising: a diffuser for diffusing air from below the membrane separation means; and a treated water discharge means for discharging treated water permeated by the membrane separation means. There is disclosed a configuration in which bubble refining means for refining air bubbles diffused from the air means and reaching the upper region of the membrane separation means with a rotating blade is disclosed.

特開2004−237202号公報Japanese Patent Laid-Open No. 2004-237202

上記構成の場合、微細化される前の粗大な空気泡によって好気槽の循環および、膜分離手段の洗浄を行い、その後空気泡を微細化して酸素を被処理水中に溶存させている。よって、分離膜に接触する空気泡の面積が増大すると有効な分離膜面積が減少するという問題が解決されておらず、このため分離膜後段の吸引ポンプの負荷を強くする必要が生じ、分離膜に大きな負荷を与えることになる。   In the case of the above configuration, the circulation of the aerobic tank and the cleaning of the membrane separation means are performed by the coarse air bubbles before being refined, and then the air bubbles are refined to dissolve oxygen in the water to be treated. Therefore, the problem that the effective separation membrane area decreases when the area of the air bubbles in contact with the separation membrane decreases has not been solved. For this reason, it is necessary to increase the load of the suction pump downstream of the separation membrane. Will give a heavy load.

また上記構成においては、洗浄のための被処理水の流速を得るためには多大な散気量を必要とし、その結果多大な電力量が必要である。特に多数平膜を並列させた場合には、膜の各隙間に均等に散気を送ることは非常に困難である。   Moreover, in the said structure, in order to obtain the flow velocity of the to-be-processed water for washing | cleaning, a great amount of aeration is required, and as a result, a great amount of electric power is required. In particular, when a large number of flat membranes are juxtaposed, it is very difficult to evenly diffuse the gaps between the membranes.

さらに、膜面の洗浄に必要な被処理水の流速は処理水の膜透過水量によって決まるが、均一化が困難な散気において必要な流速を与えることは困難であり、通常過剰に散気しているため多大な電力量が必要となる。   Furthermore, the flow rate of water to be treated required for cleaning the membrane surface is determined by the amount of permeated water in the treated water. However, it is difficult to provide the necessary flow rate for air diffuser that is difficult to homogenize. Therefore, a great amount of power is required.

そこで本発明は上記問題点に着目し、有効な膜分離面積を減少させず、均一かつ安定した膜面の洗浄に必要な被処理水の流速を与え好気槽の循環を行う膜分離式活性汚泥処理装置、及びその方法を提供することを目的とする。   Therefore, the present invention pays attention to the above-mentioned problems, and does not reduce the effective membrane separation area, but provides a flow rate of water to be treated necessary for uniform and stable washing of the membrane surface and circulates in the aerobic tank. An object is to provide a sludge treatment apparatus and method.

上記の課題を解決するため、本発明に係る膜分離式活性汚泥処理装置は、槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、前記好気槽内に浸漬された膜分離手段と、前記好気処理に必要な空気を供給する散気による前記好気槽内の上昇流から前記膜分離手段の膜間を上方から下方へ流れる下降流を形成させる散気手段と、を備えたことを特徴としている。   In order to solve the above problems, a membrane separation type activated sludge treatment apparatus according to the present invention includes an aerobic tank for biologically aerobically treating water to be treated with activated sludge held in the tank, and the aerobic tank. Forming a downward flow that flows from above to below between the membranes of the membrane separation means from the membrane separation means immersed therein and the upward flow in the aerobic tank by the air supply supplying the air necessary for the aerobic treatment It is characterized by having an aeration means for making it possible.

また本発明に係る膜分離式活性汚泥処理装置は、槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、前記好気処理に必要な空気を供給する散気手段と、前記好気槽内に浸漬された膜分離手段と、を備えた膜分離式活性汚泥処理装置において、前記好気槽内で前記膜分離手段と前記散気手段を垂直方向に区分けする分離壁を形成し、前記分離壁には、前記散気手段の散気によって生じた上昇流により、前記膜分離手段側の被処理水が前記散気手段側へ吸い込まれる下部開口と、前記下部開口からの被処理水の排出によって前記散気手段側から前記上昇流が前記膜分離手段側に下降流として流れ込む上部開口と、を設けたことを特徴としている。
この場合において、前記散気手段は、微細空気散気部と粗大空気散気部からなり、前記分離壁の側方に粗大空気散気部を形成するとよい。
Further, the membrane separation type activated sludge treatment apparatus according to the present invention supplies an aerobic tank for biologically aerobically treating the water to be treated with the activated sludge held in the tank, and air necessary for the aerobic treatment. A membrane separation type activated sludge treatment apparatus comprising an air diffuser and a membrane separator immersed in the aerobic tank, wherein the membrane separator and the air diffuser are vertically arranged in the aerobic tank. Forming a separation wall to be separated; a lower opening in which water to be treated on the membrane separation means side is sucked into the aeration means side by the upward flow generated by the diffusion of the aeration means on the separation wall; An upper opening is provided in which the upward flow flows as a downward flow from the diffusion means side to the membrane separation means side by discharging the water to be treated from the lower opening.
In this case, it is preferable that the air diffuser includes a fine air diffuser and a coarse air diffuser, and the coarse air diffuser is formed on the side of the separation wall.

本発明の膜分離式活性汚泥処理方法は、好気槽に散気手段を備え、前記好気槽に保持した活性汚泥によって好気処理した後、処理水を膜分離手段によって膜分離する膜分離式活性汚泥処理方法であって、前記好気槽内の前記膜分離手段と前記散気手段を区分けして、前記散気手段の散気によって好気槽内に上昇流を発生させて、前記上昇流を前記膜分離手段の上部から流入させて、膜間を下降させて、前記膜分離手段の下部から排出し還流させることを特徴としている。   The membrane-separated activated sludge treatment method of the present invention comprises a membrane separator in which an aerobic tank is provided with an air diffuser, and after the aerobic treatment with the activated sludge retained in the aerobic tank, the treated water is subjected to membrane separation by the membrane separator The activated sludge treatment method, wherein the membrane separating means and the aeration means in the aerobic tank are separated, and an upward flow is generated in the aerobic tank by the aeration of the aeration means, The ascending flow is caused to flow from the upper part of the membrane separation means, lowered between the membranes, discharged from the lower part of the membrane separation means, and refluxed.

本発明に係る膜分離式活性汚泥処理装置、及びその方法によれば、以下の効果を奏する。
第1に散気手段は、好気処理に必要な空気を供給する散気による好気槽内の上昇流から膜分離手段の膜間を上方から下方へ流れる下降流を形成させているため、分離膜に活性汚泥が堆積することを抑制するのみならず、分離膜に堆積した活性汚泥を被処理水が剥ぎ取り、好気槽内に被処理水及び活性汚泥を返流し循環させることになる。よって、均一な流れを膜面へ与えろ過を行ない易くし、散気の場合よりも効果的に分離膜の洗浄を行って単位面積当たりの膜分離の効率の低下を防止し、また散気気泡による有効膜面積の低下を防止できる。
The membrane separation activated sludge treatment apparatus and method according to the present invention have the following effects.
First, since the air diffuser forms a downward flow that flows from the upper side to the lower side between the membranes of the membrane separation unit from the upward flow in the aerobic tank due to the air diffused to supply the air necessary for the aerobic treatment, Not only to suppress the accumulation of activated sludge on the separation membrane, but also to remove the activated sludge deposited on the separation membrane by the treated water and return the treated water and activated sludge to the aerobic tank for circulation. Become. Therefore, a uniform flow is applied to the membrane surface to facilitate filtration, and the separation membrane is washed more effectively than the case of aeration to prevent a decrease in the efficiency of membrane separation per unit area. It is possible to prevent a decrease in effective membrane area due to the above.

従来の膜分離手段の下方に散気手段を配置して散気の上昇流(散気と被処理水の気液混合相流)による洗浄と比べ、本発明の下降流は、被処理水の液単相流であるために剪断力が高くなりやすく、洗浄力を向上する効果が得られる。   Compared with the conventional washing with an upward flow (aeration and gas-liquid mixed phase flow of diffused water) of the diffused air by disposing the diffuser means below the membrane separation means, the downward flow of the present invention Since it is a liquid single-phase flow, the shearing force tends to be high, and the effect of improving the cleaning power can be obtained.

第2に散気手段は、従来の膜分離手段の下方に配置した散気手段による上向流を発生させるための散気が不要になる。このため、酸素を被処理水に溶存させる目的に特化した設計が可能である。よって活性汚泥に対する溶存酸素の供給は高効率の微細気泡散気のみで行うことになるので、散気に必要な電力を削減することができる。   Secondly, the air diffuser eliminates the need for air diffused by the air diffuser disposed below the conventional membrane separator. For this reason, the design specialized for the purpose of dissolving oxygen in to-be-processed water is possible. Therefore, since the supply of dissolved oxygen to the activated sludge is performed only with high-efficiency fine bubble aeration, the power required for the aeration can be reduced.

第3には処理水の膜透過水量に併せて散気手段による上向流速を変化させることが可能であるため、従来の常に散気を続ける場合とは異なり省電力化、省動力化が可能である。   Third, it is possible to change the upward flow velocity by the air diffuser according to the amount of membrane permeated water of the treated water, so that it is possible to save power and power, unlike the conventional case where air is constantly diffused. It is.

本発明の膜分離式活性汚泥処理装置の実施形態を模式的に示した図である。It is the figure which showed typically embodiment of the membrane separation type | formula activated sludge processing apparatus of this invention. 本発明の膜分離式活性汚泥処理装置の説明図である。It is explanatory drawing of the membrane separation type | formula activated sludge processing apparatus of this invention. 汚泥流速と膜透過水量の関係を示すグラフである。It is a graph which shows the relationship between a sludge flow rate and a membrane permeated water amount. 膜分離式活性汚泥処理装置の変形例1の構成概略を示す図である。It is a figure which shows the structure outline of the modification 1 of a membrane separation type | formula activated sludge processing apparatus. 膜分離式活性汚泥処理装置の変形例2の構成概略を示す図である。It is a figure which shows the structure outline of the modification 2 of a membrane separation type | formula activated sludge processing apparatus. 従来の膜分離式活性汚泥処理装置の説明図である。It is explanatory drawing of the conventional membrane separation type | formula activated sludge processing apparatus.

本発明の膜分離式活性汚泥処理装置及びその方法の実施形態を添付の図面を参照しながら以下詳細に説明する。
図1は本発明の膜分離式活性汚泥処理装置の実施形態を模式的に示した図である。図2は本発明の膜分離式活性汚泥処理装置の説明図である。図1に示すように膜分離式活性汚泥処理装置10は、好気槽12、散気手段20、膜分離手段30、分離壁50を主な構成要件としている。
Embodiments of a membrane separation type activated sludge treatment apparatus and method of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a diagram schematically showing an embodiment of a membrane separation type activated sludge treatment apparatus of the present invention. FIG. 2 is an explanatory view of the membrane separation type activated sludge treatment apparatus of the present invention. As shown in FIG. 1, the membrane separation type activated sludge treatment apparatus 10 includes an aerobic tank 12, an air diffusion means 20, a membrane separation means 30, and a separation wall 50 as main components.

好気槽12は流入管14を介して供給された被処理水16を満たした水槽であり、槽内には所定量の活性汚泥18が保持されている。活性汚泥18は複合微生物が含まれたものである。複合微生物としては、例えば硝化細菌群、脱窒細菌群、嫌気性アンモニア酸化細菌群などがある。さらに、純粋菌株として、例えば硝化細菌、脱窒細菌、嫌気性アンモニア細菌、アオコ分解菌、PCB分解菌、ダイオキシン分解菌、環境ホルモン分解菌などが含まれる。   The aerobic tank 12 is a water tank filled with the water to be treated 16 supplied via the inflow pipe 14, and a predetermined amount of activated sludge 18 is held in the tank. The activated sludge 18 contains complex microorganisms. Examples of complex microorganisms include nitrifying bacteria, denitrifying bacteria, and anaerobic ammonia oxidizing bacteria. Further, pure strains include, for example, nitrifying bacteria, denitrifying bacteria, anaerobic ammonia bacteria, blue-green-degrading bacteria, PCB-degrading bacteria, dioxin-degrading bacteria, and environmental hormone-degrading bacteria.

好気槽12内には溶存酸素を被処理水16中に溶解させる目的で微細な空気泡(不図示)を放出可能な散気手段20が配設されている。散気手段20はブロワ22と散気管24からなり、ブロワ22から空気を供給し、散気管24から微細な空気泡(不図示)を放出して好気槽12中の溶存酸素濃度を高濃度に維持することができる。また好気槽12に保持される活性汚泥18は溶存酸素を呼吸しつつ、被処理水16中に含まれるアンモニアを硝酸性窒素にする好気処理を行うことができる。本発明の散気手段20は、好気槽12を平面視したとき、上方に後述する膜分離手段30が配置されていない箇所に配置している。   In the aerobic tank 12, an air diffuser 20 capable of releasing fine air bubbles (not shown) is disposed for the purpose of dissolving dissolved oxygen in the water to be treated 16. The air diffuser 20 comprises a blower 22 and an air diffuser 24, supplies air from the blower 22, and discharges fine air bubbles (not shown) from the air diffuser 24 to increase the dissolved oxygen concentration in the aerobic tank 12. Can be maintained. Moreover, the activated sludge 18 hold | maintained at the aerobic tank 12 can perform the aerobic process which makes ammonia contained in the to-be-processed water 16 nitrate nitrogen, breathing dissolved oxygen. When the aerobic tank 12 is viewed in plan, the aeration means 20 of the present invention is arranged at a location where a membrane separation means 30 described later is not arranged above.

また好気槽12内には膜分離手段30が配設され、被処理水16に浸漬されている。膜分離手段30は、両面に分離膜を張った複数の矩形の平膜32を一定の間隔を空けて並べて形成されている。隣り合う平膜同士の隙間は4〜10mm程度である。また、各平膜32の両側の側面は揃えられるとともに、側面に側板を接合して複数の平膜32を一体化させている。これにより平膜32の側面方向は封止され、上端及び下端が開口(上方開口38,下方開口39)され、平膜32の間に形成された複数の隙間は矩形の断面形状を有する。各平膜32の外部は被処理水16に接し、内部は排出管40を介して処理水吸引ポンプ42と接続されている。処理水吸引ポンプ42により吸引することで平膜32の外部と内部との圧力差を発生させ、被処理水16から活性汚泥18と処理水とを固液分離し、処理水を平膜32内部に透過させ、処理水吸引ポンプ42を通じて系外に排出する。このとき活性汚泥は平膜32の分離膜に堆積していく。この堆積の厚みが大きいほど単位面積当たりの分離膜の分離効率が低下する。   A membrane separation means 30 is disposed in the aerobic tank 12 and is immersed in the water to be treated 16. The membrane separation means 30 is formed by arranging a plurality of rectangular flat membranes 32 each having a separation membrane on both sides at regular intervals. The gap between adjacent flat membranes is about 4 to 10 mm. The side surfaces on both sides of each flat membrane 32 are aligned, and a plurality of flat membranes 32 are integrated by joining side plates to the side surfaces. Thereby, the side surface direction of the flat film 32 is sealed, the upper end and the lower end are opened (upper opening 38, lower opening 39), and a plurality of gaps formed between the flat films 32 have a rectangular cross-sectional shape. The outside of each flat membrane 32 is in contact with the water to be treated 16, and the inside is connected to the treated water suction pump 42 via the discharge pipe 40. By sucking with the treated water suction pump 42, a pressure difference between the outside and inside of the flat membrane 32 is generated, and the activated sludge 18 and the treated water are separated from the treated water 16 into solid and liquid, and the treated water is inside the flat membrane 32. And is discharged out of the system through the treated water suction pump 42. At this time, the activated sludge is deposited on the separation membrane of the flat membrane 32. The separation efficiency of the separation membrane per unit area decreases as the deposition thickness increases.

好気槽12内の散気手段20と膜分離手段30の間には、分離壁50を設けている。分離壁50は、好気槽12内に配置した散気手段20と膜分離手段30を垂直方向に区分けする壁であり、槽内の水面下と底面近傍にそれぞれ開口(上部開口52、下部開口54)を形成している。上部開口52は、散気手段20の散気による上昇流が水面下で側方へ移動して散気手段20側から膜分離手段40側へ流入する開口であり、好気槽12の水面下付近に設けている。一方、下部開口54は、膜分離手段30の膜間を下降した下降流が排出される開口であり、好気槽12の底面付近に設けている。   A separation wall 50 is provided between the air diffusion means 20 and the membrane separation means 30 in the aerobic tank 12. The separation wall 50 is a wall that divides the diffuser 20 and the membrane separator 30 disposed in the aerobic tank 12 in the vertical direction, and has openings (an upper opening 52 and a lower opening, respectively) below and near the bottom of the water surface in the tank. 54). The upper opening 52 is an opening through which the upward flow caused by the air diffused by the air diffuser 20 moves to the side below the water surface and flows from the air diffuser 20 side to the membrane separator 40 side, and below the water surface of the aerobic tank 12. Located in the vicinity. On the other hand, the lower opening 54 is an opening through which the downward flow that has descended between the membranes of the membrane separation means 30 is discharged, and is provided near the bottom surface of the aerobic tank 12.

また図2に示すように膜分離手段30を好気槽12の中心に設置して、膜分離手段30を挟むように好気槽12の両側面に散気手段20の散気管24を配置し、上部及び下部開口52,54を備えた分離壁50を取り付ける構成としてもよい。   Further, as shown in FIG. 2, the membrane separation means 30 is installed at the center of the aerobic tank 12, and the air diffusion pipes 24 of the air diffusion means 20 are arranged on both sides of the aerobic tank 12 so as to sandwich the membrane separation means 30. Alternatively, a separation wall 50 having upper and lower openings 52 and 54 may be attached.

上記構成による膜分離式活性汚泥処理装置の汚泥処理方法について以下説明する。
上記構成の膜分離式活性汚泥処理装置10において、好気槽12には被処理水16の流入管14から流入した被処理水16が張り込まれている。また好気槽12には活性汚泥18が予め高濃度に保持されている。さらに分離壁50によって好気槽12内を二分割し、それぞれ散気手段20及び膜分離手段30を配置している。膜分離手段30は両面に分離膜を張った方形の平膜32を狭いピッチで横方向に多数枚並列させた構造である。隣り合う平膜32との間隙は4〜10mmであり、この間隙を被処理水16及び活性汚泥18が通過する過程で膜分離処理が行なわれる。このとき吸引ポンプ42により吸引することで平膜32の外部と内部との圧力差を発生させ、被処理水16から活性汚泥18と処理水とを固液分離し、処理水を平膜32内部に透過させて処理槽外へ排出する。
The sludge treatment method of the membrane separation type activated sludge treatment apparatus having the above configuration will be described below.
In the membrane separation activated sludge treatment apparatus 10 having the above-described configuration, the water to be treated 16 flowing from the inflow pipe 14 of the water to be treated 16 is stretched into the aerobic tank 12. In the aerobic tank 12, activated sludge 18 is held in high concentration in advance. Further, the inside of the aerobic tank 12 is divided into two by the separation wall 50, and the aeration means 20 and the membrane separation means 30 are arranged respectively. The membrane separation means 30 has a structure in which a large number of rectangular flat membranes 32 having separation membranes on both sides are juxtaposed in a lateral direction at a narrow pitch. The gap between the adjacent flat membranes 32 is 4 to 10 mm, and the membrane separation process is performed in the course of the treated water 16 and the activated sludge 18 passing through this gap. At this time, the suction pump 42 sucks the pressure difference between the outside and the inside of the flat membrane 32 to separate the activated sludge 18 and the treated water from the water 16 to be treated, and the treated water is separated into the flat membrane 32. And is discharged out of the treatment tank.

一方、散気手段20により好気槽12内へ散気を行うと、好気槽12内に保持された生物処理に必要な溶存酸素を供給できる。また散気手段12で散気を行うと、空気の上昇、換言するとエアリフト効果により被処理水16および活性汚泥18の上昇流が発生する。本発明の上昇流は、膜分離手段30の分離膜表面の流れ方向に十分な剪断力を与える高い流速を備えている。膜分離手段30の膜間水路内では、膜表面から膜内に浸透する膜面に対して水平方向に流れる被処理水と、分離膜の膜面に沿って上方から下方に流れる被処理水の2方向の流れが生じている。この膜面に沿って上方から下方に流れる被処理水の流れが膜表面に付着した活性汚泥を剥ぎ落とす剪断力として作用している。   On the other hand, when air is diffused into the aerobic tank 12 by the air diffuser 20, dissolved oxygen necessary for biological treatment held in the aerobic tank 12 can be supplied. Further, when air is diffused by the air diffuser 12, air rises, in other words, an upward flow of the water to be treated 16 and the activated sludge 18 is generated due to the air lift effect. The upward flow of the present invention has a high flow velocity that gives a sufficient shearing force in the flow direction of the separation membrane surface of the membrane separation means 30. In the intermembrane water channel of the membrane separation means 30, the water to be treated that flows in the horizontal direction with respect to the membrane surface penetrating into the membrane from the membrane surface, and the water to be treated that flows downward from above along the membrane surface of the separation membrane. There are two directions of flow. The flow of water to be treated flowing from above to below along the membrane surface acts as a shearing force for stripping off the activated sludge adhering to the membrane surface.

本実施形態の好気槽12では、分離膜の膜間水路内が被処理水の単相部であり、その外側の散気手段20側の槽内が被処理水と散気の気液混相部となる。気液混相部は単相部に比べ比重が下がっている。上昇流は、この単相部と気液混相部に密度差を与えることにより発生させることができる。具体的には、分離壁50の開口部の開口面積、好気槽12内の散気スペース、散気手段20による散気量などを変化させることにより密度差を調整することができる。   In the aerobic tank 12 of the present embodiment, the inside of the intermembrane water channel of the separation membrane is a single-phase portion of the water to be treated, and the inside of the tank on the air diffusion means 20 side outside thereof is a gas-liquid mixed phase of the water to be treated and the air diffused. Part. The gas-liquid mixed phase portion has a lower specific gravity than the single phase portion. The upward flow can be generated by giving a density difference between the single phase portion and the gas-liquid mixed phase portion. Specifically, the density difference can be adjusted by changing the opening area of the opening of the separation wall 50, the air space in the aerobic tank 12, the amount of air diffused by the air diffuser 20, and the like.

この気液混相部と単相部の密度差によって発生した上昇流により、単相部(膜分離手段20)の下方では散気手段20側へ吸い込まれる被処理水の流れが生じる(矢印A)。また単相部の上方では、被処理水の排出による下方の流れによって、散気手段側から被処理水が膜分離手段側へ下降流として流れ込む(矢印B)。このように上昇流は、槽内の水面下まで上昇すると側方移動する。側方移動した上昇流は、分離壁50の上部開口52から膜分離手段30側へと流入する。このとき散気の気泡は槽外へ排出され被処理水と活性汚泥の流れとなる。上部開口52から流入した被処理水16及び活性汚泥18の上昇流は、膜分離手段30の上方開口38で下降流となる。この下降流は膜分離手段30の膜間を下方開口39に向かう流れとなり、流れ方向が逆転する。下降流の通過により、分離膜に活性汚泥が堆積することを抑制するのみならず、分離膜に堆積した活性汚泥を被処理水16に剥ぎ取らせる。下降流は下部開口54から散気手段20側へ吸い込まれて(排出されて)、再び上昇流となり好気槽12内を還流する。   Due to the upward flow generated by the density difference between the gas-liquid mixed phase portion and the single phase portion, a flow of water to be treated sucked into the diffuser means 20 side is generated below the single phase portion (membrane separation means 20) (arrow A). . Further, above the single-phase portion, the water to be treated flows as a downward flow from the aeration means side to the membrane separation means side (arrow B) due to the downward flow caused by the discharge of the water to be treated. Thus, the upward flow moves sideways when it rises below the surface of the water in the tank. The upward flow that has moved laterally flows from the upper opening 52 of the separation wall 50 toward the membrane separation means 30 side. At this time, the air bubbles are discharged to the outside of the tank and become a flow of treated water and activated sludge. The upward flow of the water to be treated 16 and the activated sludge 18 flowing from the upper opening 52 becomes a downward flow at the upper opening 38 of the membrane separation means 30. This downward flow becomes a flow toward the lower opening 39 between the membranes of the membrane separation means 30, and the flow direction is reversed. The passage of the downward flow not only suppresses the accumulation of activated sludge on the separation membrane, but also causes the treated water 16 to peel off the activated sludge accumulated on the separation membrane. The downward flow is sucked (discharged) from the lower opening 54 to the diffuser means 20 side, becomes an upward flow again, and returns inside the aerobic tank 12.

これにより、従来の散気手段による上昇流の場合よりも効果的に分離膜の洗浄を行って単位時間・単位面積当たりの膜分離の効率の低下を防止し、また散気気泡による有効膜面積の低下を防止でき、連続して安定したろ過を実現できる。   As a result, the separation membrane is washed more effectively than in the case of the upward flow by the conventional air diffuser to prevent a decrease in the efficiency of the membrane separation per unit time and unit area, and the effective membrane area due to the air diffused bubbles Can be prevented, and continuous and stable filtration can be realized.

また散気手段20は、酸素を被処理水16に溶存させる目的に特化した設計が可能である。よって、活性汚泥18に対する溶存酸素の供給は高効率の微細な空気泡による散気のみで行うことになるので、散気に必要な電力を削減することができる。
さらに、処理水の透過水量に応じて被処理水16の流速を変化させることが可能なので、従来の常に散気を続ける場合とは異なり省電力化が可能である。
The air diffuser 20 can be designed specifically for the purpose of dissolving oxygen in the water 16 to be treated. Therefore, the supply of dissolved oxygen to the activated sludge 18 is performed only by aeration with high-efficiency fine air bubbles, so that the power required for the aeration can be reduced.
Furthermore, since it is possible to change the flow rate of the water to be treated 16 according to the amount of permeated water of the treated water, it is possible to save power, unlike the conventional case where the aeration is always continued.

また生物処理に必要な散気によって発生した被処理水16及び活性汚泥18の上昇流によって形成される下降流によって分離膜表面に付着した活性汚泥18の洗浄に必要な活性汚泥流速を与えるようにしているため、従来のような洗浄用の散気手段を設ける必要がない。   Further, the activated sludge flow rate necessary for cleaning the activated sludge 18 attached to the separation membrane surface is provided by the downflow formed by the treated water 16 generated by the aeration necessary for biological treatment and the upflow of the activated sludge 18. Therefore, it is not necessary to provide a conventional air diffuser for cleaning.

ところで本発明者は、分離膜面上の被処理水の速度に対する分離膜の単位時間・単位面積当たりの処理水の膜分離水量を調査した。図3は汚泥流速と膜透過水量の関係を示すグラフである。同図の横軸は膜面汚泥速度(m/s)を示し、縦軸は平均Flux(m/d)を示している。図示のように、膜面汚泥速度を上げていくほど、平均Fluxが上昇、すなわちろ過水量が上昇するため、速度を早くすると、活性汚泥の分離膜への堆積が抑制される、または堆積された分離膜が被処理水の早い流速により剥ぎ取られたものと解釈することができる。   By the way, the present inventor investigated the amount of membrane separation water per unit time / unit area of the separation membrane with respect to the speed of the water to be treated on the separation membrane surface. FIG. 3 is a graph showing the relationship between the sludge flow rate and the amount of membrane permeated water. In the figure, the horizontal axis represents the membrane surface sludge speed (m / s), and the vertical axis represents the average flux (m / d). As shown in the figure, as the membrane surface sludge speed is increased, the average flux increases, that is, the amount of filtered water increases. Therefore, when the speed is increased, deposition of activated sludge on the separation membrane is suppressed or deposited. It can be interpreted that the separation membrane was peeled off by the fast flow rate of the water to be treated.

図4は膜分離式活性汚泥処理装置の変形例1の構成概略を示す図である。変形例1の膜分離式活性汚泥処理装置10Aの構成と、図1に示す膜分離式活性汚泥処理装置10と異なる構成は、散気手段の構成である。その他の構成は図1の膜分離式活性汚泥処理装置10と同一の構成であり、その詳細な説明を省略する。   FIG. 4 is a diagram showing a schematic configuration of Modification 1 of the membrane separation type activated sludge treatment apparatus. The configuration of the membrane-separated activated sludge treatment apparatus 10A according to Modification 1 and the configuration different from the membrane-separated activated sludge treatment apparatus 10 shown in FIG. Other configurations are the same as those of the membrane separation type activated sludge treatment apparatus 10 of FIG. 1, and detailed description thereof is omitted.

図4に示すように、変形例1の膜分離式活性汚泥処理装置10Aの散気手段20Aは、微細空気散気部26と粗大空気散気部28とから構成されている。微細空気散気部26と粗大空気散気部28はそれぞれ配管を介してブロア22を接続させている。   As shown in FIG. 4, the air diffuser 20 </ b> A of the membrane-separated activated sludge treatment apparatus 10 </ b> A according to Modification 1 includes a fine air diffuser 26 and a coarse air diffuser 28. The fine air diffuser 26 and the coarse air diffuser 28 are each connected to the blower 22 via a pipe.

微細空気散気部26は、酸素溶解効率の高い微細散気が可能な構成である。一方、粗大空気散気部28は、前記微細空気散気部26による散気気泡よりも大きい気泡(空気)を散気可能な構成である。また粗大空気散気部28は、微細空気散気部26よりも好気槽12内の分離壁50の側方に形成している。   The fine air diffuser 26 is configured to allow fine diffuser with high oxygen dissolution efficiency. On the other hand, the coarse air diffuser 28 is configured to be able to diffuse bubbles (air) larger than the diffused bubbles generated by the fine air diffuser 26. The coarse air diffuser 28 is formed on the side of the separation wall 50 in the aerobic tank 12 rather than the fine air diffuser 26.

このような変形例1の構成によれば、分離壁50の側方下部に粗大気泡を散気可能な粗大空気散気部28を配置しているので、粗大気泡による上昇流速が高まり、エアリフト効果が増して、被処理水16及び活性汚泥18の上昇流による下降流の下降流速を増大させることができる。よって分離膜に活性汚泥が堆積することを抑制するのみならず、分離膜に堆積した活性汚泥を被処理水が剥ぎ取り易くなる。   According to the configuration of the first modification, the coarse air diffuser 28 capable of diffusing coarse bubbles is disposed at the lower side portion of the separation wall 50. Therefore, the rising flow velocity due to the coarse bubbles is increased, and the air lift effect is achieved. As a result, the descending flow velocity of the descending flow due to the ascending flow of the water to be treated 16 and the activated sludge 18 can be increased. Therefore, not only the activated sludge is prevented from accumulating on the separation membrane, but also the activated sludge deposited on the separation membrane is easily peeled off by the water to be treated.

図5は膜分離式活性汚泥処理装置の変形例2の構成概略を示す図である。変形例2の膜分離式活性汚泥処理装置10Bの構成と、図4に示す膜分離式活性汚泥処理装置10Aと異なる構成は、散気手段の構成である。その他の構成は膜分離式活性汚泥処理装置10と同一の構成であり、その詳細な説明を省略する。   FIG. 5 is a diagram showing a schematic configuration of Modification 2 of the membrane separation type activated sludge treatment apparatus. The configuration of the membrane-separated activated sludge treatment apparatus 10B of Modification 2 and the configuration different from the membrane-separated activated sludge treatment apparatus 10A shown in FIG. 4 are the configurations of the aeration means. Other configurations are the same as those of the membrane separation type activated sludge treatment apparatus 10, and detailed description thereof is omitted.

図5に示すように、変形例2の膜分離式活性汚泥処理装置10Bの散気手段20Bは、微細空気散気部26と粗大空気散気部28に加えて、膜分離手段30の下方となる好気槽12の底部に第2の粗大空気散気部29を取り付けている。第2の粗大空気散気部29も微細空気散気部26と同様に配管を介してブロア22に接続させている。   As shown in FIG. 5, in addition to the fine air diffuser 26 and the coarse air diffuser 28, the air diffuser 20B of the membrane separation activated sludge treatment apparatus 10B according to the modified example 2 is arranged below the membrane separator 30. A second coarse air diffuser 29 is attached to the bottom of the aerobic tank 12. Similarly to the fine air diffuser 26, the second coarse air diffuser 29 is also connected to the blower 22 via a pipe.

このような変形例1の構成によれば、膜分離手段30によるろ過停止時に、膜分離手段30下部に設置した第2の粗大気泡散気部29による散気を実施し、膜分離手段30に対し上昇流を形成して分離膜に付着した活性汚泥18を洗浄することができる。   According to the configuration of the first modification, when the filtration by the membrane separation unit 30 is stopped, the second coarse bubble diffusion unit 29 installed at the lower part of the membrane separation unit 30 is diffused, On the other hand, the activated sludge 18 that forms an upward flow and adheres to the separation membrane can be washed.

10………膜分離式活性汚泥処理装置、12………好気槽、14………流入管、16………被処理水、18………活性汚泥、20………散気手段、22………ブロア、24………散気管、26………微細空気散気部、28………粗大空気散気部、29………第2の粗大空気散気部、30………膜分離手段、32………平膜、38………上方開口、39………下方開口、50………分離壁、52………上部開口、54………下部開口、100………膜分離式活性汚泥吸引装置、102………好気槽、104………膜分離手段、106………散気手段、108………被処理水、109………活性汚泥。 DESCRIPTION OF SYMBOLS 10 ......... Membrane separation type activated sludge processing apparatus, 12 ......... Aerobic tank, 14 ......... Inlet pipe, 16 ......... Water to be treated, 18 ......... Activated sludge, 20 ......... Air diffuser, 22 ......... Blower, 24 ......... Air diffuser, 26 ......... Fine air diffuser, 28 ......... Coarse air diffuser, 29 ......... Second coarse air diffuser, 30 ......... Membrane separation means 32... Flat membrane 38 ... upper opening 39 39 lower opening 50 separation wall 52 upper opening 54 lower opening 100 Membrane-separated activated sludge suction device 102... Aerobic tank 104 104 Membrane separation means 106 Air diffuser 108 Water to be treated 109 Activated sludge

Claims (4)

槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、
前記好気槽内に浸漬された膜分離手段と、
前記好気処理に必要な空気を供給する散気による前記好気槽内の上昇流から前記膜分離手段の膜間を上方から下方へ流れる下降流を形成させる散気手段と、
を備えたことを特徴とする膜分離式活性汚泥処理装置。
An aerobic tank for biologically aerobically treating the water to be treated with activated sludge retained in the tank;
Membrane separation means immersed in the aerobic tank;
Aeration means for forming a downward flow flowing from above to below between the membranes of the membrane separation means from the upward flow in the aerobic tank by the air supply for supplying air necessary for the aerobic treatment;
A membrane separation type activated sludge treatment apparatus characterized by comprising:
槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、
前記好気処理に必要な空気を供給する散気手段と、
前記好気槽内に浸漬された膜分離手段と、
を備えた膜分離式活性汚泥処理装置において、
前記好気槽内で前記膜分離手段と前記散気手段を垂直方向に区分けする分離壁を形成し、
前記分離壁には、
前記散気手段の散気によって生じた上昇流により、前記膜分離手段側の被処理水が前記散気手段側へ吸い込まれる下部開口と、
前記下部開口からの被処理水の排出によって前記散気手段側から前記上昇流が前記膜分離手段側に下降流として流れ込む上部開口と、
を設けたことを特徴とする膜分離式活性汚泥処理装置。
An aerobic tank for biologically aerobically treating the water to be treated with activated sludge retained in the tank;
Aeration means for supplying air necessary for the aerobic treatment;
Membrane separation means immersed in the aerobic tank;
In the membrane separation type activated sludge treatment equipment equipped with
Forming a separation wall that vertically separates the membrane separation means and the aeration means in the aerobic tank;
In the separation wall,
A lower opening through which the water to be treated on the membrane separation means side is sucked into the aeration means side by the upward flow generated by the aeration of the aeration means;
An upper opening through which the upward flow flows as a downward flow from the diffuser means side by discharging the water to be treated from the lower opening;
A membrane-separated activated sludge treatment apparatus characterized by comprising:
前記散気手段は、微細空気散気部と粗大空気散気部からなり、前記分離壁の側方に前記粗大空気散気部を形成したことを特徴とする請求項2に記載の膜分離式活性汚泥処理装置。   The membrane separation type according to claim 2, wherein the air diffuser includes a fine air diffuser and a coarse air diffuser, and the coarse air diffuser is formed on a side of the separation wall. Activated sludge treatment equipment. 好気槽に散気手段を備え、前記好気槽に保持した活性汚泥によって好気処理した後、処理水を膜分離手段によって膜分離する膜分離式活性汚泥処理方法であって、
前記好気槽内の前記膜分離手段と前記散気手段を区分けして、
前記散気手段の散気によって好気槽内に上昇流を発生させて、
前記上昇流を前記膜分離手段の上部から流入させて、
膜間を下降させて、前記膜分離手段の下部から排出し還流させることを特徴とする膜分離式活性汚泥処理方法。
A membrane separation type activated sludge treatment method comprising aeration means in an aerobic tank, after aerobic treatment with activated sludge held in the aerobic tank, and membrane separation of treated water by membrane separation means,
Dividing the membrane separation means and the aeration means in the aerobic tank,
By generating an upward flow in the aerobic tank by the air diffused by the air diffuser,
Allowing the upward flow to flow from above the membrane separation means,
A membrane separation activated sludge treatment method, wherein the membrane is lowered, discharged from the lower part of the membrane separation means, and refluxed.
JP2009051076A 2009-03-04 2009-03-04 Membrane-separation-type activated sludge process equipment and method for the same Pending JP2012096125A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009051076A JP2012096125A (en) 2009-03-04 2009-03-04 Membrane-separation-type activated sludge process equipment and method for the same
PCT/JP2010/053349 WO2010101152A1 (en) 2009-03-04 2010-03-02 Device for membrane separation type activated-sludge treatment and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051076A JP2012096125A (en) 2009-03-04 2009-03-04 Membrane-separation-type activated sludge process equipment and method for the same

Publications (1)

Publication Number Publication Date
JP2012096125A true JP2012096125A (en) 2012-05-24

Family

ID=42709708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051076A Pending JP2012096125A (en) 2009-03-04 2009-03-04 Membrane-separation-type activated sludge process equipment and method for the same

Country Status (2)

Country Link
JP (1) JP2012096125A (en)
WO (1) WO2010101152A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233685A (en) * 2013-06-03 2014-12-15 パナソニック株式会社 Effluent treatment apparatus
JPWO2014192476A1 (en) * 2013-05-30 2017-02-23 住友電気工業株式会社 Filtration device and filtration method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209411B1 (en) 2014-10-22 2022-05-18 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204125B2 (en) * 1996-10-28 2001-09-04 均 大同 Biological treatment method
JP4524553B2 (en) * 2003-09-16 2010-08-18 株式会社日立プラントテクノロジー Membrane separation activated sludge treatment equipment
JP4588043B2 (en) * 2007-03-30 2010-11-24 株式会社クボタ Membrane separation method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014192476A1 (en) * 2013-05-30 2017-02-23 住友電気工業株式会社 Filtration device and filtration method using the same
JP2014233685A (en) * 2013-06-03 2014-12-15 パナソニック株式会社 Effluent treatment apparatus

Also Published As

Publication number Publication date
WO2010101152A1 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
KR101363015B1 (en) Membrane unit and membrane separation device
CN103298750A (en) Oil-containing wastewater treatment system
US9044714B2 (en) Membrane module, membrane unit, and membrane separation device
JP4588043B2 (en) Membrane separation method and apparatus
JP2006015274A (en) Water treatment apparatus
JP5853342B2 (en) Solid-liquid separation module and solid-liquid separation method
JP2009119354A (en) Biological treatment apparatus and method
JP2012096125A (en) Membrane-separation-type activated sludge process equipment and method for the same
JP5823489B2 (en) Membrane separator
JP2007098368A (en) Immersed-membrane separation apparatus and method therefor
JP2012166142A (en) System for membrane separation activated sludge and method for membrane separation activated sludge
JP4819841B2 (en) Membrane separator
JP2011189308A (en) Active-sludge treatment apparatus and operation method thereof
JP2011056384A (en) Membrane separator
JP2007000712A (en) Solid-liquid separating device
JP2001170674A (en) Treating device for high-concentration sewage
JP2001062471A (en) Device for treating sewage containing nitrogen
JP2012045510A (en) Membrane separation activated sludge processing apparatus and membrane surface washing method of the same
JP2012187557A (en) Wastewater treatment apparatus and wastewater treatment method
JP2010017664A (en) Membrane separation type method and apparatus for activated sludge treatment
JP2005349285A (en) Solid-liquid separator and operating method
JP2002253933A (en) Reaction vessel structure
JP2004305806A (en) Activated sludge filtering method
JP2002316024A (en) Holding structure of membrane cartridge
JP2008178883A (en) Membrane separation apparatus